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Abstract: In this paper, we revisit a discrete prey-predator model with the Allee effect in prey to
find its more complex dynamical properties. After pointing out and correcting those known errors for
the local stability of the unique positive fixed point E∗, unlike previous studies in which the author
only considered the codim 1 Neimark-Sacker bifurcation at the fixed point E∗, we focus on deriving
many new bifurcation results, namely, the codim 1 transcritical bifurcation at the trivial fixed point
E1, the codim 1 transcritical and period-doubling bifurcations at the boundary fixed point E2, the
codim 1 period-doubling bifurcation and the codim 2 1:2 resonance bifurcation at the positive fixed
point E∗. The obtained theoretical results are also further illustrated via numerical simulations. Some
new dynamics are numerically found. Our new results clearly demonstrate that the occurrence of 1:2
resonance bifurcation confirms that this system is strongly unstable, indicating that the predator and
the prey will increase rapidly and breakout suddenly.

Keywords: prey-predator model; Allee effect; transcritical bifurcation; period-doubling bifurcation;
1:2 resonance bifurcation

1. Introduction

Prey-predator interaction among populations is a kind of universal phenomena, which may lead
to a stable coexistence and population cycles. Some population problems, such as the persistence,
the stability of steady states, the bifurcation, etc. have been research focal points. How to deal with
these problems is the main question. An effective method is to adopt reasonable assumptions and
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establish appropriate mathematical models to analyze such problems. So, mathematical modeling is a
tool to deal with these problems, as it can give some insight into the corresponding model dynamics.
Among the mathematical models, the Lotka-Volterra model is a famous prey-predator one, and it was
independently constructed by Lotka [1] and Volterra [2], respectively. These mathematical models
have two different kinds of types: continuous-time models and discrete-time models. Over the last
several decades, an increasing number of studies have investigated discrete-time prey-predator models.
There are two reasons for this. One reason is that discrete models are sometimes more appropriate as
a tool to describe the evolution rule for the population than continuous models when the population
size is small or when the generation of the population does not overlap. The other reason is that some
discrete models have more diverse dynamical behaviors than the corresponding continuous models.
For example, it is well known that the single-species discrete-time logistic model has very complex
dynamical behavior, ranging from period-doubling bifurcation to chaotic behavior [3], whereas the
solutions of the corresponding continuous model are monotonic.

To date, the investigations of bifurcation problems for discrete prey-predator systems have already
received much attention, especially after Smith [4] considered the Lotka–Volterra type discrete-time
prey-predator model. For this, refer to [5–11].

Focusing on the deeper research, people have started to consider an important ecological mechanism
that describes realistic interactions among species in the ecosystem. For the readers’ convenience, we
present some existing works [12–16]. Li et al. considered the interactions of time delay and spatial
diffusion to induce the periodic oscillation of a vegetation system [12]. Chowdhury et al. deduced
canard cycles, relaxation oscillations and pattern formation for a slow-fast ratio-dependent predator-
prey system [13]. Sun et al. investigated the impacts of climate change on vegetation patterns [14].
Chowdhury et al. studied eco-evolutionary cyclic dominance among predators, prey and parasites [15].
The dynamic behavior of a plant-water model with spatial diffusion has been analyzed by Sun et
al. [16]. But one must remember that this work was first considered by the well known ecologist W. C.
Allee and later named the Allee effect [17–22]. The Allee effect, classified into two kinds of types, i.e.,
the strong Allee effect and weak Allee effect, states that a population that is low in number is affected
by a positive relationship between the population growth rate and its density. In the process of the
population growing, a critical density, called the Allee threshold, will occur and measure the extinction
of the population. The Allee effect is used to study the extinction scenario of the population. When the
average growth rate of the population at low density is negative, one says that there is a strong Allee
effect whereas a weak Allee effect corresponds to when the average growth rate of the population at
zero density is positive. For more investigations of the Allee threshold under the strong/weak Allee
effect, see also, for example, [17–24] and the references cited therein. In fact, most of the research is on
the codim 1 bifurcation problem of such systems. Therefore, our main aim in this paper is to consider
the codim 2 bifurcation problem of a discrete prey-predator model with the Allee effect in prey.

Recall that Khan [25] considered the local stability and Neimark-Sacker bifurcation of the following
discrete-time prey-predator model  Xt+1 = aXt(1 − Xt) − XtYt,

Yt+1 =
1
β
XtYt,

(1.1)

where Xt and Yt denote the numbers of prey and predator respectively, and the parameters a and β are
positive real numbers.
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A number of changes in the model (1.1) have been presented by researchers to include Holling-
type functional responses and density-dependent prey growth. Another way of modification of the
Lotka–Volterra model can be considered by introducing the Allee effect which can more realistically
model the prey–predator interaction.

In [26], the author considered the modification of the model (1.1) by introducing the Allee effect to
the prey population as follows  Xt+1 = aXt(1 − Xt) − XtYt( Xt

Xt+m ),

Yt+1 =
1
β
XtYt,

(1.2)

where Xt
Xt+m is the term for the Allee effect, m > 0 can be defined as the Allee effect coefficient [12],

and the parameters a and β are the growth rates of the prey and predator, respectively.
Considering the biological meanings of system (1.2), its nonnegative fixed points were derived

in [26], and they are E1 = (0, 0), E2 = ( a−1
a , 0) if a > 1 and E∗ = (β,

(β + m)(a(1 − β) − 1)
β

) if 0 < β <

1 − 1
a .

Regarding the stability analysis of E1, E2 and E∗, some results have been obtained in [26]. For the
readers’convenience, we present them in Appendix A.

On the one hand, however, based on those results presented in Appendix A, which are mainly for
the type and the stability of the positive fixed point E∗, we find that there are some errors, which can
be shown as follows.
Counterexample 1.1. Consider system (1.2) with the parameters

a = 3, β = 0.6, m = 0.1.

Obviously, 0 < β < 1 − 1
a , which means that E∗ exists. Again, 1

1−2β−m < a < 3β+5m
3β2+mβ+m−β , which

means that (iii.2) in Appendix A holds. According to (iii.2), E∗ should be a source. But, by some
computations, one finds that

λ1 = 0.8831, λ2 = −0.7117,

which shows that the fixed point E∗ is a saddle, not a source.
Counterexample 1.2. Consider system (1.2) with the parameters

a = 3, β = 0.1, m = 0.4.

Evidently, 0 < β < 1 − 1
a , which means that E∗ exists. a > 1

1−2β−m is also true. According to the
condition (iii.3) in Appendix A, E∗ should be a saddle. But one can easily derive the following:

λ1 = 0.17 + i, λ2 = 0.17 − i,

which indicates that E∗ is an unstable focus, not a saddle.
These counterexamples show that the stability of E∗ is worthy of further studies.

On the other hand, the author of [26] only studied codim 1 Neimark-Sacker bifurcation in E∗. A
question naturally arises: are there other bifurcations in E∗, especially, 1:2 resonance bifurcation?
Additionally, are there bifurcations that occur in the fixed points E1 and E2?
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These problems have not yet been considered in any known studies. This has motivated us to
investigate these problems in this paper. We not only give precise conditions for the stability of E∗ in
the whole parametric space in which it exists, which serves to correct those known errors, but, also,
and what is more important, we consider the complex bifurcation problems of (1.2), mainly focusing
on its codim 2 resonance 1:2 bifurcation.

The rest of the paper is organized as follows. In Section 2, we give the complete stability results
for E∗ for the entire parametric space in which it exists. In Section 3, we respectively choose a and β
as bifurcation parameters to discuss its bifurcation problems at the fixed points E1 and E2, including
transcritical bifurcation and period-doubling bifurcation. For the fixed point E∗, we not only consider
its codim 1 period-doubling bifurcation, but also the 1:2 resonance bifurcation of codim 2 while varying
the two parameters a and m. In Section 4, we present some numerical simulations to illustrate our
theoretical analysis results. Finally, we draw some conclusions and discussions in Section 5.

2. Stability of fixed point E∗

In this section, we revisit the stability of the fixed point E∗ of system (1.2). In order to study the
stability and local bifurcation of fixed points of a general 2D system, the definitions of the topological
types of a fixed point and a lemma for determining the stability of a fixed point are essential, and they
are presented in Appendix B. The main results in this section are as follows.

Theorem 2.1. When 0 < β < 1 − 1
a , the unique positive fixed point E∗ exists. Its dynamical properties

are completely formulated in Table 1, where R1 =
3β2 + (m − 1)β + m

5m + 3β
and R2 = 1 − 2β − m.

Proof. The characteristic equation of J(E∗) is

F(λ) = λ2 + Bλ +C = 0, (2.1)

where B = −2β−3m+am+aβ2

m+β , C = aβ−2aβ2−aβm+m
m+β .

Now, we will analyze the stability of the unique positive fixed point E∗. Notice that F(1) > 0 always
holds when 0 < β < 1 − 1

a . Obviously,

F(−1) =
5m + 3β − 3aβ2 − am − amβ + aβ

m + β
, (2.2)

F(−1) > (=, <)0⇐⇒ a(3β2 + (m − 1)β + m) < (=, >)5m + 3β

⇐⇒
1
a
> (=, <)

3β2 + (m − 1)β + m
5m + 3β

△
= R1,

C − 1 > (=, <)0⇐⇒ a(1 − 2β − m) − 1 > (=, <)0

⇐⇒
1
a
< (=, >)1 − 2β − m △

= R2

(2.3)

and
R1 > (=, <)R2 ⇐⇒ 5m2 + (14β − 4)m + 9β2 − 4β > (=, <)0

⇐⇒ (5m + 9β − 4)(m + β) > (=, <)0

⇐⇒ m > (=, <)
4 − 9β

5
.

(2.4)

Mathematical Biosciences and Engineering Volume 20, Issue 11, 19584–19616.



19588

Table 1. Properties of the positive fixed point E∗.

Conditions Eigenvalues Properties

0 < β < 4
9

m < 4−9β
5

0 < 1
a < R1 |λ1|< 1, |λ2|> 1 Saddle

1
a = R1 λ1 = −1, |λ2|, 1

Non-
hyperbolic

R1 <
1
a < R2 |λ1,2|> 1 Source

1
a = R2 |λi|= 1, λ1 = λ2

Non-
hyperbolic

R2 <
1
a < 1 − β |λ1,2|< 1 Sink

m = 4−9β
5

0 < 1
a < R2 |λ1|< 1, |λ2|> 1 Saddle

1
a = R2 λ1,2 = −1

Non-
hyperbolic

R2 <
1
a < 1 − β |λ1,2|< 1 Sink

m > 4−9β
5

0 < 1
a < R1 |λ1|< 1, |λ2|> 1 Saddle

1
a = R1 λ1 = −1, |λ2|, 1

Non-
hyperbolic

R1 <
1
a < 1 − β |λ1,2|< 1 Sink

4
9 ⩽ β <

2
3 m > 0

0 < 1
a < R1 |λ1|< 1, |λ2|> 1 Saddle

1
a = R1 λ1 = −1, |λ2|, 1

Non-
hyperbolic

R1 <
1
a < 1 − β |λ1,2|< 1 Sink

2
3 ⩽ β < 1 − 1

a m > 0 0 < 1
a < 1 − β |λ1|< 1, |λ2|> 1 Saddle
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If 1 < a ≤ 2, then (0, 1 − 1
a ) ⊂ (0, 1

2 ); if 2 < a, then (0, 1
2 ) ⊂ (0, 1 − 1

a ). Now for a > 2, we separate
β ∈ (0, 1 − 1

a ) into two cases: β ∈ (0, 1
2 ) and β ∈ [1

2 , 1 −
1
a ).

Case I: 1
2 ⩽ β < 1 − 1

a .

Then, 4−9β
5 < 0 < m. So, it follows from (2.4) that R1 > R2, and 1 − 2β − m < 0 < 1

a . So C < 1. Notice
the following condition:

max
{
1 − 2β − m,

3β2 + (m − 1)β + m
5m + 3β

}
< (=, >)1 − β

⇐⇒
3β2 + (m − 1)β + m

5m + 3β
< (=, >)1 − β

⇐⇒ β < (=, >)
2
3
.

Hence, one can further divide β ∈ [ 1
2 , 1 −

1
a ) into two subcases β ∈ [1

2 ,
2
3 ) and β ∈ [ 2

3 , 1 −
1
a ) if possible.

Subcase I: 1
2 ⩽ β <

2
3 . Then the following derivations hold true.

1) 0 < 1
a < R1. It follows from (2.3) that F(−1) < 0. According to Lemma 5.2(i.3), the eigenvalues

are |λ1| < 1 and |λ2| > 1. So, Definition 5.1(3) tells us that E∗ is a saddle.
2) 1

a = R1. One can see from (2.3) that F(−1) = 0 and C , 1. Lemma 5.2(i.2) yields that the
eigenvalues are λ1 = −1 and λ2 , 1. By Definition 5.1(4), E∗ is non-hyperbolic.

3) R1 <
1
a < 1 − β. Then from (2.3) we know that F(−1) > 0 and C < 1. According to Lemma

5.2(i.1), the eigenvalues satisfy that |λ1,2| < 1. From Definition 5.1(1), E∗ is a sink.

Subcase II: 2
3 ⩽ β < 1− 1

a . Then 0 <
1
a
< 1−β < R1. Using (2.3), Lemma 5.2(i.3) and Definition 5.1(3)

in the same way, it is easy to derive that E∗ is a saddle.
Case II: 0 < β < 1

2 .
Then, we consider two subcases: I: 0 < β < 4

9 and II: 4
9 ⩽ β <

1
2 . First consider Subcase I: 0 < β < 4

9 .

We divide m ∈ (0,+∞) into three cases:

1. 0 < m <
4 − 9β

5
, 2. m =

4 − 9β
5

, 3. m >
4 − 9β

5
.

Correspondingly, R1 < (=, >)R2. For the first case that 0 < m < 4−9β
5 ,R1 < R2. Then consider 1

a ∈

(0, 1 − β) for the following five cases:

1) 0 < 1
a < R1 =⇒ F(−1) < 0 =⇒ |λ1| < 1, |λ2| > 1 =⇒ E∗ is a saddle;

2) 1
a = R1 =⇒ F(−1) = 0,C , 1 =⇒ λ1 = −1, λ2 , −1 =⇒ E∗ is non-hyperbolic (flip bifurcatin

may occur);
3) R1 <

1
a < R2 =⇒ F(−1) > 0,C > 1 =⇒ |λ1,2| > 1 =⇒ E∗ is a source;

4) 1
a = R2 =⇒ C = 1, F(−1) > 0 =⇒ |λ1,2| = 1, λ1 = λ2 =⇒ E∗ is non-hyperbolic (Neimark-Sacker

bifurcation possibly occurs);
5) R2 <

1
a < 1 − β =⇒ C < 1, F(−1) > 0 =⇒ |λ1,2| < 1 =⇒ E∗ is a sink.

For the second case of m = 4−9β
5 (R1 = R2) and the third case that m > 4−9β

5 (R1 > R2), 1
a ∈ (0, 1 − β)
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can be similarly divided. For simplification, these cases can be shown in the following formats.

0 < β <
4
9



0 < m < 4−9β
5



0 < 1
a < R1, E∗ is a saddle;

1
a = R1, E∗ is non − hyperbolic;

R1 <
1
a < R2, E∗ is a source;

1
a = R2, E∗ is non − hyperbolic;

R2 <
1
a < 1 − β, E∗ is a sink.

m = 4−9β
5


0 < 1

a < R2, E∗ is a saddle;
1
a = R2, E∗ is non − hyperbolic;

R2 <
1
a < 1 − β, E∗ is a sink.

m > 4−9β
5



0 < 1
a < R2, E∗ is a saddle;

1
a = R2, E∗ is a saddle;

R2 <
1
a < R1, E∗ is a saddle;

1
a = R1, E∗ is non − hyperbolic;

R1 <
1
a < 1 − β, E∗ is a sink.

Next consider Subcase II: 4
9 ⩽ β <

1
2 . Then one can get that R1 > R2. Similar to the analysis for Subcase

I, one can derive the following:

4
9
⩽ β <

1
2



0 < 1
a < R2, E∗ is a saddle;

1
a = R2, E∗ is a saddle;

R2 <
1
a < R1, E∗ is a saddle;

1
a = R1, E∗ is non − hyperbolic;

R1 <
1
a < 1 − β, E∗ is a sink;

this may be reduced to the following:

4
9
⩽ β <

1
2


0 < 1

a < R1, E∗ is a saddle;
1
a = R1, E∗ is non − hyperbolic;

R1 <
1
a < 1 − β, E∗ is a sink.

This case is the same as the case that 1
2 ⩽ β ⩽

2
3 . So, these two cases can be combined into one case.

Thus, we have summarized all of the results in Table 1.

3. Bifurcation analysis

In this section, we respectively consider the local bifurcation problems of system (1.2) at the fixed
points E1, E2 and E∗, including codimension one (codim 1) bifurcation and codimension two (codim 2)
bifurcation.
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3.1. Codimension one bifurcation

3.1.1. Bifurcation at the trivial fixed point E1(0, 0)

For the bifurcation at the fixed point E1(0, 0), one has the following result.

Theorem 3.1. As the parameter a passes through the critical value a0 = 1, system (1.2) undergoes a
transcritical bifurcation at the fixed point E1(0, 0).

Proof. Given a small perturbation a∗ of the parameter a around a0, namely, a∗ = a−a0, with 0 < |a∗| ≪
1, system (1.2) is changed into the following form: xt+1 = (1 + a∗)xt(1 − xt) −

x2
t yt

m+xt
,

yt+1 =
1
β
xtyt.

(3.1)

Set a∗t+1 = a∗t = a∗; then, (3.1) becomes
xt+1 = (1 + a∗t )xt(1 − xt) −

x2
t yt

m+xt
,

yt+1 =
1
β
xtyt,

a∗t+1 = a∗t .

(3.2)

Applying Taylor expansion to (3.2) at (xt, yt, a∗t )=(0,0,0) yields
xt

yt

a∗t

 −→

1 0 0
0 0 0
0 0 1




xt

yt

a∗t

 +

g1(xt, yt, a∗t ) + o(ρ3

1)
g2(xt, yt, a∗t ) + o(ρ3

1)
0

 , (3.3)

where ρ1 =
√

x2
t + y2

t + (a∗t )2,

g1(xt, yt, a∗t ) = xta∗t − x2
t a∗t − x2

t −
x2

t yt

m
,

g2(xt, yt, a∗t ) =
xtyt

β
.

Assume the following for the center manifold

yt = h(xt, a∗t ) = a20x2
t + a11xta∗t + a02a∗t

2
+ o(ρ2

2),

where ρ2 =

√
x2

t + a∗t
2; then, from

yt+1 =h(xt+1, a∗t+1) = g2(xt, h(xt, a∗t ), a∗t ) + o(ρ2
2),

yt+1 =a20x2
t+1 + a11xt+1a∗t + a02a∗t

2
+ o(ρ2

2),
xt+1 =xt + g1(xt, h(xt, a∗t ), a∗t ) + o(ρ2

2),

comparing the corresponding coefficients of terms with the same order as in the above center manifold
equation, it is easy to derive that

a20 = a11 = a02 = 0.
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So, system (3.3), restricted to the center manifold, is given by

xt+1 = f1(xt, a∗t ) := xt + g1(xt, h(xt, a∗t ), a∗t ) + o(ρ3
2)

= xt + xta∗t − x2
t a∗t − x2

t + o(ρ3
2).

Therefore, the following results are derived:

f1(xt, a∗t )|(0,0) = 0,
∂ f1

∂xt

∣∣∣∣∣
(0,0)
= 1,

∂ f1

∂a∗t

∣∣∣∣∣
(0,0)
= 0,

∂2 f1

∂xt∂a∗t

∣∣∣∣∣
(0,0)
= 1 > 0,

∂2 f1

∂x2
t

∣∣∣∣∣
(0,0)
= −2 < 0.

According to (21.1.43)–(21.1.46) in [27, pp 507], all conditions hold for a transcritical bifurcation to
occur; hence, system (1.2) undergoes a transcritical bifurcation at the fixed point E1.

3.1.2. Bifurcation at the boundary fixed point E2 = ( a−1
a , 0)

The fixed point E2 always exists when a > 1. One can see from [26] that E2 is a non-hyperbolic
fixed point when a = 3 or β = a−1

a . As soon as the parameter a or β goes through the corresponding
critical values, the dimensional numbers for the stable manifold and the unstable manifold of the fixed
point E2 vary. So, a bifurcation probably occurs. Now, the considered parameter values are divided
into the following three cases:
Case I: a = 3, β , 2

3 ;
Case II: a , 3, β = a−1

a ;
Case III: a = 3, β = 2

3 .
First, we consider Case I: a = 3, β , 2

3 , namely, the parameters (a, β) ∈ Ω1 = {(a, β) ∈ R2
+|β ,

2
3 , a >

1}. Then, the following result is obtained.

Theorem 3.2. Assume the parameters (a, β) ∈ Ω1 = {(a, β) ∈ R2
+|β ,

2
3 , a > 1}, and let a0 = 3; then,

system (1.2) undergoes a period-doubling bifurcation at E2 when the parameter a goes through the
critical value a0.

Proof. Let lt = Xt −
a−1

a and mt = Yt − 0, which transforms E2 = ( a−1
a , 0) to the origin O(0, 0) and

system (1.2) into the following: lt+1 = lt(2 − a − alt) − ( a−1
a + lt)mt(

a − 1 + alt

am + a − 1 + alt
),

mt+1 =
1
β
(lt +

a−1
a )mt.

(3.4)

Give a small perturbation a∗ of the parameter a around a0, namely, a∗ = a − a0, with 0 < |a∗| ≪ 1;
then, system (3.4) is changed into the following: lt+1 = −(1 + a∗)lt − (3 + a∗)l2

t − ( 2+a∗
3+a∗ + lt)

2+a∗+(3+a∗)lt
(3+a∗)(m+lt)+2+a∗mt,

mt+1 =
1
β
(lt +

2+a∗
3+a∗ )mt.

(3.5)
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Set a∗t+1 = a∗t = a∗ to change (3.5) into the following:
lt+1 = −(1 + a∗t )lt − (3 + a∗t )l2

t − ( 2+a∗t
3+a∗t
+ lt)(

2+a∗t +(3+a∗t )lt
(3+a∗t )(m+lt)+2+a∗t

)mt,

mt+1 =
1
β
(lt +

2+a∗t
3+a∗t

)mt,

a∗t+1 = a∗t .

(3.6)

Applying a Taylor expansion to (3.6) at (lt,mt, a∗t )=(0,0,0) yields


lt

mt

a∗t

 −→

−1

−4
3(3m + 2)

0

0
2

3β
0

0 0 1




lt

mt

a∗t

 +

g1(lt,mt, a∗t ) + o(ρ3

1)
g2(lt,mt, a∗t ) + o(ρ3

1)
0

 , (3.7)

where ρ1 =
√

l2
t + m2

t + (a∗t )2,

g1(lt,mt, a∗t ) = − 3l2
t −

(12m + 4)
(3m + 2)2 ltmt − lta∗t −

(12m + 4)
9(3m + 2)2 mta∗t

−
27m2

(3m + 2)3 l2
t mt − l2

t a∗t −
6m2

(3m + 2)3 ltmta∗t

+
27m2 + 36m + 8

27(3m + 2)3 mt(a∗t )2,

g2(lt,mt, a∗t ) =
1
β

ltmt +
1

9β
mta∗t −

1
27β

mt(a∗t )2.

It is easy to derive the three eigenvalues of the matrix A =


−1 −4

3(3m+2) 0
0 2

3β 0
0 0 1

 to be λ1 = −1 , λ2 =
2

3β

and λ3 = 1 with the corresponding eigenvectors ξ1 =


1
0
0

 , ξ2 =


3β

2+3β
−3(3m+2)

4
0

 and ξ3 =


0
0
1

. β , 2
3 implies

that |λ2| , 1.
Set T = (ξ1, ξ2, ξ3), namely,

T =


1 3β

2+3β 0

0 −3(3m+2)
4 0

0 0 1

 ; then, T−1 =


1 4β

(3β+2)(3m+2) 0

0 −4
3(3m+2) 0

0 0 1

 .

The transformation


lt

mt

a∗t

 = T


ut

vt

σt

 changes system (3.7) into the following:


ut+1

vt+1

σt+1

 =

−1 0 0
0 2

3β 0
0 0 1



ut

vt

σt

 +

g3(ut, vt, σt) + o(ρ3

2)

g4(ut, vt, σt) + o(ρ3
2)

0

 , (3.8)
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where ρ2 =
√

u2
t + v2

t + σ
2
t ,

g3(ut, vt, σt) =g1(ut +
3β

3β + 2
vt,
−3(3m + 2)

4
vt, σt)+

4β
(3β + 2)(3m + 2)

g2(ut +
3β

3β + 2
vt,
−3(3m + 2)

4
vt, σt),

g4(ut, vt, σt) =
−4

3(3m + 2)
g2(ut +

3β
3β + 2

vt,
−3(3m + 2)

4
vt, σt).

Assume the following for the center manifold [28]:

vt = h(ut, σt) = c20u2
t + c11utσt + c02σ

2
t + o(ρ2

3),

where ρ3 =
√

u2
t + σ

2
t ; then, according to the following relations:

vt+1 =h(vt+1, σt+1) =
2

3β
vt + g4(ut, h(ut, σt), σt) + o(ρ2

3),

vt+1 =c20u2
t+1 + c11ut+1σt + c02σ

2
t + o(ρ2

3),
ut+1 = − ut + g3(ut, h(ut, σt), σt) + o(ρ2

3),

and by comparing the corresponding coefficients of terms with the same order as in the above center
manifold equation, one derives that

c20 = c11 = c02 = 0.

So, system (3.8) restricted to the center manifold is given by

ut+1 = f1(ut, σt) := −ut + g3(ut, h(ut, σt), σt) + o(ρ3
3)

= −ut − 3u2
t − utσt − u2

tσt + o(ρ3
3).

Thus, one has

f 2
1 (ut, σt) = f1( f1(ut, σt), σt) = ut + 2utσt − 18u3

t − 3u2
tσt + utσ

2
t + o(ρ3

3).

Therefore, the following results are derived:

f1(0, 0) = 0,
∂ f1

∂ut
|(0,0) = −1,

∂ f 2
1

∂σt
|(0,0) = 0,

∂2 f 2
1

∂u2
t
|(0,0) = 0,

∂2 f 2
1

∂ut∂σt
|(0,0) = 2 , 0,

∂3 f 2
2

∂u3
t
|(0,0) = −108 , 0,

which, according to (21.2.17)–(21.2.22) in [27, pp 516], satisfy all of the conditions for a period-
doubling bifurcation to occur. So, system (1.2) undergoes a period-doubling bifurcation at E2. Again,

−
∂3 f 2

1
∂u3

t
|(0,0)

∂2 f 2
1

∂ut∂σt
|(0,0)

= 54 > 0.
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So, the period-two orbit bifurcated from E2 lies to the right of a0 = 3.
Of course, one can also compute the following two quantities, which respectively, are the transversal
condition and non-degenerate condition for judging the occurrence and direction of a period-doubling
bifurcation (see [27,28]):

α1 =
( ∂2 f1

∂ut∂σt
+

1
2
∂ f1

∂σt

∂2 f1

∂u2
t

)∣∣∣∣∣
(0,0)

,

α2 =
(1
6
∂3 f1

∂u3
t
+

(1
2
∂2 f1

∂u2
t

)2
)∣∣∣∣∣

(0,0)
.

It is easy to get that α1 = −1 and α2 = 9. Because α1 , 0 and α2 > 0, a period-doubling bifurcation
occurs in system (1.2) at E2 and the period-two orbit bifurcating from E2 is stable. The proof is
complete.

Next, we study Case II: a , 3, β = a−1
a . We can see that |λ1| , 1 and λ2 = −1 when a , 3 and

β = a−1
a . Thus, the following result can be derived.

Theorem 3.3. Assume the parameters (a, β) ∈ Ω2 = {(a, β) ∈ R2
+|a ∈ (1, 3)

⋃
(3,+∞)}, and set β0 =

a−1
a .

If the parameter β goes through the critical value β0, then system (1.2) at E2 undergoes a transcritical
bifurcation.

Proof. Shifting E2 = (a−1
a , 0) to the origin O(0, 0), applying a small perturbation β∗ of the parameter β

with 0 < |β∗| ≪ 1 and letting β∗t+1=β
∗
t=β

∗, system (3.4) is changed into the following form:
lt+1 = −(a − 2)lt − al2

t − ( a−1
a + lt)( a−1+alt

am+a−1+alt
)mt,

mt+1 =
1

β∗t +
a−1

a
(lt +

a−1
a )mt,

β∗t+1 = β
∗
t .

(3.9)

Applying a Taylor expansion to (3.9) at (lt,mt, β
∗
t ) = (0, 0, 0) produces

lt

mt

β∗t

 −→

2 − a −(a−1)2

a(ma+a−1) 0
0 1 0
0 0 1




lt

mt

β∗t

 +

g5(lt,mt, β

∗
t ) + o(ρ3

4)
g6(lt,mt, β

∗
t ) + o(ρ3

4)
0

 , (3.10)

where ρ4 =

√
l2
t + m2

t + β
∗
t

2,

g5(lt,mt, β
∗
t ) = − al2

t −
(2am + a − 1)(a − 1)

(am + a − 1)2 ltmt −
a3m2

(am + a − 1)3 l2
t mt,

g6(lt,mt, β
∗
t ) =

a
a − 1

ltmt −
a

a − 1
mtβ

∗
t − (

a
a − 1

)2ltmtβ
∗
t + (

a
a − 1

)2mt(β∗t )2.

It is not difficult to derive the three eigenvalues of the matrix

A =


2 − a −(a−1)2

a(ma+a−1) 0
0 1 0
0 0 1

 to be λ1 = 2 − a and λ2,3 = 1, with the corresponding eigenvectors ξ1 =


1
0
0

 ,
ξ2 =


1

1−a
a(ma+a−1)

(a−1)2

0

 and ξ3 =


0
0
1

. The condition a ∈ (1, 3)
⋃

(3,+∞) shows that |λ1| , 1.
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Take T =


1 1

1−a 0

0 a(ma+a−1)
(a−1)2 0

0 0 1

 ; then, T−1 =


1 (a−1)

a(ma+a−1) 0

0 (a−1)2

a(ma+a−1) 0
0 0 1

 .
Using the transformation 

lt

mt

β∗t

 = T


ut

vt

σt

 ,
system (3.9) is changed into the following:

ut+1

vt+1

σt+1

 =

2 − a 0 0

0 1 0
0 0 1



ut

vt

σt

 +

g7(ut, vt, σt) + o(ρ3

5)

g8(ut, vt, σt) + o(ρ3
5)

0

 , (3.11)

where ρ5 =
√

u2
t + v2

t + σ
2
t ,

g7(ut, vt, σt) =g5(ut +
1

1 − a
vt,

a(ma + a − 1)
(a − 1)2 vt, σt)

+
(a − 1)

a(ma + a − 1)
g6(ut +

1
1 + a

vt,
a(ma + a − 1)

(a − 1)2 vt, σt),

g8(ut, vt, σt) =
(a − 1)2

a(ma + a − 1)
g6(ut +

1
1 + a

vt,
a(ma + a − 1)

(a − 1)2 vt, σt).

Assume the following for this center manifold:

ut = h(vt, σt) := a20v2
t + a11vtσt + a02σ

2
t + o(ρ2

6),

where ρ6 =
√

v2
t + σ

2
t , which must satisfy

ut+1 = h(ut+1, σt+1) = (2 − a)h(vt, σt) + g7(h(vt, σt), vt, σt) + o(ρ2
6),

ut+1 = a20v2
t+1 + a11vt+1σt + a02σ

2
t + o(ρ2

6),
vt+1 = vt + g8(h(vt, σt), vt, σt) + o(ρ2

6).

Comparing the corresponding coefficients of terms to the same type in the above equations produces

a20 =
a(a − 1)(2am + a − 1) − a2

(a − 1)4 , a11 =
−a2(ma + a − 1)

(a − 1)4 , a02 = 0.

That is to say,

ut = h(vt, σt) =
a(a − 1)(2am + a − 1) − a2

(a − 1)4 v2
t −

a2(ma + a − 1)
(a − 1)4 vtσt + o(ρ2

6).

Thus, one has

vt+1 = f2(vt, σt) :=vt + g8(h(vt, σt), vt, σt) + o(ρ2
6)
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=vt +
a

(a − 1)2 v2
t −

a2(ma + a − 1)
(a − 1)3 vtσt + o(ρ2

6).

Hence, the following equations may be obtained:

f2(vt, σt)|(0,0) = 0,
∂ f2

∂vt

∣∣∣∣∣
(0,0)
= 1,

∂ f2

∂σt

∣∣∣∣∣
(0,0)
= 0,

∂2 f2

∂vt∂σt

∣∣∣∣∣
(0,0)
= −

a2(ma + a − 1)
(a − 1)3 < 0,

∂2 f2

∂v2
t

∣∣∣∣∣
(0,0)
=

2a
(a − 1)2 > 0.

According to (21.1.43)–(21.1.46) in [27, pp 507], all conditions are true for a transcritical bifurcation
to occur; hence, system (1.2) undergoes a transcritical bifurcation at the fixed point E2.

Finally, for the bifurcation of system (1.2) at E2 in Case III: a = 3, β = 2
3 , which implies that

λ1 = −1 and λ2 = 1, a fold-flip bifurcation may occur there. This is left as our future work.
Remark. For the fold-flip bifurcation, refer also to [29,30].

3.1.3. Bifurcation analysis at the positive fixed point E∗ = (x∗, y∗)

From Theorem 2.1 and Table 1, it is clear that F(1) > 0, F(−1) = 0 and B , 2 when 0 < β < 2
3 ,

m < {β(1−3β)
β+1 , β(1−3β)

β−3 , 4
5 −

9
5β} and

a0 =
1
R1
=

3β + 5m
3β2 + βm + m − β

. (3.12)

At this time, the eigenvalues are λ1 = −1 and λ2 =
6β2 + 4βm − m − 3β
3β2 + βm + m − β

, with |λ2| , 1. Moreover,

when the parameter a goes through the critical value a0, the dimensional numbers for the stable
manifold and the unstable manifold of the fixed point E∗ vary. Hence, a bifurcation is likely to occur.
In what follows, we consider the bifurcation problem of system (1.2) in this case.

Notice that the parameters a, β and m belong to the set

Θ =
{
(a, β,m) ∈ R3

+|0 < β <
2
3
,m < {

β(1 − 3β)
β + 1

,
β(1 − 3β)
β − 3

,
4
5
−

9
5
β}

}
. (3.13)

Take lt = Xt − x∗ = Xt − β and mt = Yt − y∗ = Yt −
(β + m)(a(1 − β) − 1)

β
; then, system (1.2) is changed

into the following form:
lt+1 = (lt + β)[a(1 − lt − β) − (mt +

(β+m)(a(1−β)−1)
β

) lt+β
m+lt+β

] − β,

mt+1 =
mt
β

(lt + β) +
lt(β + m)(a(1 − β) − 1)

β2 .
(3.14)

Take a small perturbation a∗ of the parameter a around a0, i.e., a∗ = a − a0, with 0 < |a∗| ≪ 1; then,
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system (3.14) becomes as follows:

lt+1 = (lt + β)[(a∗ +
3β + 5m

3β2 + βm + m − β
)(1 − lt − β)

−(mt +

(β+m)((a∗+
3β + 5m

3β2 + βm + m − β
)(1−β)−1)

β
) lt+β

m+lt+β
] − β,

mt+1 =
mt
β

(lt + β) +
lt(β + m)((a∗ +

3β + 5m
3β2 + βm + m − β

)(1 − β) − 1)

β2 .

(3.15)

Supposing that a∗t+1 = a∗t = a∗, system (3.15) can be regarded as follows:

lt+1 = (lt + β)[(a∗t +
3β + 5m

3β2 + βm + m − β
)(1 − lt − β)

−(mt +

(β+m)((a∗t +
3β + 5m

3β2 + βm + m − β
)(1−β)−1)

β
) lt+β

m+lt+β
] − β,

mt+1 =
mt
β

(lt + β) +
lt(β + m)((a∗t +

3β + 5m
3β2 + βm + m − β

)(1 − β) − 1)

β2 ,

a∗t+1 = a∗t .

(3.16)

Applying a Taylor expansion to (3.16) at (lt,mt, a∗t ) = (0, 0, 0) yields the following:
lt+1 =

2mβ − 3m − β
3β2 + mβ + m − β

lt −
β2

m+βmt +G1(lt,mt, a∗t ) + o(r3
1),

mt+1 =
−2(m + β)2(3β − 2)
β2(3β2 + mβ + m − β)

lt + mt +G2(lt,mt, a∗t ) + o(r3
1),

a∗t+1 = a∗t ,

(3.17)

where r1 =

√
l2
t + m2

t + a∗t
2,

G1(lt,mt, a∗t ) =a200l2
t + a110ltmt + a101lta∗t + a020m2

t + a011mta∗t + a002(a∗)2

+ a300l3
t + a210l2

t mt + a201l2
t a∗ + a120ltm2

t + a111ltmta∗t
+ a102lt(a∗t )2

+ a030m3
t + a021m2

t a∗t
+ a012mt(a∗t )2

+ a003(a∗t )3,

G2(lt,mt, a∗t ) =b200l2
t + b110ltmt + b101lta∗t + b020m2

t + b011mta∗t + b002(a∗)2

+ b300l3
t + b210l2

t mt + b201l2
t a∗ + b120ltm2

t + b111ltmta∗t
+ b102lt(a∗t )2

+ b030m3
t + b021m2

t a∗t
+ b012mt(a∗t )2

+ b003(a∗t )3,

a200 =
1

3β2+mβ+m−β ( 2m2(3β−2)
β(m+β) − (3β + 5m)), a110 = −

β2 + 2mβ
(m + β)2 ,

a101 = −
β2+m
β+m , a020 = a011 = a002 = 0,
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a300 =
−2m2(3β−2)

β(m+β)2(3β2+mβ+m−β) , a210 = −
m2

(m+β)3 , a201 = −
β3+2mβ2+m2

β(β+m)2 ,

a120 = a111 = a102 = a030 = a021 = a012 = a003 = 0,

b200 = 0, b110 =
1
β
, b101 = −

(m+β)(β−1)
β2 , b020 = b011 = b002 = b300 = 0,

b210 = b201 = b120 = b111 = b102 = b030 = b021 = b012 = b003 = 0.
It is easy to see that the three eigenvalues of the matrix

A =


2mβ − 3m − β

(3β2 + mβ + m − β)
−β2

m+β 0

−2(m + β)2(3β − 2)
β2(3β2 + mβ + m − β)

1 0

0 0 1

 are λ1 = −1 ,

λ2 =
6β2 + 4βm − m − 3β

3β2 + βm + m − β
and λ3 = 1, with the corresponding eigenvectors ξ1 =


β2(3β2+mβ+m−β)

(m+β)2(3β−2)

1
0

 ,

ξ2 =


−

β2

2(m+β)

1
0

 and ξ3 =


0

0
1

.
Notice that m , 4

5 −
9
5β. So |λ2| , 1.

S et T = (ξ1, ξ2, ξ3), i.e., T =


β2(3β2+mβ+m−β)

(m+β)2(3β−2) −
β2

2(m+β) 0

1 1 0
0 0 1

 ;

then

T−1 =


2(m+β)2(3β−2)
β2(9β2+5mβ−4β)

(3β−2)(m+β)
9β2+5mβ−4β 0

−2(m+β)2(3β−2)
β2(9β2+5mβ−4β)

2(3β2+mβ+m−3β)
9β2+5mβ−4β 0

0 0 1

 .
Next, we consider the following translation:

lt

mt

a∗t

 = T


ut

vt

σt

 .
Then system (3.17) is translated as follows:

ut

vt

σt

 −→

−1 0 0
0 6β2+4mβ−3β−m

3β2+mβ+m−β 0
0 0 1



ut

vt

σt

 +

G3(ut, vt, σt) + o(r3

2)
G4(ut, vt, σt) + o(r3

2)
0

 , (3.18)

where r2 =
√

u2
t + v2

t + σ
2
t ,

G3(ut, vt, σt)

G4(ut, vt, σt)
0

 =T−1


G1(β

2(3β2+mβ+m−β)
(m+β)2(3β−2) ut −

β2

2(m+β)vt, ut + vt, σt)

G2(β
2(3β2+mβ+m−β)
(m+β)2(3β−2) ut −

β2

2(m+β)vt, ut + vt, σt)
0

 .
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Assume for the center manifold that vt = m20u2
t + m11utσt + m02σ

2
t + o(r2

3), where r3 =
√

u2
t + σ

2
t . It is

easy to derive the following:

m20 =
−2(3β2 + mβ + m − β)2(9β3 + 21mβ2 + m2 − 3β2 + 6m2β)

(m + β)4(3β − 2)(9β + 5m − 4)
,

m11 =
−2(3β2 + mβ + m − β)2(2β2 − mβ2 + 3m − 3mβ − β)

β2(9β + 5m − 4)2(m + β)(3β − 2)
,

m02 =0.

Hence, system (3.18) restricted to the center manifold is given by
ut+1 =: f3(ut, σt) = −ut + a11utσt + a20u2

t + a30u3
t + a21u2

tσt + a12utσ
2
t + o(r3

3), where

a11 = −
(3β2 + mβ − 3m − β)(3β2 + mβ + m − β)

β(m + β)(9β + 5m − 4)
,

a20 =
(3β2 + mβ + m − β)(−9β3 − 28mβ2 − 7m2β + 8mβ − 2m2 + 2β2)

(m + β)3(9β + 5m − 4)(3β − 2)
,

a30 =
−(3β2 + mβ + m − β)2

(m + β)5(3β − 2)(9β + 5m − 4)
[
(4m2 − 4mβ + 9β3 + 24mβ2 − m2β)

×(
2m + β

9β + 5m − 4
−

2m2β

m + β
+
β2(3β + 5m)

3β − 2
+

3β2 + mβ + m − β
(3β − 2)(9β + 5m − 4)

)

−
2m2β(3β + m)

m + β
]
,

a21 =
−(3β2 + mβ + m − β)3

β(9β + 5m − 4)(m + β)3

[ 2m + β
9β + 5m − 4

−
2m2β

m + β
+
β2(3β + 5m)

3β − 2

+
3β2 + mβ + m − β

(3β − 2)(9β + 5m − 4)
]
+

8m2β + 3β3 + m2β − 4mβ − 4m2

β(m + β)3(9β + 5m − 4)2[ (β − 1)(3β2 + mβ + m − β)
3β − 2

− (m + β2)
]

−
2(β3 + 2mβ2 + m2)(3β2 + mβ + m − β)2

(9β + 5m − 4)(3β − 2)(m + β)4 ,

a12 =
(3β − 2)(3β2 + mβ + m − β)

2β(9β + 5m − 4)
.

Next we calculate the following quantities to judge the occurrence of a period-doubling bifurcation.
One can derive the following:

f 2
3 (ut, σt) = ut − 2a11utσt − 2a30u3

t + (a2
11 − 2a12)utσ

2
t + a11a2u2

tσt + o(r3
3),

f3(0, 0) = 0,
∂ f3

∂ut
|(0,0) = −1,

∂ f 2
3

∂σt
|(0,0) = 0,

∂2 f 2
3

∂u2
t
|(0,0) = 0,

β1 =
∂2 f 2

3

∂ut∂σt
|(0,0) = −2a11, β2 =

∂3 f 2
3

∂u3
t
|(0,0) = −12a30.
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Notice that β1 =
2(3β2 + mβ − 3m − β)(3β2 + mβ + m − β)

β(m + β)(9β + 5m − 4)
.Under the condition that 3β2+mβ−3m−β ,

0 and 3β2 + mβ + m − β , 0, one can see that β1 , 0. At the same time,

β2 , 0⇐⇒ a30 , 0,

or, equivalently,

(4m2 − 4mβ + 9β3 + 24mβ2 − m2β)
( 2m + β
9β + 5m − 4

−
2m2β

m + β

+
β2(3β + 5m)

3β − 2
+

3β2 + mβ + m − β
(3β − 2)(9β + 5m − 4)

)
−

2m2β(3β + m)
(m + β)

, 0.

(3.19)

So, according to [27, (21.2.17)–(21.2.22), pp 516], all conditions hold for a period-doubling bifurcation
to occur. Accordingly, system (1.2) undergoes a period-doubling bifurcation at E∗.

Of course, the transversal condition and non-degenerate condition for judging the occurrence and
direction of a period-doubling bifurcation are also given by the following two quantities:

γ1 =
( ∂2 f3

∂ut∂σt
+

1
2
∂ f3

∂σt

∂2 f3

∂u2
t

)∣∣∣∣∣
(0,0)

,

γ2 =
(1
6
∂3 f3

∂u3
t
+

(1
2
∂2 f3

∂u2
t

)2
)∣∣∣∣∣

(0,0)
.

It is easy to derive that γ1 = a11 , 0, so system (1.2) undergoes a period-doubling bifurcation at E∗.
Again,

γ2 =a30 + a2
20 =

(3β2 + mβ + m − β)2

(m + β)4(9β + 5m − 4)2

[m2 − 4mβ − β2

m + β
−

2β(3β + 5m)
3β − 2

]2

−
(3β2 + mβ + m − β)2

(m + β)5(3β − 2)(9β + 5m − 4)
[
(4m2 − 4mβ + 9β3 + 24mβ2 − m2β)

(
2m + β

9β + 5m − 4
−

2m2β

m + β
+
β2(3β + 5m)

3β − 2
+

3β2 + mβ + m − β
(3β − 2)(9β + 5m − 4)

)

−
2m2β(3β + m)

(m + β)
]
.

In order to determine whether the period-doubling orbits that bifurcate from E∗ are stable, let

K =
1

(9β + 5m − 4)2

[m2 − 4mβ − β2

m + β
−

2β(3β + 5m)
3β − 2

]2

−
1

(m + β)(3β − 2)(9β + 5m − 4)
[
(4m2 − 4mβ + 9β3 + 24mβ2 − m2β)

(
2m + β

9β + 5m − 4
−

2m2β

m + β
+
β2(3β + 5m)

3β − 2
+

3β2 + mβ + m − β
(3β − 2)(9β + 5m − 4)

)
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−
2m2β(3β + m)

(m + β)
]
. (3.20)

If K > 0 (< 0), the period-doubling orbits that bifurcate from E∗ are stable (unstable). Based on
the above analysis, we have the following consequences for the period-doubling bifurcation of system
(1.2) at E∗.

Theorem 3.4. Let the symbols a0, Θ and K respectively be defined as in (3.12), (3.13) and (3.20).
Assume the parameter vector (a, β,m) ∈ Θ. Then system (1.2) undergoes a period-doubling bifurcation
at E∗ when the parameter a passes through the critical value a0. If K > 0 (K < 0), the period-doubling
bifurcation is supercritical (subcritical), as well as stable (unstable).

3.2. Codimension two bifurcation

When a = 3 and β = 2
3 , the eigenvalues of system (1.2) at E2 are λ1 = −λ2 = 1. Then a fold-flip

bifurcation probably occurs. Even a limit cycle of a closed invariant curve or a more complicated
invariant set exists nearby. We will further study this case in the future.

In this subsection, we mainly consider codimension two bifurcation of system (1.2) at E∗ in the
parameter space {(a, β,m)|0 < β < 4

9 ,m > 0, a > 0} when the two parameters a and m vary. When
m = m0 := 4

5 −
9
5β, a = a0 := 5

1−β and λ1,2 = −1, then a 1:2 strong resonance bifurcation may occur
there (see Section 9.5.3 in [30], Section 3.2 in [31] and Section 3 in [32,33]). The following result may
be derived.

Theorem 3.5. Consider the parameter vector (a, β,m) ∈ {(a, β,m) ∈ R3
+|0 < β < 4

9 , β ,
2175
637 −√

40978029
1911 and β ,

√
38187398689

39358 − 17511
3578 }. If the parameters (a,m) vary in the neighborhood of (a0,m0),

then system (1.2) undergoes a codimension two bifurcation with 1:2 resonance at the fixed point E∗.
Moreover, around E∗ system (1.2) admits a pitchfork bifurcation and a non-degenerate Neimark-Sacker
bifurcation.

Proof. In order to transfer the fixed point E∗ to the origin point (0, 0), let lt = xt − β and mt =

yt −
(β + m)(a(1 − β) − 1)

β
; then, system (1.2) becomes

(
lt+1

mt+1

)
=


2 − a − β

m+β [a(β − 1) + 1] −β2

m+β
−(m + β)

[
a(β − 1) + 1

]
β2 1


(

lt

mt

)
+

(
G5(lt,mt) + o(r2

3)
G6(lt,mt) + o(r2

3)

)
, (3.21)

where r3 =
√

l2
t + m2

t ,

G5(lt,mt) = (
m2[a(β − 1) + 1]

β(m + β)2 − a)l2
t −

β2 + 2mβ
(m + β)2 ltmt,

G6(lt,mt) = 1
β
ltmt.

Denote

A(α)=

 2−a− β
m+β [a(β−1)+1] −β2

m+β

−(m + β)
[
a(β − 1) + 1

]
β2 1

 ,
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where α=(a,m).
Then

A0=A(α0)|α0=(a0,m0)=

 −3 5β2
4(β−1)

16(1 − β)
5β2 1

.
The eigenvector and the generalized eigenvector of A0 corresponding to the eigenvalue of –1 are
respectively q0=

(
1

8(β−1)/(5β2)

)
and q1=

(
1

12(β−1)/(5β2)

)
. At the same time, the eigenvector and the

generalized eigenvector of AT
0 corresponding to the eigenvalue of –1 are p1=

(
−2

5β2/(4(β−1))

)
and

p0=
(

3
5β2/(−4(β−1))

)
, respectively. These four vectors satisfy the following equalities:

A0q0 = −q0, A0q1 = −q1 + q0, AT
0 p1 = −p1, AT

0 p0 = −p0 + p1,

⟨q0, p0⟩ = ⟨q1, p1⟩ = 1, ⟨q1, p0⟩ = ⟨q0, p1⟩ = 0,

where ⟨.⟩ stands for the standard scalar product in R2.
Make an invertible linear transformation:

(
lt

mt

)
= unq0 + vnq1 =

 1 1
8(β − 1)

5β2

12(β − 1)
5β2


(
un

vn

)
, (3.22)

and denote x =
(

lt

mt

)
; then, the new coordinates (un, vn) can be computed explicitly as follows:

 un = ⟨x, p0⟩,

vn = ⟨x, p1⟩.
(3.23)

In the coordinates (un, vn), system (3.21) takes the following form:

(
un+1

vn+1

)
=

(
−1 + a(α) 1 + b(α)

c(α) −1 + d(α)

) (
un

vn

)
+

(
f1(un, vn, α) + o(r3

4)
f2(un, vn, α) + o(r3

4)

)
, (3.24)

where r4 =
√

u2
n + v2

n + |α|
2,

f1(un, vn, α) = ⟨F(unq0 + vnq1, α), p0⟩ = a20u2
n + a11unvn + a02v2

n,

f2(un, vn, α) = ⟨F(unq0 + vnq1, α), p1⟩ = b20u2
n + b11unvn + b02v2

n,

F(x, α) =


m2[a(β − 1) + 1]

β(m + β)2 − a)l2
t −

β2 + 2mβ
(m + β)2 ltmt

1
β
ltmt

 ;

(3.25)
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also,

a20 =
15m2[a(β − 1) + 1] − 24(β + 2m)(β − 1)

5β(m + β)2 −
2
β
− 3a,

a11 =
6m2[a(β − 1) + 1] − 12(β + 2m)(β − 1)

β(m + β)2 −
5
β
− 6a,

a02 =
15m2[a(β − 1) + 1] − 36(β + 2m)(β − 1)

5β(m + β)2 −
3
β
− 3a,

b20 =
−10m2[a(β − 1) + 1] + 16(β + 2m)(β − 1)

5β(m + β)2 +
2
β
+ 2a,

b11 =
−4m2[a(β − 1) + 1] + 8(β + 2m)(β − 1)

5β(m + β)2 +
5
β
+ 4a,

b02 =
−10m2[a(β − 1) + 1] + 24(β + 2m)(β − 1)

5β(m + β)2 +
3
β
+ 2a,

and
a(α) = ⟨[A(α) − A0]q0, p0⟩,

= [
5(m + β)
4(β − 1)

+
3m

m + β
][a(β − 1) + 1] −

24(β − 1)
5(m + β)

− 3βa + 2,

b(α) = ⟨[A(α) − A0]q1, p0⟩,

= [
5(m + β)
4(β − 1)

+
3m

m + β
][a(β − 1) + 1] −

36(β − 1)
5(m + β)

− 3βa − 1,

c(α) = ⟨[A(α) − A0]q0, p1⟩,

= −[
5(m + β)
4(β − 1)

+
2m

m + β
][a(β − 1) + 1] +

16(β − 1)
5(m + β)

+ 2βa,

d(α) = ⟨[A(α) − A0]q1, p1⟩,

= −[
5(m + β)
4(β − 1)

+
2m

m + β
][a(β − 1) + 1] +

24(β − 1)
5(m + β)

+ 2βa + 2.

Clearly, a(α0) = b(α0) = c(α0) = d(α0) = 0. Denoting the matrix

B(α)=
(
1 + b(α) 0
−a(α) 1

)
with the nonsingular linear coordinate transformation(

un

vn

)
= B(α)

(
xn

yn

)
, (3.26)

system (3.24) can be written as(
xn+1

yn+1

)
=

(
−1 1
ε(α) −1 + σ(α)

) (
xn

yn

)
+

(
G
H

)
, (3.27)

where ε(α) = d(α) + b(α)c(α) − a(α)d(α), σ(α) = a(α) + d(α),(
G
H

)
= B−1(α)

(
f1((1 + b(α))xn,−a(α)xn + yn, α) + o(r3

4)
f2((1 + b(α))xn,−a(α)xn + yn, α) + o(r2

4)

)
. (3.28)
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Set

β =

(
β1

β2

)
=

(
ε(α)
σ(α)

)
; (3.29)

then β1(α0)=β2(α0) = 0. System (3.27) can be rewritten in the following form:(
xn+1

yn+1

)
=

(
−1 1
β1 −1 + β2

) (
xn

yn

)
+

(
G(xn, yn, α)
H(xn, yn, α)

)
. (3.30)

Expand G and H into Taylor series with respect to xn and yn to get

G(xn, yn, α) = g20x2
n + g11xnyn + g02y2

n + o(r2
5),

H(xn, yn, α) = h20x2
n + h11xnyn + h02y2

n + o(r2
5),

where r5 =
√

x2
n + y2

n,

g20 = a20(1 + b(α)) − a11a(α) + a2(α)a02
1+b(α) , g11 = a11 −

2a(α)a02
1+b(α) , g02 =

a02
1+b(α) , h20 = (1 + b(α))2b20 + (a20 −

b11)(1 + b(α))a(α) + (b02 − a11)a2(α) + a3(α)a02
1+b(α) , h11 = a11a(α) − a2(α)a02

1+b(α) − 2a(α)b02 + b11(1 + b(α)),
h02 = b02 +

a(α)a02
1+b(α) and g jk = h jk = 0 for all nonnegative integers j, k and j + k = 3.

Given the transformation 
xn = un +

∑
2≤ j+k≤3

ϕ jk(β)u j
nvk

n,

yn = vn +
∑

2≤ j+k≤3
ψ jk(β)u j

nvk
n,

(3.31)

with ϕ03 = ψ03, ϕ20 =
1
2g20+

1
4h20, ϕ11 =

1
2g20+

1
2+g11+

1
2h20+

1
4h11, ϕ02 =

1
4g11+

1
2g02+

1
8h20+

1
4h11+

1
4h02,

ψ20 =
1
2h20, ψ11 =

1
2h20 +

1
2h11, ψ02 =

1
4h11 +

1
2h02, ϕ30 = ϕ21 = ϕ12 = 0 and ψ30 = ψ21 = ψ12 = 0, we can

obtain the following 1:2 resonance normal form:(
un+1

vn+1

)
=

(
−1 1
β1 −1 + β2

) (
un

vn

)
+

(
0

C(β)u3
n + D(β)u2

nvn

)
+ o(r3

6), (3.32)

where r6 =
√

u2
n + v2

n,

C(β1(α0), β2(α0)) =h30(0) + g20(0)h20(0) +
1
2

h2
20(0) +

1
2

h20(0)h11(0),

D(β1(α0), β2(α0)) =h21(0) + 3g30(0) +
1
2

g20(0)h11(0) +
5
4

h20(0)h11(0) + h20(0)h02(0)

+ 3g2
20(0) +

5
2

g20(0)h20(0) +
5
2

g11(0)h20(0) + h2
20(0) +

1
2

h2
11(0),

g20(0) =
26161β2 + 46900β − 2456

52β(1 − β)2 , g11(0) =
2629β2 − 3505β − 236

52β(1 − β)2 ,

h20(0) =
−1911β2 + 13050β − 836

2β(1 − β)2 , h11(0) =
36722β2 − 47858β − 908

52β(1 − β)2 ,

h02(0) =
−1828β2 + 1486β + 92

52β(1 − β)2 .

Thus
C(β1(α0), β2(α0)) = (19679β2+192621β−13778)(−1911β2+13050β−836)

104β2(1−β)4 ,
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D(β1(α0), β2(α0)) = 630616082β4+19939696470β3+49520266820β2−5731104734β+1730000030820
(52β(1−β)2)2 . By Theorem 9.3 in [29],

for all sufficiently small |β|, the second iteration of (3.32) can be represented in the following form:(
u
v

)
7→ φ1

β(u, v) + o(r3
7), (3.33)

where r7 =
√

u2 + v2 and φ1
β(u, v) is the time-one flow of a planar system, which is smoothly equivalent

to (
u̇1

v̇1

)
=

(
0 1

γ1(β) γ2(β)

) (
u1

v1

)
+

(
0

C1(β)u3
1 + D1(β)u2

1v1

)
, (3.34)

where
γ1(β) = 4β1 + o(|β1|), γ2(β) = −2β1 − 2β2 + o(|β1|)

and
C1(β(α0)) = 4C(β(α0)),D1(β(α0)) = −2D(β(α0)) − 6C(β(α0)).

Assume that C1(β(α0)) , 0 and D1(β(α0)) , 0. These conditions can be expressed in terms of the
normal form coefficients:

C(β1(α0), β2(α0)) , 0, (3.35)

D(β1(α0), β2(α0)) + 3C(β1(α0), β2(α0)) , 0. (3.36)

Notice that C(β1(α0), β2(α0)) , 0 is equivalent to

19679β2 + 192621β − 13778 , 0

and
−1911β2 + 13050β − 836 , 0.

Under the condition that 0 < β < 4
9 , 19679β2 + 192621β − 13778 , 0↔ β , β∗1 =:

√
38187398689

39358 − 17511
3578

and −1911β2 + 13050β − 836 , 0↔ β , β∗2 =: 2175
637 −

√
40978029

1911 ).
Assume the following:

y = − 2302696300β4 + 11259249552β3 + 246359675612β2

− 32316161102β + 173089846664.

Then, (3.36) holding is equivalent to y , 0. It follows from the following Figure 1 that y > 0 for
0 < β < 4

9 , which means that D(β1(α0), β2(α0)) + 3C(β1(α0), β2(α0)) > 0. Therefore, when β , β∗1 and
β , β∗2, the non-degeneracy conditions C1(β1(α0), β2(α0)) , 0 and D1(β1(α0), β2(α0)) , 0 are satisfied;
so, the fixed point E∗ of system (1.2) is a 1:2 resonance bifurcation point.

By scaling the variables, parameters and time in (3.34), we obtain the following system: ζ̇1 = ζ2,

ζ̇2 = ε1ζ1 + ε2ζ2 + sζ3
1 − ζ

2
1ζ2,

(3.37)

where s = signC(β1(α0), β2(α0)) = ±1. If s = 1, then, for the approximating system (3.37), the
following holds:
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(a)

Figure 1. The plot of the function y-β.

(i) there is a pitchfork bifurcation which occurs on the curve
PF = {(ε1, ε2) : ε1 = 0};
(ii) there is a non-degenerate Neimark-Sacker bifurcation which occurs on the curve
NS = {(ε1, ε2) : ε2 = 0, ε1 < 0};
(iii) there is a heteroclinic bifurcation which occurs on
HL = {(ε1, ε2) : ε2 = −

1
5ε1 + o(ε1), ε1 < 0}.

(a) (b)

(c)

Figure 2. (a) Bifurcation diagram for the approximating system (3.37) for s = 1; (b)
heteroclinic cycle; (c) phase portraits for system (3.37) under different cases.

The bifurcation diagram for (3.37) for s = 1 is presented in Figure 2(a). Because of the
Z2-symmetry, the heteroclinic orbits connecting the two saddles appear simultaneously, forming a
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heteroclinic cycle upon crossing the curve HL (see Figure 2(b)). Moreover, the corresponding phase
portraits of the contents of Figure 2(a) are showed in Figure 2(c). For the details, refer to [30].
Remark. If system (1.2) undergoes a 1:2 resonance bifurcation near the positive fixed point E∗,
system (1.2) is strongly unstable. The predator and the prey will increase rapidly and breakout
suddenly. For this, refer also to [26].

4. Numerical simulation

In this section, to illustrate our theoretical results and reveal some new dynamical behaviors in
system (1.2), we present the bifurcation diagrams, phase portraits and maximal Lyapunov exponents
that were derived for specific parameter values by using Matlab software. First, for the fixed point

(a) a ∈ (2.8, 4) (b) a ∈ (2.8, 4)

Figure 3. Bifurcation of system (1.2) in (a, x)-plane and maximal Lyapunov exponents for
m = 0.5, β = 1.6.

E2(a−1
a , 0), we chose the parameters to be a ∈ (2.8, 4), m = 0.5 and β = 1.6, and the initial values

as (x0, y0) = (0.1, 0.1). Because the bifurcation diagram for the (a, x)-plane is similar to that for the
(a, y)-plane, we will only show the former. Figure 3(a) shows that the fixed point E2 is stable for a < 3,
and that the period-doubling bifurcation occurs at a = 3 (the multipliers are λ1 = −1 and |λ2| , 1).
Meanwhile E2 becomes unstable when a > 3, which is in accordance with the result in Theorem 3.2.
Moreover, a chaotic set emerges with the increase of the value of the parameter a. Figure 3(b) shows the
spectrum of the maximum Lyapunov exponents with respect to the parameter a ∈ (2.8, 4) when m = 0.5
and β = 1.6; it also shows that the maximal Lyapunov exponents are positive, that is to say, chaos may
occur. Figure 4(a) shows that periods of 2, 4, 8, etc., will occur, which means that chaos will occur
(period-doubling bifurcation to chaos). However, chaos is a ubiquitous nonlinear phenomenon that
leads to undesirablity. So controlling chaos to make dynamic behavior predictable is essential. How
can one control chaos? The main methods of chaos control are state feedback, pole-placement and
hybrid control. For this, refer to [34,35]. From Figure 4(b),(c), we observe that, when the value of the
growth rate a of prey is close to 3.63 or 3.74, the population density distribution is sparse. Meanwhile,
the prey population may become extinct when the parameter a increases to 4 according to Figure 4(d).
The phase portrait is given in Figure 5. From Figure 5(a),(b), the predator population is gradually
decreasing with a small number representing two species coexistence. And, when the parameter a =
2.8 or a = 3.5, the prey population is near 0.643 or 0.42 (0.85) respectively. In Figure 5(c), the predator
population is decreasing to extinction and there is only intraspecific competition for prey. The density
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(a) a ∈ (3.5, 3.6) (b) a ∈ (3.6, 3.7)

(c) a ∈ (3.7, 3.8) (d) a ∈ (3.8, 4.0)

Figure 4. Bifurcation of system (1.2) in (a, x)-plane versus a for m = 0.5, β = 1.6.

(a) a = 2.8 (b) a = 3.5

(c) a = 4.0

Figure 5. Phase portraits of system (1.2) in (x, y)-plane versus a for m = 0.5, β = 1.6.
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of the prey population ranges from 0 to 1. The excessive growth rate of the prey first reduces the
density of the predator population until extinction; it then causes them to compete among themselves
until they reach balance. We set the parameters as m = 0.5 and a = 3.5 and varied the value of the
parameter b to get Figures 6. One finds that the prey population and predator population coexist at
β = 0.5, and that the two species are periodic and coexist on two closed orbits at β = 0.6. Then the
predator population decreases and the prey population gradually becomes stable.

(a) β = 0.5 (b) β = 0.6

(c) β = 0.7

Figure 6. Phase portraits of system (1.2) in (x, y)-plane versus β for m = 0.5, a = 3.5.

Next, one can see that two eigenvalues of system (1.2) are λ1 = 1 and λ2 = −1 when a = 3 and β = 2
3 .

We call the fixed point E2(2
3 , 0) a fold-flip bifurcation point. The bifurcation diagram for system (1.2)

is plotted in Figure 7. As we can see, when the parameter a = 3 and the parameter β varies from 0.5
to 0.95, the prey population keeps increasing until it is split into two parts at the parameter β = 2

3 ;
meanwhile, the predator population gradually decreases to extinction. For the codim 2 bifurcation
diagram and corresponding details, refer also to [29].

Finally, we applied the parameters a ∈ (3.6, 4.15),m = 0.8 and β = 0.5 and the initial values
(x0, y0) = (0.2, 3.1) for the fixed point E∗. We constructed Figure 8(a) and determined the existence
of period-doubling bifurcation when a = a0 = 3.79. Figure 8(b) represents the maximum Lyapunov
exponents under the conditions of a ∈ (3.6, 4.15), m = 0.8 and β = 0.5; it indicates that chaos probably
occurs in the system when the parameter a is beyond 4.15. According to the result in Theorem 3.4, one
has K = −2.6398 < 0; thus, the period-doubling bifurcation is subcritical and the system is unstable.
From Figure 9, the phase portraits demonstrate that the prey population and predator population can
coexist at a = 3.6, 3.8. When the parameter a increases continuously, the predator population will
decrease to extinction. Thus, the period-doubling orbit that is bifurcated from E∗ is unstable, which
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(a) β ∈ (0.5, 0.95) (b) β ∈ (0.5, 0.95)

Figure 7. Bifurcation of system (1.2) in (β, x)-plane (a) and (β, y)-plane (b) for m = 0.5, a =
3.

(a) a ∈ (3.6, 4.15) (b) a ∈ (3.6, 4.15)

Figure 8. Bifurcation of system (1.2) in (a, x)-plane and maximal Lyapunov exponents for
m = 0.8, β = 0.5.

(a) a = 3.6 (b) a = 3.8

(c) a = 3.9 (d) a = 4.0

Figure 9. Phase portraits of system (1.2) in (x, y)-plane versus a for m = 0.8, β = 0.5.
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will break the population balance.

5. Discussion and conclusions

In this paper, we revisit a discrete-time prey-predator model with the Allee effect in prey. Besides
correcting the errors for the local stability at the fixed point E∗, we have mainly studied the
bifurcation problems of the fixed points E1(0, 0), E2(a−1

a , 0) and E∗(β,
(β+m)(a(1−β)−1)

β
) of system (1.2) to

find some complex bifurcation results, which are ecologically important. Especially, for the fixed
point E∗, we observed the existence of the codimension one period-doubling bifurcation and
Neimark-Sacker bifurcation and codimension two 1:2 strong resonance bifurcation. The 1:2 strong
resonance bifurcation observed to occur at the fixed point E∗ implies that the discrete system may
undergo pitchfork bifurcation, Neimark-Sacker bifurcation and heteroclinic bifurcation near E∗, and
this will lead to a potential dramatic variation of the system dynamics. The conditions for these
bifurcations to occur have been given, and interesting dynamical properties have also been obtained
through numerical simulations. Our results clearly demonstrate the dynamics of the system: as the
parameter β increases, the two species change from the coexistence on two closed orbits to gradual
extinction of the predator population; at the same time, the value of the parameter a controls the prey
and predator population. Moreover, by taking appropriate value of Allee effect, 1:2 strong resonance
bifurcation at fixed point E∗ will occur, which indicates that the two species will increase rapidly and
breakout suddenly [29]. However, the fold-flip bifurcation at E2 and chaos control that have not been
solved in this paper are still interesting problems, and they will be considered in our future work.
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Appendix A. Known results for the stability of fixed points
For the fixed point E1(0, 0), the following statements are true.

(i.1) E1(0, 0) is a sink if a < 1;
(i.2) E1(0, 0) is a saddle if a > 1;
(i.3) E1(0, 0) is non-hyperbolic if a = 1.
Assume that a > 1. For the fixed point E2( a−1

a , 0), the following statements are true.
(ii.1) E2( a−1

a , 0) is a sink if 1 < a < min{ 1
1−β , 3} and 0 < β < 1;

(ii.2) E2( a−1
a , 0) is a saddle if ( 1

1−β < a < 3 and 0 < β < 2
3 ) or (3 < a < 1

1−β and 2
3 < β < 1);

(ii.3) E2( a−1
a , 0) is a source if a > max{3, 1

1−β } and 0 < β < 1;
(ii.4) E2( a−1

a , 0) is non-hyperbolic if a = 3 or (a = 1
1−β , 0 < β < 1 and β , 2

3 ).
Assume that a > 1

1−β and β < 1; then, for the unique positive fixed point E∗, the following
statements are true.

(iii.1) E∗ is a sink if the following condition holds:

1
1 − β

< a < min{
1

1 − 2β − m
,

3β + 5m
3β2 + mβ + m − β

};

(iii.2) E∗ is a source if the following condition holds:

1
1 − 2β − m

< a <
3β + 5m

3β2 + mβ + m − β
;

(iii.3) E∗ is a saddle if the following condition holds:

a >
1

1 − 2β − m
;

(iii.4) E∗ is a non-hyperbolic if the following condition holds:

a =
3β + 5m

3β2 + mβ + m − β
and m ,

4
5
−

9
5
β;

(iii.5) E∗ is a non-hyperbolic with the conjugate complex roots if the following condition holds:

a =
1

1 − 2β − m
and m <

4
5
−

9
5
β.

Appendix B. Key definition and lemma

Definition 5.1. Let E(x, y) be a fixed piont of the system (1.2) with multipliers λ1 and λ2.
1) If |λ1| < 1 and |λ2| < 1, a fixed point E(x, y) is called a sink; thus, a sink

is locally asymptotically stable.
2) If |λ1| > 1 and |λ2| > 1, a fixed point E(x, y) is called a source; thus, a source

is locally asymptotically unstable.
3) If |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1), a fixed point

E(x, y) is called a saddle.
4) If either |λ1| = 1 or |λ2| = 1, a fixed point E(x, y) is called

non-hyperbolic.
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Lemma 5.2. Let F(λ) = λ2 + Bλ + C, where B and C are two real constants. Suppose that λ1 and λ2

are two roots of F(λ) = 0. Then the following statements hold.
(i) If F(1) > 0, then

(i.1) |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and C < 1;
(i.2) λ1 = −1 and λ2 , −1 if and only if F(−1) = 0 and B , 2;
(i.3) |λ1| < 1 and |λ2| > 1 if and only if F(−1) < 0;
(i.4) |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and C > 1;
(i.5) λ1 and λ2 are a pair of conjugate complex roots and |λ1| = |λ2| = 1

if and only if −2 < B < 2 and C = 1;
(i.6) λ1 = λ2 = −1 if and only if F(−1) = 0 and B = 2.

(ii) If F(1) = 0, namely, 1 is one root of F(λ) = 0, then the other root λ
satisfies that |λ| = (<, >)1 if and only if |C| = (<, >)1.

(iii) If F(1) < 0, then F(λ) = 0 has one root lying in (1,∞). Moreover,
(iii.1) the other root λ satisfies that λ < (=) − 1 if and only if F(−1) < (=)0;
(iii.2) the other root −1 < λ < 1 if and only if F(−1) > 0.
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