
A survey of technologies
supporting design of a multimodal

interactive robot for
military communication

Sheuli Paul
Autonomous and Radiology Technology Section,

Defence Research and Development Canada – Suffield Research Centre,
Ralston, Canada

Abstract

Purpose – This paper presents a survey of research into interactive robotic systems for the purpose of
identifying the state of the art capabilities as well as the extant gaps in this emerging field. Communication is
multimodal. Multimodality is a representation of many modes chosen from rhetorical aspects for its
communication potentials. The author seeks to define the available automation capabilities in communication
using multimodalities that will support a proposed Interactive Robot System (IRS) as an AI mounted robotic
platform to advance the speed and quality of military operational and tactical decision making.
Design/methodology/approach – This review will begin by presenting key developments in the robotic
interaction field with the objective of identifying essential technological developments that set conditions for
robotic platforms to function autonomously. After surveying the key aspects in Human Robot Interaction
(HRI), Unmanned Autonomous System (UAS), visualization, Virtual Environment (VE) and prediction, the
paper then proceeds to describe the gaps in the application areas that will require extension and integration to
enable the prototyping of the IRS. A brief examination of other work in HRI-related fields concludes with a
recapitulation of the IRS challenge that will set conditions for future success.
Findings – Using insights from a balanced cross section of sources from the government, academic, and
commercial entities that contribute to HRI a multimodal IRS in military communication is introduced.
Multimodal IRS (MIRS) in military communication has yet to be deployed.
Research limitations/implications – Multimodal robotic interface for the MIRS is an interdisciplinary
endeavour. This is not realistic that one can comprehend all expert and related knowledge and skills to design
and develop such multimodal interactive robotic interface. In this brief preliminary survey, the author has
discussed extant AI, robotics, NLP, CV, VDM, and VE applications that is directly related to multimodal
interaction. Each mode of this multimodal communication is an active research area. Multimodal human/
military robot communication is the ultimate goal of this research.
Practical implications –Amultimodal autonomous robot in military communication using speech, images,
gestures, VST and VE has yet to be deployed. Autonomous multimodal communication is expected to open
wider possibilities for all armed forces. Given the density of the land domain, the army is in a position to exploit
the opportunities for human–machine teaming (HMT) exposure. Naval and air forces will adopt platform
specific suites for specially selected operators to integrate with and leverage this emerging technology. The
possession of a flexible communications means that readily adapts to virtual training will enhance planning
and mission rehearsals tremendously.
Social implications – Interaction, perception, cognition and visualization based multimodal
communication system is yet missing. Options to communicate, express and convey information in HMT
setting with multiple options, suggestions and recommendations will certainly enhance military
communication, strength, engagement, security, cognition, perception as well as the ability to act
confidently for a successful mission.
Originality/value – The objective is to develop a multimodal autonomous interactive robot for military
communications. This survey reports the state of the art, what exists and what is missing, what can be done
and possibilities of extension that support the military in maintaining effective communication using

JDAL
7,2

156

© In accordance with section 105 of the US Copyright Act, this work has been produced by a US
government employee and shall be considered a public domain work, as copyright protection is not
available. Published in Journal of Defense Analytics and Logistics. Published by Emerald Publishing
Limited.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2399-6439.htm

Received 2 November 2022
Revised 4 November 2022
15 August 2023
6 September 2023
10 September 2023
13 September 2023
Accepted 13 September 2023

Journal of Defense Analytics and
Logistics
Vol. 7 No. 2, 2023
pp. 156-193
Emerald Publishing Limited
2399-6439
DOI 10.1108/JDAL-11-2022-0010

https://doi.org/10.1108/JDAL-11-2022-0010


multimodalities. There are some separate ongoing progresses, such as in machine-enabled speech, image
recognition, tracking, visualizations for situational awareness, and virtual environments. At this time, there is
no integrated approach for multimodal human robot interaction that proposes a flexible and agile
communication. The report briefly introduces the research proposal about multimodal interactive robot in
military communication.

Keywords Sensor fusion, Human–machine teaming (HMT), Multimodal communication,

Multimodal interactive robotic system (MIRS), Spoken dialogue system (SDS), Visual story telling (VST),

Virtual story telling (VST), Virtual personal assistant in VE

Paper type Literature review

1. Introduction
Communication is a fundamental human need. Human communication is interactive and
multimodal. Effective communication in a time-critical setting is vital for all types of military
operations (i.e. tactical engagements, Combat Search and Rescue (CSAR), Joint Intelligence
Surveillance and Reconnaissance (JISR), Joint Terminal Attack Controller (JTAC) and
Information Operations (IO)). Effective communication is dynamic, interactive and influential.
There is a need to develop automation capabilities that will enable the military to successfully
execute missions in complex environments while protecting the forces engaged in combat. This
paper surveys the state of the art, identifying what exists and what are missing, what can be
done and possibilities to extend existing technology. There is ongoing progress in machine-
enabled speech, image recognition, visualizations for situational awareness and virtual
environments (VEs). At this time, there is no integrated approach for multimodal human robot
interaction (HRI) that achieves a flexible and agile communication.

Effective HRI requires an ability to understand, design and evaluate robotic systems with
a goal to execute collaborative functions for or with humans. An essential element of the
interaction process is a multimodal form of communication. Modalities include voice, gesture,
image and graphics and data visualization. Challenges in these systems include maintaining
communication, joint action and human-aware execution. They can be understood in terms of
cognitive skills that they mandate (Bensalem et al., 2008):

(1) A joint goal, which has been previously established and agreed upon (typically
through dialogue);

(2) A physical environment, estimated through the robot’s exteroceptive sensing
capabilities and augmented by inferences drawn from previous observations;

(3) A belief state that includes a priori common-sense knowledge and mental models of
each of the agents involved (the robot and its human partners).

This paper presents developments in the robotic interaction field with the objective of
identifying essential technological developments that set conditions for robotic platforms to
function autonomously. This includes the key aspects in HRI, unmanned automatic system
(UAS), visualization, VE and prediction. The paper then describes the aspects in the
application areas that will require extension and integration to enable prototyping of the
interactive robot system (IRS).

The rest of this paper is organized as follows: Section 2 defines key aspects of
communication and military applications that benefit from its multimodal forms. Section 3
describes challenges and opportunities for this technology. Section 4 visits the critical threads
in the literature to define the central parameters of multimodality and surveys the current
state of the art. Section 5 adds some unifying thoughts to the survey and describes a
multimodal interactive robotic systems (MIRS) concept. Finally, Section 6 presents some brief
conclusions.
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2. Multimodalities and communication
Multimodal communication comprises a combination of multiple heterogeneous sources for
interactions. Effective communication often requires a meaningful representation of multiple
data sources. Multimodal systems process information from different human communication
channels at multiple levels of abstraction. These systems emphasize abstract levels of
processing, explicit representations of the dialogue context, the user and investigations of the
users’ beliefs, intentions, attitudes, capabilities and preferences. These components are
media, mode analysis and design, interaction and context management, user modelling and
knowledge sources. Multi-media systems consist of various types of speech, graphical and
direct manipulative interfaces with different modules (Jokinen and Raike, 2003).
A conversational interactive interface leads to natural interactive systems. A multimodal
signal stimulates the sensory system’s response to the environment. A multimodal signal
currently does not have a broadly established definition.

This section presents a brief discussion of multimodal human communication using
various contextual metaphors and how this is used in human interactions. It clarifies how
multimodal communication is a fundamental human capability and how this can be extended
from human robot communication to military and robot communication.

Human interactions are multimodal. Each interaction uses multiple modes to listen,
perceive, sense, gesture, visualize and taste. Such interactions are distinguished by modes,
modalities and mediums. The modes are related to human sensory systems such as visual,
auditory and tactile. The modality can be perceived as text, images and tactile sensation that
are not easily represented internally by a machine. For a machine, the medium is an output
device such as a screen, speaker or haptic technology, i.e. a feedback device. The medium can
be an interactive modular system composed of independent elements. For instance,
visualization is a type of media (Yau, 2013). Multimodal integration is a type of fusion engine.
The meanings of input streams can vary with time, user and context (Rousseau et al., 2006).

The images in Plates 1–12 show how humans communicate using different modes. Some
humans are speaking, some are using hand gestures and others are using devices to portray
visual descriptions. VR simulations andAR based heads-up displays assist in perceptions by
portraying visual description and explanation through images, pictorial representations or
clarifications of similar situations. Thus VR and AR devices are helpful for supporting

Plate 1.
Communication using
texts, gestures, images
and devices

Plate 2.
Face-to-face
interactions using
hands and digital
media based pictorial
representations
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endurance and gaining confidence to embrace challenging situations. Furthermore, these
devices are foreseen to improve performance in these situations via training or other forms of
support for the human. This is accomplishedwith a user interactingwith virtual media-based
communications.

Interaction and contextual reflection 65% of the information in a human-human
interaction is non-verbal e.g. mixed with visual cues and gestures that express human
thoughts, reflect mood state, support a response, present complements, furnish accents and
thus, adjust verbal information (Birdwhistell, 1970). The images in Plates 1–3 show face-to-
face discussion, use of text, hand gestures, images on the phone, computer and tablet. The

Plate 3.
Communications using

gaze and activities

Plate 4.
Communication via

visualization or media,
e.g. display

Plate 5.
Interpretation,

perceptions and
interactions using

multiple
communicative modes

and medias

Plate 6.
Communication,

perceptions,
descriptions,
clarifications,

presentation using
text, pictorial

representations, media
and gestures
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participants use, speech, gesture, facial expression and different bodily position which
influence interpretations. When people engage in face to face interaction, they may discuss
information of very different kinds, which in modern contexts may be displayed on a variety
of electronic devices such as phones and computers. Interaction and communication using
different modalities and modes can vary substantially based on contextual situations.

2.1 Multimodal interaction, fusion and information processing
An appreciation of how humans perceive and transmit signals through differentmodalities is
central for designing a multimodal system. A key to this process is the interpretation of
multimodal signals with an appropriate level of fusion and fission of information across the

Plate 7.
Military user with VR
simulation and AR
heads-up display

Plate 8.
Military
communication:
patrolling/surveillance
or conducting training

Plate 9.
Soldier wearing a
Visual Augmentation
System and related
hand held device while
training

Plate 10.
Military personnel on
operation, e.g. advance
to contact using vision
and posture
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modality channels. This is complicated by the differences in the character of the information
in different input and outputmodality channels. These differences can be accentuated by how
the messages are encoded into the modalities. Thus, for effective information presentation,
there is a need for clarity in how different modalities complement and contradict each other.
Furthermore, the means and methods for precise interpretation of information must be
specified clearly.

Two pieces of information in differentmodalities complement each other if they contribute
toward the same meaning but could not be easily interpreted in a meaningful way as
standalone, unimodal information. Different types of modalities may complement each other.
For instance, in a car collision, the commonmodalities (e.g. vision, audition and tactility) may
convey the samemessage: we see one car approaching and hit a second car; we hear the sound
of collision; we feel the vibration of impact. The perceptions of all these modalities convey the
same information and complement each other. Alternatively, the information is redundant if
the same complete information is conveyed in both modalities independently (e.g. the Tram
3B iconmoving on the map at the point that denotes railway station along with simultaneous
audio: “Tram 3B leaves railway station”). Information in different channels can also be
contradictory. For example, a person could circle a location on a map and say simultaneously
“this bus stop here”, but the circle does not contain any references to bus stops. Although this
is not reasonable as a system output, it may occur as a user input (Norris, 2004).

The fusion of information refers to the analysis and integration of input information from
different modalities into a composite, meaningful form. The fission of information is the
opposite process, which occurs during information generation. Fission refers to the division
of information into appropriate modalities with a goal of generating an effective presentation.
Fusion exists in three levels: lexical, syntactic and semantic. Lexical fusion happens on the
hardware and software levels, for example, when selecting objects with the shift key down.
Syntactic fusion involves combining data to form a syntactically complete command. Finally,
semantic fusion concerns the detailed functionality of the interface and defines the meanings
of the actions. Merging various inputs for information processing through fusion and
combination of output media for the purpose of presentation through fission are fundamental

Plate 11.
Military deployed on
field training, e.g. a
temperate climate

Plate 12.
Military deployed on
field training, e.g. an

arid climate
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concepts in multimodal communication. Concepts related to fusion and fission in multimodal
and multimedia-based interaction are discussed in Maragos et al. (2008).

In multimodal language communication and interaction, the concepts and meanings are
extracted fromdifferentmodalities. For instance, speech, touch and vision can be combined to
produce a single meaning or a representation for the user’s action. Multimodal fusion can be
applied to build a coherent and consistent interpretation of different modal sources. Fusion-
based proceduresmay select the best candidate interpretation usingmodels based onweights
and combinations of information (Oviatt et al., 2017). For example semantic fusion typically
takes place in two levels: First, inputs are combined into events that are processed by the
higher-level interpreter, which uses its knowledge about users’ intention. Second, the context
is analyzed to finalize and disambiguate the input (Ida, 2020).

HRI needs to take place in dynamic, partially unknown environments that are not
currently designed for robots. The robot needs to understand and interpret a variety of
situations with rich semantics, and conduct physical interactions with humans that require
fine, low-latency yet socially acceptable control strategies. This requires natural and
multimodal communication, which mandates common-sense knowledge and the
representation of possibly divergent mental models. Such HRI is needed in situations,
where human control is either infeasible or not cost-effective (Canal et al., 2020; Rachid, 2022;
Bonarini, 2020).

3. Challenges and potential impact
IRS that support effective military training in a VE has the potential to revolutionize military
training. An IRS would enable the HMT to train together from the earliest phase of military
training. The advantages that come from candidate selection, training intensity and mission
rehearsal will be augmented through the use of the IRS, translating into a critical advantage
over future adversaries. Different modes and medium are required to achieve this vision with
confidence. Thus, the IRS can be seen as a valuable companion in many military activities.
The multimodal autonomous communication capability of the IRS will enable the HMT to
rapidly adapt to a dynamic combat environment and improve mission performance. The
multimodal combination of audio, visual, graphics, imagery and digital modelling will help
military forces maintain effective communications and face difficult situations. The
additional advantage is the ability to conduct rapid mission rehearsals that will lead to
improved outcomes and preservation of friendly forces.

Western military forces face a number of near term challenges arising from the imminent
fielding of platforms enabled by AI capabilities. The autonomous mobile robot holds the
prospect of assuming many of the difficult and dangerous tasks currently executed by
humans. The integration of a protected platform with AI, which is then paired with selected
human teams, will result in a potent and flexible capability.

Military commanders at all levels confront uncertainties during the execution of their
missions. Potential adversaries are developing AI-infused systems and are now on the verge
of fielding machines capable of conducting semi-independent offensive actions, selecting
targets and taking lethal action without direct human input. The Canadian Armed Forces
(CAF) has no experience in facing such capabilities and is now exposed to technical surprise
on current operations. The CAF lacks an ability to explore the implications of these
developments and consider near-term steps to mitigate the adversarial advantage.

Military commanders must comprehend and act across all domains of conflict with
increasing amounts of data. Accordingly, the speed, complexity and breadth of operations are
increasing at every level (strategic, operational and tactical). One of the major challenges is
the ability to act quickly. This is directly related to the capability to process the flood of
information. The data load of military operations requires that the commander’s staff be able
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to process and analyze at a pace sufficient to provide situational awareness to a commander.
However, perfection cannot be the objective: a commander’s intuition remains vital to time-
compressed decision making with uncertain battle field conditions. The most difficult
challenge lies in integration of the aforementioned multimodal features to provide value to a
military decision.

For example, someone who cannot speak the local language will often find it difficult to be
deployed alone. This barrier, however, can be alleviated by speech-to-speech (s2s) translation
systems. Translation systems can also be integrated into communication tools to allow
people who speak different languages to freely communicate with each other remotely.
Speech technology can also help in unified messaging systems: a speech transcription sub-
system can be used to convert voice messages left by a caller into text. The transcribed text
can then be easily sent to the recipient through emails, instant messaging or short message,
and conveniently consumed by the recipient. ASR technology can be used to dictate short
messages to reduce the effort needed for the users to send short messages to others. Speech
recognition technology can also be used to recognize and index speeches and lectures so that
users can easily find the information that is critical to them (Yu et al., 2015).

A robot that is capable of navigating in unknown urban environments without the use of
GPS data or priormap knowledgewill be very useful inmilitary activities. Such a robotwould
retrieve directional information by interacting with humans or the military. It would store
acquired information into a topological route graph, which can used to give feedback to the
human and to navigate in unknown environments as discussed in the Autonomous City
Explorer (ACE) project (Bauer et al., 2009).

Logistics operations, recording and playback fidelity, record and book keeping and other
CAF operations would benefit from multimodal robots as described in Pandya et al. (2019)
and Miku�sov�a et al. (2017).

The Future Operating Environment (FOE) will be dominated by automated systems.
These systems will support decision making informed by multimodal military
communications. The capabilities of an IRS are a vital step towards ensuring that a future
military entity remains a relevant force.

A multimodal interface for an IRS has the advantage of increased usability and
accessibility for both the military and civilians. For example, visually impaired users can rely
on the voice modality and hearing-impaired users can rely on the visual modality. Haptic
input/output with visualization mechanisms would expand usability even further. The
communication between a human and a robot is currently an area with many new
developments, theories and technologies. Emerging technologies such as AR, VR and XR can
support the communication between human and the machine, providing immersive
experiences for visualization and analysis. Other human machine interaction (HMI) issues
related to skills such as dexterity and flexibility may enhance total productivity and decrease
the human ergonomic stress. Existing solutions on VR and AR technologies in HRI and HRC
are reviewed in Dianatfar et al. (2021).

4. Multimodal interactions and communications
Multimodality enables choosing any input or output modality or combination of input and
output modalities for optimizing interaction. Modality is a particular way of representing
input or output information in some physical medium, such as something touchable, olfaction
or gustation. Multimodality is inherent in the normal interaction of living organisms, often
expressed in poses or other actions.

Multimodal features may determine the extent to which an interface supports its users in
completing their tasks efficiently, effectively and satisfactorily. The weaknesses of one
modality can be offset by the strengths of another in amultimodal interface. Accessibility can

Multimodal
interactive

robot

163



determine how easy it is for people to interact with the robot. Multimodal interfaces can
provide increased accessibility, demonstrated by capabilities such as: interpreting postures,
gestures and facial expressions; filtering ambiguous and incomprehensible spoken
utterances, which may include simultaneous pointing gestures or other shared visual
input (Jokinen and Raike, 2003).

Common sensory modalities involved in multimodal systems are shown in Table 1.
A human multimodal interaction involves a coordination of different anatomy and
physiology of sensory organs (Schomaker, 1995).

The following subsections summarize literature related to multimodality in these
critical technological areas: HMI, autonomous unmanned systems, visualization, emergent
technology, spatial prediction, natural language processing (NLP) and computer
vision (CV).

4.1 Multimodal human machine interaction
The media are the material objects available for presenting and saving information. The
physical components can be computer input and output devices such as a screen,
microphone, speaker or pointer. The modes are the human mechanisms of perception
engaged in processing the incoming information that usesmodalities such as vision, audition,
olfactory and touch. Modes, media and multimodal communication can be visualized in
Figure 1. Multimodality is a means to express one’s purpose in an effective way. Thus, more
than one mode such as written and spoken text, moving or still images, sound or music are
coordinated to communicate in a sensible and meaningful manner. In addition, modes could
include gestures such as movement, facial expressions, body language, body position,
physical arrangement and proximity. Contextual aspects of multimodal communication is
described in Lutkewitte (2014), Fillmore (n.d) (unknown).

Bolt (1980) focused on spatial tasks and map-based applications to integrate speech and
gestures in the MIT media lab. This is one of the early endeavours to design multimodal
interfaces.

Different control modalities, such as gestures, CV and teleoperation, are included in some
multimodal systems. The increasing use of robotic assets in the military, industry and even
household settings has led to a growing need for developing more intuitive and flexible
human–robot interfaces. An interactive simulation to facilitate the objective evaluation of
multimodal HRIs was presented in Whitney (2019).

HMI can be based on combined modes of sight, hearing, touch, learning, and perception
of the world. The machine may be a desktop computer or mobile phone or any emergent
virtual or augmented reality related device or component of Internet of Things (IoT). The
interaction can be defined as a successful exchange of data or instruction between the user
and the technology. An extensive survey of verbal and non-verbal aspects of HRI, its
historical introduction and human–robot system desiderata is provided inMavridis (2015).
This successful interaction can be based on the balance of the needs of a user and the
technical capabilities of the machine. A multimodal interaction may be supported by a

Sensory perception Sense organ Modality

Sense of sight Eyes Visual
Sense of hearing Ears Auditory
Sense of touch Skin Tactile
Sense of balance Organ of equilibrium Vestibular

Note(s): Modified version of Schomaker (1995)

Table 1.
Sensory modalities
that are central to
human systems
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combination of images, audio, video, text or streaming audio-video in live or off-line form.
A meaningful representation of such sources is essential to form a multimodal interactive
system (Turk, 2014). Baltrusaitis et al. (2019) develops taxonomy of multimodal machine
learning for building models, processing and relating information from multiple
modalities. It includes a detailed analysis of early and late fusion, as well as a
categorization of broader challenges in multimodal machine learning, namely:
representation, translation, alignment, fusion, and co-learning.

Human machine communication (HMC) attempts to incorporate the nature of human
perception and environmental interaction, as well as a basic reasoning capacity to draw
inferences between acquired knowledge and its application (Brouwer and Harrington,
1994). This paper proposes a list of core challenges in communication and coordination,
modelling approaches and infrastructure for optimized service. It recommends four main
topics for the design of educational systems – a. Fundamental human perception and
reasoning; b. New media: enabling technologies; c. Artificial Intelligence; d. Advanced
applications.

Bauer et al. (2009) presented a HMC system in an ACE project. This system enabled the
human to ask the robot for directions and stored the retrieved route information as internal
knowledge. The system incorporated theories from linguistics in a mixed-modalities
communication interface.

The idea of teaming between human and machine provides another perspective
(O’Malley, 2007). Important features include the architecture of the team and task
allocation. Supporting issues include automated systems perspectives such as theoretical
analyses, laboratory experiments, modelling, simulation, field studies, ability, fatigue,
neurological analysis, accident, mental workload, situation awareness, complacency and
skill degradation.

(Military)

Tactical 

Environment

Robotic
Platform

Sensor
Fusion

Sounds

Movements

Speaker

Screen

Pointer

Text

Speech

Images
Vision

Graphics
Photography
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Mode 1

Mode 3

Mode 4

Modes Modalities Media

Visual
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Mode 2
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Amultimodal Scale Invariant Feature Transform (SIFT) algorithm was used to recognize
hand-written characters in Guruprasad and Majumdar (2016). The shapes of the hands and
characteristics such as formats, orientation, rotation, image formation, translation, scale and
illumination were used to support multimodal recognition of handwriting.

The modes of interactions can be seen as an input, perception, output or control in the
communication loop. Touch-based multimodal systems, interactions and applications using
mainly a single mode are considered in Bezold and Minker (2011), Minker et al. (2006),
Maragos et al. (2008) and Toselli et al. (2011). Communication based on automated capabilities
was not considered in these studies.

A study on the human as a model operator and the behaviours in tactical environments
such as in airborne early warning and control (AEW and C) was provided in Qureshi (1998),
Bourdon and Kaluzny (2013), Caron and Kaluzny (2015) and Davy and Demczuk (2003). The
main objective was to explore the cognitive aspects of human behaviour and possibilities of
autonomous decision making capabilities applying control theory, task networks, human
factors, and knowledge-based approaches. Yet all these studies did not intend to assist the
fundamental multimodal HRI communication.

Huang et al. (2019) examined multimodal perception interfaces through a combination of
human visual and haptic perception in guiding a coarsemotor task. Thiswas in the context of
coordinating with the fine local motion performed by a robotic module running high-speed
actuators and high-speed sensory feedback. The small sample population demonstrated
reduced errors when human visual and haptic perceptions were combined with HRI. The
results also suggested haptic perception as a major contributor to effective human response
in fast motion situations. The focus was the integration of multimodal perception in human
subjects for simple motor tasks. This type of multimodal integration may have a narrow
application in specialized military robotic applications, such as ordnance disposal, but would
not be as useful for dynamic tactical tasks.

Unhelkar et al. (2020) developed models for Bidirectional Communication Decision-
Making in Sequential Human-Robot Collaborative (HRC) tasks. The objective of the models
and algorithms was to leverage effective communication to attain high quality HMT. This
research focused on sequential collaborative tasks that had well-known task dynamics and
specified objectives. The results of the experiment showed that the CommPlan framework
enabled robots to decide if, when, and what to communicate while performing sequential
tasks in coordination with humans. The human robot team was able to communicate
efficiently while collaboratively performing a well-defined task in a limited physical space
(e.g. a meal preparation task). This verbal communication mode shows some promise to
enhance routine interactions for repeated tasks; however, it would be of very limited value in
the uncertain, complex environment of military operations.

Scimeca et al. (2020) proposed a future workshop to explore the use of AI, robotic
simulation, haptic sensing and soft robotics technologies to improve the quality and
efficiency of medical practitioner training as well as the creation of new tools for diagnosis
and healthcare through the interaction of humans and robots in medical settings. It is likely
that this workshopwill push the frontiers of the use of soft robotics for training and diagnosis
as well as improving the understanding of robotic simulation and visualization in themedical
field. It remains to be seen if any insights concerning the robotic doctor/patient interaction
from this workshop could be applicable for scenarios based on military capabilities, missions
and activities.

Schoenherr et al. (2020) demonstrates an algorithm that produces adversarial examples
against hybridAutomatic Speech Recognition (ASR) systems. In these examples, the systems
remain robust in an over-the-air attack that is not adapted to the specific environment. The
practical experiment revealed ASR systems are vulnerable in varying room setups. This
included situations with no direct line-of-sight between speaker and microphone and utilized
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psycho-acoustic methods to hide changes of the original audio signal below the human audio
threshold. An inconspicuous adversarial example can be used by an attacker for any target
transcription to disrupt or misdirect an ASR function. A single modality robot
communication capability would therefore be readily vulnerable in a contested environment.

Saad et al. (2020) employed an iterative Interaction-Design (ID) method in multimodal
robot communication for a reception robot. A small sample population of industrial design
students was engaged to use the ID tool to design person- and task-oriented communications.
This method produced distinctive task- and person-oriented dialogue styles, to predict
multimodal communicative behaviours. The resulting task-oriented style was a more formal,
shorter and less chatty communication format. The study reinforces the value of extant
verbal communication discipline well-established in demanding work conditions, such as Air
Traffic Control and Fire Control nets.

Ermacora et al. (2015) explored the spectrum of autonomous operations by unmanned
aerial vehicle (UAV) within a smart city scenario, where a cloud robotics service employed
small UAVs formonitoring and surveillance in support of emergencymanagement. TheUAV
operation was mediated by a cloud robotics platform according to the selected Level of
Autonomy (LOA). Three levels of autonomy (tele-operation, mixed-initiative and full
autonomy) for unmanned systems were employed to analyze the sliding autonomy approach
in multiple scenarios. The rapid LOA selection required to adapt to dynamic combat
conditions was totally dependent on a protected and pervasive cloud network and was
therefore, unsuited to many military operations. It would support various routine base
operations and allow a reduction in dedicated personnel for some functions.

Cockburn et al. (2013) presented an interactive simulation environment to facilitate the
evaluation of multimodal HRI. Gesture controls and audio commands were used to direct
robots in a simulation environment, challenging the robotic agents to interpret and respond
correctly. The exploration of HRI control modalities of gestures, CV and teleoperation with
the simulated environment is a valuable foundation for HMT experiments, and is adaptable
to other interactive military training applications. This simulated research environment may
support exploration of robot behaviour selection once it is validated in real world
applications.

A prototype of a cognitive robotic assistant is designed to act proactively, adaptively and
interactively with respect to humans with slight walking and cognitive difficulties in Fotinea
et al. (2016). The key future capability is a multimodal action recognition system required to
monitor, analyze and accurately predict user actions. This will require refined modelling of
HRC in order to achieve an effective HRI. This research is not applicable to military
capabilities such as injury recovery and rehabilitation due to the highly specialized nature of
the assistive robotic application.

Lucignano et al. (2013) presented a Partially Observable Markov Decision Process
(POMDP)-based dialogue system for bi-modal HRI to generate a robust interaction. An
integrated architecture mounted on a mobile robot platform was tested in an HRI scenario to
assess the overall performance with respect to baseline controllers. Voice and gesture based
bi-modal interactionwasmore successful than gesture only, where the speech and gesture are
naturally complementary. The simplicity of the case study was useful for exploring the
probabilistic model. An extension of the concept is required to yield any relevance formilitary
application.

Anjomshoae et al. (2019) conducted a Systematic Literature Review (SLR) of goal-driven
eXplainable Artificial Intelligence (XAI) to support transparency and trustworthiness for AI
applications. It focused on the explanation of robot behaviours to human users, and suggests
that some focus on inter-robot explanation is required. It underscores several known
shortfalls: AI-enabled military applications will require full transparency at all stages, so
explainable and due diligencemethods are built into all decision processes. Themain findings
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include (1) a considerable portion of existing research only focuses on conceptual studies or
lack evaluations or tackle relatively simple scenarios; (2) almost all deal with robots/agents
explaining their behaviours to the human users and very few address inter-robot (inter-agent)
explainability. Finally, (3) while providing explanations to non-expert users has been outlined
as a necessity, only few research studies address the issues of personalization and context-
awareness. The issue of full transparency, it seems, is an open topic with varying
perspectives.

Aubert et al. (2018) evaluated motion-based and display-based communication modalities
within a HMT that was required to complete a collaborative manufacturing task. This
approach to evaluate communication of intent used various penalties for failing to safely
coordinate movement within a well-defined space. A moderate sample of teams found that
while multimodal communication of intent did not significantly improve upon unimodal
approaches, the successful communication of intent can facilitate fluent coordination in
concurrent team operations. However, there is no space for ambiguous communication of
intent within a military operation.

Heard et al. (2019) presented a diagnostic workload assessment algorithm that estimates
workload using results from peer-based and supervisory-based observation. This study used
wearable sensors that capture physiological workload indicators that are sensitive to
environmental effects. The algorithm correctly classified workload 90% of the time when
trained on data from the same human robot teaming paradigm. It is feasible that military
operations in permissive environments could employ such algorithms to adapt and allocate
tasks, but in contested military environments, soldiers are expected to function at the
maximum physical and cognitive workload. The multiple layers of real-time remote data
feedback are also susceptible to adversarial intercept, geo-location and jamming.

Meng et al. (2020) proposed a fused bi-modal architecture of speech and gesture.
A Convolutional Neural Network (CNN) and Baidu API are employed to recognize and
forward match speech and gesture. This information is then processed by an algorithm to
fuse the output into an intention category. The operator’s intention is determined by judging
the fill integrity of intents in the intention slot. The experiment showed that the bi-modal
fusion architecturewas an improvement on unimodalmeans of communication in recognition
accuracy and efficiency. Such algorithms may have application in low critical circumstances;
however, even the most mundane military tasks cannot be susceptible to algorithmic
adjudication.

Shu et al. (2019) proposed an architecture for safe human robot collaboration on a
coordinated and repetitive physical task. The HRI was initiated within a Virtual Reality
(VR) simulation and followed by implementation of the tasks with real world robotic
applications under VR supervision. This simulated world allowed for modification and
rapid prototyping of multimodal communication options where tasks can be first executed
in the VR simulation with different input and feedback channels to identify and validate
the most efficient communication means for the HMT. This architecture appears to have
ready application for the rehearsal of coordinated defined tasks with high degree of
repetition which would lend itself well to a manufacturing workplace, but not a dynamic
tactical military environment.

Efthimiou et al. (2019) presented the principles and technologies that form the basis of the
i-Walk platform HRI environment. Multimodal communication patterns from live human
interaction in a rehabilitation context enriched human robot communication. This was
achieved by increasing the naturalness in interaction from the robot side with respect to its
comprehension and reaction capabilities. This approach will require continued refinement of
human robot communication modelling in order to achieve an effective HRI. This research is
less applicable to tactical military capabilities due to the highly specialized nature of assisted
robotic applications.
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Kaindl et al. (2008) introduced a semi-autonomous mobile robot in a 2D space focusing on
multimodal human and robotic communication. A visual dialogue based robot and human
communication is discussed in Zhou et al. (2019). Multimodal interactive interfaces using
speech and gestures are presented in Lunghi et al. (2019) and Fuhrman et al. (2019); however,
these are not military context oriented. For incremental language generation, vision and
audio are used in HRC in Yu et al. (2015) and Yu and Tapus (2020).

A multimodal interaction model that fused gesture, speech and pressure information was
presented in Zeng and Feng (2020). This included simple interaction information set to
identify users’ intention. This multimodal intelligent interactive virtual experimental
platform (MIIVEP) was tested with middle school teachers and students.

Vision and hearing modes are used in information transmission and communication in
Hou et al. (2020). A neural network supported this single mode information identification.

A multimodal human–robot interface for a cooperative team of robots operating in a
hazardous environment was demonstrated in Lunghi et al. (2019). This HRI facilitates the
homogeneous control of a heterogeneous set of robots. The operator was capable of entering
in the loop between the HRI and the CERNbot to customize the control commands during
operations specific to the CERN facility. This can be a useful reference for design of amilitary
robot multimodal communication in a contaminated or challenging environment.

In Robotic and Strategy (2017), the US Army Robotic and Autonomous Systems Strategy
has stated the potential impact and necessity of human–computer interaction (HCI) in future
intelligence analysis capabilities (FIAC). This study highlighted the operation of smart-room,
collaborative working environments and various hardware display technologies (large group
display, flexible display, wearable display, mixed/augmented reality, mobile and ubiquitous
computing capabilities). It also examined the potential use of multimodal interactive
technologies such as touch tables, speech and gesture recognition, bio-metrics, intelligent and
adaptive user interfaces and advanced information visualizations.

Distributed mobile sensor networks, integrated communications and visualization
technology are discussed as HMT capabilities in Mortimer and Elliott (2017). This
research hypothesizes that tactical situational awareness (SA) can be improved if HRCs are
prioritized for single or multi-sensory display according to importance and appropriateness.
Some attention management issues were identified during task re-engagement and some
guidelines relevant to tactile cues within multi-sensory bidirectional HRCs were offered.
A novel neural network architecture called Global Workspace Network (GWN) is introduced
in Bao et al. (2020). This may be capable of handling dynamic and unspecified uncertainties
by applying multimodal data fusion. Behaviour based processes of an autonomous system
model claiming trustworthiness is presented in Wang et al. (2020). Yet details of acquiring
trustworthiness are not presented. Trust is closely related to communication which is often
not addressed in the existing research.

Human perception of robots using a smart speaker embodiment, and how this affects the
frequency of user interaction is discussed in Kontogiorgos et al. (2020). This study used a
human-like robot embodiment teleoperation task using the Augmented Reality Interface for
Teleoperation via the internet (ARITI) software framework. This architecture was tested in
its ability to achieve safe human robot collaboration by using a simple repetitive task use-case
which is jointly executed by the human and the robot. A nutwas held by the human and a bolt
was turned into the nut by the robot. The task was executed in the VR simulation with
different input and feedback channels (multimodal) in order to identify the optimal
communication between the human and the robot (Kontogiorgos et al., 2020). A semi-
immersive VR/AR platform was designed to assist human piloting of robotic platforms in
Boudoin et al. (2008). Smart tracking and smart action, and a ’Follow-Me’ technique were
integrated with a large scale (ARITI framework) multimodal HRI environment.
Inconsistencies in the use of hand and eye in the virtual scene has been studied in Li et al.
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(2020), which applied gesture and voice based multi-channel fusion to efficiently complete a
man-machine collaborative task via an interaction algorithm.

A multimodal interactive robotic framework based on a three-step approach: multimodal
recognition, intention interpretation and prioritized task execution was presented in Iba et al.
(2005). The multimodal recognition module translated hand gestures and spontaneous
speech into a structured symbolic data stream without abstracting user intent. The
interpretation module on the intents chose user input as primitives. This considered a task
based user input, the current state of the system, and concurrent system state to prioritize
robot sensing. The framework used a vacuum-cleaning robot to exemplify the interactive
programming and the plan recognition.

The concept of HRI is applicable to various types of work such as search and rescue
missions, industrial arms management, medical tasks, education or entertainment. For these
purposes, the robot control system enables the human and robot to work together. The links
for the system and operatormust be identified through a control architecture. Another critical
part is the system control algorithms which assess machine decisions for a single task. A
sensor fusion based robotic system architecture for motion control is presented in Ruiz and
Chandrasekaran (2020). A sensor fusion can integrate the information from sensors by using
a data association approach (Xue et al., 2020).

Robots in logistic services such as intelligent hoisting, assembling car bodies and welding
parts of a car are investigated in Miku�sov�a et al. (2017). The findings estimated that the robot
and robotized workplace is four to six times more efficient than purely human service.

A recording and playback system was developed and tested in a surgical operation
environment in Pandya et al. (2019). This was applied in several areas such as training of
surgeons; collection of learning data for the development of advanced control algorithms and
intelligent autonomous behaviours; and use as a “black box” for retrospective error analysis.

HMT is a core theme of the US Department of Defense vision of future warfare.
A successful collaboration between humans and intelligent machines depends on trust. Trust
is a complex and multilayered concept. Autonomy and AI technologies are consistently
considered valuable in military systems and missions (Konaev and Chahal, 2021).

Explainability and trust, description and adaptation of technologies in a social and
organizational context are essential in fostering trust in technology as discussed in Canal et al.
(2020). Conventional and standard interfaces from skeleton tracking, to face recognition, to
NLP for HRI scenarios have been considered for Robot Operating Systems (ROS).
Construction of complex multimodal pipelines for HRI and social signal processing has
been developed to bridge the HRI gap in the ROS ecosystem in Mohamed and Lemaignan
(2021). The HRC requires robots with explicit internal models of a human and capacities to
achieve tasks effectively with a human partner.

A cognitive robotic decision framework for situation assessment and context
management, goals and plans management, refinement, execution and monitoring to share
space and tasks with a human partner is developed in Alami et al. (2011).

4.2 Autonomous unmanned systems
Unmanned Ground Vehicles (UGV) have advantages over people in a number of different
applications, ranging from sentry duty, scouting hazardous areas, convoying goods and
supplies over long distances and exploring caves and tunnels. Despite the growing technical
integration (e.g. artificial intelligence (AI), machine learning (ML), CV related technology) to
unmanned vehicles, the state of technology is still far from achieving some basic
communication needs. As CV algorithms are implemented in hardware, the UGV is
becoming partially autonomous, yet it is difficult to successfully issue higher level commands
to a UGV, such as “patrol this corridor” or “move to this position while avoiding obstacles”
(Anderson et al., 2006).
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Computer vision algorithms for analyzing Electro-Optical (EO) and Infrared (IR) Full
Motion Video (FMV), 3D Light Detection and Ranging (LiDAR) and Wide Area Motion
Imagery (WAMI) sensor data are used in Lavigne et al. (2019). Broadly speaking, this
technology is related to tracking, insight seeking and surveillance in challenging
environments.

A streamlined unmanned underwater vehicle (UUV) based deck with a submerged
submarine in high sea littoral water was proposed in Watt et al. (2015). The solution used an
automated active dock to correct for transverse relative motion between the vehicles. This
concept was evaluated and tested by building and testing individual components to
characterize their performance, errors, limitations and cost. A dynamic simulation model of
automated docking of a UAV to a slowly moving submarine in littoral conditions was
presented in Roy et al. (2017).

Some separate applications such as dynamic reactive behaviours and capabilities in
Platforms for Ambulating Wheel (PAW) robots were studied in Broten et al. (2004, 2005,
2007), Monckton et al. (2005), and Shaker et al. (1992). Similarly, developments in
reinforcement learning in autonomous climbing and obstacle avoidance robotic vehicles
were explored in Vincent (2008). A Robot Operating System (ROS) autonomous mobile
ground rover platform for cultivation and fertilization was reported in Post et al. (2017). The
challenges of mobile agricultural robots are navigation and localization, object recognition
and mapping as well as path planning algorithms. However, in this limited case the rover
successfully navigated in the environment and performed its tasks. A preliminary human
activity recognition for HRI, including human fall detection, ambient intelligence, video
indexing, content-based video analytics, robotics and visual surveillance was conducted in
Harriott and Adams (2010). All of these investigated particular capabilities separately. None
of these investigated how the military communication would be improved by applying
automation capabilities.

A robot is teamedwith bystanders to accomplish victim triage, search, a hazard reading and
a hazard sampling task inHarriott et al. (2011). This studyusedHumanPerformanceModerator
Functions (HPMFs) to predict human performance in various roles for a peer-based human
robot team. Factors such as fatigue, stress, injury, dehydration, weather and cognitive
workloadwere considered for theHPMFs. Ingrand andGhallab (2017) discussed the interaction
between a person and a robotwithout any training and the influence ofHPMFs in cognition and
performancemanagement. A similar conceptwas attemptedwith trained response personnel in
Arrabito et al. (2010) and Bray-Miners et al. (2012). Four different types of gesture based 3D
Lidar interfaces for a UGV was investigated in Kealey and Collier (2020).

Human factors relating to the operation of unmanned aircraft systems are discussed in
Kaluzny (2012), Arrabito et al. (2010), Cahrbonneau and Legault (2017), Giang et al. (2010),
Kim and Hmam (2009) and Bourdon and Kaluzny (2013). A literature review on human
activity recognition (HAR) by feature extraction, object segmentation, bag of words and
Hidden Markov Model (HMM) is reported in Ruitang et al. (2007). This survey of literature
describes longer-term research on speech recognition techniques and the systematic progress
towards features and requirements of intelligent robots. These include speech interaction,
dialogue management and embedded system implementation of intelligent-robot-oriented
speech interactive techniques.

An autonomous orbital robot with a panoramic camera to improve position accuracy
using a distributed control system hierarchy was proposed in Chngchun et al. (2015). Tanaka
(2016) provided a survey of human–machine systems and discussed the growing
involvement of intelligent robots in space, ground, marine, social, industrial, legal service
and domestic service. This work provides an outline of a HMS, state-of-the-art research and
open questions with the aim of identifying what should/could be done to achieve further
innovation in the HMS field.
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An autonomy strategic challenge (ASC) explored the need for sensor and image analysis
and related technology, gaps between sensing and control, missing data analytics and AI
technologies inMonckton (2019). It was loosely organized into live and synthetic experiments
geared towards true multiple unmanned air, land, and maritime vehicles coordinated by
mission-oriented control. Decision support-based socio-technical systems have been
developed for battle management systems in Allouche and Turgeon (2020).

To support unmanned aircraft systems crew operations, an authority pathway based
weapon engagement system is designed and developed in Fang and Hou (2021). This assists
personnel in following the laws of armed conflict and standard operating procedures. Such
systems can be properly used only when there is clear communication involved. This
fundamental component is yet missing.

A UGV and unmanned aerial vehicle (UAV) have potential impact in reconnaissance,
surveillance and target acquisition platforms for the battlefield of tomorrow in military
communication (Moreau, 2011). A testing approach in unmanned UAV systems for local-area
surveillance augmented by automated data association is discussed in Anderson (2009). A
statistical hypothesis-based method is used to achieve track-to-track automated data
association. Another approach to mobile robot navigation based on Q-learning and
W-learning is investigated in complex terrains in Vincent (2006). The study narrowly
investigated robot navigation in terrains using the selected models.

An impressive variety of approaches is evident in the research supporting autonomy in
robotic systems. As we discovered in this part of the survey, none of these achieve a primary
goal of assisting the military create multimodal interactive robot communication.

4.3 Visualization and visual analytics
Humans are responsive to visualizations, which can have a dramatic impact. Visual thinking
and the visual representation of data, interpretation, and hypothesis building can be thought
of as VST. Graphics, pictures and imagery all help in perception and cognition through
powerful human visualization perception processes. Visual analytics (VA) attempts to
leverage data visualization and support analytical reasoning. A typical approach to this is to
collect, process and present data using visual forms. Then visual perception is analyzed and
knowledge is discovered to visually reveal the story hidden in the data.

The fundamental VA steps such as data collection and processing are essential for the
preliminary visual representation. This analysis strives to assign a useful data model such as
through clustering or classification.

A large proportion of human brain power is dedicated to processing the signals from
vision. Visualization of information helps in perception and reduces cognitive stress.
Visualization helps in exploring large data sets and gives insight into the data. The human
vision is the most powerful perception tool among the five human senses: Sight – 70%,
hearing – 20%, smell �5%, touch – 4% and taste – 1% (Stangor and Walinga, 2010).

An immersive interactive VA interface was used in Cybulski et al. (2014). An interactive
visual analytics metaphor was explored for designing and communicating using visual
representations. Three nodes, two machine tools equipped with sensors and measurement
systems, a collaborative robot with 6 degrees of freedom, a human machine interface for
condition monitoring and visualization are some features and items in this framework. This
framework was able to manage events and alarms in machine tools and driver robot
manipulators using a Raspberry Pi 2 and cloud-based communication protocol system.

A deep survey of visual object tracking in a surveillance environment was conducted in
Kaur et al. (2018). This study used divergent techniques to investigate human activity
recognition and interaction, ambient intelligence, video indexing, content-based video
analytics, robotics and visual surveillance conducted for the purpose of object tracking.
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The visualization of a geospatial active vessel trace was discussed in Gouin et al. (2011).
The VA was applied in support of maritime situation awareness, perception and
comprehension (Stewart, 2012).

A sensemaking support system (S3) prototype was developed based on visual encoding,
visual summary cards, a record browser, magnetic grid, multiple timelines, a graph analyzer
and intelligence studies in Lavigne and Gouin (2011a, b) and Lavigne et al. (2011a). A sense-
making toolbox with animated map and timeline, visual summary and magnet grid used as
visual widgets for situational awareness was developed in Varga and Lavigne (2016). Social
network analysis (SNA) in a non-maritime context such as an extended graph analyzer
widget and a generic graph analyzer widget in counter-insurgency are applications of VA
(Lavigne, 2014a).

A number of studies consider anomaly detectors, historical models of data streams,
prediction of future trends, identifying anomalies in data streams, anomaly correlation, filter
potential for false positives and network alert messages. For instance, VA was applied in
visual anomaly detection, maritime domain situational analysis, maritime threats, coastal
safety and Maritime Security Operation Centers (MSOC) including a JavaScript based
interactive prototype in Hall et al. (2014a) and Venour and Roodnick (2011). Maritime Visual
Analytics Prototype (MVAP) considered the trajectory, a specialized widget and factual
information exploration (Lavigne, 2014b). The MSOC was later extended to social network
analysis in a counter-insurgency context as MVAP in Lavigne (2014c) and Lavigne et al.
(2011b). This was further extended to maritime domain applications. The focus was
Visualizing Normal Maritime Behaviour (VNMB), Surveillance and Anomaly Detection
(SAD),and Collaborative VA of a Vessel of Interest (CVAV) (Davenport et al., 2013). A sense
making support system for joint intelligence collection and capability was discussed in
Lavigne et al. (2011, 2012, 2019), Riveiro (2011) and Lavigne (2015). The maritime domain
awareness of adjacent and bordering seas, ocean and navigated waterways, including some
maritime-related activities, infrastructure, people, cargo, vessels and other conveyances were
part of this development. Dynamics of Counter Improvised Explosive Devices (E-IED)
applying story telling exploratory visual analytics was reported in Lavigne et al. (2020). This
enables a storytelling feature to provide insights to the user. The VA exploratory tool can
provide a geospatial view of IED incidents, as well as incident type in text form and visual
forms. These approaches do not address prediction which is an essential element for
emergency events or military activities.

A vision-based framework for automatically recovering an AUV by another AUV in
shallow water is proposed in Liu et al. (2019). This framework contains a detection phase for
the robust detection of underwater landmarks mounted on the docking station in shallow
water and a pose-estimation phase for estimating the pose between AUVs and underwater
landmarks. This approach has been outperformed in terms of remote landmark detection.
Liu’s vision-based framework with acoustic sensors in field experiments demonstrated its
effectiveness in the automated recovery of AUVs.

Trajectories, interactive Kohonen maps for trajectory aggregation, clustering trajectories
for ship density regular traffic, vessel movement patterns using hybrid velocity signatures to
detect an anomaly and spline trajectory based clustering for coastal surveillance are
discussed in Anderson (2009) and Davenport et al. (2013). An improved prediction inspired
algorithm and pattern based learning model for real-time maritime domain information
tracking is presented in Rhodes et al. (2007). This approach demonstrated improved
prediction accuracy. A rule based expert system and vessel motion is applied to maritime
domain anomaly detection and situation awareness in Roy (2009). A literature and product
review on VA for maritime awareness is presented in Davenport (2009). This review
considered approximately 70 papers from global VA researchers, research groups, journals
and conferences and fifteen VA products. It focuses on VA patterns, topics and needed tools
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for the Recognized Maritime Picture (RMP). A prototype of expert knowledge acquisition via
social networking tools and technology for the Canadian Forces (CF) is investigated in
Crebolder et al. (2014). Social networking is seen as a useful and supportive tool for the CF in
these studies.

VA was applied in cyber-security to recognize risks, and protect against cyber-threats,
enable key aspects of digital forensic processes and information discovery in Goodall and
Sowul (2009). ManyNets for forensic activities, history trees and a Starlight visual
information system analysis tool were used in Lavigne and Gouin (2015). A visual form of
successful and missed terrorism attacks across the world since the 1970s was described in
Hall et al. (2014b).

Situational awareness (SA) is the perception of the environmental elements and events
with respect to time and space. In an effort to improve SA, the Armymight deliver swarms of
multiple small robots to an area of operations in advance of the maneuver of forces during
operations (Lapinski, 2009). The authors applied VA to exploit interactive visualization and
human cognition abilities to sustain SA in this contested operational environment.

Visual analytics have been explored extensively for use in different military applications;
but visualization and VST for communication purposes paired with a multimodal
communicative interface has not been achieved.

4.4 Emergent technology
Multimodal communication involves multimodal perception, multimedia and the virtual
environments of virtual reality (VR) and augmented reality (AR).

Emergence of new Information and Communication Technologies (ICT), such as VR and
AR and Mixed Reality (XR), have created the current era of HRI and HRC.

AR is intended to provide the user an interactive experience within a real-world
environment, where computer generated images are overlaid. This can be accomplished
using multiple sensory modalities, including visual, auditory, haptic, somato-sensory and
olfactory. The potential HMT application of AR and VR based communication, AR-based
behaviour explanation, AR/VR for robot testing and diagnostics, VR for HRI human-subject
experimentation, efficient representations for AR/VR, AR-enabled robot control as well as
architecture for AR/VR have been explored inWilliams et al. (2018) and Stedmon et al. (2013).

VR provides an immersive environment where objects are modelled by computer
graphics. It creates a virtual environment for users to experience, observe and interact with
virtual objects as ameans to better perceive a real environment. In contrast, AR overlays aVE
over the real world. AR features such as spatial mapping, audio and visual feedback, enable
the simulation of realistic applications. In robotics, VR andAR technologies are used to study
and prototype costly concepts and evaluate their validity with much lower expenses in a safe
user environment.

An efficient, coordinated emergent solution using a multi-agent shepherding task was
demonstrated in Nalepka et al. (2018). Shepherding refers to the guidance required for amulti-
robot cooperative task. This study also deals with a dynamic and deformable environment
(referring to terrain deformation or destruction). For this shepherding task evaluation,
participants were engaged in a virtual world and the emergence of oscillatory-like behaviour
in the virtual avatar inhibited efficient, coordinated behaviours.

Emergent technologies have been investigated in various contexts: A virtual environment
for investigating human trust and human robot interaction in the context of a disaster is laid
out in Ablavsky et al. (2002) and Crebolder et al. (2014). An obstacle avoidance strategy using
emergent technology to discover an alternative path to a selected destination was studied in
Yang et al. (2014). A stationary integrated video and active surveillance with GPS to GPS
denied tracking was introduced in Maciejewsk et al. (2008). To enhance usability and
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interactions, emergent technology was deployed by the Royal Canadian Navy (RCN) (Karle
et al., 2018).

Virtual assistance in multimodal autonomous interactions to enhance military robot
communication and provide support as needed has not yet been achieved.

4.5 Spatial prediction
Spatial analysis, which focuses on location-based data, often processes geographic data
(Esri, 2018). Geographic data can include geographic location, raster data (which consists of
vector layers such as rectangular or triangular or circular or as amixture of these) and natural
environmental types based on elevation, temperature, precipitation and location. These
might include roads, terrain, canals or census area. Spatial data exploration is a process of
interaction with a collection of data and maps in order to visualize and explore geographic
information. It is often an iterative interaction with information drawn from tables, charts,
graphs and multimedia.

Logistic regression (LR), support vector machine (SVM) and random forest (FR) were used
in predictions of traffic violations in Hana et al. (2008). An association rule, namely the
Forward Prediction (FP)–Growth algorithm for describing the set of classes in a relevant
association, is applied in geo-spatial semantics. This used Web Ontology Language (OWL)
for human-computer interaction to feature the forest, semi-natural areas, wetlands andwater-
bodies for spatial prediction (Mc Cutchan and Giannopoulos, 2018).

A systematic review of different spatial methods such as spatial statistics, spatial
econometrics, data-mining, ML, CV, remote sensing, geographic information science and
spatial database by different research communities is provided in Jiang (2018). A spatial
modelling, scene understanding, navigation and action-generation based autonomous robot
is discussed in Stachniss (2009). A robot with a Hidden Markov Model (HMM) based high
level interactions such as dyadic dialog between the presenter and a listener and vice versa is
investigated in Mead et al. (2011). The objective of this study was to provide a social robot
with the ability to recognize and produce appropriate social behaviour (Huang et al., 2017). An
interactive human–machine user interface basing predictions on eyemovement gaze features
is proposed in Hu et al. (2019). This applied SVM clustering analysis for spatial prediction,
and the accuracy rate was 64%. A high correlation between haptic information and
perception of the real and virtual environment was observed, while a visual-anchored
prediction based on haptic information on the perceived presence of the VEwas investigated
in Gall and Latoschik (2018).

Deep learning networks (DNN) have been applied to estimate the indoor partial space for
an air conditioner to blow air selectively into the main living area of residents. The DNN
learns the human body detection saliency map to estimate the living or non-living area of the
residents by accumulating sequential predictions (Cho and Lee, 2018).

For location prediction, a temporal spatial Bayesian model was applied to locate and
predict locations for selected friends in social networks in Jia et al. (2016). Spatial
autocorrelation and analysis for highly correlated large dimensional spatial data predictions
has been successfully applied for many different system settings in Diaz (2007).

4.6 Natural language processing (NLP)
ASR, automatic speech synthesis, machine language translation (MLT), machine language
understanding (MLU), text-to-speech (TTS) and natural language generation (NLG) are sub-
areas in NLP. NLP, ASR, and TTS were applied in short message service (SMS) applications:
reading a weather map aloud, reading emails and news, and updating business news. NLP is
applied to convert syntax to semantics to achieve effective communication
(Wiriyathammabhum et al., 2017). A spoken utterance is typically closely related to a
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context. Utterances are influenced by the expression, an event, the intention and related
situation, e.g. how a particular speaker acts and speaks in a specific event, at a certain time in
that particular position at that location. A simulated AI-based chatbot and military dialogue
for a robotic system is introduced by the author. This is being extended and integrated with
real robots for military communication.

VibLive is a text dependent voice user interface which detects the liveliness of voice. It has
been used as a voice user interface within the Internet of Things (IOT) environment obtaining
97% accuracy. It verifies live users and detects spoofing attacks without requiring users to
enroll specific passphrases (Zhang et al., 2020).

NLP is also applied for interactive HMC and interaction in Brouwer andHarrington (1994).
A multi-tasking ASR speech recognizer called Elektrobit Virtual Assistant was implemented
applying delayed neural network (NN) and integrated into a Kaldi speech recognition
development tool (Ranzenberger et al., 2018). The objective was to assist with maps, search
engines, web browser applications, phone applications, radio stations and speech dialogue.
Speech recognition for controlling a robot was developed in Kumar et al. (2012).

Intelligent and interactive robots using dialog and speech for robotic research are not new.
With speech as one of the most common communication means, research in speech
technology has a very long history. A speech recognition system applying HMM, neural net,
speech signal processing, noise reduction and filtering for noisy speech enhancement was
applied in an educational setting and showed 85% recognition accuracy (Ruitang et al., 2007).
Industrial noisy speech recognition applying adaptive signal processing, pattern recognition
and HMM is described in Richter et al. (2022). CNN and recurrent neural network (RNN), as an
end-to-end deep NN, were used for ASR in Song and Cai (2015). In this work, the framework
classificationwas done for the CNN, and connectionist temporal classification (CTC)was used
for decoding. In the CNN and RNN based speech recognition, the TIMIT database is used for
experiments and was implemented by using a python library called SAIL. Based on the
results in that research, the recognition accuracy is good, but the complexities and difficulties
in classification are high. GMM and HMM-based classifiers are predominantly used in ASR
research. The latest progress of deep learning NLP with respect to modelling, learning and
reasoning perspectives is discussed in Young et al. (2018) and Zhou et al. (2020). For rich-
source tasks with enough training data, supervised-learning has been shown to be effective.
According to these studies, for low-resource tasks with little training data, semi supervised
and unsupervised learning, multitask learning, transfer learning and active learning can be
used. These methods can either generate more pseudo training data for model training or
leverage the knowledge learned from existing models and tasks. Logic and reasoning can
extend NLP applications to advanced multitasking NLP stages combining multiple modes
and explaining these from different communication perspectives. Reasoning can either be
performed explicitly by designing specific inference models, or performed implicitly by end-
to-end training. The state-of-the-art results on these tasks are achieved by end-to-end neural
models. Poor performance in these systemsmay be due to existing knowledge bases suffering
from low coverage of open-domain natural language texts for tasks requiring processing of
both text and visual content. Typical (non-neural and neural) inference methods including
integer linear programming (ILP) andMarkov logic networks (MLNs) have been successfully
used in various NLP tasks, such as Question and Answering (QA), dialog systems and
information extraction.

Human–machine speech can be used in the classroom for education. This requires a
multimodal enabled interactive intelligencewhich has a time-aware, stream-basedprogramming
model for parallel coordinated computation as well as a set of tools for data visualization,
processing and learning. AI tools support the estimation of alignment probabilities between an
observable and a hidden sequence in Bohus et al. (2017). An intelligent robot oriented speech
interaction tool for speech synthesis to convert normal text consisting of words into speech was

JDAL
7,2

176



introduced in Ruitang et al. (2007). Investigation of multimodal features of speech, supporting
spoken dialogue in assembly and emergency situations for HRI applying deep learning
technology is ongoing in Paul et al. (2022a) and Paul et al. (2022b).

Statistical classification for task-oriented dialogue between soldiers and robots is
introduced in Quach (2021) and Army (2020). This robot enabling conversational AI can
communicate and perform actions based on underlying intents.

4.7 Computer vision (CV)
In order to detect human motion and enable control, a CV-based robotic pet interaction
system was developed in Mihara et al. (2000). The Motion Processor (MP) and Region of
Interest (ROI) were used in lego mindstorm robotics to detect human actions and control a
robotic pet. A survey of robotics applications clarifies the relationship between CV and NLP
as well as related applications in Wiriyathammabhum et al. (2017). A survey of robots and
workplace, industries, logistics and healthcare was conducted revealing that North America
lags other parts of the world in having robots in the workplace (IFR, 2018).

How statistical methods, deep learning and large scale neural networks have been applied
in machine intelligence, speech recognition, CV, language understanding and translation,
robotics and HRI are briefly covered in Dean (2016).

The perception of robotic interaction and human social impact was examined in Fraune
and Sabanovic (2014). The study concluded that there is a requirement for the development of
more robust HMC. The study included participants from different age groups and used
robots for several different types of communications.

An AI based autonomous chess playing robot on a Robot Operating System (ROS), hand
detection and chess movement tracking was developed in Rath et al. (2019). This autonomous
chess player accomplished 50 independent successful moves in an indoor environment. CV
was also employed in the real-time autonomous video enhancement (RAVE) system
developed in Carloni et al. (2013).

CV-related capabilities for the recognition of automated facial mimicry with laughing
facial expressions were developed in Paetzel et al. (2017). A vision sensor for detecting the
distance between surrounding buildings and a vehicle was developed in Kang et al. (2014).

Real-time tracking for three dimensional computer graphics (3D-CG) vision was
introduced to locate the operator’s object in Mitsuishi et al. (1997).

HRI in the context of roboticmusicianshipwas explored in Cicconet et al. (2013). Thiswork
investigated computer vision, mainly with visual cues, to anticipate a robotic response to
human gestures. The use case measured the time difference between a human player and a
robot with the robot performing better.

A low-complexity lidar gesture recognition system for mobile robot control in a real world
teleoperation setting has been demonstrated in Chamorro et al. (2021). A gesture-based HRI
applying aNN classifier for gesture recognitionwas implemented in Trigueiros et al. (2015). A
gesture recognition system applying the HMM was developed in Acharya and Pant (2015).
The processing tasks included background subtraction, segmentation, feature extraction and
classification. The result was compared with multilayer neural networks (MLP). The HMM-
based recognition system demonstrated 90% accuracy and the MLP based recognition
system obtained 60% accuracy in Tanguay (1995) and Marcel et al. (2000). Yet none of these
gesture recognition investigations are adequate to meet themultimodal communication need.
Substantial modifications and additional poses can be some options to extend this to gesture-
based communication.

4.8 Overview
This section presents an overview of the research of multimodal interaction using various
modalities and multimodal fusion of speech and gesture for various applications and HRI-
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based on sensing and perception. The application domain of existing research in general is
very restricted and mainly limited to indoor environments. Significant progress has been
made in some areas, yet these technologies are not yet available to be used in complex
emergency situations, outdoor complex military missions or natural catastrophes such as
wild fires, floods and hurricanes.

A summary of technologies, modalities, technical aspects and application domains is
shown in Table 2.

5. Analysis, gaps and a design concept
A mobile robot requires a mechanism of locomotion that enables it to move unbounded
throughout its environment. Even though significant progress has been made, navigation
remains one of the most challenging tasks for the mobile robot. Navigation is closely related
to perception, which requires sensors, extracting useful and meaningful information,
determining localization with respect to a robot’s position in the environment, cognition for
path planning to decide how to achieve its goal and finally, motion control that allows the
robot tomanipulate its motor for desired trajectories. Proper coordination of different sensing
and fusion are critical to managing navigation better.

Visual analytics have been applied in airborne surveillance and the maritime domain.
However, visual analytics and VST are yet to be extensively applied in decision making to
capture dynamic changes in military situation management as well as to predict and assist in
managing emergency situations. Multimodal autonomous interactive communication can be
a practical companion in emergency situation management.

Multimodal fusion formultimodal learning basedmultimodal autonomousmilitary robots
in communication for complex situations are yet to be deployed. Up to this date, based on the
available knowledge and publicly available documentation, a vigorous active research and
development in UAS and HRI systems to support better decision making, are yet to be
implemented. Autonomous multimodal communication and general autonomous
communication do not currently exist in the civilian and military domain. A dialogue-
based autonomous mobile robot has yet to go beyond simple message transactions.

5.1 Objectives and proposed approach
The primary objective of the IRS is to establish a test-bed capability to enhance the tactical
execution of missions in complex environments while protecting the employed force.
Furthermore multimodal autonomous communications deployed onto tactical platforms
should improve the speed and quality of decision making in the FOE. This is a demanding
and complex problem space that will require a significant ongoing investment by the
military, emergency management team, first responder and soldier. Knowledge base
locomotion, multimodal fusion, multimodal machine learning, sensing as well as perception,
virtual assistance and multimodal HRI are central components of such a system. The major
components of the proposed system are:

Technology Modalities and technical aspect Application domains

Multimodal interaction Speech, gesture, vision Mainly indoors
Sensing and perception Vision, visual and textural Mainly indoors
HRI Speech, text, gestures, vision and images Mainly indoors
SA, ET Visualization, CV, AR, VR Mainly Indoors
UAS, HRI VA, SSDS, gesture, speech Mainly Indoors

Table 2.
Overview of major
topics
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(1) Multimodal interactive robot that communicates using multiple modes, senses and
perceives and is mobile

(2) Virtual environment for personal assistance

(3) Multimodal user interface

5.1.1 Multimodal interactive robot. Figure 2 shows the proposed IRS framework: A user
(e.g. military team leader) communicates with the robot using spoken commands, gestures,
images and interacting with the VST and virtual personal assistance as needed. The
communication modes are consistently coordinated by the sensor fusion. The goal is to make
the robot communicative with the military using the following modalities:

(1) Verbal, non-verbal, text, graphics, images and sense based modalities:

� Spoken Dialogue System: This assists two-way communication between the
military user and the robotic system using verbal and non-verbal commands.
Figure 3 is an architectural view of a spoken dialogue system. Here user speech is
captured, processed and transformed into a set of features correlated with uttered
speech via a language model in an ASR system. NLG and natural language
understanding (NLU) provide semantics and logical representations of text based
on the dialoguemanager. TheText-to-Speech Synthesis (TTS) system transforms
the textual output of the NLG into acoustic signals. TheDialogueManager (DM) is
responsible for bidirectional connections of the acoustic front-end namely ASR,
TTS and semantics and logical NLG and NLU components. Domain-based
applications, such asHRC, are linked and connected via theDM (Paul et al., 2022a).

Users

Virtual
Objects

Displays
(multimodal)

Sensors

Virtual 
Environment User

Experiences

Sensorimotor

(Computer)

Speech and
text analysis

Evaluation

Generation
&

representation

Acoustic model
Language model Knowledge Base

Task Representation
Environment Representation

Action & Execution
Feedback

Sensor
Fusion

Unmanned
Autonomous System

(UAS)

Emergency,
Tactical &

Operational
World

Virtual Environment
(VE)

Virtual Story Telling (VST)
Situation Awareness (SA)

Computer Vision
(CV)

Situated Spoken Dialogue System(SSDS): WUW, SVS, ASR, Chatbot, TTS, and SDS

Gesture and Image Recognition Information Visualization and
Visual Data Modeling (VDM)

Sensing and Perception 

Locomotion (Knowledge base)

Figure 2.
An overview of

multimodal interactive
robot in military
communication

Multimodal
interactive

robot

179



� Gestural: The military user communicates with the IRS using a sequence of
natural gestures which the robot can act upon via this component. Gesture-based
interactions will be beneficial for the operation of robots conducting tasks in non-
standard, uncontrolled situations and loud environments. This will have its
largest impact in situations where gestures combined with speech emphasize the
meaning of themessage, particularly when speech is not viable. Handmovements
and pointing to something are typical gestures in human interactions. Such
interactions between the military user and the robot will establish a natural and
intuitive experience in practice.

Established military hand gestures include: “STOP”, “ENEMY”, “FREEZE”, “HALT”,
“MOVE LEFT”, “MOVE RIGHT”, “ASSEMBLE”, “RALLY”, “JOIN ME”, “INCREASE
SPEED”, “LINE FORMATION”, “VEE FORMATION”, “ECHELON LEFT or RIGHT”,
“CONTACT LEFT or RIGHT”, “ENEMY in SIGHT”, “QUICK TIME”, “MAP CHECK”,
“DANGER AREA”, “STOP, LOOK, LISTEN, SMELL (SLLS)”, “RIFLE”. Gestures can be
static (i.e. motionless) or dynamic (i.e. including movement). The IRS must recognize these
established gesture-based commands and transform them into intended actions.

� Object Recognition and Detection:This component describes the environment,
allowing focused actions. The object recognition problem can be defined as a labeling
problem based on models of known objects. Object recognition enables computers to
recognize different categories of objects in images e.g. appearance, shape, location, any
parts or any particular characteristics. Amajor goal is to minimize risk by recognizing
danger. This component helps the military user geo-locate weapons, dangerous
emissions and contaminated zones.

� Visual Story Telling for Visualization and Prediction: This component
allows visualization of scenarios, supporting decision-making through predictions
and descriptions of the environment. This has two main components:

(1) Visualization

(2) Visual data mining

The VST fills a role as visual media in multimodal communication, assisting with
visualization, cognition and perception. Some basic VST building blocks are shown in
Figure 4. These include information processing, predictions and descriptions. The VST
captures abstract data, encodes data for visualization, transforms them for cognition and
perception to discover knowledge and create hypotheses as shown in Figure 5.
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� Virtual Environment based Personal Assistance: The capability of the VE to
provide personal assistance is central to its value to the military user. It supports high-
level skills training and retention. The VE often aims to provide a synthetic experience
for its users in this training mode. The experience may be illusory or virtual: the
sensory stimulation to the user is simulated and generated by the system.

(2) Sensor Fusion: Sensor fusion is employed to support and augment decision
making capability and achieve effective human-human and HMI and
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communication. Sensor fusion has two main functions: 1. Coordination of sensor
data and 2. Capture of human motion to coordinate this to robotic motion and
action.

The component must activate the correct sensor(s) in order to achieve effective collaboration.
The preliminary components of this are Control unit, multi-sensor data fusion and motion
control. It selects themode and purpose of the sensing signal to be communicated via a sensor
in order to direct the information properly. It decides when to initiate and when to end the
action of the particular sensor. It also fuses information to support learning. It leverages
human motion for human robot collaboration and to support learning.

Interactions between human and robot can be initiated by the robot or by the human user.
When approached by a human user, the robotmust understand the users’ intent followed by a
decision on how to proceed, for example, deciding whether an interaction with a specific
person should be launched.

In sensor fusion, available information is organized so that it is in an accessible form and
to support decision making.

The decision making capability is captured from information by analyzing the features
and classifying the behavioral sense. This capability to capture human behavioral intentions
allows the robot to perform naturally and interact intelligently. Development and
implementation of these features are not simple, requiring substantial analysis and
investigation. Figure 6 depicts how themodified version of (Wu et al., 2022) is accomplished in
multiple iterative steps.

(1) Associate and coordinate multi-sensor data for fusion

(2) Integrate and update robot status based on multi-sensor fusion

(3) Human and robot communicate via motion capture and learning

Based on the real world situation and scenario, these features will be modified, updated and
extended as necessary.

5.1.2 Multimodal user interface. Figure 7 shows the multimodal user interface for use in a
tactical military environment. The multimodal interface is designated to increase usability
and accessibility. The benefits of a multimodal interactive interface could bemost valuable to
physically impaired users. For example, visually impaired users can rely on the voice
modality while hearing-impaired users can rely on the visual modality. These users will
benefit from both speech and some haptic input/output along with visualizationmechanisms.

5.2 Discussion
There are diverse research streams and development efforts addressing C4ISR (Command,
Control, Communication, Coordination, Intelligence, Surveillance and Target acquisition).
These involve the coordination of ISR assets, synthesis of intelligence and implementation of
machine aids supporting decision making for commanders. These streams have primarily
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been focused activities, such as improved surveillance and terrain mapping, improved
collation of intelligence materials and computer analysis and modelling programs available
to higher commanders as aids to decisionmaking. A unified “InteractiveMultimodal Robot in
Military Communication” provides a synthesis of these types of activities, applicable at a
much more tactical level. Rather than being used at the Battle Group or Brigade Group levels
(e.g. for mission planning), the paradigm discussed here is most applicable to Section, Platoon
or Company level operations. At this level the focus will be for planning and execution of
operations.

Based on a review of the available applications of robotic systems with visual analytics in
airborne surveillance and the maritime domain, these have yet to be applied in decision
making to capture dynamic changes in military situation management and first responder
assistance. Multimodal interactive communication has the potential to yield a significant
improvement to the central features of effective communication in the planning and execution
ofmilitarymissions andmanned-unmanned teaming. Based on the survey presented here, we
believe there is an opportunity to combinemultiplemodes for HRI, apply artificial intelligence
and leverage natural language processing for the design of military and civilian
communication. We assess that an interactive robot for autonomous multimodal
communication will be beneficial in a variety of civilian and military roles.

6. Conclusion
A multimodal autonomous robot in military communication using speech, images, gestures,
VST and VE has yet to be deployed. Autonomous multimodal communication is expected to
open wider possibilities for all armed forces. All branches of military organizations can
potentially benefit from these developments, with platform-specific suites for specially
selected operators. The flexible communication capability supports virtual training, which
will enhance planning and mission rehearsals tremendously.

Each mode of multimodal communication is an active research area. Blending these
developments into a functional and useful system is a substantial and daunting task. The
introduction of the interactive robot concept for autonomous multimodal communications
will require a series of prototyping and development iterations.
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