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Humans and other animals can maintain constant payoffs in an uncertain 
environment by steadily re-evaluating and flexibly adjusting current strategy, 
which largely depends on the interactions between the prefrontal cortex (PFC) and 
mediodorsal thalamus (MD). While the ventromedial PFC (vmPFC) represents the 
level of uncertainty (i.e., prior belief about external states), it remains unclear how 
the brain recruits the PFC-MD network to re-evaluate decision strategy based on 
the uncertainty. Here, we leverage non-linear dynamic causal modeling on fMRI 
data to test how prior belief-dependent activity in vmPFC gates the information 
flow in the PFC-MD network when individuals switch their decision strategy. 
We  show that the prior belief-related responses in vmPFC had a modulatory 
influence on the connections from dorsolateral PFC (dlPFC) to both, lateral 
orbitofrontal (lOFC) and MD. Bayesian parameter averaging revealed that only the 
connection from the dlPFC to lOFC surpassed the significant threshold, which 
indicates that the weaker the prior belief, the less was the inhibitory influence of 
the vmPFC on the strength of effective connections from dlPFC to lOFC. These 
findings suggest that the vmPFC acts as a gatekeeper for the recruitment of 
processing resources to re-evaluate the decision strategy in situations of high 
uncertainty.
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Introduction

The prefrontal cortex (PFC) consists of several regions that are thought to play an important 
role in flexible decision-making. The dorsolateral PFC (dlPFC) is assumed to support executive 
functions (Jones and Graff-Radford, 2021), whereas the orbitofrontal cortex (OFC) appears to 
be involved in the flexible adaptation of behavior (Schoenbaum et al., 2021; Wang et al., 2023). 
The ventromedial PFC (vmPFC) was shown to be associated with the estimation of the value 
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and saliency of sensory events and thereby guides value-based 
decision-making (Dundon et al., 2021). Interactions between these 
regions are thought to implement a variety of functions relevant to the 
flexibility by which cognitive resources are deployed. Interaction 
between medial PFC and the anterior cingulate cortex, for instance, 
are thought to contribute to the updating of beliefs about higher-order 
contextual associations (Botvinick et al., 1999, 2001; Sarafyazd and 
Jazayeri, 2019), whereas the interplay between OFC and vmPFC 
appears important for the prediction of value-based behavioral 
changes (Howard et al., 2016).

Recent studies in animals (Halassa and Kastner, 2017; Saal et al., 
2017; Schmitt et al., 2017; Mukherjee et al., 2021) and humans (Hwang 
et  al., 2017; Wen et  al., 2021) revealed compelling evidence that 
cognitive flexibility also depends on interactions between distinct PFC 
subregions and the mediodorsal nucleus of the thalamus (MD). These 
studies have provided a complementary perspective on thalamic 
function challenging the classical notion of the thalamus as a sensory 
relay (Sherman, 2016). Combining hierarchical Bayesian modeling 
with fMRI in humans, we  recently unveiled distinct prefrontal 
connections targeting the MD in relation to the participant’s prior 
belief during associative learning (Wang and Pleger, 2020). The 
surprise about an unexpected outcome lowered the prior belief about 
the sample-target association and hence triggered a switch of the 
decision strategy through modulations of connections between MD 
and lateral OFC (Wang and Pleger, 2020). These findings are supported 
by neuronal recordings obtained from mice. When mice decided 
between different sets of learned cues that directed attention to either 
visual or auditory targets, responses from the medial PFC reflected 
both, the individual cue as well as its importance as a task-rule (Rikhye 
et  al., 2018a). The MD, on the other hand, appeared to facilitate 
switching between cueing contexts by supporting or suppressing task-
associated representations in the PFC (Schmitt et al., 2017; Rikhye 
et al., 2018a; Mukherjee et al., 2021). Importantly, clinical studies also 
showed that focal lesions in associative thalamic structures can lead 
to psychosis, particularly if interactions with prefrontal cortical 
regions become dysfunctional (Schmitt and Halassa, 2017; Mukherjee 
and Halassa, 2022; Anticevic and Halassa, 2023). Together, these 
findings from mice and humans emphasize crucial prefrontal-MD 
computations necessary for learning stimulus-incentive associations.

We recently refined a previously developed computational 
prefrontal-MD model, inspired by cell recordings obtained from 
mice (Rikhye et al., 2018a), and trained it on human empirical data 
to test whether the re-evaluation and adjustment of the decision 
strategy in both species follow the same computational principles 
(Hummos et  al., 2022). We  found that the MD learned abstract 
representations of its cortical inputs through biologically plausible 
Hebbian learning rules. Direct feedback from MD to prefrontal 
cortex supported switching between behavioral strategies, while 
lateral OFC (lOFC) constantly accumulated evidence for a strategy 
switch based on rapid Bayesian estimation. Following these 
computational rules, our human fMRI results revealed that lOFC 
directed its outputs to MD, rendering MD as the brain site which 
dynamically integrates crucial inputs relevant for forming the 
behavioral strategy. These abstract MD representations and their 
ability to reorganize prefrontal computations describes an efficient 
way how the brain utilizes the MD to integrate inputs from other 
brain regions and to dynamically select between competing 
behavioral strategies (Hummos et al., 2022).

Another prefrontal region, the vmPFC, was shown to encode the 
beliefs about outcome values, which represents an intermediate signal 
required for efficient prefrontal-MD computations underpinning the 
re-evaluation of decision strategy. In our prefrontal-MD model 
(Hummos et  al., 2022), we  directed the vmPFC output on the 
executive dlPFC, as the most relevant receiver of value-related 
information, but this dlPFC-vmPFC interaction was not directly 
supported by empirical evidence. Using bilinear Dynamic Causal 
Modeling (DCM), we could not directly model the vmPFC as an 
additional hub in the prefrontal-MD network since the vmPFC was 
not among the regions involved in decision switches. In the present 
study, we therefore applied non-linear DCM, which allowed us to 
capture the non-linear history of prior synaptic activity (Stephan et al., 
2008), and hence the modulatory (second-order) effects of prior 
belief-dependent responses in vmPFC on the gain of activity within 
the prefrontal-MD network. We re-analyzed our previously collected 
fMRI dataset and combined Bayesian hierarchical modeling with 
non-linear DCM on fMRI data to test how prior belief-related activity 
in the vmPFC tunes functional couplings in the dlPFC-lOFC-MD 
network during the adjustment of the decision strategy.

Materials and methods

Participants and associative learning task

The analyses in this study were based on the previously collected 
dataset from 28 healthy human participants (mean age ± SD: 
25.3 ± 3.9 years, only male participants). The study was approved by 
the local ethics committee of the Ruhr-University Bochum. All 
participants gave written informed consent prior to participation. 
Demographics and the experimental design were described in more 
detail elsewhere (Supplementary Figure S1; Wang et al., 2020; Wang 
and Pleger, 2020; Hummos et al., 2022).

In each trial, participants first received one out of two tactile cues 
for 500 ms to the tip of their right index finger using an 
MRI-compatible Braille piezo stimulator with 8-pins (2 × 4 array) 
(Metec, Stuttgart, Germany). Subsequently, they had to predict (within 
1,300 ms) whether the following tactile stimulus (i.e., target) will show 
the same pattern (e.g., 4 upper pins lifted) or the alternative pattern (4 
lower pins lifted) by pressing one of two buttons (LumiTouch keypads, 
Photon Control) with the index or middle finger of the left hand. After 
an interval of 500-1500 ms (jitter), the target was presented for 500 ms 
which indicated whether the preceding prediction was correct or 
incorrect. A variable delay of 1,500–3000 ms separated trials. The 
predictability of the target stimulus was modulated by the strength of 
the sample–target contingency over time [i.e., strongly predictive 
blocks (90 and 10%), moderately predictive (70 and 30%), and 
non-predictive (50%) blocks; either 30 or 40 trials per block to avoid 
predictability of the block onsets]. The order of blocks was 
pseudorandomized and fixed across participants to ensure inter-
subject comparability of the learning process. The fMRI experiment 
consisted of 350 trials in total, which were split into three runs, each 
lasting about 10 min.

In order to examine the flexibility in decision-making, we tested 
the adjustment of the decision strategy, i.e., whether the statistical 
property of the environment (sample stimulus matches or 
mismatches target stimulus) has been changed or not. To this end, 
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we separated the trials across all sample–target associations into 
two conditions: (1) Switching condition (122 ± 10 trials): trials with 
decision switches across two successive trials, and (2) Staying 
condition (211 ± 17 trials): trials without decision switches across 
two trials.

Estimating the prior belief with the 
Hierarchical Gaussian Filter

Human behavioral data were applied to a three-level Hierarchical 
Gaussian Filter (HGF) model using the HGF toolbox (v5.2) as 
implemented in TAPAS (Translational Algorithms for Psychiatry-
Advancing Science, https://www.tnu.ethz.ch/en/software/tapas, 
Frässle et al., 2021), to calculate the individual trial-wise prior belief 
about external states at different levels. The first level of the HGF 
represents a sequence of inputs about the environmental states (i.e., 
whether the sample stimulus matches the target stimulus or not), the 
second level represents the sample-target contingency (i.e., the 
conditional probability, in logit space, of the target stimulus given the 
sample cue), and the third level represents the log-volatility of the 
environment. Each of these hidden states is assumed to evolve as a 
Gaussian random walk, such that its variance depends on the state at 
the next higher level (Mathys et al., 2011).

In the HGF, at any level i of the hierarchy, the prior belief about 
the external state on trial k ( ( )ˆi

kµ ) is evolved from the posterior belief 
of the previous trial (k-1)
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can be regarded as equivalent to a dynamic learning rate in reward 
learning models, as follows:
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where ω is a free parameter of the perceptual model in HGF, which 
determines the step size between consecutive time steps. The 
prediction error �

i�
� �
1

k , which drives learning at the second level of our 

HGF model, is defined as the difference between the actual outcome 
and its estimated probability before the outcome:
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FMRI data processing

FMRI data were collected on a Philips Achieva 3.0 T X-series 
scanner using a 32-channel head coil. For functional imaging, we used 
a T2*- weighted echoplanar imaging (EPI) sequence (voxel size, 
2 mm × 2 mm ×3 mm; field of view, 224 mm× 224 mm; interslice gap, 
0.6 mm; TR = 2,800 ms; TE = 36 ms) to acquire 36 transaxial slices 
covering the whole brain. Pre- and post-processing of the fMRI data 
was done using the Statistical Parametric Mapping software SPM12 
(Wellcome Department of Imaging Neuroscience, University College 
London, London, UK1) implemented in MATLAB R2022a 
(MathWorks). All fMRI images were first applied to slice time 
correction, spatial realignment, and normalization to the MNI 
template using the unified segmentation approach (Ashburner and 
Friston, 2005). Finally, normalized images were spatially smoothed 
using a Gaussian filter with a full-width half-maximum kernel of 
6 mm. Data were high pass filtered at 1/128 Hz. For each participant, 
we conducted a first level general linear model (GLM). Events were 
time-locked to the onset of the presentation of the cue stimulus using 
stick functions and split into two regressors, one for Staying (no 
strategy switches) and the other one for Switching trials. For each of 
these two regressors, two parametric modulators of prior belief were 
defined. The first parametric modulator was prior belief about the 
sample-target contingency ( ( )

2ˆ kµ ). The second modulator was prior 
belief about the volatility ( ( )

3ˆ kµ ), orthogonalized with respect to ( )
2ˆ kµ

. Notably, the sign of the prior belief depends on the sample-target 
contingency due to the arbitrarily chosen coding of a binary input (i.e., 
trials in which the sample matched the target were coded as 1, samples 
that mismatched the target were coded as 0). Given that the current 
study’s focus was on the effect of different level of predictabilities 
rather than different contingencies, we employed the unsigned prior 
belief (i.e., absolute value) as parametric modulators for the 
GLM. Invalid trials (i.e., missing or late responses) were modeled 
separately. Furthermore, six head motion parameters, as estimated 
during the realignment procedure, were added as regressors of no 
interest to minimize false-positive activations due to task-
correlated motion.

Using the GLM, we investigated prefrontal and thalamic responses 
when switching the decision strategy using the contrast 
‘Switching > Staying’. The detailed data analysis for this comparison and 
corresponding results have been reported in our recent paper 
(Hummos et al., 2022). In current study, we primarily analyzed the 
main effect of parametric modulation by prior belief (both ( )

2ˆ kµ  and 
( )
3ˆ kµ ) for all trials using the GLM. The respective t-contrast images of 

the modulatory effect for each subject were applied to the group-level 

1 http://www.fil.ion.ucl.ac.uk/spm
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one-sample t test (p < 0.05, family-wise error (FWE) corrected for the 
whole brain).

Non-linear dynamic causal models

In our previous study (Hummos et al., 2022), the fMRI GLM 
analyses revealed two prefrontal regions, i.e., right dlPFC and lOFC, 
together with the MD thalamus, which were all significantly 
modulated by decision switches (Figure 1A). The Bayesian parameter 
averaging (BPA) across participants revealed that connections from 
lOFC to MD, from dlPFC to lOFC, as well as between dlPFC and MD 
in both directions were all significantly strengthened by strategy 
switches (Figure 1B). In the current study, we show that the vmPFC 
reflects the value of the prediction, i.e., the prior belief about the 
sample-target contingency (see results section). Based on these 
findings, we next questioned how increased BOLD responses in the 
vmPFC, which were positively related to stronger prior belief, 
modulated the connection strength of the prefrontal-MD network, 

thus enhancing its computational efficiency and facilitating strategy 
switches. To test this, we constructed a non-linear DCM including 
right dlPFC, right lOFC, right MD and vmPFC, and compared several 
alternative vmPFC modulations. For each brain region, subject-
specific time series were extracted from the nearest local maximum 
within a sphere with a radius of 8 mm centered on each node’s group 
maximum. The first Eigenvariate was extracted across all voxels 
surviving p = 0.05, uncorrected, within a 4 mm sphere centered on the 
individual peak voxel. The resulting BOLD time series were adjusted 
for effects of no interest (e.g., invalid trials, and movement parameters).

The basic architecture of the model, shown in Figure 1B and in 
Hummos et al. (2022), included the driving sensory (i.e., tactile) input 
directed to the dlPFC, as well as the four connections that were all 
significantly strengthened by strategy switches (i.e., dlPFC to lOFC, 
lOFC to MD, as well as between dlPFC and MD in both directions). 
With the non-linear DCM we extended this model by the modulation 
of these connections through the activity in the vmPFC, which was 
driven by the trial-by-trial prior belief derived from the HGF model 
(Figure  1D). We  specified the model space with the modulatory 

FIGURE 1

The fMRI activity and dynamic causal modeling (DCM). (A) Strategy switches (Switching  >  Staying) entailed significant BOLD activity in right dlPFC, right 
lOFC and right MD (Hummos et al., 2022). (B) The bilinear DCM revealed that four connections (orange), i.e., from lOFC to MD, from dlPFC to lOFC, as 
well as between dlPFC and MD in both directions were significantly strengthened by strategy switches (Switching  >  Staying) (Hummos et al., 2022). The 
black connections indicate endogenous connections between brain areas. (C) Upper panel: The prior beliefs over the course of the experiment. The 
red shaded area indicates the standard error of the mean (SEM) of prior beliefs over time. Lower panel: Prior belief-related vmPFC activity is projected 
on sagittal and axial MRI brain slices (p  <  0.05, whole brain-FWE corrected). (D) The non-linear DCM, which we used to test how prior belief-related 
activity in the vmPFC (blue) gated the information flow in the dlPFC-lOFC-MD network. (dlPFC–dorsolateral prefrontal cortex; lOFC–lateral 
orbitofrontal cortex; MD–thalamic mediodorsal nucleus; vmPFC-ventromedial prefrontal cortex).
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influence of the vmPFC on different connections. More specifically, 
we tested the modulatory influence of prior belief related vmPFC on 
two out of the four significant connections within the dlPFC-
lOFC-MD network, resulting in six models that were compared to 
each other (Supplementary Figure S2A). The fixed-effects Bayesian 
model selection (BMS) was used to assess the most likely model 
among the six competing models. Parameters of the winning model 
were then summarized by Bayesian parameter averaging (BPA), which 
computes a joint posterior density for the entire group by combining 
the individual posterior densities. A posterior probability criterion of 
90% was considered to reflect significant modulatory effect on 
the connections.

Results

The participants’ behavioral performance during the associative 
learning task has been presented in more detail in our previous studies 
(Wang et al., 2020; Wang and Pleger, 2020; Hummos et al., 2022). In 
brief, we  found a significant effect of learning [one-way ANOVA: 
F(4,27) = 256, p < 0.001] and post-hoc paired t-tests revealed that 
participants made significantly more correct predictions in learning 
blocks with high predictability (i.e., 90%/10%) than in blocks with low 
predictability [i.e., 70%/30%, t(1,27) = 20.75, p < 0.001, Bonferroni- 
corrected] or unpredictability [i.e., 50%, t(1,27) = 24.70, p < 0.001, 
Bonferroni-corrected]. In addition, we found that the participants had 
a lower prior belief and required more time to respond (p < 0.001) in 
trials when they changed their decision strategy (Switching), compared 
to the trials where the decision strategy did not change (Staying).

In order to test whether participants’ learning behavior could 
be rather explained by hierarchical learning (i.e., Bayesian HGF model), 
which updates the learning rate dynamically, or by a fixed ‘ideal’ learning 
rate as assumed by the reinforcement learning algorithm (Rescorla-
Wagner, RW), we compared the HGF with RW model using the random-
effect Bayesian model selection (BMS). The BMS result revealed that 
HGF was the winning model with a posterior model probability of 90% 
(posterior probability, 0.90; exceedance probability, 1.00).

To assess the parametric modulation by the prior beliefs, both 
( ) ( )
2 3nˆ a ˆdk kµ µ  derived from HGF model were included as modulatory 

parameters in the GLM of fMRI data. We found that responses from 
the vmPFC reflected the prior belief about the sample-target 
contingency [ ( )

2ˆ kµ , Figure  1C, x = −6, y = 62, z = −4, t(31) = 6.69, 
p < 0.05, FWE whole-brain corrected]. Besides the vmPFC, also the 
left precuneus (x = −10, y = −56, z = 26) and middle cingulate cortex 
(x = 2, y = −12, z = 38) represented significant prior belief-related 
activity (p < 0.05, FWE whole-brain corrected). The analysis of 
parametric effects related to prior belief about volatility ( ( )

3ˆ kµ ) did not 
reveal any significant brain regions (p > 0.05, FWE whole-
brain corrected).

As shown in our recent study (Hummos et al., 2022), the Bayesian 
model comparison across different plausible bilinear dlPFC-lOFC-MD 
models revealed that the adjustment of the decision strategy (Switching) 
significantly modulated connections from lOFC to MD, from dlPFC 
to lOFC, as well as between dlPFC and MD in both directions 
(Figure 1B). In the present study, using non-linear DCM, we tested 
how prior belief related response from vmPFC modulated the 
connection strength in the dlPFC-lOFC-MD network (Figure 1D). 
More specifically, we tested which two of the four projections were 

directly modulated by vmPFC activity. This resulted in six competing 
models that were further evaluated with Bayesian model selection 
(BMS) (Supplementary Figure S2A). BMS revealed that the prior belief 
associated activity in vmPFC had a modulatory influence on the 
projections originating in the dlPFC and targeting both, lOFC and MD 
(Supplementary Figure S2B; Figure 2A). The posterior probability for 
the winning model was 0.48, surpassing the posterior probabilities of 
the other tested models which ranged from 0.01 to 0.25 
(Supplementary Figure S2B). This winning non-linear model assumed 
a direct effect of prior belief on vmPFC whose activity then mediated 
the gain of the dlPFC→lOFC and dlPFC→MD connections. We next 
applied Bayesian parameter averaging (BPA), which computes a joint 
posterior density for the entire sample and found that the prior belief-
dependent vmPFC activity significantly influenced the dlPFC→lOFC 
connection (posterior probability = 0.94, Figure 2B). The modulations 
of the dlPFC→MD connection showed a trend into the same direction, 
but the posterior probabilities failed to surpass the 90% threshold 
(posterior probability = 0.81, Figure 2B). The modulatory effect was 
generally inhibitory, suggesting that the weaker the activity in vmPFC, 
and the lower the prior belief (i.e., high task uncertainty), the stronger 
was the connection strength from dlPFC to lOFC.

Discussion

In this study, we investigated how prior belief-related activity in the 
vmPFC gates the information flow in the dlPFC-lOFC-MD network 
underpinning the re-evaluation of decision strategy during associative 
learning. We showed that the strength of connections from dlPFC to 
lOFC fluctuated from trial to trial in relation to the level of task 
uncertainty, i.e., the prior beliefs about the sample-target contingency, 
signaled by inhibitory inputs from the vmPFC. The weaker the activity 
in vmPFC, and the stronger the task uncertainty (i.e., low prior belief), 
the stronger was the strength of effective connection from executive 
dlPFC to lOFC. These findings suggest that in situations with high task 
uncertainty, there is an increase in lOFC responses to inputs from 
dlPFC, which provides direct empirical evidence for the key role of 
prior belief-dependent synaptic plasticity in driving the re-evaluation 
of the decision strategy during flexible decision-making.

Representations of sensory stimuli are modulated by internal states 
and beliefs about the world, which are crucial for flexibly adjusting 
perception and behavior in humans and animals (Snyder et al., 2015; 
Akrami et al., 2018). The prior beliefs have been shown to warp neural 
representations in the frontal cortex, which allows the mapping of 
sensory inputs to motor outputs and to incorporate prior statistics in 
accordance with Bayesian inference (Sohn et al., 2019). These results 
uncover a simple and general principle whereby prior beliefs exert their 
influence on behavior by sculpting cortical latent dynamics. The failure 
of beliefs about the environmental state forms the prediction error and 
updates expectations for upcoming stimuli and associated rewards. In a 
previous study, we  investigated how humans apply probabilistic 
computations, following Bayesian rules, to infer on joint brain 
representations of prior belief and decision switches (Wang et al., 2020). 
We found, that during such switches prior belief specifically modulated 
connectivity among the anterior insular cortex (AIC), the premotor 
cortex (PMd), and the inferior parietal lobule (IPL). On a trial-by-trial 
basis, prior belief weakened connectivity between AIC and IPL when the 
sensory stimulus was expected, whereas it strengthened connectivity 

https://doi.org/10.3389/fnins.2023.1278096
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wang et al. 10.3389/fnins.2023.1278096

Frontiers in Neuroscience 06 frontiersin.org

between AIC and PMd when the stimulus was unexpected (Wang et al., 
2020). AIC has been shown to act as a core hub modulating the 
interaction of bodily, attentional, and anticipatory sensory signals 
(Sridharan et al., 2008; Craig, 2009; Allen et al., 2016). Our results furnish 
a picture in which AIC, in conjunction with other brain regions, 
contributes not only to the coordination of expectation and sensory 
inputs, but also to the integration of priors and prediction outcomes for 
updating beliefs specifically supporting strategy switches during 
associative learning (Ferrari et al., 2022). The present findings extend the 
scope of belief-related brain functions by the vmPFC. According to our 
non-linear DCM, vmPFC plays a key role in exerting modulatory 
influences on prefrontal interactions, which does not directly reflect 
prior belief such as the aforementioned AIC-network (Allen et al., 2016), 
but which critically depends on prior belief-dependent information from 
the vmPFC to flexibly guide strategy switches.

It has been shown that vmPFC plays a major role in sensory 
integration to achieve abstract and conceptual interpretation of the 
environment (Petrides and Pandya, 2007). The vmPFC represents signals 
more suited for subject-centered, internally driven motivational 
processes, whereas lOFC encodes signals for evaluating environment-
centered, externally driven motivational processes (Bouret and 
Richmond, 2010). Functional interactions between vmPFC and lOFC in 
humans are thought to implement important functions relevant to 
cognitive flexibility and the prediction of value-based behavioral changes 
(Howard et  al., 2016). In primates, the dlPFC has been shown to 
be anatomically (Mackey and Petrides, 2010; Saleem et al., 2014) and 
functionally (Kahnt et al., 2012) connected to the lOFC, and also in 
rodents, mPFC terminals - i.e., homolog of the primate dlPFC - were 
detected in the lateral and ventrolateral OFC (Dalley et al., 2004). Rodent 
mPFC projection neurons furthermore target the thalamus MD to 
regulate adaptive control to flexibly optimize behavioral responses in 

goal-directed behavior and receive an MD innervation (Hoover and 
Vertes, 2007; Carlén, 2017). Together, these anatomical evidence from 
rodents and non-human primates provide a solid anatomical basis for 
our winning non-linear DCM model, in which the responses of lOFC to 
the presynaptic input from dlPFC depend on the history of inputs that 
they receive from vmPFC. Inconsistencies in the nomenclature and 
anatomical boundaries of PFC areas have made it difficult to compare 
data and interpret findings across species, especially between primates 
and rodents. In addition, we cannot exclude that the modulatory effect 
on the PFC interactions is implemented through an intermediate region, 
for example the amygdala or the striatum, given the fact that both receive 
many cortical inputs from prefrontal areas (Middleton and Strick, 2002; 
Chang and Grace, 2018).

The weaker the prior belief related activity in vmPFC, the stronger 
is the connection strength of the dlPFC projections, suggesting that 
the re-evaluation of decision strategy under high task uncertainty 
requires further processing resources controlled by vmPFC. This 
gating mechanism agrees well with the theoretical accounts of the 
free-energy principle (Friston, 2009). Accordingly, perception 
optimizes predictions by minimizing free energy with respect to 
perceptual inference, memory, attention and salience (Friston, 2010). 
Based on these principles, the high prior belief about the 
environmental state in our study may have weakened the strength of 
the dlPFC-output projections to minimize the engagement of 
additional cognitive resources and hence to lower the energy costs for 
the decision process. The process that alters synaptic strengths with 
time constants in the range of milliseconds to minutes, i.e., the 
so-called “short-term synaptic plasticity” (STP), is proposed to be the 
underlying neurobiological mechanisms for this non-linear 
modulatory effect, including NMDA-controlled rapid trafficking of 
AMPA receptors (Diering and Huganir, 2018), synaptic depression/

FIGURE 2

The modulatory effect on the dlPFC-lOFC-MD network by prior belief-associated vmPFC activity. (A) The Bayesian Model Selection across the possible 
six models revealed the winning model in which prior belief-dependent vmPFC activity specifically influenced the connections originating in the dlPFC 
and targeting both, lOFC and MD. The black connections indicate endogenous connections between brain areas. (B) Bayesian parameter averaging 
revealed that the prior belief-dependent vmPFC activity significantly inhibited the dlPFC→lOFC connection (posterior probability  =  0.94, solid red line) 
suggesting that the higher the activity in vmPFC, and the stronger prior belief, the weaker was the connection strength from dlPFC to lOFC. The 
negative numbers shown next to the projections and above the posterior probabilities index the inhibitory inputs per second (Hz). The dlPFC→MD 
connection showed a trend into the same direction, but posterior probabilities failed to surpass the 90% threshold (posterior probability  =  0.81, dotted 
red line).
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facilitation (Zucker and Regehr, 2002) or “early long-term potentiation 
(LTP)” (Frey and Morris, 1998). Notably, we  found that the prior 
belief-related responses in the vmPFC significantly gate outputs from 
dlPFC to lOFC, but from dlPFC to MD only at trend level. The 
thalamic circuits have been shown to play a role in differentially using 
contextual information to reconfigure functional connectivity within 
and across cortical areas in a task-dependent manner for perceptual 
inference and behavioral flexibility (Nakajima and Halassa, 2017; 
Rikhye et al., 2018b; Halassa and Sherman, 2019; Mukherjee et al., 
2020). However, based on our results, the roles of PFC-MD 
interactions in switching the behavioral strategies are relatively less 
affected by the prior beliefs about the environment, but more 
important for the processing of decision strategy (i.e., the selection of 
Stay or Switch). The relationship between thalamic circuits and the 
prior beliefs should be further investigated in the future studies.

There are limitations that should be considered when interpreting 
the current findings. First, single unit recording in mice are well suited 
to assess how distinct neuronal populations in subregions of the PFC 
and MD nuclei respond to specific task-related cues and contexts 
(Rikhye et al., 2018a). FMRI recordings instead represent comparably 
crude measures of neural activity capturing hemodynamic responses 
only from large neuronal populations. These topographic inaccuracies, 
especially for signals originating in small cortical and subcortical 
structures, represent a general limitation of fMRI. Second, we did not 
split the MD into its subnuclei when we  constructed the network 
models. A recently developed MRI-based atlas provides masks for four 
of these subregions (the medial (MDm), central (MDc), dorsal (MDd), 
and lateral (MDl)), created with connectivity-based methods applied 
to the high-resolution data from the Human Connectome Project (Li 
et al., 2022). In the current study with lower functional MRI resolution 
and signal-to-noise ratio, it remained difficult to reliably capture these 
subregions. Therefore, we considered the MD as a single region of 
interest. Considering these topographic inaccuracies, the trend level 
effect we  found for the modulatory influence on the dlPFC-MD 
connection should be  interpreted with caution. Third, although 
we  focused on thalamocortical connections, other regions of the 
broader PFC-MD network, including the basal ganglia or the amygdala, 
could have also been involved in guiding cognitive flexibility. For 
example, the cortical-basal ganglia-thalamocortical subnetworks have 
been shown to be involved in impaired cognitive flexibility in patients 
with obsessive-compulsive disorder (Kim et al., 2022). Given the above 
limitations, it will be one of the major challenges for future decision-
making research to extend the here proposed PFC-MD network by 
other key regions in the PFC, basal ganglia, and other subcortical 
structures, through combining various imaging techniques and cross-
species approaches (e.g., Nakajima et al., 2019a,b).
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