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Combining contour and region
for closed boundary extraction of
a shape

Doreen Hii* and Zygmunt Pizlo

Visual Perception Laboratory, Department of Cognitive Sciences, University of California, Irvine, Irvine,

CA, United States

This study explored human ability to extract closed boundary of a target shape

in the presence of noise using spatially global operations. Specifically, we

investigated the contributions of contour-based processing using line edges and

region-based processing using color, as well as their interaction. Performance

of the subjects was reliable when the fixation was inside the shape, and it

was much less reliable when the fixation was outside. With fixation inside

the shape, performance was higher when both contour and color information

were present compared to when only one of them was present. We propose

a biologically-inspired model to emulate human boundary extraction. The

model solves the shortest (least-cost) path in the log-polar representation, a

representation which is a good approximation to the mapping from the retina

to the visual cortex. Boundary extraction was framed as a global optimization

problem with the costs of connections calculated using four features: distance

of interpolation, turning angle, color similarity and color contrast. This model was

tested on some of the conditions that were used in the psychophysical experiment

and its performance was similar to the performance of subjects.
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1 Introduction

Boundary extraction involves identifying and connecting a set of visual elements such

as line edges to form the boundary of an object. Boundary extraction is one of the first, if

not the very first operations that the human visual system performs. Given the vast amount

of information present in any visual scene, the computations performed by the human

visual system must be robust. Specifically, the visual systemmust be able to ignore irrelevant

information and it should be insensitive to errors which could occur during edge detection.

Top row in Figure 1 illustrates how our stimuli looked. The egg-like shape in the left panel is

easier to see than the one in the right panel. This is because the orientations of the edges

defining the boundary of the shape were perfect in the left panel while the orientations

were randomly perturbed in the right panel. When orientations of edges form a smooth

contour, local interpolation could extract the target boundary (Bottom left of Figure 1). Local

interpolation would fail when jitter level is high (Figure 1 Bottom right), highlighting the

need for global operations in extracting the boundary. This study investigated human global

operations in boundary extraction with a focus on the integration of contour and region

information.
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FIGURE 1

Top row: Examples of stimuli used in our experiment. Contrast was reversed in the actual experiment. Top left: Orientation jitter of the edges in the

boundary of the shape is zero. Top right: The orientation jitter is 20◦. Bottom row: Outputs of a local interpolation algorithm that connected

neighboring edges when turning angle was ≤40◦. Bottom left: This local interpolation was able to extract the boundary of the target egg. Bottom

right: Local interpolation failed to extract the boundary of the egg, demonstrating the need for global operations in extracting the boundaries in our

experiments.

In general, the human visual system may use two types

of information to accomplish boundary extraction: contour

information such as that encoded in edges and region information

such as that encoded in color (Grossberg and Mingolla, 1985).

Since humans are able to extract boundaries in isochromatic

and isoluminant stimuli, the visual system can use either type

of information to independently arrive at a boundary solution.

Nonetheless, since both contour and color are available in most

cases of everyday life, they are jointly encoded in all areas

of the lower (V1-V4) and higher regions (lateral and ventral

occipitotemporal) of the ventral visual stream (Taylor and Xu,

2022).

Perceptually, when both contour and color are available, the

effect of contours seems to dominate over that of color. The

McCullough Effect is such an example where the afterimage after

viewing two regions with different line orientations and colors

depends on the orientation of the lines (Tyler and Solomon,

2019). Further evidence was provided by Vergeer et al. (2015)

who demonstrated malleable color percept: different placements

of edges created different color percepts, and color inside

the shape boundary was always consistent. In fact, previous

research has suggested that shape from contour is the fastest cue

available to the visual system (Elder, 2018) and is the necessary

prerequisite before color-based processing (Moutoussis, 2015).

While contour information may adequately suggest a boundary

in many cases, color may improve performance when edges are

noisy. Hansen and Gegenfurtner (2009) have shown that the two

pieces of information are not redundant copies of each other.

For example, color is less sensitive to changes in shading or

lighting. Therefore, changes in color better indicate a change

in material which could in turn suggest the presence a new

object (Moutoussis, 2015). Moreover, Taylor and Xu (2023) have

found that the cortical areas in the ventral visual pathway could

increase the relative coding strength for color depending on the

type of stimuli being presented (simple orientation or complex

tessellation patterns).

In this study, we (1) performed psychophysical experiments

investigating the integration of contour and color using conditions

where spatially global operations are required, as well as (2)

developed a computational model to emulate human performance.

Results from our psychophysical experiments showed that while

contour and color information could be utilized in isolation,

performance was highest and most robust when they worked

in conjunction. Moreover, our results also suggested that

contour and color could be integrated only with foveal viewing.

With peripheral viewing, performance dropped from ceiling

to chance when the orientation jitter increased from 0◦ to

20◦. The failure of boundary discrimination with peripheral

viewing could not be explained by a decrease in visual

resolution.

Following the study by Kwon et al. (2016), our model uses

the log-polar representation of the retinal image. It is known that

a log-polar map is a good approximation of the transformation

from the retinal image to the early visual areas in the cortex

(starting with V1), the first areas responsible for extraction

of contours and boundaries (Schwartz, 1977). The log-polar

transformation preserves spatially local relations, which means

that local neighborhoods in the retinal image are mapped into

local neighborhoods in the visual cortex. It follows that there

may only be small differences in how computational models

work when using the retinal versus the log-polar representation.

However, spatially global computations may look very different

in the retinal (Cartesian) coordinate system versus in the cortical

(log-polar) coordinate system because the log-polar mapping
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distorts spatially global relations1. Not only so, we believe that

the concept of log-polar is tightly related to other known visual

architectures such as the multiresolution / multiscale pyramid

(Rosenfeld and Thurston, 1971; Tanimoto and Pavlidis, 1975).2

In the present study we emphasized spatially global computations

that result in a closed boundary of a 2D region on the retina.

We further argue that the log-polar representation is essential

in guaranteeing a closed boundary solution when spatially local

computations are insufficient (such as that in Figure 1 right

column).

We substantially elaborated the previous model proposed by

Kwon et al. (2016). Similar to Kwon et al. (2016), the current

study focused on the conditions which are perceptually difficult,

namely when orientation jitter was added to remove local contour

cues. Therefore, the target shape in our stimuli would be difficult

or even impossible to detect for a computational model that

uses only local operations (see Figure 1). Additionally, we showed

that subjects’ performance improved when color information

was made available. Thus, two requirements were placed on

the computational model: (1) the model must perform global

operations to be able to accurately produce a closed boundary,

and (2) the model must be able to combine both contour and

color information. Our proposed model guarantees closure and

implements five other Gestalt principles including proximity, good

continuation, convexity, color similarity and dissimilarity. This

model was tested on some of the conditions on which the subjects

were tested, and its performance was similar to the performance

of the subjects. We additionally tested the model on a small set of

real images and demonstrated promising results. We want to point

out that the current model is not intended as the complete theory.

Instead, it is the first attempt in capturing the role of contour

closure, proximity, good continuation, convexity, color similarity

and dissimilarity in the log-polar representation.

2 Psychophysical experiment

We extended the experiments reported in Kwon et al. (2016)

where the authors measured the role of contour in boundary

extraction using black-and-white line drawings. We first replicated

their main result, and then performed a 2 × 2 factorial experiment

involving two levels of orientation jitter applied to edges and two

levels of background colors. We expected that the addition of

color information would improve the performance of boundary

extraction.

1 For example, consider a circle with its center coinciding with the center

of the retina. Inscribe a square into the circle. The perimeter of the circle

is longer than that of the inscribed square in the Cartesian coordinates

representing the retina. This relationship is flipped in the log-polar space. The

circle maps into a straight line, while the square maps into a four-cornered

curve (see Figure 13 in Kwon et al., 2016). It follows that the straight line

representing the circle is shorter than the curve representing the square.

2 Multiresolution pyramid adjusts the resolution of operations according to

the scale of the object on the retinal image The log-polar architecture is scale

invariant such that retinal shapes that di�er in sizes are processed by the same

number of neurons. Thus, the problem of adjusting scale and resolution of

processing is solved naturally by a log-polar transformation.

We followed the procedure described in Experiment 3 of Kwon

et al. (2016) to test boundary extraction using the fragmented

boundary of an egg-like shape embedded in noise edges. The

subject’s task was to indicate if the pointy side of the egg was

oriented to the left or to the right. This task required extraction of

the entire boundary of the shape.

2.1 Methods

2.1.1 Stimuli
The stimulus consisted of boundary edges belonging to a target

shape embedded in noise. In the current experiment, a stimulus

canvas of size of [1,920 × 1,080 pixels] was used. To fill the

canvas with noise edges, the canvas was divided into [48 × 27]

square grids, each with size [40 × 40 pixels]. A noise edge with

random orientation was added to each grid, with the center of

the edge coinciding with the center of the grid. The edge was

allowed to occupy the central 60% of its grid to prevent coincidental

connections of neighboring edges.

The target shape was an egg created by distorting an ellipse

(Kozma-Wiebe et al., 2006), using the following formula:

x2

52
×

1

1± kx
+

y2

42
= 1

where k is the distortion coefficient such that a larger k produces an

egg with a more obvious pointy side and makes the discrimination

task easier. For three of our four subjects (S1-S3), we used k =

0.04, which was the same value used in the previous study (Kwon

et al., 2016). Subject S4 was tested with k = 0.08. The rectangle

circumscribed on the egg was 450 × 360 pixels. The horizontal

radius (225 pixels) corresponded to a visual angle of 6.66◦ when

viewed from a distance of 60cm. The continuous, smooth egg

boundary was fragmented into straight line segments of similar

lengths as the noise edges. Every other egg boundary edge was

erased, to produce a support ratio of 0.5. The center of the egg was

shifted away from the fixation cross in a random direction, with the

maximum shift being 50% of the minor radius of the egg.

Then, orientation noise was added to the edges belonging to

the egg boundary. Two levels of orientation jitter were used: 20◦

and 180◦. We followed the convention in Kwon et al. (2016),

where an average orientation jitter of 20◦ referred to random

rotation of a boundary edge sampled from either [-25◦, -15◦] or

[+15◦, +25◦]. Orientation jitter of 20◦ was chosen because contour

smoothness was reported by Kwon et al. (2016) to be ineffective

for local interpolation. Therefore, the experiment with this level of

jitter would likely measure spatially global operations applied to

the entire closed contour at once. Sensitivity to jitter was directly

tested in our control experiment (Section 4.3.1). Moreover, local

interpolation based on smoothness failed to extract boundary for

jitter level of 20◦ (Figure 1 bottom right). The jitter 180◦ condition

changed the orientation of the edge by an angle between -180◦ and

+180◦. This implied that the orientation of the contour fragments

of the egg conveyed no information about the boundary of the egg.

Once the egg edges were prepared, they were added to the canvas.

Noise edges were removed if necessary to prevent overlapping of

edges.
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FIGURE 2

Left: Custom colormap of 20 colors used in this experiment. Right: An example of a Worley color pattern created by coloring eight Voronoi partitions.

FIGURE 3

Examples of the stimuli. The left column shows examples with jitter 20◦ and the right column shows jitter 180◦. The first row shows the conditions

with no color, the second and third rows show examples with Worley color pattern added to all edges inside the egg (including the boundary edges).

In the second row, edges outside the egg are white (white-background) whereas they have random color (random-background) in the third row.

At this point, the stimulus canvas consisted of grid-like noise

edges and fragmented egg edges. All edges had thickness of one

pixel. To better conceal the egg, positional jitter was added to noise

edges by moving their centers by a random amount in the range

[-10, +10] pixels and in a random direction, with the constraint

that no edges overlapped. The resulting stimulus consisted of white

edges on a black background. Examples of this stimulus are shown

in Figure 3, first row.

2.1.1.1 Adding colors to edges

The edges inside the egg (including boundary edges) were

colored as follows. In each trial, a new, randomly generated

Worley noise pattern was used. Worley noise is a popular texture

generation method to simulate real world patterns (Worley, 1996).

In this study, we generated Worley color pattern by performing

Voronoi partition using a set of five to nine seed points randomly

positioned on the canvas. Each Voronoi partition was given a

different color to generate a Worley color pattern. To make

sure that the color regions were clearly visible against a black

background and against the white noise edges, we constructed a

custom colormap of 20 colors after restricting the categorical colors

from Colorcet to only those with brightness values within the range

of 40–60 (out of 100) (Bednar et al., 2020). The colors used in our

experiments are shown in Figure 2, along with an example of the
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Worley color pattern. Based on the position of the egg, noise edges

inside the egg boundary (including the edges of the boundary) took

on the colors as defined by the Worley color pattern. The number

of color regions varied depending on the sizes of the Voronoi

partitions.

We used two color conditions in the background. In one

condition, all noise edges in the background were uniformly white

(white-background), and in the other condition, each noise edge

in the background was assigned a random color from the custom

color map (random-background). Examples from both conditions

are shown in the second and third rows of Figure 3 respectively.We

expected the white-background condition (second row) to be easier

than the random-background condition (third row). Note that our

stimuli with color looked like watercolor illusions, namely illusory

colors spread in between the blank space of edges and filled in the

region (Pinna et al., 2001).

We randomized all parameters irrelevant to the manipulated

variables. So for each trial, orientation and position jitter of noise

edges were sampled randomly; the fragmentation of the egg had

a random starting point; each edge belonging to the egg boundary

had a random orientation jitter added; a new position for egg center

was selected; a new Voronoi partition was generated; random color

was sampled to fill each partition when creating a Worley pattern;

and if applicable, the colors for noise edges outside the egg were

sampled randomly from the colormap.

2.1.2 Experimental conditions
Example stimulus illustrating each of the six experimental

conditions is presented in Figure 3. To improve visibility of these

examples, edges are drawn with thicker lines and with a lower

density of edges relative to the size of the stimulus. So, these

images are not copies of our stimuli. Nevertheless, they illustrate

the conditions well. The actual stimuli used in the experiment are

publicly available. In Figure 3, we show right-pointing eggs in the

first and third rows and left-pointing eggs in the second row.

2.1.3 Subjects
Four subjects were tested: Subject S1, who received an extensive

practice before data collection; Subject S2; and two naive subjects,

Subjects S3 and S4. In the main experiment, three subjects were

tested with distortion coefficient k = 0.04 and Subject S4 was tested

with a larger distortion (distortion coefficient, k = 0.08) to make

sure that performance in most conditions was well above chance.

All subjects had normal or corrected to normal vision.

2.1.4 Procedure
Signal detection experiment was used. Each session consisted

of two hundred left-pointing eggs and two hundred right-pointing

eggs presented in random order. Each session began with 40

warm-up trials before the 400 experimental trials. The experiments

were performed in a well-lit room. Subjects viewed the stimuli

with both eyes from a distance of 60cm using a chin-forehead

rest. The monitor had a 60Hz refresh rate, and the measured

chromaticity coordinates of the RGB primary colors and luminance

values for the white point are summarized in Table 1. A trial

TABLE 1 Chromaticity coordinates of the RGB and luminance values of

the monitor.

x y Y(cd/m2)

R 0.64 0.35 59.7

G 0.32 0.60 231

B 0.14 0.06 21.9

W 0.312 0.344 314

began by displaying the fixation cross at the center of the monitor.

Subjects pressed a key to advance when they were ready. A blank

screen was shown for 100ms followed by the stimulus that was

shown for 100ms. After that, the blank screen was shown until

the subject responded by pressing “Q” if the egg pointed to the

left or “P” if it pointed to the right. A beep was sounded after an

incorrect response. This sequence was repeated until all 400 trials

were completed. Subjects were given as much time as needed to

familiarize with the task. Subjects completed one practice session

before the actual data collection.

Subjects were first tested with jitter 20◦ and no-color condition

(Figure 3 top left) to allow for an estimate of their distortion

coefficient, k. Subjects S1 and S2 were also tested with the jitter

180◦ and no-color (Figure 3 top right) to verify that performance

in this condition was at chance. The other two subjects (S3 and S4)

were not tested in the jitter 180◦ and no-color condition. After that,

each subject completed the four main experimental conditions in

random order.

2.2 Results

Figure 4 shows the results from individual subjects. Subjects’

performance was evaluated using the discriminability measure d′ of

signal detection. To estimate d′ for a two-alternative-forced-choice

(2AFC) task, one of the two stimuli (say, egg pointing to the left)

can be assigned as “noise” and the other as “signal plus noise”. This

way, hit and false alarm rates can be computed and used to estimate

d′ by subtracting the Z-score of false alarms from the Z-score of

hits. A higher d′ represents better performance and a d′ of zero

indicates chance performance. Reliability of d′ for each subject was

estimated using the standard error of d′ as described by Macmillan

and Creelman (2004) (p. 325).

When no color was used, performance of the subjects was

reliable with jitter 20◦. Specifically, all four subjects achieved d′

between 0.5 and 1.5 in this condition. In contrast, jitter 180◦ led

to chance performance. This was expected, so only two subjects (S1

and S2) were tested in jitter 180◦ and no-color condition.

Next, we will describe the four conditions in which the color of

edges inside the egg was different from the color of edges outside

the egg. For jitter 20◦, performance was equally good when the

background edges were white and when the background edges

had random color. At the same time, performance in these two

conditions was clearly better than performance in the no-color

condition. In three of the four subjects, this improvement was by

a factor of 2 or more. A different pattern of results was observed
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FIGURE 4

Results for each individual subject. Error bars indicate SE. Subjects S1–S3 performed the experiment with distortion of k = 0.04. Subject S4 was tested

with k = 0.08.

FIGURE 5

Performance with larger shape distortion (k = 0.08). Performance improved, but the pattern of results is the same as with k = 0.04.
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FIGURE 6

Examples of stimuli with jitter 0◦ for peripheral viewing. The three color conditions are shown in separate columns: no-color condition where all

edges were white, white-background condition where Worley color pattern was added inside the egg (including boundary edges), and

random-background condition where Worley color pattern was added inside the egg and edges in the background had random color.

for jitter 180◦. Unlike the chance performance where no color

was used, adding color led to performance that was above chance,

especially when background was uniformly white. For background

with random color, performance was lower by a factor of two on

average compared to the condition where background color was

white.

2.3 Discussion

We replicated the results of Kwon et al. (2016) using the jitter

20◦ and no-color condition by showing that subjects could reliably

perform boundary extraction even with this level of jitter. Jitter

180◦ and no-color produced chance performance, as expected.

This indicated the effectiveness of the noise edges in concealing

the egg, so that no confounding cue was available for subjects

to complete boundary extraction. Since no color was present in

this pair of conditions, we expected performance to rely solely

on contour-based processing. While contour-based processing

tolerated an orientation jitter of 20◦, completely randomizing

orientations in the jitter 180◦ condition made contour integration

ineffective. Thus, boundary extraction could not occur. When

color information was made available, color-based processing

was recruited to improve performance. Since contour-based

processing was already recruited in the jitter 20◦ conditions, adding

color reflected the joint operation of contour- and color-based

processing. In the jitter 180◦ conditions, color was the only cue that

could lead to contour extraction.

In general, adding color improved performance. However,

there was a difference in the magnitude of improvement depending

on both the degree of orientation jitter and the background

color. Random color in the background was found to modulate

performance only when color-based processing operated in

isolation (jitter 180◦). When both contour- and color-processing

operated in conjunction (jitter 20◦), performance was equally good

in the white-background and the random-background conditions.

So, an interaction effect was found: the type of background (white

versus random color) had a strong effect for jitter 180◦, but not for

jitter 20◦.

There were individual differences in the way subjects utilized

the contour smoothness and color cues. Specifically, Subject S2

relied more on color cue so that his performance with only

color-based processing (jitter 180◦ with both white- and random-

backgrounds) was higher than when contour-based processing

operated in isolation (jitter 20◦ and no-color condition). In

contrast, Subject S1 relied more on contour smoothness cue so

that her performance was higher when contour-based processing

operated in isolation than when color-based processing operated in

isolation. Subjects S3 and S4 fell between the two extremes: color

cue alone led to higher performance than contour alone, only with

white background.

Nonetheless, when jitter was 20◦, all subjects were able to

combine the contour and color information to produce similar level

of performance. Individual differences were the smallest when both

contour and color information were made available.

3 Control experiments

3.1 E�ect of distortion

Two subjects, S1 and S2, who performed the experiment using

distortion k = 0.04 repeated the experiment with k = 0.08. Subject

S2 was not tested in jitter 180◦ no-color condition. The results are

shown in Figure 5. Increasing egg distortion made the task easier

roughly by a factor of two, but the pattern of results is the same as

with k = 0.04.

The consistent pattern of results for the two distortion

coefficients indicated that the same underlying contour integration

mechanism was at play for both distortion levels. Therefore,

increasing distortion only improves shape discriminability, making

the interpretation of the boundaries easier without altering the

processing involved in boundary extraction.

3.2 Fixation outside the egg

It was shown that the human visual system could perform

local processing based on smooth contours (Field et al., 1993) or

color similarity (Kovács, 1996). To determine the role of local

versus global processing, we performed a control experiment where

fixation was placed outside of the egg. Peripheral viewing precludes

the extraction of closed contours using a log-polar representation

because the problem can no longer be translated into a shortest

path global optimization problem (see Section 4Model). Therefore,
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FIGURE 7

Results from peripheral viewing.

we expected local processing to be a critical mechanism during

peripheral viewing.

3.2.1 Methods
The same stimulus generation procedure was adopted with

the exception that now the center of the egg was randomly

placed outside a circle covering the central 50% of the stimulus

canvas. This way the fixation was always outside the egg boundary.

All six experimental conditions were tested. In addition, three

experimental sessions with perfectly smooth contour (jitter 0◦)

were added. Figure 6 illustrates different egg positions using a target

egg with jitter 0◦. Subject S1 was tested in this experiment.

3.2.2 Results and discussion
Subject S1 was unable to see the egg in two of the conditions

with jitter 20◦ and jitter 180◦ that had no color. Thus, no data was

actually collected for these conditions. Results from the remaining

seven conditions are shown in Figure 7.

For jitter 20◦, d′ was 0.53 and 0.33 for white-background

and random-background conditions respectively. Recall that this

subject produced, in the corresponding conditions, d′ values of 2.00

and 2.06 when tested with foveal viewing (fixating inside the egg).

For jitter 180◦, d′ was 0.45 and 0.35 for the two color conditions

respectively, compared with the d′ values of 1.12 and 0.61 with

foveal viewing. When tested without orientation jitter (jitter 0◦),

Subject S1 produced d′ values of 2.54, 2.20 and 2.44 for the no-

color, white-background and random-background conditions. For

comparison, performance was perfect (proportion correct 100%)

when jitter 0◦ was used with foveal viewing.

A decrease in discrimination of checkerboard patterns during

peripheral viewing was documented in Schlingensiepen et al.

(1986). These authors measured a drop in d′ by a factor of two

when fixation was outside the stimuli compared to free viewing

of the stimuli. In our experiment, fixating outside of the target

shape dramatically changed the subject’s performance. When tested

with jitter 20◦ and no-color condition, moving the stimulus to the

periphery made the stimulus invisible. Adding color helped, only

to a small extent. Reliable performance was observed only when

smooth contour with jitter 0◦ was used. We will suggest later in

this paper that this change is related to unavailability of the global

shortest path optimization when log-polar representation is used.

We want to point out that the fact that the egg was invisible in

peripheral viewing when there was no color for both jitter 20◦ and

180◦ cannot simply be explained by poor visual resolution because

the same target shape was clearly visible with jitter 0◦.

On top of a decrease in performance, the general pattern of

results was different from that with foveal viewing. Specifically,

with peripheral viewing, we did not observe an interaction effect

between jitter level and the type of background color. These

results suggest that the subject had to rely on a completely

different mechanismwhen the fixation was outside the target shape.

Specifically, local cues such as smooth contour in the jitter 0◦

condition had to be used to perform the task. With jitter 20◦ and

greater, local processing based on smoothness is no longer effective.

Interestingly, once boundary was smooth, adding color did not

improve performance.

We conclude that local processing using contour information

could occur in periphery only when sufficiently smooth contours

were present. Robustness to orientation jitter could be achieved

only when fixation was inside the boundary. Similarly, integration

between contour- and color-based processing seemed to occur only

when fixation was inside the boundary.

4 Model

4.1 Model architecture

We extended the biologically-inspired model introduced by

Kwon et al. (2016) to include color processing. Similar to the model

described by Kwon et al. (2016), our model uses the log-polar

representation of the image and solves the least-cost path problem

by applying Dijkstra algorithm. The log-polar representation is

a good approximation to the retinotopic mapping in the early

visual areas of the cortex (Schwartz, 1977). By adopting log-polar

representation, the computationally hard problem of extracting a

closed boundary is transformed into an easier problem of finding

the shortest path. Figure 8 provides a graphical summary of the

model implementation. Operations that are different compared to

the previous model are labeled with asterisks. We describe the

individual steps in the following subsections.

4.1.1 Log-polar
The log-polar representation is a good approximation of

the mapping from the retina to the visual cortex (Schwartz,

1977). This is because the linear density of ganglion cells in

retina is non-uniform, with hyperbolic decrease (approximately
1
r ) as eccentricity, r, increases. Therefore, right at the first

step of visual processing is a space-variant sampling of the

visual input. This nonuniform sampling is subsequently

mapped onto uniformly distributed visual cortical neurons,

resulting in an over-representation at the fovea and under-

representation at the periphery (cortical magnification). Based
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FIGURE 8

Graphical summary of the model. Operations that were modified in this study compared to the previous study by Kwon et al. (2016) are indicated by

asterisks. Edges belonging to the egg boundary are highlighted in red. Given an image, the model receives as input a set of edges and the color values

associated with each edge. Then, the model fixates at the center of the stimulus canvas and selects an orientation as its reference angle (0 rad.) to

define the log-polar coordinate space. A graph is constructed where a node represents the log-polar coordinates of the two endpoints of an edge

along with their associated colors on both sides. Nodes are connected to all other nodes in its neighborhood. Global optimization is then performed

using Dijkstra shortest path algorithm to connect the representation of the initial node at reference angle (0 rad.) to its representation at 2π rad. The

output in Cartesian representation in the form of a closed boundary is obtained by mapping the shortest path solution from log-polar into Cartesian

representation. A decision module interprets the boundary output to provide a response if the pointy side of the egg is to the left or to the right.

on measurements of cortical magnification factors in macaques,

Schwartz (1977) demonstrated that the log-polar transformation

closely approximates this mapping from the retina to the visual

cortex.

The log-polar transformation begins with specifying a polar

coordinate system on the image. Instead of using Cartesian

coordinates (x, y), we use polar coordinates: radius r and angle θ .

The origin of the r dimension represents the center of the retina,

which is a projection of the point in the visual field where the eye

fixates.

The log-polar coordinate system is defined by taking the

logarithm of the r dimension. Two requirements must be met

for the mapping from Cartesian to log-polar to be the proper

transformation as defined in complex analysis: the base of the

logarithm must be e (i.e., natural logarithm), and the angle θ

must be expressed in radians (not degrees). This way, the log-

polar mapping is a conformal mapping, preserving local angles. It

is precisely this mapping that has been shown to approximate the

mapping from the retina to the primary visual cortex. The best way

to avoid confusion is to apply a complex-logarithmic function to

the complex variable (z = x+iy) representing an image point (x, y).

Any complex number, z, may be expressed in polar form, by using

Euler formula: z = x + iy = r(cos θ + i sin θ) = reiθ . Taking the

complex-logarithm of the complex number z, using a logarithm to

the base of e results in loge(z) = loge(r) + iθ . We would like to

point out that software packages or libraries often have a function

for log-polar transformation, but this function is not necessarily

a conformal mapping, namely the logarithm is not natural and/or

angle is not expressed in radians.

4.1.1.1 Cartesian to log-polar transformation

The input stimulus with size [1920 × 1080 pixels] was

transformed into a log-polar image with size [1,920× 1,920 pixels].

The model took as input a set of Cartesian coordinates defining

the edges detected in the image. In this paper, we used synthetic

images described in Section 2.1.1. As a result, our model did not

have to perform edge detection because the edges already existed.

The model took as input an [N × 4] matrix where N is the number

of edges in the stimulus, and each edge was defined by its two

endpoints in the Cartesian coordinates, (x1, y1, x2, y2).

We then transformed the Cartesian coordinates into log-polar

coordinates. We defined r = 0 to be the fixation cross, which was

placed at the center of the stimulus image. The origin for the polar

angle was selected using the same strategy as in the previous study

(Kwon et al., 2016). Specifically, θ = 0 was set at the midpoint of

a randomly selected starting edge belonging to the boundary of the

target egg. This edge was used as the start/end point for computing

the shortest path. Kwon et al. (2016) showed that if a starting point

was not provided, the model could try a number of starting points

and compute the shortest path for all these points. The shortest
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path from all these paths almost always corresponded to the correct

boundary (see their Model LI-SP-EST).

4.1.2 Global optimization
With the new representation in the log-polar space, the original

task of boundary extraction was framed as finding the shortest path

connecting the representation of the starting edge at 0 rad. back

to its representation at 2π rad. Dijkstra shortest path algorithm

was used to perform global optimization. Below, we describe the

three main components in setting up a graph for optimization:

defining the nodes in the graph, establishing connections between

nodes, and assigning the costs of travel from one node to another.

Connection between nodes is more commonly termed as an “edge"

in the context of graph theory. To avoid conflict in terminology, we

use the term “edge" when discussing a detected edge in the image;

we use the term “connection" to mean the edge from one node to

another in a graph.

4.1.2.1 Defining a node in the graph

We defined a node in the graph using three sets of

values: an ordered set of endpoints of an edge in the log-

polar coordinates [(r1, θ1), (r2, θ2)], and two sets of color values

associated with the region to the left and to the right of the edge,

RGB (Left), RGB (Right).

To encode contour-related information in the graph, the

position and orientation of a detected edge was included in

the definition of a node as an ordered set of endpoints

in the log-polar coordinates [(r1, θ1), (r2, θ2)]. Since there are

two possible directions of travel between two endpoints, each

log-polar edge was represented twice in the graph: once for

the forward direction, [(r1, θ1), (r2, θ2)], and the other for the

reversed direction, [(r2, θ2), (r1, θ1)]. A similar implementation

where an edge was represented twice in order to explicitly

express direction was described by Williams and Thornber

(1999).

Next, we describe our approach to introduce color-related

information in the graph. In particular, we would like to encode

color in a way that would preserve the contour-color relationship

(Rentzeperis et al., 2014). As an illustration of the contour-color

relationship, imagine a white circle placed on a black background.

The closed boundary of the circle separates the stimulus canvas

into two regions, foreground and background. The region with

white color coincides with the area enclosed by the boundary.

Therefore, color information does not contradict the contour-

defined boundary. In order to distinguish foreground color from

background color while respecting contour edges, we propose the

notion of directionality, being inspired by Stahl and Wang (2007).

Imagine walking on the boundary of a circle clockwise. The white

color belonging to the interior region of the circle is always to the

right at the walker local frame. Considering the direction of travel

allows the two pieces of information from contour and color to be

tracked simultaneously: for contour, the orientation of an edge is

the unsigned direction; for color, color similarity in the foreground

versus background can be tracked by comparing the colors on

both sides of an interpolating edge. In Figure 9, the shaded regions

indicate the regions to the left of edges according to their respective

directions of travel.

For each edge, color was sampled from a Moore neighborhood

of range three (7× 7 grids) in the Cartesian representation (Moore,

1964). Colors to the left and right of the edge were averaged

separately to obtain two sets of RGB values.

4.1.2.2 Defining connections in the graph

We restricted the connectivity in the graph, so that a node

in the graph can reach only the set of nodes located within its

neighborhood. We defined a neighborhood as a square window of

240× 240 pixels in the log-polar representation. Therefore, instead

of constructing a complete graph with connections for every pair

of nodes, only nodes that were sufficiently close to each other were

connected. Our pilot tests showed that the quality of solutions was

not affected, but computation time was greatly improved.

4.1.2.3 Cost of interpolation

To calculate the cost of interpolation (the cost of a connection

in the graph) from Node A to Node B, we used the following

features: (1) distance, (2) turning angle, (3) color similarity, and

(4) color contrast. The value of each feature was multiplied by

its weight. We describe the algorithmic computation for each

feature, as well as their relationships to the computational level

representation of Gestalt principles (Marr, 2010).

Let us begin with contour information encoded in the edges:

distance and turning angle. The visual system is more likely

to choose a particular interpolation if the distance (length of

the interpolation) is short, commonly referred to as the Gestalt

principle of proximity (Wertheimer, 1923). We computed the

distance as the Euclidean distance from the second endpoint of

the first node to the first endpoint of the second node. Since

distance is computed after the log-polar transformation, scaling

a shape has no effect on the distance metric. This behavior is

desirable since proximity principle has been shown to be robust to

transformations of scaling (Kubovy et al., 1998). We squared the

interpolated distance in the cost function to progressively penalize

long interpolations. This produced good results, but the actual

shape of this function (polynomial vs. exponential) should be tested

in the future.

Turning angle was used in the cost of interpolation because

smaller changes in orientation are more likely to be interpolated

(Wertheimer, 1923; Elder, 2018). Turning angle was defined as

ψ = |ψ1| + |ψ2|, where ψ1 is the angle formed by the

first endpoint of Node A, second endpoint of Node A, and

first endpoint of Node B; and ψ2 is the angle formed by the

second endpoint of Node A, first endpoint of Node B, and

second endpoint of Node B. The angles ψ1,ψ2 are also labeled in

Figure 9. Minimizing turning angle minimizes abrupt changes in

the direction of travel, and thus encodes the Gestalt principle of

good continuation.

As a natural consequence of minimizing the

turning angle in the log-polar space, Gestalt principle

of convexity is encoded implicitly without including

additional parameter in the cost function. An easy

way to see this is to realize that a circle around the

fixation point maps into a straight line in the log-polar

representation.

Next, we discuss features related to color-based processing:

color similarity and color contrast. Edges are more likely to be

connected when they share the same colors on the left side and/or
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FIGURE 9

There are four possible permutations representing the interpolation between two edges in the image. Solid line denotes a node in a graph with the

direction of travel indicated by the arrow. Dashed lines denote the interpolations. The two angles of interpolation, ψ1 and ψ2 are marked. Turning

angle is the sum of the absolute values of these angles.

FIGURE 10

Model performance as a function of increasing turning angle coe�cient. Model performance improved initially as turning angle coe�cient

increased. Further increase of turning angle coe�cient degraded performance. Horizontal dotted line and dash-dot line indicate performance of an

average subject for distortion k = 0.04 and k = 0.08 respectively. Turning angle coe�cient of 0.4 and 1.2 produced performance closest to that of an

average subject, and thus was chosen for subsequent simulations for conditions with color.

on the right side of the interpolated curve, also described as the

Gestalt principle of similarity (Kovács, 1996). The difference in

colors between the left side of Node A and left side of Node B were

computed as follows:1 Color(Left) = |RGB(Left)A − RGB(Left)B|,

and similarly for the right sides of both nodes 1 Color(Right) =

|RGB(Right)A−RGB(Right)B|. The two differences were combined

using a minimum operation, Color similarity = min(1 Color(Left),

1 Color(Right)). As a result, a pair of edges is considered to share

similar color as long as they share similar colors on at least one side.

Finally, edges that carry higher color contrasts between the

left and right side are more likely to indicate the presence

of a boundary. High contrast relates to the pop-out effect or

the Gestalt principle of dissimilarity (Pinna et al., 2022). We

compared the colors on both sides of an individual node and

computed the color contrast = |RGB(Left)A − RGB(Right)A|.

We used the negative of color contrast for global minimization.

Note that the notion of directionality was not encoded in the

computation of color contrast, since the two nodes representing

the same edge in both directions have the same value for color

contrast.

The total cost for every connection in the graph was calculated

by summing the cost across the four features, with weights defined

by coefficients. The cost function with their normalizing constants

was as follow:

a1(D
2/1920)+ a2(TA/2π)+ a3(CS/255)+ a4(1− CC/255)

where a1, a2, a3, a4 are the coefficients of the individual features;

D, TA, CS and CC represent the cost of distance, turning

angle, color similarity, and color contrast respectively. Since

changing the coefficients alters the model behavior, we identify

a model by specifying its coefficients. For example, a model

ignoring color information would set the coefficients for color

similarity and color contrast to zero. For the ease of reporting,

we label the model in terms of their coefficients using the

following convention [distance, turning angle, color similarity,

color contrast]. If the model assigned a coefficient of 1 to

both distance and turning angle, it would be labeled as

[1,1,0,0].

Note that the magnitudes of the four features in the cost

function were very different because of the units used (distance was

measured in pixels, angle in radians, and color using 256 digital

units). As a result, the values of these features were rescaled by

their respective constants to be in comparable ranges. This means

that the values of coefficients should not be interpreted literally:
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FIGURE 11

The model parameter space by performing grid search on stimuli with jitter 20◦. Model performance was evaluated using d′. Results are color coded

with red indicating high performance, grey indicating intermediate performance, and blue indicating low performance. Top: Grid search results for

distortion k = 0.04. Bottom: Grid search results for distortion k = 0.08.

e.g. a coefficient value of one for distance and a coefficient value

of ten for color similarity does not mean that color similarity is ten

times more important than proximity. It is, however, possible to

make relative comparisons of the components of the cost function

across different conditions: an increase in coefficient for color

similarity from a value of two to a value of four (assuming that other

coefficients stayed the same) meant that color similarity was twice

as important in the second condition than the first.
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FIGURE 12

Schematic illustration comparing color similarity and color contrast at di�erent regions of a stimulus. Left: White background condition. Right:

Random background condition. Details described in text.

FIGURE 13

Comparison of the model and subject performance for jitter 20◦. Model was able to match performance of an average subject except in one

condition with higher distortion k = 0.08 and white background. Refer to text for discussion on the interpretation and a plausible model which could

perform better for this condition.

4.1.3 Producing closed contour as model output
After setting up the graph by defining the nodes, connections,

and costs, we applied Dijkstra shortest path algorithm. The

algorithm solved a global optimization to produce a least-cost

path from a starting node to itself. After the shortest path was

transformed into edges in the Cartesian representation, pairs of

edges were interpolated using straight line segments to produce

a closed boundary. The literature provides more sophisticated

interpolation methods that could be used in our model (Sharon

et al., 2000; Kimia et al., 2003; Stahl and Wang, 2007; Kalar et al.,

2010; Ben-Yosef and Ben-Shahar, 2011; Singh, 2015).

The model guarantees closure because the two endpoints of

the least-cost path in log-polar translate to the same point in

Cartesian space. Therefore, the boundary extraction solution from

the model aligns with the Gestalt principle of closure, such that

closed contours are perceptually preferred over open ones (Kovacs

and Julesz, 1993).

In summary, by representing the problem in log-polar space

and performing global optimization using the proposed cost

function, a total of six Gestalt principles were operationalized. They

are proximity, good continuation, convexity, color similarity, color

dissimilairty, and closure.

4.1.4 Decision module
To produce a response to the 2AFC question, we adopted the

same decision criterion used by Kwon et al. (2016). Specifically,

the model took the horizontal range of the detected boundary and

computed the midpoint. The extracted boundary was divided into

two areas by drawing a vertical line. The area of the left half was

compared to the area of right half. The pointy side of the egg was

the side with a smaller area.

4.2 Selecting the parameters of the model

The behavior of the model is determined by four parameters,

namely the set of coefficients weighing the four features in the
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cost function (distance, turning angle, color similarity and color

contrast). To examine the effect of each model parameter, we

created a separate set of 100 egg stimuli and performed grid search

on the experimental conditions. Model performance was estimated

using d′. Since the main goal of the current study was to explore the

integration of contour and region (color), our simulations focused

on the conditions with jitter 20◦. As explained in Section 2.1.1, jitter

180◦ completely removed contour information by randomizing the

orientations of the edges belonging to the egg boundary. It follows

that the subjects had to rely exclusively on the color information.

We will analyze this condition in the future.

We first established a baseline for the model performance on

the no-color condition using contour-related features (distance and

turning angle).We did this for both distortion coefficients: k = 0.04

and k = 0.08.

Interpolation distance is the dominant feature in the model.

The previous version of the log-polar model reported in Kwon et al.

(2016) used only the interpolation distance combined with a linear

interpolation front-end. Their linear interpolation formed longer

contours by connecting approximately collinear edges within a

small neighborhood before finding the least-cost path. In the

current model, turning angle replaced the linear interpolation.

Figure 10 shows the effect of the turning angle coefficient relative to

the distance coefficient for two distortions of the egg shape. In this

graph we varied the turning angle coefficient from zero to four with

a step size of 0.4. Distance coefficient was set to one. Filled triangles

represent distortion k = 0.04 while open squares represent k =

0.08. The same model produced similar performance for both

distortion coefficients of the egg. In general, manipulating turning

angle coefficient produced a systematic change in performance.

The maximum d′ was produced at turning angle coefficient of

about two. Performance degraded for larger values of the turning

angle coefficient. This was related to the model making long

interpolations in the log-polar map, producing circular-like parts

that did not approximate the egg shape well.

The turning angle coefficients which best captured performance

of an average subject was 0.4 for the smaller egg distortion

k = 0.04, and 1.2 for k = 0.08. We therefore fix

the turning angle coefficients at the respective values in the

subsequent tests which included color. Note that in the main

experiment with k = 0.04, the three subjects produced d′

varying between 0.5 to 1.5. The best performance was produced

by S1 who received substantially more practice with these

stimuli.

Using the turning angle coefficient identified for each egg

distortion (0.4 and 1.2 for distortion k = 0.04 and k =

0.08 respectively), we performed grid search on color similarity

and color contrast coefficients for both white- and random-

background conditions (the distance coefficient was set to 1 for

all simulations). This grid search was informed by a pilot study

exploring a wider range of coefficients. The results for distortion

k = 0.04 and distortion k = 0.08 are summarized in Figure 11.

Manipulating color-related coefficients resulted in a gradual change

in performance, indicating that the model is stable. For both color

conditions, the model was able to combine at least one color feature

with contour information to arrive at a higher performance than

in the no-color condition. Model performance in the no-color

condition is represented by the grid cell where both color similarity

and color contrast coefficients are set to zero (bottom left corner of

each grid).

We will describe the role of color-related coefficients for each

color condition separately. For the white-background condition,

the model performed well by using positive coefficients for color

contrast while ignoring color similarity: increasing color similarity

coefficient degraded performance. Since the stimuli consisted of a

Worley-colored egg embedded in white background, information

about the target shape can be captured well by the color contrast

between the inside and outside of the egg (region S1 in Figure 12).

Although color contrast could also be high at region S2, the

Gestalt principles of convexity and good continuation will bias the

solution towards the egg boundary. Increasing the color similarity

coefficient (i.e., penalizing color dissimilarity on each side of the

contour) also increases the preference to produce a contour passing

through the uniformly white noise edges in the background (region

S3 in Figure 12). It is important to point out that our white-

background condition is computationally simple (see Figure 12,

second row), because the model could remove (filter out) all white

edges and would be able to extract the shape boundary nearly

perfectly with performance close to perfect (the actual performance

will not be perfect because the edges of the egg boundary had 20◦

random orientation jitter). We verified this directly, but the grid

search was done without removing white edges in the background.

For the random-background condition, the model can produce

high performance for a range of color coefficients. Specifically,

increasing color similarity coefficient or increasing color contrast

coefficient could both improve performance (Figure 11). This

is illustrated by region S4 in Figure 12 where there is color

contrast across the boundary and color similarity for the region

inside the egg. However, our exploration showed that color-

related parameters are limited in their utility. For example, both

color similarity and color contrast parameters could bias the

solution towards the polygonal shapes inside the egg with Worley

color pattern (region S5 in Figure 12) because the polygonal

boundaries have high color similarity on both sides and high

color contrast across. This could lead to errors in contour

integration. Further research is needed to investigate the role of

color-related processing in boundary extraction, especially when

color introduces geometrical patterns conflicting with the target

boundary (e.g., in the case of camouflage).

The results from the parameter space explorations (Figure 11)

suggest that the model was able to integrate color with contour

features to arrive at a higher performance when compared to

contour alone. This improvement was higher with the more

difficult case where egg distortion k = 0.04. The model coefficients

that led to good performance in the grid search were tested in the

next section, using the same stimuli which subjects were tested on.

4.3 Comparing the model to
psychophysical results

Based on the results presented in Figure 11, we applied the

model to the images that were shown to subjects for the conditions

with jitter 20◦ with both distortion k = 0.04 and 0.08. Because the

grid search based on 100 images showed that high performance was
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FIGURE 14

Control experiment investigating the e�ect of jitter on performance

of model and subject. Performance decreased from close to perfect

(1.0) to chance (0.5) for both model and subject. Standard error for

each bar was no greater than 0.025.

achieved with several sets of the coefficients, we applied these sets

of coefficients to the 400 images from psychophysical experiment.

Differences in model performance across these sets of coefficients

were small.

In Figure 13, we report the performance for the model

coefficients which produced the highest performance in the grid

search. The model was successful in matching human performance

for five of the six conditions. For distortion k = 0.08 white-

background condition, subjects performed close to perfect while

the model did not. It is possible that the uniform white background

noise edges allowed for simple filtering operations to remove the

background before extracting contour. We tested the possibility

of such pre-processing by applying the model after all white

background edges were removed. Using coefficients [1,1.2,0,0], the

model produced d′ = 3.56, which is almost identical to the average

performance of the two subjects who were tested in the control

experiment. Future studies can test the hypothesis that the visual

system applies a filtering front-end.

To summarize, our results showed that the log-polar based

model was successful in integrating contour and color in the test

with the egg-like stimuli. The model’s performance was not very

different from the subjects’. We want to point out that the task

was computationally difficult for several reasons: (i) the contour

of the egg was fragmented to have a support ratio of 0.5; (ii) the

density of the background edges was the same as the density of the

edges representing the egg; (iii) the edges representing the contour

had random jitter which essentially excluded spatially local growth

of the contour based on smoothness; (iv) global optimization was

necessary while at the same time avoiding combinatorial explosion

related to examining all subsets of edges in the image; (v) the

contour had to be closed. Therefore, it is probably not surprising

that themodel’s performance did not exceed that of the best subject.

We are confident that our model captured something important

about the visual mechanisms of contour integration. However,

several components of the model could be further developed and

produce even better fit to the subjects’ results. To further examine

the correlation between the model and the subject, we performed

an additional control experiment manipulating jitter level (Section

4.3.1).

4.3.1 Control experiment: e�ect of jitter
In this control experiment, jitter level was manipulated from

0◦ to 40◦ with a step size of 5◦. It was natural to expect that

increasing jitter (producing non-smooth contours) will lower the

performance of subjects. A model which explains how the visual

system works would also be affected by jitter level, with a similar

degree of quantitative effect.

The stimuli for the control experiment were generated using the

procedure for distortion k = 0.04, No-Color condition described

in Section 2.1.1. All target edges in a particular jitter level had a

random change in orientation in the range [-jitter - 5◦, -jitter +

5◦] or [+jitter - 5◦, +jitter + 5◦] except for jitter level 0◦, where

no random jitter was added to the target edges. Subject S1 ran

additional eight sessions excluding jitter 20◦, which was performed

as part of the main experiment (Section 2.2). The model with

coefficients 1 for distance and 0.8 for turning angle was chosen

because the model produced similar performance (d′) as subject

S1 based on the simulation in Figure 10. The model was tested on

all nine conditions and a comparison between model and subject

performance is shown in Figure 14.

Performance of both the model and S1 decreased with

increasing jitter level. Pearson correlation coefficient between

the model and S1’s proportion correct was high: R = 0.96 (p-

value<1E-4). Figure 14 shows overall proportion correct instead

of d′ because d′ approached infinity when S1’s performance was

close to perfect (either because there was no miss or false alarm) for

the first three jitter levels below 15◦3. This high performance could

partially be attributed to the role of local interpolation in boundary

extraction. The current model relies exclusively on spatially global

optimization. Therefore, adding local interpolation as the front-end

would likely produce close to perfect model performance for small

jitter levels (see Figure 1). A drop in S1’s performance was observed

with jitter 15◦ and above, suggesting that local operations failed

with high jitter levels. This result validated the choice of 20◦ jitter

to investigate the role of global processing.

5 Conclusion

Given a 2D retinal or camera image, determining which

contour and region belong to a single object is the first step

to recognizing the object and reconstructing its 3D shape. Our

psychophysical experiments eliminated local contour cues by

introducing orientation jitter to explore the interaction between

edge-based and color-based processing in the context of global

processing. We showed that each of these two types of processing

could operate in isolation: edge-based processing could reliably

extract boundaries when contours were relatively smooth; and

color-based processing could reliably extract boundaries when

3 Nevertheless, d′ follows a similar pattern: higher jitter leads to

systematically lower d′.
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FIGURE 15

Model performance tested using real images of furniture. The fixation point and starting edge were marked. Left: shows the cases where the model

produced a di�erent output when color information was used. Right: illustrates the stability of model such that adding color produced minimal

di�erences when the no-color model could produce reasonable outputs.

color in the foreground was different than the color in the

background. When both contour and color cues were present,

subjects were able to integrate the two pieces of information to

produce the highest performance. We established these results

under viewing conditions where the subject fixated inside the

boundary of the object. Moving the fixation outside the boundary

substantially impaired subject’s performance, but this impairment

cannot be explained by a lower visual resolution in the periphery.

The design of our experimental stimuli may be extended in future

studies. One may manipulate (i) the target 2D shape, (ii) support

ratio of the fragmented contour, (iii) the degree of similarity

between color inside and outside of the 2D shape, and (iv) the

texture pattern for the target shape and the background. These

characteristics represent conventional features that have been used

to study figure-ground organization.

We proposed a biologically-inspired boundary extraction

model combining contour-based processing with color-based

processing. The model was tested on the conditions with 20◦

jitter and its performance was similar to that of the subjects.

The main characteristic of the model is the use of the log-

polar representation which is known to be a good approximation

of the retinotopic mapping in the primary visual areas of the

brain. By performing shortest path optimization in the log-

polar representation, the model performed global optimization

to produce a boundary solution which is guaranteed to close.

The model integrated two contour-related features (distance of

interpolation and turning angle) and two color-related features

(color similarity and color contrast) in its cost function. More

specifically, the interaction between contour and color was

modeled using the concept of boundary directionality, where

the model encoded color as guided by contour-based cues. The

model produced reliable results comparable to that of subjects

with the two difficult conditions of no color and random

background when jitter was 20◦. We hope that these results will

stimulate further explorations of competing boundary extraction

models.

In order to reveal the relationship between contour and color,

our present study used synthetic images to increase the difficulty

of the task so that subjects would not perform at ceiling. Using

synthetic stimuli also allowed us to manipulate contour and color

cues independently to control the difficulty across conditions. Since

the model could replicate human contour-color interaction using

these difficult synthetic stimuli, one could expect that the model

should be able to extract boundaries using real world images, which

typically are easy for human observers. Without any additional

tuning of the model parameters, two versions of the model (no-

color and color) were applied to real images of furniture from

the Pix3D dataset (Sun et al., 2018). Specifically, we used the
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coefficients from the jitter 20◦ random-background condition,

which better resembled the amount of noise in real images. Two

sets of coefficients were tried: [1,0.4,0,0.8] from distortion k = 0.04

and [1,1.2,4,0] from distortion k = 0.08. Both sets of coefficients

produced similar outputs. Given an input image, an additional pre-

processing stage of edge detection was applied (Lee et al., 2014). The

no-color model received only the detected edges as input; whereas

the color model received additional color information associated to

the left and right regions of each edge. Fixation point was placed

inside the shape, and a random edge belonging to the target shape

was given as the initial edge. Figure 15 shows examples of themodel

output tested on five different categories of furniture: table, bed,

sofa, desk, and bookcase. The preliminary results suggest that the

model could be applied to a wide variety of real images. Future

studies could test the model generalizability by using real images

from different domains.

Another topic for future research is to integrate saliency

maps with the model. Because the model used the log-polar

representation, there is a requirement for the fixation point to

be placed inside the boundary of the target object. Previous

literature has suggested that humans use sophisticated attention

mechanisms to guide fixation, Schütz et al. (2011), one example

being the salience network for bottom-up processing. This

network integrates different features such as orientation, color,

or motion to create a saliency map which highlights the regions

in the image that are most relevant for fixation (for a review,

see Uddin, 2016).

Finally, the boundary extraction model could be used as a

front-end model for higher order visual processing such as 3-

dimensional (3D) object reconstruction. We already showed that

if the symmetry correspondence problem is solved, 3D shape

recovery can be accomplished (Pizlo et al., 2014). However, solving

3D symmetry correspondence for several objects in a 2D camera

image is computationally challenging, if possible at all. Restricting

the symmetry correspondence analysis to one object at a time will

be likely to produce acceptable solutions.

Data availability statement

Stimuli used for this study can be found on The Open Science

Framework: osf.io/fq5hu, further inquiries can be directed to the

corresponding author.

Ethics statement

The studies involving humans were approved by UCI

Institutional Review Board. The studies were conducted

in accordance with the local legislation and institutional

requirements. The participants provided their written informed

consent to participate in this study. Written informed consent

was obtained from the individual(s) for the publication of any

potentially identifiable images or data included in this article.

Author contributions

DH and ZP contributed to conception and design of the

study and contributed to manuscript preparation. DH collected

and analyzed psychophysical data, formulated the model, and

performed simulations. All authors contributed to the article and

approved the submitted version.

Acknowledgments

We thank Dr. Jordan Rashid for measuring the monitor color

gamut. We thank Mark Beers for his comments that improved

our stimuli. We also thank the editor and the reviewers whose

comments and suggestions allowed us to improve the paper.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Bednar, J. A., Signell, J., Kbowen, Chris, B., Sutherland, D., Stevens, J.-L., and Kats,
P. (2020). Holoviz/Colorcet: Version 2.0.2. Zenodo. doi: 10.5281/zenodo.3929798

Ben-Yosef, G., and Ben-Shahar, O. (2011). A tangent bundle theory for
visual curve completion. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1263–1280.
doi: 10.1109/TPAMI.2011.262

Elder, J. H. (2018). Shape from contour: Computation and representation.
Ann. Rev. Vision Sci. 4, 423–450. doi: 10.1146/annurev-vision-091517-0
34110

Field, D. J., Hayes, A., and Hess, R. F. (1993). Contour integration by the
human visual system: evidence for a local “association field”. Vision Res. 33, 173–193.
doi: 10.1016/0042-6989(93)90156-Q

Grossberg, S., and Mingolla, E. (1985). Neural dynamics of form perception:
boundary completion, illusory figures, and neon color spreading. Psychol. Rev. 92, 173.
doi: 10.1037/0033-295X.92.2.173

Hansen, T., and Gegenfurtner, K. R. (2009). Independence of color and luminance
edges in natural scenes. Vis. Neurosci. 26, 35–49. doi: 10.1017/S095252380808
0796

Kalar, D. J., Garrigan, P., Wickens, T. D., Hilger, J. D., and Kellman, P. J. (2010). A
unified model of illusory and occluded contour interpolation. Vision Res. 50, 284–299.
doi: 10.1016/j.visres.2009.10.011

Kimia, B. B., Frankel, I., and Popescu, A.-M. (2003). Euler spiral for shape
completion. Int. J. Comput. Vis. 54, 159–182.

Frontiers in Psychology 17 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1198691
https://osf.io/fq5hu
https://doi.org/10.5281/zenodo.3929798
https://doi.org/10.1109/TPAMI.2011.262
https://doi.org/10.1146/annurev-vision-091517-034110
https://doi.org/10.1016/0042-6989(93)90156-Q
https://doi.org/10.1037/0033-295X.92.2.173
https://doi.org/10.1017/S0952523808080796
https://doi.org/10.1016/j.visres.2009.10.011
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Hii and Pizlo 10.3389/fpsyg.2023.1198691

Kovács, I. (1996). Gestalten of today: Early processing of visual contours
and surfaces. Behav. Brain Res. 82, 1–11. doi: 10.1016/S0166-4328(97)81
103-5

Kovacs, I., and Julesz, B. (1993). A closed curve is much more than an incomplete
one: effect of closure in figure-ground segmentation. Proc. Nat. Acad. Sci. 90,
7495–7497. doi: 10.1073/pnas.90.16.7495

Kozma-Wiebe, P., Silverstein, S. M., Fehér, A., Kovács, I., Ulhaas, P., andWilkniss, S.
M. (2006). Development of a world-wide web based contour integration test. Comput.
Human Behav. 22, 971–980. doi: 10.1016/j.chb.2004.03.017

Kubovy, M., Holcombe, A. O., and Wagemans, J. (1998). On the lawfulness
of grouping by proximity. Cogn. Psychol. 35, 71–98. doi: 10.1006/cogp.1997.
0673

Kwon, T., Agrawal, K., Li, Y., and Pizlo, Z. (2016). Spatially-global integration of
closed, fragmented contours by finding the shortest-path in a log-polar representation.
Vision Res. 126, 143–163. doi: 10.1016/j.visres.2015.06.007

Lee, J. H., Lee, S., Zhang, G., Lim, J., Chung, W. K., and Suh, I. H. (2014).
“Outdoor place recognition in urban environments using straight lines,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). Hong Kong: IEEE,
5550–5557.

Macmillan, N. A., and Creelman, C. D. (2004). Detection Theory: A User’s Guide.
London: Psychology Press. doi: 10.4324/9781410611147

Marr, D. (2010). Vision: A Computational Investigation into the Human
Representation And Processing of Visual Information. Cambridge, MA: MIT Press.

Moore, E. F. (1964). Sequential Machines: Selected Papers. Reading, Massachusetts:
Addison-Wesley Longman Ltd.

Moutoussis, K. (2015). The physiology and psychophysics of the color-form
relationship: a review. Front. Psychol. 6, 1407. doi: 10.3389/fpsyg.2015.01407

Pinna, B., Brelstaff, G., and Spillmann, L. (2001). Surface color
from boundaries: a new ‘watercolor’ illusion. Vision Res. 41, 2669–2676.
doi: 10.1016/S0042-6989(01)00105-5

Pinna, B., Porcheddu, D., and Skilters, J. (2022). Similarity and dissimilarity in
perceptual organization: On the complexity of the gestalt principle of similarity. Vision
6, 39. doi: 10.3390/vision6030039

Pizlo, Z., Li, Y., and Sawada, T. (2014).Making aMachine That Sees Like Us. Oxford:
Oxford University Press, USA.

Rentzeperis, I., Nikolaev, A. R., Kiper, D. C., and van Leeuwen, C. (2014).
Distributed processing of color and form in the visual cortex. Front. Psychol. 5, 932.
doi: 10.3389/fpsyg.2014.00932

Rosenfeld, A., and Thurston, M. (1971). Edge and curve detection for visual scene
analysis. IEEE Trans. Comp. 100, 562–569. doi: 10.1109/T-C.1971.223290

Schlingensiepen, K.-H., Campbell, F., Legge, G. E., and Walker, T. (1986). The
importance of eye movements in the analysis of simple patterns. Vision Res. 26,
1111–1117. doi: 10.1016/0042-6989(86)90045-3

Schütz, A. C., Braun, D. I., and Gegenfurtner, K. R. (2011). Eye movements and
perception: A selective review. J. Vis. 11, 9–9. doi: 10.1167/11.5.9

Schwartz, E. L. (1977). Spatial mapping in the primate sensory projection:
analytic structure and relevance to perception. Biol. Cybern. 25, 181–194.
doi: 10.1007/BF01885636

Sharon, E., Brandt, A., and Basri, R. (2000). Completion energies and scale. IEEE
Trans. Pattern Anal. Mach. Intell. 22, 1117–1131. doi: 10.1109/34.879792

Singh,M. (2015). “Visual representation of contour and shape,” inOxford Handbook
of Perceptual Organization (Oxford Academic), 236–258.

Stahl, J. S., and Wang, S. (2007). Edge grouping combining boundary and region
information. IEEE Trans. Image Proc. 16, 2590–2606. doi: 10.1109/TIP.2007.904463

Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T., et al. (2018). “Pix3D:
Dataset and methods for single-image 3D shape modeling,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2974–2983.

Tanimoto, S., and Pavlidis, T. (1975). A hierarchical data structure
for picture processing. Comp. Graph. Image Proc. 4, 104–119.
doi: 10.1016/S0146-664X(75)80003-7

Taylor, J., and Xu, Y. (2022). Representation of color, form, and their
conjunction across the human ventral visual pathway. Neuroimage 251, 118941.
doi: 10.1016/j.neuroimage.2022.118941

Taylor, J., and Xu, Y. (2023). Comparing the dominance of color and form
information across the human ventral visual pathway and convolutional neural
networks. J. Cogn. Neurosci. 35, 816–840. doi: 10.1162/jocn_a_01979

Tyler, C. W., and Solomon, J. A. (2019). Color perception in natural images. Curr.
Opin. Behav. Sci. 30, 8–14. doi: 10.1016/j.cobeha.2019.04.002

Uddin, L. Q. (2016). Salience Network of the Human Brain. Cambridge, MA:
Academic Press.

Vergeer, M., Anstis, S., and van Lier, R. (2015). Flexible color perception depending
on the shape and positioning of achromatic contours. Front. Psychol. 6, 620.
doi: 10.3389/fpsyg.2015.00620

Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt II. Psychol.
Forsch. 4, 301–350. doi: 10.1007/BF00410640

Williams, L. R., and Thornber, K. K. (1999). A comparison of measures for detecting
natural shapes in cluttered backgrounds. Int. J. Comput. Vis. 34, 81–96.

Worley, S. (1996). “A cellular texture basis function,” in Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Techniques (New York, NY:
Association for Computing Machinery), 291–294.

Frontiers in Psychology 18 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1198691
https://doi.org/10.1016/S0166-4328(97)81103-5
https://doi.org/10.1073/pnas.90.16.7495
https://doi.org/10.1016/j.chb.2004.03.017
https://doi.org/10.1006/cogp.1997.0673
https://doi.org/10.1016/j.visres.2015.06.007
https://doi.org/10.4324/9781410611147
https://doi.org/10.3389/fpsyg.2015.01407
https://doi.org/10.1016/S0042-6989(01)00105-5
https://doi.org/10.3390/vision6030039
https://doi.org/10.3389/fpsyg.2014.00932
https://doi.org/10.1109/T-C.1971.223290
https://doi.org/10.1016/0042-6989(86)90045-3
https://doi.org/10.1167/11.5.9
https://doi.org/10.1007/BF01885636
https://doi.org/10.1109/34.879792
https://doi.org/10.1109/TIP.2007.904463
https://doi.org/10.1016/S0146-664X(75)80003-7
https://doi.org/10.1016/j.neuroimage.2022.118941
https://doi.org/10.1162/jocn_a_01979
https://doi.org/10.1016/j.cobeha.2019.04.002
https://doi.org/10.3389/fpsyg.2015.00620
https://doi.org/10.1007/BF00410640
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

	Combining contour and region for closed boundary extraction of a shape
	1 Introduction
	2 Psychophysical experiment
	2.1 Methods
	2.1.1 Stimuli
	2.1.1.1 Adding colors to edges

	2.1.2 Experimental conditions
	2.1.3 Subjects
	2.1.4 Procedure

	2.2 Results
	2.3 Discussion

	3 Control experiments
	3.1 Effect of distortion
	3.2 Fixation outside the egg
	3.2.1 Methods
	3.2.2 Results and discussion


	4 Model
	4.1 Model architecture
	4.1.1 Log-polar
	4.1.1.1 Cartesian to log-polar transformation

	4.1.2 Global optimization
	4.1.2.1 Defining a node in the graph
	4.1.2.2 Defining connections in the graph
	4.1.2.3 Cost of interpolation

	4.1.3 Producing closed contour as model output
	4.1.4 Decision module

	4.2 Selecting the parameters of the model
	4.3 Comparing the model to psychophysical results
	4.3.1 Control experiment: effect of jitter


	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


