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Abstract: Human immunodeficiency virus (HIV) infection is a major public health concern with 1.2
million people living with HIV in the United States. The role of nutrition in general, and albumin/globulin in
particular in HIV progression has long been recognized. However, no mathematical models exist to describe
the interplay between HIV and albumin/globulin. In this paper, we present a family of models of HIV and
the two protein components albumin and globulin. We use albumin, globulin, viral load and target cell data
from simian immunodeficiency virus (SIV)-infected monkeys to perform model selection on the family of
models. We discover that the simplest model accurately and uniquely describes the data. The selection of
the simplest model leads to the observation that albumin and globulin do not impact the infection rate of
target cells by the virus and the clearance of the infected target cells by the immune system. Moreover, the
recruitment of target cells and immune cells are modeled independently of globulin in the selected model.
Mathematical analysis of the selected model reveals that the model has an infection-free equilibrium and a
unique infected equilibrium when the immunological reproduction number is above one. The infection-free
equilibrium is locally stable when the immunological reproduction number is below one, and unstable
when the immunological reproduction number is greater than one. The infection equilibrium is locally
stable whenever it exists. To determine the parameters of the best fitted model we perform structural and
practical identifiability analysis. The structural identifiability analysis reveals that the model is identifiable
when the immune cell infection rate is fixed at a value obtained from the literature. Practical identifiability
reveals that only seven of the sixteen parameters are practically identifiable with the given data. Practical
identifiability of parameters performed with synthetic data sampled a lot more frequently reveals that only
two parameters are practically unidentifiable. We conclude that experiments that will improve the quality of
the data can help improve the parameter estimates and lead to better understanding of the interplay of HIV
and albumin-globulin metabolism.
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1. Introduction

Human immunodeficiency virus (HIV) infection is a serious public health concern in the USA
and globally. Long term HIV infection may progress to the acquired immunodeficiency syndrome
(AIDS). For individuals with HIV, maintaining proper nutrition is crucial in sustaining overall health
and controlling the severity of the symptoms that are caused by HIV and AIDS [1]. A consistent healthy
eating style sustains the immune system and helps support the strength of the immune responses when
individuals are infected with HIV. Despite the fact that HIV and albumin/globulin metabolism are
strongly interlinked, no mathematical models seem to exist that model the feedbacks between HIV and
albumin/globulin. HIV primarily affects the immune system, and globulin is critical for the immune
system, which uses various elements to build immune system cells [2].

Thus, HIV infection and the medications taken to control it, increase nutritional need in HIV-infected
individuals. However, not all HIV-infected individuals have proper access or interest in maintaining
adequate eating habits, which can lead to malnutrition [3]. In contrast to other infections in which
carbohydrates are first broken down to meet the increased needs of the immune system, proteins are first
broken down in HIV [3], resulting in HIV-specific wasting and weight loss. Malnutrition, in turn, lowers
immunity and increases viral load [3], as well as increases susceptibility to opportunistic infections.
Previous research suggests that improvements in nutrition acted as a form of early intervention for HIV
patients. However, these studies lack mathematical models that incorporate this relation [4, 5].

HIV primarily targets immune cells. The optimal function of the immune system relies on proper
nutrition and inflow of globulins, and the serum total protein assessment determines the patient’s
nutritional status. Albumin and globulin are two types of proteins with levels that are indicators of HIV
disease progression [6]. Albumin is a key protein in the blood and is responsible for transporting a wide
variety of substances, such as hormones, drugs, vitamins, and minerals. Immunoglobulins and other
proteins involved in the immune response are part of a large family of proteins called globulins. HIV
infection often correlates with elevated serum protein levels; however, while globulin concentrations
increase, albumin concentrations decrease [5, 7, 8]. Furthermore, decreased albumin levels have been
linked to the progression of HIV to AIDS [8] and in cases with low albumin levels, viral infections
such tend to be more severe [9], although the specific mechanisms underlying this phenomenon are not
yet fully understood. The complicated relationship between albumin, globulin, immune system, and
HIV has long been recognized [3–5, 7, 8]. However, the use of mathematical models in this context has
been limited. The use of mathematical models to demonstrate the interactions among albumin, globulin,
the immune system, and HIV is critical because these models can reveal the deep links between these
systems and improve our knowledge of their interactions.

Nutrition in the absence of HIV has been modeled both through mathematical models and statistical
methods [10–13]. Mathematical models of nutrition have been the topic of a conference in which
selected papers were published in [14]. A within-host model of nutrition and challenges with its
calibration to data has been discussed by Juillet et al. [15]. A model based on chemical kinetics for
the rate of utilization and storage of carbohydrates, fats, and proteins was introduced and discussed
in [16]. A model of various feeding determinants that would facilitate the simulation of food intake,
thus providing information for existing models of nutrient absorption and metabolism, was developed
in [17]. Mathematical models of nutrition at the population level have also been developed. Shah et
al. [18] apply the optimal control theory to a model of poor nutrition at the population level and compute
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the reproduction number. Baleanu et al. [19] investigate a fractional order differential equation model of
poor nutrition at the population level. Nutrition in ruminants has been studied in two books that focused
on nutritional system of ruminants through modeling [20]. Within-host modeling of nutrients have been
considered in an edited book by Coburn and Townsend [21]. These approaches aim to understand the
complex relationships between various nutritional factors and their impacts on health and well-being. In
the context of our current study, we delve deeper into the complexities of nutrition by focusing on two
key protein markers, albumin and globulin, within the context of HIV infection. These proteins serve
vital roles in various bodily functions, including immune response. Given the limited understanding of
how albumin/globulin interacts with viral infections, we begin our study by constructing a family of
models. These models serve as the foundation for our study, allowing us to systematically examine and
comprehend the complex dynamics at play.

Our models here are built on the classical HIV models that incorporate target cells, infected target
cells and virus [22, 23]. We further incorporate the immune response in the form of CD8 cells. The
immune response has also previously been considered in HIV models [22, 24]. The novelty of our
models lies in the incorporation of nutritional elements, and more specifically proteins composed of
albumin and globulins [4,25]. We incorporate albumin and globulin separately because albumin and
globulins have different responses to HIV infection. In particular, albumin levels decrease in HIV-
infected individuals whereas globulins increase [5]. This basic interdependence between HIV and the
albumins and globulins is known, however, it is less known how albumins and globulins specifically
interact with the immune system. Thus, our main question in this article is “What kind of model will
capture best the data of target cells, virus, albumin and globulin?” Because we model these interactions
for the first time, we would like to develop sound, well validated model that represents the available
data [26]. Relatively little is known how proteins impact the infection of new target cells, how they
impact the clearance of the immune response of the infected target cells or how the globulins affect the
recruitment of CD4 cells and CD8 cells. To determine this dependence, we hypothesize a general form
of these terms. We obtain a general model that has 17 specific submodels. We perform model selection
on these 17 models and use AIC [27] to select the model that best describes the data.

We analyze the best model. We further fit the best model to the data and consider the well-posedness
of the parameter estimation problem. In other words, we study the structural identifiability of the best
fitted model. To evaluate its fit to the data and the quality of the parameter estimation from the real
data, we perform Monte Carlo Simulations (MCS) and compute the Average Relative Estimation Erors
(AREs) of the estimated parameters.

2. Methods

2.1. Mathematical models of HIV and Albumin/Globulin metobolism

Nutrition, in general, is made up of macronutrients and micronutrients, both of which are required
for proper functioning of the immune system. All macronutrients are important, but in HIV the proteins
are the key. The total protein in the body, often measured in grams per deciliter (g/dL) [28], consists
of albumin and globulin. In healthy individuals the ratio of albumin to globulin is around 1.7 [25].
Total protein levels in HIV-infected people are higher, as are globulin levels, but albumin levels are
lower [5, 29]. Globulin is required for the production of elements of the immune system, most notably
antibodies, whereas albumin has been found to be a good predictor of HIV progression, morbidity, and
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mortality [6, 30]. We begin modeling the interplay between HIV and albumin/globulin by incorporating
protein to the well studied target-cell limited model [23]. While modeling protein coupled with a disease
like HIV is new, our within-host albumin/globulin-HIV model is based on an extensive literature of
within HIV models [23] and within-host HIV models with immune response [24, 31]. Our advancement
here consists of adding albumin and globulin to the well studied HIV within-host model [23].

We used six differential equations to describe the temporal dynamics of six populations: target cells
(T ), virus-producing infected target cells (Ti), viral load (V), immune cells (Z), albumin (A) and globulin
(G). Figure 1 presents a flow diagram of the model. The within-host model of HIV and protein is then
built with the following system of ordinary differential equations:

Within-Host Model of HIV and Albumin/Globulin:



dT
dt

= h1(G) − ρ(A,G)TV − dT,

dTi

dt
= ρ(A,G)TV − δTi − ψ(A,G)TiZ,

dV
dt

= πTi − cV − µvGV,

dZ
dt

= h2(G) + bTiZ − µzZ,

dA
dt

= λA − γAAV − µAA,

dG
dt

= λG + γGGV − µGG,
(2.1)

HIV primarily targets CD4+ cells in the immune system. Since protein, specifically globulin, impacts
the proliferation of immunoglobulins (immune cells), we represent the production of target cells and
immune cells as a function of globulin. Therefore, in the within-host model (2.1), we set the target and
immune cell production depending on the individual’s globulin level. Namely,

h1(G) = r + r0G and h2(G) = λz + λz0G,

where, r0 is the production of target cells per unit globulin, and r is the production rate of target cells.
Similarly, λz0 is the recruitment rate of the immune cells per unit globulin, and λz is the recruitment rate
of the immune cells. Virus particles, V , infect target cells, T , to produce infected cells, as expressed
with the term ρ(A,G)T V . By setting the infection rate, ρ(A,G), as a function of albumin and globulin,
we account for the influence of albumin/globulin on the target cell susceptibility [32]. Target cells die
at rate d. Infected target die at rate δ and their clearance by the immune system is denoted by the term
ψ(A,G)TiZ. The ability of immune cells to attack infected target cells, ψ(A,G), is considered to be
a function of albumin and globulin [32]. Infected cells generate additional virus particles at rate π,
while the virus particles are cleared from the system at rate c. Furthermore, immunoglobulins remove
the viral particles at rate µv. Immune cells are activated at rate b in response to antigen and cleared at
rate µz.

Albumin and globulin intake are denoted by λA and λG respectively. The parameter µA represents the
albumin consumption and clearance, whereas µG represents the globulin consumption and clearance.
γA is the virus-driven depletion of albumin, while γG is the virus-driven increase in globulin. The
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functional forms of the infection rate of target cells ρ(A,G) and the attack rate of immune cells ψ(A,G)
are defined as:

ρ(A,G) =
ρ0

1 + A1A + A2G
and ψ(A,G) =

ψ01A + ψ02G
Ψ + A +G

,

where ρ0, Ai and ψ0i, i = 1, 2, are proportionality constants, and Ψ is a half-saturation constant. The
constants Ψ, A1, A2, ψ01 and ψ02 allow us to remove the dependence of the transmission rate ρ and killing
rate ψ on the albumin/globulin. We performed model selection on the global model (2.1) to determine
more robust forms for the terms h1(G), h2(G), ρ(A,G) and ψ(A,G).

2.2. Model selection process

We proposed a family of models that will aid in clarifying the complex relationship between HIV
and protein dynamics. However, it is not clear which model would be the best for this purpose. It is
standard to judge the suitability of a model by comparing its ability to match the experimental data,
but this approach is known to favor model complexity. On the other hand, Akaike information criteria
(AIC) balances model complexity and the goodness-of-fit. We use AIC to determine the robust forms of
the terms depending on albumin and globulin; λ(G), λz(G), ρ(A,G) and ψ(A,G). The set of candidate
models is obtained by setting r0 = 0 and/or λz0 = 0 and/or A1 = 0 and/or A2 = 0 and/or ψ01 = 0 and/or
ψ02 = 0. We also explored the scenario when ψ01 = ψ02 = ψ0 and Ψ = 0. In total, we compared 17
models (see Table 1).

Within-Host HIV and Albumin/Globulin Model:

T (t) Ti(t)

V(t)

Z(t)

G(t) A(t)

h1(G)

influx

d death
ρ(A,G)TV

infection

δ death

viral sheddingπ

µvGV

clearence by immunoglobulins

c

clearence

bT
i Z

immune activation

µz death

h2(G)

influx

ψ(A,G)T
i Z

clearance by immune cells

γAAV

virus-driven depletion

λG

influx

µG death µA death

λA

influx

γGGV

virus-driven activation

Target Cells

Infected Target Cells

Virus

Immune Cells

Figure 1. Flow diagram describing the interaction between target cells (T ), infected target
cells, (Ti), virus (V), immune cells (Z), albumin (A) and globulin (G).

To validate the models, we used data from a rhesus monkey study of simian immunodeficiency
virus (SIV), in which CD4+ T-cell and plasma viral load were measured for 12 weeks following SIV
infection [33]. We took albumin levels from another SIV experiment in which albumin concentrations
were measured for 16 weeks after SIV infection in 8 pig-tailed macaques [34]. For globulin levels, we
obtained data from the published study [35] in which globulin levels were assessed in the peripheral
blood of rhesus monkeys infected with SIV (see Table 2).
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Table 1. Formulation of various model forms.

Model A1 A2 ψ01 ψ02 λz0 r0 ρ(A,G) ψ(A,G) h1(G) h2(G)

1 0 0 ψ01 ψ01 and Ψ = 0 0 0 ρ0 ψ01 r λz

2 0 0 ψ01 0 0 0 ρ0
ψ01A

Ψ + A +G
r λz

3 0 0 0 ψ02 0 0 ρ0
ψ02G

Ψ + A +G
r λz

4 0 0 ψ01 ψ02 0 0 ρ0
ψ01A + ψ02G
Ψ + A +G

r λz

5 A1 0 ψ01 ψ01 and Ψ = 0 0 0
ρ0

1 + A1A
ψ01 r λz

6 A1 0 ψ01 0 0 0
ρ0

1 + A1A
ψ01A

Ψ + A +G
r λz

7 A1 0 0 ψ02 0 0
ρ0

1 + A1A
ψ02G

Ψ + A +G
r λz

8 A1 0 ψ01 ψ02 0 0
ρ0

1 + A1A
ψ01A + ψ02G
Ψ + A +G

r λz

9 0 A2 ψ01 0 0 0
ρ0

1 + A2G
ψ01 r λz

10 0 A2 ψ01 0 0 0
ρ0

1 + A2G
ψ01A

Ψ + A +G
r λz

11 0 A2 0 ψ02 0 0
ρ0

1 + A2G
ψ02G

Ψ + A +G
r λz

12 0 A2 ψ01 ψ02 0 0
ρ0

1 + A2G
ψ01A + ψ02G
Ψ + A +G

r λz

13 A1 A2 ψ01 ψ01 0 0
ρ0

1 + A1A + A2G
ψ01 r λz

14 A1 A2 ψ01 0 0 0
ρ0

1 + A1A + A2G
ψ01A

Ψ + A +G
r λz

15 A1 A2 0 ψ02 0 0
ρ0

1 + A1A + A2G
ψ02G

Ψ + A +G
r λz

16 A1 A2 ψ01 ψ02 0 0
ρ0

1 + A1A + A2G
ψ01A + ψ02G
Ψ + A +G

r λz

17 A1 A2 ψ01 ψ02 r0 λz0

ρ0

1 + A1A + A2G
ψ01A + ψ02G
Ψ + A +G

r + r0G λz + λz0G
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Table 2. Average Data Measurements - Data for the Average Viral Load (viral RNA copies
per mL) and CD4+ concentration (CD4 cells per mL) came from a study on simian immun-
odeficiency virus (SIV) in 6 rhesus monkeys over 12 weeks [33]. Albumin given in mg/dL
obtained from an SIV study on 8 juvenile pig-tailed macaques over 16 weeks [34]. Globulin,
given in mg/dL, was measured through peripheral blood examination on 4 rhesus monkeys
with SIV [35].

Time of Measure-
ment

Viral Load CD4 Cells Albumin Globulin

vRNA copies per
mL

CD4 cells per mL mg/dL mg/dL

log scale log scale
Week 0 - 6.1153 3.4430 2.5718
Week 1 6.9299 5.7920 2.9426 -
Week 2 7.0531 5.5696 3.1272 -
Week 3 5.9624 5.1809 2.9204 -
Week 4 5.5821 5.3726 - -
Week 5 - - 3.8768 -
Week 6 5.4362 5.3823 3.2235 -
Week 8 5.1959 5.4314 3.5133 -
Week 10 5.1903 5.5788 - -
Week 12 4.9782 5.3912 3.3405 2.5920
Week 16 - - 3.0636 -
Week 24 - - - 2.7064

The observations are the state variables of the model, namely CD4+ cells is the state variable T (t, p),
virus is V(t, p), albumin is A(t, p), and globulin is G(t, p) in (2.1), with p denoting the parameters of the
model. Observations vary as the model parameters p vary. Clearly, data collected in the experimental
setting do not fall on the smooth path of the observations T (t, p), V(t, p), A(t, p) and G(t, p). We
represent the relationship between the experimental data and model observations with the following
statistical model,

Y i
1 = T (ti, p) + Ei i = 1, · · · , n1 Y j

2 = V(t j, p) + E j j = 1, · · · , n2

Yk
3 = A(tk, p) + Ek k = 1 · · · , n3 Y l

4 = G(tl, p) + El l = 1, · · · , n4
(2.2)

where Ei, E j, Ek, El are the measurement errors with Gaussian structure. The measurement errors are
independent and normally distributed with mean zero, and standard deviation σ. Parameter estimation
based on a maximum likelihood principle and least square principle are equivalent when the measurement
errors are independent and normally distributed. The least square estimate can be obtained by minimizing
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the following objective function, which will be refered as sum of squared errors (SSE),

p̂ = min
p
ω1

n1∑
i=1

(Y i
1−log10 T (ti, p))2+ω2

n2∑
i=1

(Y i
2−log10 V(ti, p))2+ω3

n3∑
i=1

(Y i
3−A(ti, p))2+ω4

n4∑
i=1

(Y i
4−G(ti, p))2.

(2.3)

Table 3. Model selection from the collection of models.

Model SSE Number of parameters AICc Score ∆ Relative likelihood

1 3.32733 17 41.6114 - 0.996357534
2 3.32703 18 59.6532 18.0418 0.000120417
3 3.32728 18 59.6554 18.044 0.000120285
4 3.32741 19 82.2121 40.6007 1.52085 × 10−9

5 3.35822 18 59.9238 18.3124 0.000105179
6 3.34985 19 82.4069 40.7955 1.3797 × 10−9

7 3.33751 19 82.3 40.7955 1.45545 × 10−9

8 3.32727 20 111.211 69.5996 7.67457 × 10−16

9 2.64807 18 53.0339 11.4225 0.003296483
10 2.72119 19 76.3795 34.7681 2.80943 × 10−8

11 2.67312 19 75.8625 34.2511 3.63817 × 10−8

12 2.24495 20 99.8002 58.1888 2.3061 × 10−13

13 2.69078 19 76.0535 34.4421 3.3068 × 10−8

14 2.57026 20 103.725 62.1136 3.24055 × 10−14

15 2.69456 20 105.094 63.4826 1.63435 × 10−14

16 2.69917 21 143.81 102.1986 6.40134 × 10−23

17 3.23414 23 284.388 242.7766 1.9061 × 10−53

Several challenges come up when fitting multiple data sets to a within-host model. The data sets, to
begin with, exhibit a wide range of variations in magnitudes. For instance, viral load ranges between
102 to 107, while albumin levels fluctuates from 1 to 5. Moreover, any fitting algorithm that is used to
minimize the SSE tends to prioritize the superior fitting of one data set, at the expense of a poorer fitting
fit of the other data set. To address these issues, we take the logarithms of the viral load and target cell
counts to normalize the data magnitudes, along with assigning specific weights to each data sets. This
strategic weighting forces the optimization process to give equal consideration for each data set. SSE
values alone may indicate the better model when models have the same number of parameters. Since
all 17 models considered have different set of parameters, in this study we employed the AIC to assess
which model explains the data best. The corrected AIC for the finite sample size is given by [27],

AICc = n ln
(
SSE

n

)
+ 2K +

2K(K + 1)
n − K − 1

(2.4)

where n is the number of data points and K is the number of parameters fit by the model plus one [27].
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AIC balances the model complexity and the SSE by penalizing the models with higher parameters. Due
to this penalty, a more complex model needs to improve its fit to compensate for its higher number of
parameters. For instance, model 12 has a higher AICc despite having the minimum SSE value (see Table
3). Since the AIC score of each model varies greatly, it is standard to rescale them with the minimum
AIC score by calculating the difference between the AICc score and AICcmin . The rescaled AICc scores
of each model, ∆ = AICc − AICcmin , are reported in Table 3. The rescaled AIC values are a direct way
to compare the models, only the models with ∆ < 2 have strong support [27]. Based on our analysis,
model 1 is the only model that has strong support for the experimental data. The last column of Table 3
represents the relative likelihood of the model j, given by

w j =
e∆ j/2∑17
i=1 e∆i/2

. (2.5)

The models that best describe the data are those whose relative likelihood sum up to
∑

w j > 0.95. The
model 1 exclusively explains the data since its relative probability is higher than the threshold of 0.95.

3. Analysis of the best selected model

The best model takes the form:

Selected model via AIC criteria:



dT
dt

= r − ρ0TV − dT,

dTi

dt
= ρ0TV − δTi − ψ01TiZ,

dV
dt

= πTi − cV − µvGV,

dZ
dt

= λz + bTiZ − µzZ,

dA
dt

= λA − γAAV − µAA,

dG
dt

= λG + γGGV − µGG,

(3.1)

3.1. The infection-free equilibrium and immunological reproduction number

Using the Van den Driessche and Watmough Approach, first we derive the immunological reproduc-
tion number of the within-host model of HIV albumin and globulin given by system (3.1). We arrange
the equations in (3.1) so that the first 2 components of the ODE system correspond to the infected
compartments, and the last 4 components correspond to the non-infected compartments. We rewrite the
system as,

xm
′ = fm(x, y), m = 1, 2

yn
′ = gn(x, y), n = 1, 2, 3, 4,

where xm = (Ti V)T and yn = (T Z A G)T . Now, define F1 = ρ0TV, F2 = πTi, V1 = δTi + ψ01TiZ, and
V2 = cV + µVGV so that we have

xm
′ = Fm(x, y) − Vm(x, y), m = 1, 2
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yn
′ = gn(x, y), n = 1, 2, 3, 4

Now, the infection-free system y′ = g(0, y) has the unique equilibrium ϵ0 = (0, y0), where y0 =

(T0,Z0, A0,G0) =
(

r
d
,

λz

µz
,

λA

µA
,

λG

µG

)
. Observe that,

F :=
[
∂Fi(0, y0)

∂x j

]
=

[
0 ρ0T0

π 0

]
and V :=

[
∂Vi(0, y0)
∂x j

]
=

[
δ + ψ01Z0 0

0 c + µVG0

]
Hence, the next-generation matrix is defined by

K := FV−1 =

 0 ρ0T0
c+µVG0

π
δ+ψ01Z0

0

 .
This gives us the immunological reproduction number

R0 =
πρ0T0

(c + µVG0)(δ + ψ01Z0)
=

prρµGµZ

d(cµG + λGµV)(δµZ + ψ01λZ)
(3.2)

3.2. Stability of the infection-free equilibrium

The infection-free equilibrium of the system (3.3) is given by E0 = (T0, 0, 0,Z0, A0,G0), where
T0 =

r
d , Z0 =

λZ
µZ
, A0 =

λA
µA

and G0 =
λG
µG
. We state the following Theorem 1 regarding the stability of the

infection-free equilibrium and present the proof in the Appendix.

Theorem 1. If R0 < 1, then the infection-free equilibrium is locally asymptotically stable. If R0 > 1, it
is unstable.

3.3. Existence and stability of infection equilibrium

We set the left hand side of the model (3.1) equals to 0 and obtain the following:

0 = r − ρ0T ∗V∗ − dT ∗,

0 = ρ0T ∗V∗ − δTi
∗ − ψ01Ti

∗Z∗,

0 = πTi
∗ − cV∗ − µVG∗V∗, (3.3)

0 = λz + bTi
∗Z∗ − µzZ∗,

0 = λA − γAA∗V∗ − µAA∗,

0 = λG + γGG∗V∗ − µGG∗.

By the sixth equation of (3.3) we get that

G∗ =
λG

µG − γGV∗
. (3.4)

Since we need system variables to stay positive, we set G∗ > 0 and obtain 0 < V∗ < µG
γG
. Similarly, the

fifth equation of (3.3) leads to

A∗ =
λA

γAV∗ + µA
. (3.5)
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Upon examining the fixed-point formulas (3.4) and (3.5), we notice that as V∗ increases, the globulin
levels at equilibrium, denoted by G∗, increase, while albumin levels at equilibrium, denoted by A∗,
decrease. This is consistent with clinical observations that individuals with severe disease often exhibit
lowered levels of albumin. Furthermore, a correlation exists between elevated viral load values and
increased mortality [36], which is effectively captured by the provided fixed-point formulas (3.4) and
(3.5). The first equation of (3.3) gives

T ∗ =
r

d + ρ0V∗
. (3.6)

Both A∗ and T ∗ are trivially positive. Now, solving the third equation of (3.3) we get

Ti
∗ =

V∗

π

(
c +

λGµV

µG − γGV∗

)
, (3.7)

which is also positive since 0 < V∗ < µG
γG
. Next, we solve the fourth equation of (3.3) for Z∗. Substituting

(3.7), we obtain

Z∗ =
λZ

µZ −
bV∗
π

(
c + λGµV

µG−γGV∗

) . (3.8)

In order to obtain a positive solution for Z∗, we must satisfy

bλGµVV∗ < (πµZ − bcV∗)(µG − γGV∗). (3.9)

The left hand side of the Eq (3.9) is a straight line that goes through the origin while the right hand
side is a parabola with roots V1

∗ =
µG
γG

and V2
∗ =

πµZ
bc . The parabola opens up as the coefficient of V∗ is

positive and meets the straight line y = bλGµVV∗ at two distinct points, say V1 and V2, with V1 < V2.

Then, V1 < V1
∗ and V1 < V2

∗, for any V1
∗,V2

∗. Thus, V1 <
µG
γG
. As this satisfies our requirement to

have positive values at infection equilibrium, Z∗ > 0. Finally, substituting T ∗,Ti
∗ and Z∗ in the second

equation of (3.3), δTi
∗ + ψ01Ti

∗Z∗ = ρ0T ∗V∗, we get

δ

π

(
c +

λGµV

µG − γGV∗

)
+
ψ01

π

(
c +

λGµV

µG − γGV∗

)  λZ

µZ −
bV∗
π

(
c + λGµV

µG−γGV∗

) = ρ0r
d + ρ0V∗

. (3.10)

Let y1(V∗) = δ
π

(
c + λGµV

µG−γGV∗

)
+

ψ01
π

(
c + λGµV

µG−γGV∗

)  λZ

µZ−
bV∗
π

(
c+ λGµV

µG−γGV∗

)
 and y2(V∗) = ρ0r

d+ρ0V∗ . Note that y1 is

increasing on
(
0, µG

γG

)
, while y2 is decreasing on

(
0, µG

γG

)
(we prove this statement in the following remark).

Thus, if a solution exists, then it must be unique. We prove the existence of a solution as follows.
Since 0 < V∗ < µG

γG
, we set V∗ = 0 into y1(V∗) and y2(V∗) and obtain

y1(0) =
(cµG + λGµV)(δµZ + ψ01λZ)

pµGµZ
and y2(0) =

ρ0r
d
.

Now,

R0 =
πrρ0µGµZ

d(cµG + λGµV)(δµZ + Ψ01λZ)
> 1 =⇒

(cµG + λGµV)(δµZ + ψ01λZ)
πµGµZ

<
ρ0r
d
.

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19527–19552.



19538

That is, y1(0) < y2(0). Similarly, we set V∗ = µG
γG

to obtain

y2

(
µG

γG

)
=

rρ0γG

dγG + ρ0µG
and lim

V∗−→ µG
γG

y1(V∗) = ∞.

Thus, y2

(
µG
γG

)
< y1

(
µG
γG

)
. Since y2 is decreasing on

(
0, µG

γG

)
, y1 is increasing on

(
0, µG

γG

)
, y1(0) < y2(0)

and y2

(
µG
γG

)
< y1

(
µG
γG

)
, y1(V∗) and y2(V∗) meet at one point, V∗. When R0 > 1, Equation (3.10) has a

unique root on
(
0, µG

γG

)
. Hence, Equation (3.10) has a unique positive solution V∗ and consequently the

system (3.3) has a unique infection equilibrium E1 = (T ∗,Ti
∗,V∗,Z∗, A∗,G∗). Now, we have proved the

following theorem.

Theorem 2. There exists a unique infection equilibrium E1 = (T ∗,Ti
∗,V∗,Z∗, A∗,G∗) of the system (3.3)

when R0 > 1.

Remark: Here, we prove that the function

y1(V∗) =
δ

p

(
c +

λGµV

µG − γGV∗

)
+
ψ01

p

(
c +

λGµV

µG − γGV∗

)  λZ

µZ −
bV∗

p

(
c + λGµV

µG−γGV∗

)
is increasing on

(
0, µG

γG

)
, while the function

y2(V∗) =
ρ0r

d + ρ0V∗

is decreasing on
(
0, µG

γG

)
, which was an integral part in proving Theorem (2). Observe that,

y2
′(V∗) = −

rρ0
2

(d + ρ0V∗)2 < 0 on
(
0,
µG

γG

)
=⇒ y2 is decreasing on

(
0,
µG

γG

)
.

Now, write y1(V∗) = f (V∗) + g(V∗)h(V∗), where f (V∗) = δ
p

(
c + λGµV

µG−γGV∗

)
, g(V∗) = ψ01

p

(
c + λGµV

µG−γGV∗

)
and

h(V∗) = λZ

µZ−
bV∗

p

(
c+ λGµV

µG−γGV∗

) . Then,

f ′(V∗) =
δ

p

[
λGµVγG

(µG − γGV∗)2

]
,

g′(V∗) =
ψ01

p

[
λGµVγG

(µG − γGV∗)2

]
,

and h′(V∗) =
bpλZ

[
c(µG − γGV∗)2 + λGµGµV

]
[
pµZ(µG − γGV∗) − bV∗(cµG − cγGV∗ + λGµV)

]2 .

It is easy to see that all three derivatives f ′, g′ and h′ are positive on
(
0, µG

γG

)
. Furthermore, the functions

g and h themselves are positive on
(
0, µG

γG

)
. Therefore,

y1(V∗) = f ′(V∗) + g(V∗)h′(V∗) + h(V∗)g′(V∗) > 0 on
(
0,
µG

γG

)
,

implying that y1 is increasing.
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Theorem 3. If R0 > 1 the unique endemic equilibrium is locally asymptotically stable.

Proof. To determine the local stability of the unique infection equilibrium we compute the Jacobian of
the system. We arrange the variables as (T,Ti,V,Z, A,G) and with this ordering the Jacobian takes the
form

J =



−ρ0V∗ − d 0 −ρ0T ∗ 0 0 0
ρ0V∗ −δ − ψ01Z∗ ρ0T ∗ −ψ01Ti 0 0

0 π −c − µvG∗ 0 0 −µVV∗

0 bZ∗ 0 bT ∗i − µz 0 0
0 0 −γAA∗ 0 −γAV∗ − µA 0
0 0 γGG∗ 0 0 γGV∗ − µG


This Jacobian clearly has one negative eigenvalue λ1 = −γAV∗ − µA. The remaining eigenvalues are the
solution of the following matrix equation

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ρ0V∗ − d − λ 0 −ρ0T ∗ 0 0
ρ0V∗ −δ − ψ01Z∗ − λ ρ0T ∗ −ψ01Ti 0

0 π −c − µVG∗ − λ 0 −µVV∗

0 bZ∗ 0 bT ∗i − µz − λ 0
0 0 γGG∗ 0 γGV∗ − µG − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We expand the determinant by the third column. The resulting x determinants can easily be expanded,
and we obtain the characteristic equation:

−ρ0T ∗ρ0V p(λ + µG − γGV∗)(λ + µz − bT ∗i )

+ρ0T ∗π(λ + d + ρ0V∗)(λ + µG − γGV∗)(λ + µz − bT ∗i )

−(λ + c + µVG)(λ + µG − γGV∗)(λ + d + ρ0V∗)[(λ + µz − bT ∗i )(λ + δ + ψ01Z∗) + bZ∗ψ01T ∗i ]

−λGG∗µVV∗(λ + d + ρ0V∗)[(λ + µz − bT ∗i )(λ + δ + ψ01Z∗) + bZ∗ψ01T ∗i ] = 0

Combining the first two terms and the last two terms and moving the negative term to the right hand
side of the equation, we obtain the following characteristic equation.

ρ0T ∗π(λ + d)(λ + µG − γGG∗)(λ + µz − bT ∗i )

= (λ+ d+ρ0V∗)[(λ+ c+µVG∗)(λ+µG −γGV∗)+γGG∗µVV∗][(λ+µz − bT ∗i )(λ+ δ+ψ01Z∗)+ bZ∗ψ01T ∗i ]

In what follows we shall prove that this equation does not have roots with non-negative real parts. To do
that we rewrite the equation in the formH(λ) = G(λ) whereH(λ) = ρ0T ∗p and

G(λ) =
λ + d + ρ0V∗

λ + d

[
λ + c + µVG∗ +

γGG∗µVV∗

λ + µG − γGV∗

] [
λ + δ + ψ01Z∗ +

bZ∗ψ01T ∗i
λ + µz − bT ∗i

]
Taking absolute value of G(λ), we notice that∣∣∣∣∣λ + d + ρ0V∗

λ + d

∣∣∣∣∣ = ∣∣∣∣∣ x + iy + d + ρ0V∗

x + iy + d

∣∣∣∣∣ =
√

(x + d + ρ0V∗)2 + y2√
(x + d)2 + y2

> 1
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We consider more carefully the absolute value of one of the terms in [.]. The other terms can be
handled in a similar way. We have

∣∣∣∣∣∣λ + δ + ψ01Z∗ +
bZ∗ψ01T ∗i

λ + µz − bT ∗i

∣∣∣∣∣∣ =
∣∣∣∣∣∣λ + δ + ψ01Z∗

λ + µz

λ + µz − bT ∗i

∣∣∣∣∣∣
Let λ = x + yi with x ≥ 0. Then,

∣∣∣∣∣∣λ + δ + ψ01Z∗
λ + µz

λ + µz − bT ∗i

∣∣∣∣∣∣ =
∣∣∣∣∣∣x + yi + δ + ψ01Z∗

x + yi + µz

x + yi + µz − bT ∗i

∣∣∣∣∣∣

=

∣∣∣∣∣∣x + yi + δ + ψ01Z∗
(x + µx)(x + µz − bT ∗i ) + y2 − bT ∗i yi

(x + µz − bT ∗i )2 + y2

∣∣∣∣∣∣

≥ x + δ + ψ01Z∗
(x + µx)(x + µz − bT ∗i ) + y2

(x + µz − bT ∗i )2 + y2 ≥ δ + ψ01Z∗

Similarly, if λ = x + yi with x ≥ 0, we have

∣∣∣∣∣λ + c + µVG∗ +
γGG∗µVV∗

λ + µG − γGV∗

∣∣∣∣∣ ≥ c + µVG∗

Hence |G(λ)| > (δ + ψ01Z∗)(c + µVG∗). We notice that from the equilibrium equations for T ∗i and V∗, we
have that

ρ0T ∗V∗πT ∗i = (δ + ψ01Z∗)(c + µVG∗)T ∗i V∗

Hence,

ρ0T ∗π = (δ + ψ01Z∗)(c + µVG∗).

From the above discussion, we have that for λ = x + yi with x ≥ 0 |G(λ)| > |H(λ)| for all λ with
non-negative real part. Hence the equation H(λ) = G(λ) does not have roots with non-negative real
parts. Hence, the infection equilibrium is locally asymptotically stable. This completes the proof.
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4. Parameter estimation, identifiability analysis and numerical simulations

Table 4. Definitions of the within-host HIV protein model (3.1) parameters and their estimated
values. The immune cell production rate, λz, is fixed in order to get a structurally identifiable
model. λz = 1 cells/(mL × day) [37]. The estimated values are obtained by minimizing the
objective function (2.3), with weights ω1 = ω3 = ω4 = 1 and ω2 = 20.

Parameter Definition Estimate
r Recruitment rate of target cells 47513.3 cells/(mL× day)
d Clearance rate of target cells 0.170469 1/day
ρ0 Rate at which target cells are infected 5.94738 × 10−9 mL/(vRNA × day)
δ Clearance rate of infected target cells 0.0315779 1/day
ψ01 Rate at which immune cells attack infected cells 0.200186 mL/(cells × day)
π Viral shedding rate of infected cells 6112.02 vRNA/(cells × day)
c Clearance rate of viral cells 8.10898 1/day
µv Viral clearance by the immunoglobulins 2.48331 × 10−9 dL/(mg × day)
b Antigen driven proliferation rate of immune cells 4.04578 × 10−7 mL/(cells × day)
µz Clearance rate of immune cells 0.161802 1/day
λA Production rate of albumin 28.5878 mg/(dL × day)
γA Serum albumin recruitment 2.02926 × 10−8 mL/(vRNA × day)
µA Serum albumin use and clearance rate of albumin 8.74127 1/day
λG Globulin recruitment rate 0.0436947mg/(dL × day)
γG Virus driven increase in globulin 1.55765 × 10−12 mL/(vRNA × day)
µG Clearance rate of globulin cells 0.0163711 1/day

It is a standard practice to estimate the model parameters by fitting the model to the experimental
data. However, before fitting any model to data, there is an essential step, called “identifiability analysis”
that must be addressed. Identifiability analysis is the process of determining whether model parameters
can be derived from a given data set. Basically, it addresses two critically important questions regarding
parameter estimation problem: (i) Is the within-host model structured to reveal its parameters from the
given noise-free observations? (ii) How accurate are the parameters obtained by fitting the within-host
model to noisy data? Here we use the term observation to refer to continuous smooth output and
the data to refer measurements of observations at the discrete time points. Clearly, observations are
noise-free and data is contaminated with noise due to measurement errors. Identifiability analysis is
a crucial step in parameter estimation problem and is performed in two steps, each step answering
one of the critical questions. Structural identifiability analysis is the first step and addresses the the
first question. It investigates if the within host model is structured to reveal its parameters from the
observations. Structural identifiability is a theoretical feature of the within-host model, therefore is
a prior identifiability analysis and should be performed prior to estimating the parameters from the
experimental data. The second step in identifiability analysis is practical identifiability which considers
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the actual experimental data with noise and should be performed after estimating the parameters. We will
perform both structural and practical identifiability analysis for the selected within-host model (3.1).

4.1. Structural identifiability of the selected within-host model (3.1)

In this study, the observations of the parameter estimation problem are the within-host model’s state
variables. Namely, the target cells T (t, p), virus V(t, p), albumin A(t, p), and globulin G(t, p). Using
the experimental data, the objective is to estimate the parameters of the model which is denoted by
p = (r, d, ρ0, δ, ψ01, π, c, µv, λz, b, µz, λA, γA, µA, λG, γG, µG). Before estimating the parameters, we need
to study the structural identifiability of the model, which is defined as below.

Definition 1. Let p and p̂ be two distinct parameter sets of the within-host model (3.1). If

T (t, p) = T (t, p̂), V(t, p) = V(t, p̂), A(t, p) = A(t, p̂), and G(t, p) = G(t, p̂) implies p = p̂

then we say that the within-host model (3.1) is structurally identifiable.

Simply put, the definition states that when the model parameters are different so are the observations.
Therefore, two identical observations are only possible if the parameters are the same. There are several
methods to study structural identifiability of compartmental ODE models, for an in depth review we
refer [38]. We use Differential Algebra for Identifiability of Systems (DAISY) software to determine the
identifiability of the within host model (3.1) [39]. DAISY gives the following parameter correlations;

r = r̂, d = d̂, ρ0 = ρ̂0, δ = δ̂, π = π̂, c = ĉ, µv = µ̂v, b = b̂, µz = µ̂z, λA = λ̂A,

γA = γ̂A, µA = µ̂A, λG = λ̂G, γG = γ̂G, µG = µ̂G, ψ01λz = ψ̂01λ̂z
(4.1)

The DAISY result (4.1) states that the parameters (r, d, ρ0, δ, π, c, µv, b, µz, λA, γA, µA, λG, γG, µG) can
be identified from the observations of the target cells, T (t, p), viral load, V(t, p), albumin A(t, p) and
globulin levels G(t, p). But, we can not identify ψ01 or λz uniquely. We can only identify their product
ψ01λz. Since the recruitment of immune cells, λz and the rate at which the immune cells attach the
infected cells ψ01 are correlated, infinitely many parameters will yield to identical observations of
the target cells, T (t, p), viral load, V(t, p), albumin A(t, p), and globulin levels G(t, p) as long as the
the product ψ01λz is constant. Therefore the within-host model (3.1) is not structured to reveal its
parameters from the given observations. However, since we know the parameter correlation that leads
to unidentifiability, we can fix either the recruitment of immune cells, λz, or the rate at which the
immune cells attach the infected cells, ψ01, to obtain a structurally identifiable model. We summarize
the structural identifiability analysis in the following proposition.

Proposition 1. The within-host HIV protein model (3.1) is not structured to identify all its parameters
from the observations of target cells, T (t), viral load, V(t), albumin, A(t), and globulin, G(t). If one
of the parameters, λz or ψ01, is fixed, then the within-host model (3.1) becomes structurally (globally)
identifiable.

First, we fix the immune cell production rate to λz = 1 cells/(mL × day) [37] to obtain a structurally
identifiable model. Then, we estimate the parameters of the within-host model (3.1) using the experi-
mental data. The estimated parameters are presented in Table 4 and the model predictions are shown in
Figure 2.
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(a) (b) (c) (d)

Figure 2. Fitting results: Simulation of the within-host model (3.1) using the estimated
values given Table 4 is shown in blue curve. Red circles are the data given in Table 2.
Initial conditions are T (0) = 1, 304, 000, Ti(0) = 0, V(0) = 200, Z(0) = 10, A(0) = 3.44,
G(0) = 2.571.

4.2. Practical identifiability of the selected within-host model (3.1)

A structurally identifiable model might not be identifiable in practice when noisy data is considered
in determining the parameters. In structural identifiability analyses, experimental data is not considered
at all. Our analysis shows that within host model is structurally identifiable (3.1) and this feature of the
model is based on observations, which are smooth continuous functions of the model’s state variables.
Simply put, structural identifiability analysis assumes infinitely many noise-free data points, whereas
practical identifiability uses noisy finitely many points. Therefore, we continue with the practical
identifiability analysis of the within-host model (3.1) using Monte Carlo simulations. The Monte Carlo
simulations performed are outlined below [40, 41].

1) Set the estimated parameters given in Table 4 as the true parameters, p0. Solve the within-host model
(3.1) numerically with the true parameters.

2) Generate M = 1000 synthetic datasets from a normal distribution whose mean is the model predictions
at the discrete data points. Namely, generate synthetic data using the true parameters,

Y i
1 = T (ti, p0) + Ei i = 1, · · · , n1 Y j

2 = V(t j, p0) + E j j = 1, · · · , n2

Yk
3 = A(tk, p0) + Ek k = 1 · · · , n3 Y l

4 = G(tl, p0) + El l = 1, · · · , n4
(4.2)

where each measurement error Ei, E j, Ek, El is normally distributed with zero mean and standard
deviation σ. Figure 3 shows a single synthetic data generated for σ = 0%, 5%, 20%.

3) Fit the within-host model (3.1) to data generated in step 2 and obtain estimated parameters p j for
each data set j = 1, 2, . . .M.

4) Calculate the average relative estimation error (ARE) for each parameter by

ARE(p(k)) = 100%
1
M

M∑
j=1

|p(k)
0 − p(k)

j |

p(k)
0

(4.3)

where p(k)
0 is the kkt parameter in p0 and p(k)

j is the kth parameter in the set p j.
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5) Repeat steps 1 through 4 with higher noise levels. That is, at each iteration take σ = 0%, 1%, 5%,
10%, 20%.

The practical identifiability performed with MCS is based on generating synthetic data using the
estimated parameters. Therefore, it is a local result for the estimated parameters. Since, the true
parameter set that generated the synthetic data is known, we can compute the average estimation error
of each parameter. AREs describe how noise in the data affects the parameters. The AREs gradually
increase as the noise level in data increases. The sensitivity of this increase determines the practical
identifiability of the parameters. A practically unidentifiable parameter is very sensitive to noise in the
data. In general, the AREs of those parameters will increase rapidly than the corresponding noise level.
We introduce the following definition of practical identifiability.

σ = 0% noise in the data.

σ = 5% noise in the data.

σ = 20% noise in the data.

Figure 3. Monte Carlo Simulations (MCS): A single set of viral load, CD4 cell count, albumin
and globulin data generated for the MCS is presented. Blue curve is the model predictions with
the true parameters, and red circles are the synthetic data. The synthetic data are generated by
taking the estimated parameters given in Table 4 as true parameters and generating random
data with normal distribution whose mean are the model predictions and the standard deviation
is σ = 0 (Top Row), σ = 5 (Middle Row), and σ = 20 (Bottom Row).

Definition 2. Let p be the parameter set of the within-host model (3.1). If the ARE of the kth parameter
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in p is bounded by the measurement error, then we say that the parameter pk is practically identifiable.
Specifically, if

ARE(p(k)) ≤ cσ with 0 < c < 10

then we say that the parameter pk is practically identifiable.

Table 5. Monte Carlo Simulation (MCS) Results: AREs of the parameters of the within-host
model (3.1) is presented for each noise level. Synthetic data is generated at the discrete time
points of actual data used for parameter estimation (see Figure 3).

Parameters σ = 1% σ = 5% σ = 10% σ = 20%

r 2.1% 9.9% 21.6% 82.5%

d 2.0% 9.6% 20.4% 83.1%

ρ0 5.2% 20.6% 36.0% 87.4%

δ 227.9% 959.9% 2026.8% 7003.1%

π 12.4% 44.2% 84.2% 169.5%

c 15.5% 52.1% 78.2% 123.4%

ψ01 10.7% 28.6% 47.7% 85.3%

b 55.3% 485.9% 3801.5% 9706.8%

µz 6.6% 24.7% 42.7% 75.7%

µv 17,376% 14,194% 29,714% 18,721%

λA 31.1% 108.2% 243.8% 977.2%

γA 33.9% 148.3% 424.6% 2409.5%

µA 31.1% 108.0% 243.2% 952.6%

λG 104.9% 491.2% 768.1% 2910.8%

γG 6275.8% 11,938% 19,139% 22,374%

µG 105.7% 494.3% 773.3% 3075%

Examining the AREs presented in Table 5, and using Definition 2, we conclude that only the
parameters, r, d, ρ0, π, c, ψ01 and µz are practically identifiable. All the other parameters have
substantially high AREs and therefore are practically unidentifiable. AREs of parameters increase as
the noise level in data increases, but the parameters µv and γG have already very high AREs when there
is only 1% noise in data. It seems like noise in the data is not the only source of high AREs for µv and
γG. Even though the within-host model (3.1) is structurally identifiable, when λz is fixed, we see that
most of its parameters are practically unidentifiable. We suspect that the practical unidentifiably might
be due to lack of enough data points. To test this hypothesis, we rerun the MCS with high frequency
data points, where 10 measurements are collected each day for 170 days, which results in total of 1700
data points for each observations; viral load, target cells, albumin and globulin. AREs of the parameters
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with high frequency data is presented in Table 6. Based on the results in Table 6, we conclude that
when there is enough data points, all the parameters of the within-host model (3.1) except µv and γG are
practically identifiable.

Table 6. Monte Carlo Simulation (MCS) Results: AREs of the parameters of the within-host
model (3.1) is presented for each noise level. Synthetic data is generated with high frequency
data, meaning that there are 10 data points for each day for 170 days.

Parameters σ = 1% σ = 5% σ = 10% σ = 20%

r 0.1% 0.7% 1.4% 2.8%
d 0.1% 0.6% 1.3% 2.7%
ρ0 0.2% 1.4% 2.9% 4.6%
δ 8.3% 41.8% 83% 124.2%
π 0.3% 1.7% 3.4% 5.7%
c 0.1% 0.4% 1% 2%
ψ01 0.1% 0.5% 1.1% 2%
b 2.5% 14.3% 28.2% 55.7%
µz 0.1% 0.6% 1.3% 2.3%
µv 6152.6% 14,112% 26,711% 18,392%
λA 1.4% 8.7% 19% 32.8%
γA 1.6% 9.9% 21.6% 39.6%
µA 1.4% 8.7% 19% 32.8%
λG 1.9% 11.5% 23.1% 50.3%
γG 111.5% 435.2% 803.3% 1441.8%
µG 1.9% 11.6% 23.4% 50.9%

Figure 4. Impact of albumin and globulin intake: The albumin and globulin intakes are varied
by two magnitudes of order around their fitted value. λG is selected randomly from a uniform
distribution [0.005, 0.5] and λA from a uniform distribution [3, 300]. The grey shaded areas
represent the 95% of the resulting simulations.

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19527–19552.



19547

For the next numerical simulation, we studied the effect of varying albumin and globulin intake on
the viral load. Both albumin and globulin intake were varied by two orders of magnitude. We select λG

at random from a uniform distribution [0.005, 0.5] and λA at random from a uniform distribution [3, 300].
The simulation results are shown in Figure 4. Clearly, albumin and globulin intakes have significant
impact on the albumin and globulin levels. However, their impact on the viral load is minimal.

5. Discussion

Albumin and globulin metabolism plays important role in the immune system and the immune
system is of essence for protecting us from infectious diseases. Thus, there is an intrinsic link between
albumin-globulin metabolism and infection diseases. Despite that extensive modeling has been done
on infectious diseases and their interaction with the immune system, and significant work has been
done on modeling nutrition and the dynamics of its components within-host, virtually no models have
been introduced covering the interplay of infectious diseases and albumin/globulin. In this paper we
consider a within host HIV model and the interaction of the virus with the protein in the body, namely
the albumin and the globulins. We introduce a global model that incorporates target healthy and infected
cells, viral load, immune cell response, and the concentrations of albumin and globulin. Because the
impact of the two components of protein on the infection of healthy cells and the killing of the virus by
the immune system are not known, we hypothesize a generic functional form for the terms. Furthermore,
we assume a linear dependence of CD4 and CD8 cells recruitment on the globulins. We use first-order
kinetics to characterize albumin and globulin dynamics. Even with this simplification, the within-host
model (2.1) yields a total of 17 submodels. Had we incorporated more generalized terms to describe
the dynamics of albumin and globulin, the number of models requiring fitting to the data would have
increased substantially. We use data on CD4 cells, viral load, albumin and globulin concentrations in
rhesus monkeys to determine the specific form of dependence of the incidence term and infected T cells
clearance term on the protein concentrations, as well as the form of the recruitment terms of target cells
and immune cells. The data points do not have any associated uncertainty and the noise level in the
measurements is not known. We specify 17 submodels of the general model, fit all 17 models to the data,
and use the Akaike Information Criterion (AIC) to select the best model. We find out that the simplest
model fits the data best and solely explains the data. According to the best fitted model, albumin and
globulins do not impact the new infections term, nor do they impact the clearance of infected T cells by
the immune system term. Furthermore, the recruitment of CD4 and CD8 cells also does not depend on
globulins. The best fitted model outperforms the remaining 16 models substantially and has a relative
likelihood of 0.996, therefore explaining the data by itself [27].

We further analyze the best fitted model. We find out that it has a unique infection-free equilibrium,
and we compute the immunological reproduction number of the infection R0. The infection-free state
is locally stable if the immunological reproduction number is smaller than one. If the immunological
reproduction number is greater than one, the infection-free equilibrium is unstable and there is a unique
infection equilibrium. The unique infection equilibrium is locally stable whenever it exits.

We fit the best fitted model to the data and determine its parameters. Before that, we address
the question whether the parameter estimation problem is well posed and we study the structural
identifiability of the model relative to the given data sets. We find out that all parameters of the model
are structurally identifiable except λz and ψ01 but their product is identifiable. Hence, we fix the immune
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cell production rate λz at a value obtained from the literature. Fixing the value of λz makes all parameters
of the model structurally identifiable. Furthermore, we perform practical identifiability of the model
using Monte Carlo Simulations. We find that with the given data only seven of the 16 parameters have
Average Relative Estimation Errors (AREs) within an order of magnitude of the noise errors and are
practically identifiable. We surmise that the reason for the lack of practical identifiability of most of the
parameters is the low quality of the data. To test this hypothesis we perform Monte Carlo Simulations
with synthetic data which are sampled a lot more frequently. We find out that with the high frequency
synthetic data only the parameters µv and γG are not practically identifiable and rest of the parameters
are all identifiable. We conclude that collecting more consistent and more frequently sampled data can
lead to more reliably estimated parameters.
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Appendix

Proof of Theorem 1: The local stability of equilibria is determined by the eigenvalues of the
Jacobian computed at this equilibrium. The Jacobian of the model (3.3) at the equilibrium E0 =

(T0, 0, 0,Z0, A0,G0) is

J(E0) =



−d 0 −
ρ0r
d 0 0 0

0 −δ − ψ01λZ
µZ

ρ0r
d 0 0 0

0 π −c − µVλG
µG

0 0 0
0 bλZ

µZ
0 −µZ 0 0

0 0 −
γAλA
µA

0 −µA 0
0 0 γGλG

µG
0 0 −µG


Hence the characteristic equation of the Jacobian is given by

|J(E0) − kI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−d − k 0 −
ρ0r
d 0 0 0

0 −δ − ψ01λZ
µZ
− k ρ0r

d 0 0 0
0 π −c − µVλG

µG
− k 0 0 0

0 bλZ
µZ

0 −µZ − k 0 0
0 0 −

γAλA
µA

0 −µA − k 0
0 0 γGλG

µG
0 0 −µG − k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0
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Clearly, −d,−µZ,−µA and −µG are eigenvalues of the matrix J(E0) and the remaining eigenvalues are
given by the eigenvalues of the following matrix J1,

J1 =

∣∣∣∣∣∣∣−δ −
ψ01λZ
µZ

ρ0r
d

π −c − µVλG
µG

∣∣∣∣∣∣∣
This leads to the following quadratic characteristic equation:

P(k) := k2 +

[(
c +

µVλG

µG

)
+

(
δ +

ψ01λZ

µZ

)]
k + (δ +

ψ01λZ

µZ
)(c +

µvλG

µG
) −

πρ0r
d
= 0.

Now, it can be seen that this equation has one positive root if R0 > 1, and two negative real roots or two
complex roots with negative real parts if R0 < 1.
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