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Brownian motion is a universal characteristic of colloidal particles embedded in a
host medium, and it is the fingerprint of molecular transport or diffusion, a generic
feature of relevance not only in physics but also in several branches of science and
engineering. Since its discovery, Brownian motion, also known as colloidal
dynamics, has been important in elucidating the connection between the
molecular details of the diffusing macromolecule and the macroscopic
information on the host medium. However, colloidal dynamics is far from
being completely understood. For instance, the diffusion of non-spherical
colloids and the effects of the underlying geometry of the host medium on the
dynamics of either passive or active particles are a few representative cases that
are part of the current challenges in soft matter physics. In this contribution, we
take a step forward to introduce a covariant description of the colloidal dynamics
in curved spaces. Without the loss of generality, we consider the case where
hydrodynamic interactions are neglected. This formalism will allow us to
understand several phenomena, for instance, the curvature effects on the
kinetics during spinodal decomposition and the thermodynamic properties of
colloidal dispersion, to mention a few examples. This theoretical framework will
also serve as the starting point to highlight the role of geometry on colloidal
dynamics, an aspect that is of paramount importance to understanding more
complex transport phenomena, such as the diffusive mechanisms of proteins
embedded in cell membranes.
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1 Introduction

Since the pioneering work of Einstein [1], Brownian motion has become the paradigm
for the description and understanding of a large variety of diffusion processes that are
present in numerous physical, biological, and chemical systems. In recent years, the
dynamics of macromolecules and nanoparticles on surfaces or curved spaces has been
the subject of intensive investigations, especially because particle diffusion shows a richer
dynamical behavior at different time scales [2, 3] than its counterpart in open and flat
geometries. In particular, diffusion plays a key role in the dynamics of molecular motors
moving along heterogeneous substrates [4], in the transport of biomacromolecules in the cell
due to crowding [5, 6], and in the lateral diffusion of proteins on fluctuating membranes [7,
8]. Membranes can be simplified as two-dimensional differentiable manifolds based on their
typical length scales. This approach allows us to describe many of its characteristics, such as

OPEN ACCESS

EDITED BY

Jasper Van Der Gucht,
Wageningen University and Research,
Netherlands

REVIEWED BY

Jan Karel George Dhont,
Helmholtz Association of German
Research Centres (HZ), Germany
Adriano Valdes-Gomez,
National Autonomous University of
Mexico, Mexico

*CORRESPONDENCE

Pavel Castro-Villarreal,
pcastrov@unach.mx

Ramón Castañeda-Priego,
ramoncp@fisica.ugto.mx

RECEIVED 12 April 2023
ACCEPTED 10 October 2023
PUBLISHED 15 November 2023

CITATION

Castro-Villarreal P, Solano-Cabrera CO
and Castañeda-Priego R (2023),
Covariant description of the colloidal
dynamics on curved manifolds.
Front. Phys. 11:1204751.
doi: 10.3389/fphy.2023.1204751

COPYRIGHT

© 2023 Castro-Villarreal, Solano-Cabrera
and Castañeda-Priego. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Brief Research Report
PUBLISHED 15 November 2023
DOI 10.3389/fphy.2023.1204751

https://www.frontiersin.org/articles/10.3389/fphy.2023.1204751/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1204751/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1204751/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1204751&domain=pdf&date_stamp=2023-11-15
mailto:pcastrov@unach.mx
mailto:pcastrov@unach.mx
mailto:ramoncp@fisica.ugto.mx
mailto:ramoncp@fisica.ugto.mx
https://doi.org/10.3389/fphy.2023.1204751
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1204751


the shape and dynamics, as if they were continuous pieces of
material [9–11]. As a result, particles that move along the
membrane due to certain underlying interactions can be
explained as the random motion of particles restricted to the
surface. Although this perspective might ignore relevant
molecular details, most of the diffusion properties of tiny
particles confined1 on surfaces depend strongly on the generic
features of the surface or, strictly speaking, on the surface
geometry [12]. Typically, particle dynamics is not only influenced
by geometrical features but also by local and thermodynamic
properties that experience the effects of the geometry of the
manifold where the particles are embedded [13–15]. In a more
general setting, the relevance of studying Brownian motion in
differential manifolds is due to its ability to describe the system
of Brownian particles with holonomic constraints that can model
their interactions with the medium that houses them, as explicitly
discussed in [16, 17] and recently in [18].

A great effort for understanding Brownian motion on surfaces can
be found in colloidal soft matter, where the dynamics of colloidal
particles on quasi-two-dimensional geometries have been both
experimentally and theoretically investigated by using optical
techniques such as digital videomicroscopy, computer simulations,
and theoretical approximations [19, 20]. Nonetheless, such
investigations deal basically with (almost) flat surfaces, i.e., without
including curvature effects. The interest in the use of colloids resides in
the fact that they are small (nanometer to micrometer-sized) particles
and typically are considered model systems because of other interesting
features [21]. Their characteristic time and length scales are
experimentally accessible, which allows us to follow the colloidal
dynamics and transport processes in real-time [21]. Furthermore,
since the colloidal interactions are relatively weak, colloids are highly
susceptible to external forces, and hence, their static and dynamical
properties can be controlled through the application of external fields or
by imposing geometrical restrictions. In other words, it is assumed that
the molecular forces holding particles to the manifold are stronger than
the forces between colloids (see, e.g., Ref. [21] and references therein).
Then, colloids represent an ideal model system to account for the effects
of geometry on the nature and dynamics of many-body systems.

In particular, it has already been demonstrated and
experimentally corroborated that the curvature dependence of a
fluctuating membrane affects the diffusion processes of molecules
on the membrane surface [22–24]. These geometrical effects,
although important, are still difficult to interpret. The lack of a
precise interpretation resides in the fact that, unfortunately, there is
not a unique way to define diffusion observables on a curved surface
(see, for instance [22, 23, 25]). The description of colloidal dynamics
in curved spaces is a non-trivial task; it represents a formidable
physical and mathematical challenge. Recently, one of us proposed
the generalization of the Smoluchowski equation on curved spaces
[26]. Furthermore, Castro–Villarreal also put forward different
geometrical observables to quantify the displacement of a single
colloidal particle [25]. Within this approach, it was shown that the
geodesic mean-squared displacement captures the intrinsic elements

of the manifold, whereas the Euclidean displacement provides
extrinsic information from the surface. An interesting extension
of the theory now provides the description of the motion of active
Brownian particles [27], where the mean-squared geodesic
displacement captures the relationship between the curvature and
the activity of the active colloid. This theoretical framework
provided evidence that an active Brownian particle experiences a
dynamical transition in any compact surface from amonotonic to an
oscillating behavior observed in the mean-squared geodesic
displacement [27]; a theoretical prediction of a dynamic
transition of this type can be established using a run-and-tumble
active particle confined on circle S1. This prediction was recently
corroborated in experiments using a non-vibrating magnetic
granular system (see, e.g., Ref. [28]). However, we still face
challenges in colloidal dynamics on curved manifolds, for
example, the generalization of this approach to the situation
where the colloids interact not only with other macromolecules,
i.e., direct forces, but also with the inclusion of all those geometrical
mechanisms originating from the curvature and to situations when
passive and active colloids are not just restricted geometrically but
also are immersed in a viscoelastic fluid [29]. Furthermore, the
transitions occurring in compact manifolds previously are examples
of a non-trivial recurrence. It would be interesting to approach the
problem from the perspective of dynamical system theory [30].

The aforementioned theoretical formalism has also allowed us to
determine the equation of motion of interacting colloids in curved
spaces; a generalized Ermack–McCammon algorithm has been
developed to study a broader class of transport phenomena in
curved manifolds [31]. Interestingly, the predictions of the particle
transport in non-Euclidean spaces have been partially corroborated in a
series of experiments [3, 24]; superparamagnetic colloids embedded in a
circle and subjected to external magnetic fields [3] and polystyrene
nanoparticles diffusing on highly curved water–silicone oil interfaces
[24]. However, further experimental, computational, and theoretical
studies are needed to better understand the rich diffusion mechanisms,
particle distribution, and thermodynamic properties that emerge in
colloidal dispersions when the curvature of the space plays an
important role.

From a rigorous mathematical perspective, the study of
stochastic processes on differential manifolds has a long history,
dating back almost a century ago. A. Kolmogoroff made a seminal
contribution to the covariant formulation of the Fokker–Planck (FP)
equation (32), which was further developed in [33, 34] by proving
the existence of solutions to the covariant FP equation and stochastic
differential equations in manifolds, respectively. In addition,
through different limiting cases reported in [35], when t → 0,
asymptotic expressions were observed for the probability density
function ρ(ξ, ξ′, t) in the cases of nearby and distant points [35].
These covariant versions of the Fokker–Planck equation are also
introduced in [36], where one can identify a Riemannian geometry
defined by a metric tensor given by the diffusion tensor [37], while a
recent formulation starting from a coordinate covariance and gauge
invariance in [38] was able to show the existence of a Langevin
equation with a space-dependent diffusion matrix, whose
corresponding Fokker–Planck equation is also given in a
covariant form. The covariant formulation of stochastic equations
has been further developed intensely during the last decade (e.g., see,
[18, 39]). In this work, we take a little step forward to develop a

1 For example, the size of the particles is significantly smaller than the
standard size of the membrane.
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covariant approach for a system of interacting colloidal particles in a
sub-manifold of the Euclidean space M ⊂ Rd+1 with dimension d
without the explicit inclusion of hydrodynamic interactions. The
physical scenario consists of N interacting colloidal particles moving
onM; particularly, we choose the case whenM is a curved surface with
d = 2, but the formulation derives the steps to generalize to other sub-
manifolds. There are four physical assumptions that we need to take
into account. To begin with, the shape of the sub-manifoldmust remain
constant over time. In addition, the interaction between colloids and the
molecules that constitute the sub-manifold (or the external field that
defines the sub-manifold) is stronger than the interaction between
colloids. The collective effects of the solventmolecules on the colloid are
described by a stochastic force that is defined in the Euclidean space
Rd+1. Finally, the size of the colloid is significantly smaller than the usual
lengths of the sub-manifold.

The article is structured as follows. Section 2 introduces the
covariant approach of the colloidal dynamics from a stochastic
differential equation in the Stratonovich sense. In particular, we
can simplify the equation for the N-particle system moving onM to
the equation of a one-particle system moving in a hyper-
dimensional manifold MN. Section 3 uses the covariant approach
to analyze the short-time behavior of the joint probability density
and the mean-squared displacement of a tagged particle from the
interacting system. Furthermore, we present two examples of a hard-
sphere system and the soft interaction to estimate the order of the
curvature when particles are confined to the sphere. In particular,
it presents an explicit expression for the mean-squared
displacement when the interaction is central. Lastly, Section 4
concludes with our remarks, challenges, and perspectives on the
future of soft condensed matter explicitly applying our covariant
approach.

2 Covariant approach of the colloidal
dynamics

As discussed previously, one of the main challenges in
understanding the effects of geometry on the dynamics of
colloids embedded in a curved space is to develop experimental
tools and theoretical frameworks that account for the transport
properties that occur on the manifold. In the following section, we
then provide the first preliminary steps to build a covariant
theoretical formulation of the dynamics of an interacting
colloidal system based on the many-body Langevin equation in
the so-called overdamped limit [31], which allows us to deduce a
Smoluchowski equation [40] for the interacting system on the
manifold. We should mention that, without loss of generality,
within this approach, hydrodynamic interactions are disregarded,
but their explicit inclusion will be reported elsewhere. Before starting
with the covariant formulation, let us introduce our notation. Let us
consider the colloidal system confined on a d − dimensional
manifold M embedded in a d + 1 − dimensional Euclidean space
Rd+1 and described with the parameterization X: U ⊂ Rd → Rd+1,
where a particular point in M is given by X(x), being
x ≡ (x1, x2, . . . , xd) ∈ U local coordinates of the neighborhood U.
Using the embedding function X(x), one can define a Riemannian
metric tensor by gαβ = eα ·eβ, where eα � ∂

∂xα X(x), with α = 1, . . . , d.
Further notions like normal vector, extrinsic curvature tensor, and

Weingarten–Gauss equations are introduced in Appendix A from
[25]. Typically, spatial dimensions of interest are d = 1 and d = 2.

As we have pointed out previously, our starting point to describe
the dynamics of colloids confined in a curved manifold is based on a
previous contribution [31], where the many-body Langevin
stochastic equations are posed in the overdamped regime, i.e., the
diffusive time scale, in local coordinates, is written as

_xα
i �

1
ζ
eα xi( ) · f i t( ) +∑

j≠i
F ij xi, xj( )⎡⎢⎢⎣ ⎤⎥⎥⎦, (1)

where ζ is the friction coefficient and with xα
i being the i − th

particle position with i = 1, . . . , N and _xα
i ≡

dxαi
dt . The quantity f i(t)

represents the collective effects of the solvent molecules on the
colloid, and it is expressed by a stochastic force over the ith-
particle, which satisfies the fluctuation–dissipation theorem in
the Euclidean space Rd+1, that is, 〈f i(t)〉 � 0 and
〈f i(t)f j(τ)〉 � 2ζkBT1δijδ(t − τ), where kBT is the thermal
energy with T being the temperature and kB the Boltzmann’s
constant. The term Fij(xi, xj) is the force that the ith-particle
experiences at the position xi and is due to the interaction with
the jth-particle located at the position xj. In Eq. 1, the tangent
vector eα ≡ ∂αX projects the dynamics on the tangent space
TX(M) since the dynamics is occurring intrinsically on the
manifold. Note that rising and lowering indices are carried out
by the standard fashion using the metric tensor to lowering
indices and inverse metric tensor gαβ for rising indices, for
instance, vα = gαβvβ for an arbitrary vector v.

In the present exposition, we adopt the consideration that Eq. 1
is a set of N stochastic differential equations in Stratonovich’s
sense [41],

dxα
i �

1
ζ
F α

i dt +
����
2D0

√
eαi,adWi,a t( ), (2)

where F α
i ≡ ∑j≠iF

α
ij, with Fα

ij as the tangent projection of the
interacting term Fij, and D0 = kBT/ζ is the collective-diffusion
coefficient. In addition, there is an implicit sum over the indices
a = 1, . . . , d + 1 to take into account the tangent projection with
the stochastic term in Eq. 1, which has been identified with a
Wiener process for each particle dWi(t) = (dWi,1(t), dWi,2(t), . . .,
dWi,d+1(t)), so that the total Wiener process dW(t) is such that
dim[dW(t)] = (d + 1)N. Since the dynamics occurs in the curved
space, the Wiener process should also be projected on it.
Therefore, we introduce a block diagonal projection operator
P̂ � diag(eα1,a, eα2,a, . . . , eαN,a), with eαi,a ≡ (eα(xi))a, where the
blocks are individual operators for each particle given by the
tensorial product on the basis of the tangent space and the basis
of the Euclidean space.

It is a well-known fact that given a set of differential
stochastic equation in the Stratonovich form, such as Eq. 2,
one can find its associate Chapman–Kolmogorov differential
equation for the joint probability density function
p: MN × R → R [41]. For this, we only have to identify the
components of the drift vector and the diffusion matrix,
which, in this case, are Aα

i � F α
i /ζ and Bα

i,a �
����
2D0

√
eαi,a,

respectively. Then, we obtain the following expression:

∂tp � −1
ζ
∑N
i�1

∂α F α
i p( ) +D0 ∑N

i�1
∂α eαi,a∂β eβi,ap( )[ ]. (3)
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In this equation, let us note that the partial derivation ∂α � ∂
∂xαi

depends on the index i, which is associated with the particle label.
Although this last equation has information on the geometry of the
surface through the tangent vectors, it is not written in a covariant
form yet. To this end, we define the probability density appropriately
normalized with the volume element dV � ∏N

i�1dv
i
g, where dvig is

the Riemannian volume element defined by dvig ≡ ddxi

�����
g(xi)

√
for

each particle. Thus, it is convenient to define a covariant joint
probability density function ρ(x1, . . . , xN; t) such as
p(x1, . . . , xN; t) � (∏N

i�1
�����
g(xi)

√ )ρ(x1, . . . , xN; t), where g(xi) is
the determinant of the metric tensor gαβ(xi). After this change
and using the Weingarten–Gauss equation mentioned previously,
Eq. 3 takes the following mathematical form:

∂tρ � −1
ζ
∑N
i�1

∇α,i F α
i ρ( )

+D0 ∑N
i�1

1��
g

√ ∂α gαβ ��
g

√
∂βρ + gαβρ ∂β

��
g

√ − ��
g

√ Γ]]β( )[ ],
where the covariant derivative acting on a vector field vα is ∇α,ivα �
1�
g

√ ∂α( ��
g

√
vα) using the coordinates of the i − th particle, and xα

i and
Γα]β are the Christoffel symbols [42]. Additionally, applying the
identity Γ]]β � ∂β log

��
g

√
and identifying that the Laplace–Beltrami

operator acts on the scalars Δg,i � ( ��
g

√ )−1∂α(gαβ ��
g

√
∂β) (also using

local coordinates, xα
i ), it is straightforward to obtain the desired

covariant expression:

∂tρ � D0 ∑N
i�1

Δg,iρ − 1
ζ
∑N
i�1

∇α,i F α
i ρ( ). (4)

Equation 4 represents the covariant formulation of the
Smoluchowski equation of a colloidal system of interacting
particles constrained to a curved space M, where all the
geometrical features are included in the Laplace–Beltrami
operator and the covariant derivative. This equation is reduced to
the standard Smoluchowski equation when the manifold M is the
open Euclidean spaceRd, where themetric tensor is gαβ = δαβ. Notice
that hydrodynamic interactions have not been included in the
derivation of Eq. 4.

Furthermore, one can write down Eq. 4 in a more compact form
that allows us to prove that both systems shown in Figure 1, that is,
the system of N interacting particles confined to a d-dimensional
manifold M, and the system of a single particle in an external force
confined to a D-dimensional manifold M represent equivalent
systems. For this purpose, let us define a hyper-dimensional
Riemannian geometry by N cartesian products of the manifold
M, that is, M � M × M ×/× M ≡ MN of dimension D � Nd,
where a local patch is described with the local coordinate
ξA � xα

i{ }, where the Greek superscript, α, describes the local
coordinate component, while the Latin subscript, i, describes the
particle and A � 1, . . . ,D. Now, this manifoldM is equipped with a
Riemannian metric defined through the following line element:

ds2 � ∑N
i�1

gαβ xi( )dxα
i dx

β
i , (5)

in terms of the metric tensor gαβ of the coordinates of each particle.
Thus, the metric tensor associated with the line element (5) for the
manifold M is given by the block diagonal matrix

GAB � diag(gαβ(x1), . . . , gμ](xN)). It is not difficult to see that
the covariant derivative compatible with the metric GAB for the
manifold M can be written as

A � ∇α,1,∇β,2, . . . ,∇μ,N( ), (6)
and the corresponding Laplace–Beltrami operator acting on scalars
is simply the sum of each Laplace–Beltrami operator:

ΔG � A
A � ∑N

i�1
Δg,i. (7)

Now, defining FA � (F α
1 ,F β

2 , . . . ,F μ
N) as the components of a

vector field at the point ξ ∈ M, it is straightforward to write down
the Smoluchowski equation for the full N − particle colloidal system
confined on the curved space (4) as

∂tρ � D0ΔGρ − 1
ζ
A FAρ( ). (8)

By expressing the Smoluchowski equation in this compact
manner, it is now clear in what sense one can interpret the
problem of the interacting colloidal system as the Brownian
motion of a single particle in an external field F but in a hyper-
dimensional spaceM. This identification was already implemented
in a previous contribution [43], where an interacting colloidal
system was studied on the line. Moreover, if we suppose that the
interaction forces encoded in FA can be written as FA � −∇AΦ,
where Φ is a certain interacting potential, one can see that the
expected equilibrium distribution is satisfied at long times, namely,
ρ(ξ, t) � 1

Ze
−βΦ(ξ), where Z is the partition function for the particle

system confined to the curved manifold:

Z � ∫ ∏N
i�1

dvig⎛⎝ ⎞⎠e−βΦ ξ( ), (9)

where β = 1/(ζD0) = 1/(kBT). Let us note that the expression of this
partition function can also be obtained by integrating the
momentum pα

i variables from the Boltzmann weight using the
Hamiltonian H � ∑N

i�1 1
2mp

α
i gαβ(xi)pβ

i + Φ(ξ). Usually, the
potential Φ(ξ) is considered a pairwise additive; thus, one can
carry out the usual cluster diagrammatic expansion for the
colloidal system in the curved space in equilibrium conditions [12].

Consequently, Eqs (4) and (8) represent the starting point of a
covariant description, without the inclusion of hydrodynamic forces
that allows us to study in detail the colloid dynamics in curved
spaces. In the following paragraphs, we will discuss some
applications of this formulation and highlight some challenges
and future perspectives that can be tackled within this approach.

3 Application of the covariant
approach: general behavior of the
short-time dynamics in a dilute
colloidal system

In this section, we study an application of the advantage of
deriving the Smoluchowski equation in curved spaces in a covariant
formulation (8). This consists in providing a general behavior of the
joint probability density function at the short-time regime, or
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equivalently, in a neighborhood around a point of the manifoldM.
This calculation allows us to determine the short-time expansion of
the self-diffusion coefficient; this is carried out in the following
section by calculating the mean-squared displacement at the short-
time regime. Since M is a Riemannian manifold with the metric
tensor GAB, one can explore the curvature effects on the colloidal
interacting system using the Riemann normal coordinates
(RNC) (see, e.g., Refs. [42, 44, 45]) in the neighborhood of a
point p ∈ M in an entirely analog manner as it has been
performed for a single particle [26]. To derive an approximate
expression for the joint probability density function (PDF) at a
short time, it is common to write the Smoluchowski Equation 8
as a heat-kernel equation:

∂t + Ô( )ρ ξ, ξ′, t( ) � 1��
G

√ δ ξ − ξ′( )δ t( ), (10)

where ρ(ξ, ξ′, t)dV is the probability to find a diffusing particle in
the hyper-volume element dV centered in ξ, at time t, when the
particle started in ξ′ at t = 0. The operator Ô is defined as
Ô � −D0ΔG + 1

ζA(FA·). At the initial condition, t → 0, the
PDF acquires the form of a Dirac delta:
ρ(ξ, ξ′, t → 0) � 1�

G
√ δ(ξ − ξ′). This initial condition establishes

that the system is at the configuration ξ′ at the starting time.
Then, by performing a Fourier transform on the time parameter,
the aforementioned equation can be written as
(iE + Ô)ρ(ξ, ξ′, E) � δ(ξ − ξ′)/ ��

G
√

, where E is the time-conjugate
Fourier variable. We should remark that ρ(ξ, ξ′, t) is equal to ρ(ξ, t)
with the initial condition that ξ = ξ′ at time t = 0.

In the following section, we use the DeWitt procedure [46], that
is, we first separate the points to write the term

��
G

√
in front of the

Dirac delta as the expression
��
G

√
→ G

1
4(ξ)G1

4(ξ′). Now, we redefine
the PDF as �ρ(ξ, ξ′, t) � G

1
4(ξ)ρ(ξ, ξ′, t)G1

4(ξ′). Thus, after some
algebraic rearrangements, Eq. 10 can be rewritten as

iE + Ĥ( )�ρ ξ, ξ′, E( ) � δ ξ − ξ′( ), (11)

where Ĥ � G
1
4 ÔG−1

4, or explicitly, this operator has the following
mathematical form:

Ĥ � −D0

∂AGAB∂B + G−1
4∂A G

1
2GAB∂BG−1

4( )
−β ∂A FA·( ) + 1

4G
−1 ∂AG( )FA( )⎡⎢⎣ ⎤⎥⎦. (12)

Next, we take the advantage of the fact that the Smoluchowski
equation is invariant under a general coordinate transformation.
Thus, we choose Riemann normal coordinates (RNC) yA in a local
neighborhood Nξ′ ∈ M centered at ξ′. In RNC, the neighborhood
Nξ′ looks like Euclidean space, so we choose ξ′ to be the origin of this
Euclidean space2. The advantage of these coordinates is that one can
express the metric tensor as GAB � δAB + 1

3RACDB yCyD +/ ,
where RACDB is the Riemann curvature tensor of M evaluated
at ξ′. In addition, we express the interaction terms in a Taylor
expansion around the origin of the neighborhood FA(ξ) �
(FA)(ξ′) + (BFA)(ξ′)yB + 1

2 ( BCFA)(ξ′)yByC +/ , where
the coefficients are evaluated at point ξ′.

In the subsequent section, we have all the pieces to split the
operator (12) as Ĥ � Ĥ0 + ĤI, where

Ĥ0 � D0p̂
2 − D0

6
R +D0βAFA, (13)

is a free “Hamiltonian” and

ĤI � D0β BAFA − 1
6
RBAFA( )yB − D0β

6
RBACFA( )yByC

+ iD0βFAp̂A + iD0β BFA( )yBp̂A

+ i
D0β

2
BCFA( )yByCp̂A − D0

3
RCABD p̂AyCyDp̂B,

(14)
an interacting “Hamiltonian,” where we have defined a “momentum
operator” as p̂A � −i∂A in an analogy with quantum mechanics.
Now, the solution for the probability density function can be

FIGURE 1
Left: Schematic representation of a set of particles embedded in amanifoldM of dimension d. The position of the particles is given by the embedding
function X(xi), and the force between particles depends on the Euclidean distancemeasured inRd+1. Right: Schematic representation of a single particle in
the manifold M � MN . The particle is carried by the projection over the tangent space of an external force given by a vector field FA . Although both
situations, left and right, seem to represent different systems, they represent exactly the same physical problem.

2 Indeed, starting from the geodesic equation of Riemannian geometry M
with the metric GAB, one is able to express the coordinate ξA in a series
expansion in powers of the geodesic length s around a certain point ξ′A on
M, i.e., ξA � ξ′A + cAs − 1

2ΓA BCc
BcCs2 +/ , where cA are constants defined

at the point ξ′A. Thus, if one defines yA = cAs, one can establish a coordinate
transformation given by yA � ξA − ξ′A + fA(ξB − ξ′B), where fA is a series
involving the second and higher powers of ξB − ξ′B. It is clear that the
equation yA = cAs represents the geodesic curves in the new coordinate
system. Currently, since they are straight lines, the new coordinate system
looks like an Euclidean space [44]. Furthermore, one can show that these
coordinates can be defined alternatively by the equationsGAB(ξ′) = δAB and
yAyBΓC AB(y) � 0 [44, 45].
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obtained by identifying δ(ξ − ξ′) � 〈ξ|ξ′〉 and solving Eq. 11 as
follows: �ρ(ξ, ξ′, E) � 〈ξ|K̂|ξ′〉, where K̂ � 1/(iE + Ĥ) is the
resolvent operator. Next, we carry out a standard perturbation
theory at the first order again in an entire analogy with quantum
mechanics: Thus, the approximation of the resolvent operator
through the perturbation theory is K̂ � K̂0 + K̂0ĤIK̂0 +/ . At
this approximation, there are just six terms to evaluate,
corresponding to the quantities of the form
Ii(ξ, ξ′) � 〈ξ|K̂0ÔK̂0|ξ′〉, with i = 1, . . . , 6, where Ôi is one of
the six terms: yB, yByC, p̂A, yBp̂A, yByCp̂A, and p̂AyCyDp̂B,
respectively. Since K̂0 depends just on the “momentum operator”
p̂, it is convenient to introduce two completeness relations using the
momentum basis {|p〉} to compute the contributions from the
interacting Hamiltonian. Hence, one can write

Ii ξ, ξ′( ) � ∫ dDp

2π( )D ∫ dDq K0 p, α*( )eiξ·p〈p Ôi

∣∣∣∣∣ ∣∣∣∣∣q〉K0 q, α*( )e−iξ′·q,
(15)

where α* � −D0
6 R +D0βAFA and K0(p, α) = 1/(iE., + D0p

2 + α)
are simply functions of the value of the “momentum” p � �����

pApA
√

and energy E. In addition, we have used the transformation from the
position to the momentum basis as usual 〈ξ|p〉 � eiξ·p/(2π)D2 . We
should recall that we have chosen ξ′ = 0 as the origin of the
neighborhood Nξ′; this allows us to simplify the calculation of the
integrals Ii(ξ, ξ′). In Supplementary Appendix S4.1, we explicitly
explain the procedure implemented to evaluate these integrals. After
a straightforward calculation, the short-time approximation for the
probability density function ρ(ξ, 0, t) of the full interacting system
can be written as

��
G

√
ρ ξ, 0, t( ) � 1

4πD0t( )D/2
e−

ξ2

4D0t 1 + τ 0( ) + τ 1( )
B ξB + τ 2( )

BCξ
BξC +/{ },

(16)
where the terms τ(0), τ(1)B , and τ(2)BC are tensors given by

τ 0( ) � D0t( ) 1
6
R − 1

2
βAFA[ ], (17)

τ 1( )
B � β

2
GBA 1 +D0t

R
6
− βCFC( )( ) + D0t

6
RBA + GBAΔG − 16BA( )[ ]FA,

(18)

τ 2( )
BC � β

4
1 +D0t

R
6
− βAFA( )( )BFC − 2D0t

9
RBACFA[ ]

− 1
12

1 +D0t
R
6
− 1
2
βCFC( )( )RBC. (19)

Equation 16 represents the probability distribution function of
the interacting particle system at the short-time regime3; it can be
appreciated that the leading term, ρ0(ξ, 0, t) ≡ exp[−ξ2/
(4D0t)]/(4πD0t)D/2, is given by the Gaussian probability density
valid for a very dilute system, while the sub-leading terms capture
the corrections due to the curvature effects and interactions. One

should notice that the joint probability distribution function has the
same structure as the one developed in the asymptotic limit as t
approaches zero for near points [35].

The expectation values of the observables can be calculated using
the standard definition 〈O(ξ)〉 � ∫MdDξ

��
G

√
ρ(ξ, 0, t)O(ξ). Within

the approximation given by Eq. 16, the expectation values can be
estimated in the short-time regime using expectation values 〈O(ξ)〉0
with the leading term ρ0(ξ, 0, t); in other words,
〈O(ξ)〉 � 〈O(ξ)〉0(1 + τ(0)) + τ(1)B 〈ξBO(ξ)〉0 + τ(2)BC〈ξ

BξCO(ξ)〉0+
/ . Expectation values of polynomial observables are particularly easy
to compute due to the Gaussian structure of ρ0(ξ, 0, t).

We are interested in the calculation of the mean-squared
geodesic displacement 〈s2〉, where s �

�������
δABξ

AξB
√

is the geodesic
displacement in RNC. In addition, it is interesting to calculate the
expectation value of the coordinate itself ξB. For these expectation
values, it is not a very difficult task to show by means of the standard
calculation of the moments of a Brownian motion in a
D-dimensional space that 〈1〉0 � 1, which is consistent with the
normalization of the leading distribution ρ0(ξ, 0, t) also, it can be
shown that the odd products are 〈ξA1ξA2/ξA2k−1〉0 � 0, for any
positive integer k, and for even products
〈ξB〉0 � 〈ξBξ2〉0 � 〈ξBξCξA〉0 � 0, 〈ξAξB〉0 � 2D0tGAB, and
〈ξAξBξ2〉0 � 4(D + 2)(D0t)2GAB, where GBC is evaluated at ξ′.
Since the previous approximation neglects the quadratic
curvature effects that correspond to pre-factors of order (D0t)3
in the mean-squared displacement [26], we only present the result
up to order (D0t)2; an alternative method for the calculation of the
moments is given in Supplementary Appendix 4.2. This means that
we basically neglect the linear terms of D0t in τ(2)BC . Thus, the mean-
squared displacement for the full N-particle system is given by

〈s2〉 � 2DD0t − 2
3
R − 2βAFA[ ] D0t( )2 +/ . (20)

One can notice in Eq. 20 that in the absence of the interaction
term, that is, whenFA � 0, the mean squared displacement reduces
to the previous result proportional to (D0t)2 [26]. In addition, it is
not difficult to elucidate that the subsequent correction of order
(D0t)3 involves pre-factors where curvature and interactions are
coupled, for instance, terms proportional to RAFA and
RBACFA from the tensor τ(2)BC appeared as pre-factors; the
cubic correction will be computed elsewhere in a future
communication. In addition, note that similar terms appear in
the expectation value of ξB, 〈ξB〉 � 2D0tτ

(1)
B .

One can notice that in the absence of the curvature, 〈ξB〉 reduces
to the well-known term βD0tFB, which establishes, on average, a
preferential direction of the Brownian motion. In addition, this
equation shows how the curvature is coupled to the interaction term
within (D0t)2 approximation. Finally, given an interacting force Fij
and specific sub-manifold M ⊂ Rd+1, one can compute the mean-
squared displacement for a tagged particle of the colloidal system by
defining MSD(t) � 1

N 〈s2〉, which is a quantity that can be easily
calculated in dynamic-like simulations [21].

For practical purposes, we will provide an explicit expression
for the mean-squared displacement of a tagged particle in the
interacting system. We can utilize the fact that the big metric GAB

can be viewed as a block diagonal matrix, which enables us to
express the Ricci curvatureR of the big manifoldM as the sum of
the curvatures of the physical manifold M. Additionally, we will

3 Notably, one can show that ρ(ξ, 0, t) is a normalized order by order in the
perturbation theory of powers of (D0t)2. Indeed, using the
aforementioned expectation values, 〈1〉 � 1 + τ(0) + 2D0tτ(2) , where
τ(2) � GABτ(2)AB . Thus, at the first order in D0t, one
has 〈1〉 � 1 + (D0t)[16R − 1

2 βAFA] − 1
6D0tR + β

2D0tAFA ≈ 1.
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apply the explicit expressions for FA and the covariant derivative
A to write AFA � ∑N

i�1∇α,iF α
i . Moreover, using F α

i � eα(xi) ·∑j≠iFij and the Weingarten–Gauss equation ∇αe
α = −Kn, one can

calculate the expression straightforwardly as

MSD t( ) � 2dD0t

− 2
3N

∑N
i�1

Rg xi( ) − 2β
N

∑N
i,j

eα xi( ) · ∂α,iFij −K xi( )n xi( ) · Fij( )⎡⎢⎢⎣ ⎤⎥⎥⎦
D0t( )2 +/ , (21)

It can be observed that unlike the Brownian motion of a single
particle [26], where the curvature effects are solely intrinsic, in an
interacting particle system where the interaction happens in
Euclidean space, extrinsic curvature terms are introduced by the
mean curvature K in the geodesic mean-squared displacement. As
an additional observation, we should comment that the
aforementioned result (21) is consistent with the standard result
for flat surfaces with Rg = K = 0 [47].

In the following paragraphs, we present two illustrative
examples that will highlight the importance of the geometry on
the particle diffusion.

Example 1: We now provide the estimation of the order of the
curvature effect for a dilute hard-sphere gas on a spherical surface.
According to [40], the equation of motion for the density of hard-
sphere-like Brownian particles (that might include smooth
inhomogeneities) at low concentrations, ϕ, is given by the
effective diffusion equation ∂ρ/∂t = D∇2ρ, where the self-diffusion
coefficient of gas of hard-spheres, D gas (at low concentrations), is
given by D = D0(1 + α∇ϕ), where α∇ ≃ 1.55 is a number obtained by
considering hydrodynamic interactions (e.g., see chapter 6 of [40]).
If one constrains the particles to diffusive exclusively on a curved
surface, one expects, at least at the short-time regime, that one just
needs to replace the Laplacian ∇2 by the Laplace–Beltrami Δg

operator associated with the surface. Thus, the geodesic-mean
squared displacement is of the form 〈s2〉 � 4Dt − 2

3Rg(Dt)2 +/ .
Then, the short-time self-diffusion coefficient take the mathematical
formDeff � D(1 − 1

6Rg(Dt) +/ ). Now, taking τ as the typical time
that a particle diffuses a distance of the order of its own size, such as
D0τ ≃ σ2, where σ is the diameter of the particle, and a spherical
surface of radius R, i.e., its curvature is Rg = 2/R2, one can
immediately estimate the curvature effects as follows:

1
6
Rg Dτ( ) ≃ σ2 1 + α∇ϕ( )

3R2
. (22)

Let us take particularly the values R/σ = 10, α∇ = 1.55 [40] and a
packing fraction of ϕ ≃ 0.1; thus, one has 1

6Rg(Dτ) ≃ 10−3. In
addition, if the diffusing distance (~ ����

D0τ
√ ) increases, the

curvature effects will be notorious.
Example 2: We now provide an illustrative example for

interacting particles confined on a sphere S2. Let us first
consider a generic force Fij = f(rij)rij, where rij is the distance
between the particles in the Euclidean space R3 and rij is a vector
from particle j to particle i; consequently Fij is the force of particle
j acting on particle i. Since particles are confined to the sphere,
the vector rij = Xi − Xj, where Xi is the embedding function of the
i − th particle. Since the manifold is the sphere, we have the
following advantages Xi = Rn(xi), where xi = (θi, φi) with θi and φi

being the usual spherical coordinates for the i − th particle, and R

is the radius of the sphere. Notably, the distance between the
particles can be written as rij �

�
2

√
R(1 − cos γij)

1
2, where cos γij �

cos θi cos θj + sin θi sin θj cos(φi − φj). In addition, the curvatures
Rg(xi) � 2

R2 and K(xi) � 2
R are independent from the coordinates;

thus, the expression for the mean-squared displacement can be
written as

MSD t( ) � 4D0t − 4
3

D0t( )2
R2

− 2β
N

∑N
i,j

1
2
f′ rij( )rij 1 + cos γij( ) + 2f rij( )cos γij[ ] D0t( )2 +/.

(23)

Notably, βf(r) � −1
r

d
dr (βu(r)) has units of inverse of square

length, where u(r) is the pair potential. To be concrete, we use the
soft potential u(r) defined by βu(r) � (σe/r)6 to compare with the
previous results [31]. For this case, it is not difficult to see that f′(r)
r = −8f. Then, one obtains the expression:

MSD t( ) � 4D0t − 4
3

1 + 9
8N

σe
R

( )6

I N; γij{ }( )[ ] D0t( )2
R2 +/,

(24)
where I(N; γij{ }) is defined by

I N; γij{ }( ) ≔ ∑N
i,j�1

2 + cos γij

1 − cos γij( )4. (25)

In addition, note that the value of the ratio σe/R depends on the
strength of the interaction potential. Now, we carry out a numerical
bound of the finite sum (25) as follows: note that first I(N; γij{ }) is a
positive number, second, we used cos γij < 1, and third if σ/R is the
minimal angle γij between two colloids on the sphere, thus
(1 − cos γij)−4 < (1 − cos σ

R)−4. Then, one should follow the
following condition: I(N; γij{ })< 3N2(1 − cos σ

R)−4. Thus, the
contribution obtained from interactions obeys

9
8N

σe
R

( )6

I N, γij{ }( )< 27N
8

σe
R

( )6 1

1 − cos σ
R( )4. (26)

Now, using the valueN = 10, weak interaction σe
R � 10−2, and R =

10σ (see, e.g., Ref. [31]) one obtains 9
8N(σe

R)6I(N, γij{ })< 10−2.
Therefore, in this case, the curvature effects are visibly more
pronounced.

4 Concluding remarks, challenges, and
perspectives

The covariant form of Smoluchowski Eq. 4 opens up the
possibility of developing a theoretical framework to study
different interesting phenomena that cannot be understood with
the standard statistical mechanics approximations based on a
Euclidean formulation. For example, one of the topics that can
be tackled with this approach is the initiation of the spinodal
separation of particles interacting with short-ranged attractive
forces and constrained to curved space in an analogy with the
procedure presented by Jan Dhont in the case of Euclidean space
[40]. Following these ideas, we need to convert Eq. 4 into an
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expression for the probability density of one particle instead of the
joint probability of all the particles. To this end, it is necessary to
perform a hierarchy of equations that allows us to marginalize the
joint probability density function. Once the reduced Smoluchowski
equation is obtained, it is necessary to take advantage of the short-
range interactions to relate out-of-equilibrium phenomena with
their counterparts in equilibrium. The connection between both
cases, as usual, is made through approximations concerning the
equilibrium values; at this point, there exists a wide range of ways to
proceed. For instance, a perturbation approach can be combined
using Riemann normal coordinate formalism, Monge’s
parameterization, or covariant Fourier series to calculate all the
relevant observables. On the other hand, a covariant Taylor
expansion [48] approach can also be performed to compare the
results with their flat counterparts [40].

In addition, the covariant formalism provided by Eq. 4 can be
straightforwardly used to highlight the role of the geometry on the
equilibrium equation of the state of colloidal dispersions embedded in a
curved space, to elucidate the geometrical contributions during the
onset of non-equilibrium states, such as gels and glasses, to study the
dynamics of either passive or active colloidal particles onmanifolds, and
to investigate the curvature effects on the structural, kinetic, and phase
transitions of attractive colloids, tomention a few examples of interest in
the colloidal soft matter domain. Asmere speculation andmotivated by
the recent contribution presented in [28], the formalism here presented
can also be considered to study the dynamics of granular matter in
curved manifolds.

Two aspects that need to be considered toward the extension of
the covariant description of the Smoluchowski equation are the
generalization of the fluctuation–dissipation theorem and the
inclusion of the hydrodynamic interactions in the manifold. Here,
we considered that the former is satisfied in Euclidean space and that
the latter are completely neglected. However, both aspects are
definitely crucial to account for the dynamical properties on the
manifold since they are also intimately related to the onset of non-
equilibrium states. Furthermore, this theoretical framework can be
extended to include rotational motion in the manifold to consider
cases where the particles are anisotropic in nature, i.e., anistropic
particles, such as rods, and not all the orientations are independent in
the case of board-like colloids or even in those physical situations
where anisotropy is associated with the particle interaction, like in
patchy colloids.

Finally, we should mention that the covariant compact form
of Smoluchowski Eq. 8 allowed us to obtain an expression for the
joint probability density function for the full system in the short-
time regime. The method implemented can be extended to
capture corrections of the order of (D0t)3. The short-time
expression of the PDF can be used to give the curvature
effects in the mean-squared displacement and the search role
of the coupling between the curvature and the interactions; for
instance, using this procedure, we can choose a specific
interaction force and specific manifold M and give an
estimation of the mean-squared geodesic displacement of a
tagged particle of the colloidal system at short times.
Moreover, the short-time expression of the PDF (16) can also
serve to define a computational scheme to study the behavior of
the full system using a Monte Carlo dynamics simulation that
considers curvature effects. Additionally, the covariant compact

form (8) allows us to formulate the N-particle system using a
Feynman path integral representation, following the steps
already implemented in [43]. Last but not the least, the study
of some limiting cases of Eqs 4, 8 will also serve as a benchmark to
computational or molecular simulation schemes adapted to study
the behavior of colloids in non-Euclidean spaces.
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