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ABSTRACT:  Electrical discharge machining (EDM) is mainly utilized for the die manufacturing and also 
used to machine the hard materials. Pure Copper, Copper based alloys, brass, graphite, steel are the conven-
tional electrode materials for EDM process. While machining with the conventional electrode materials, tool 
wear becomes the main bottleneck which led to increased machining cost. In the present work, the composite 
tool tip comprises 80% Copper and 20% silicon carbide was used for the machining of  hardened D2 steel. 
The powder metallurgy route was used to fabricate the composite tool tip. Electrode wear rate and surface 
roughness were assessed with respect to the different process parameters like input current, gap voltage, pulse 
on time, pulse off time and dielectric flushing pressure. During the analysis it was found that Input current (Ip), 
Pulse on time (Ton) and Pulse off  time (Toff) were the significant parameters which were affecting the tool wear 
rate (TWR) while the Ip, Ton and flushing pressure affected more the surface roughness (SR). SEM micrograph 
reveals that increase in Ip leads to increase in the wear rate of  the tool. The data obtained from experiments 
were used to develop machine learning based surrogate models. Three machine learning (ML) models are 
random forest, polynomial regression and gradient boosted tree. The predictive capability of ML based sur-
rogate models was assessed by contrasting the R2 and mean square error (MSE) of  prediction of  responses. 
The best surrogate model was used to develop a complex objective function for use in firefly algorithm-based 
optimization of  input machining parameters for minimization of  the output responses. 
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RESUMEN: Optimización de los parámetros de proceso en el mecanizado por electroerosión del acero D2 utilizando una herra-
mienta compuesta de Cu-SiC basada en un modelo sustitutivo basado en datos para la rugosidad superficial y el desgaste de la 
herramienta después del mecanizado. El mecanizado por electroerosión (EDM, del inglés electrical discharge machining) se utiliza 
principalmente para la fabricación de matrices y también para el mecanizado de materiales duros. Materiales como el cobre 
puro, las aleaciones de cobre, el latón, el grafito y el acero son utilizados de manera convencional como electrodos en el proceso 
de electroerosión. Durante el mecanizado con estos electrodos convencionales, el desgaste de la herramienta se convierte en 
el principal cuello de botella que conduce a un mayor coste de mecanizado. En el presente trabajo, la punta de la herramienta 
compuesta por un 80% de cobre y un 20% de carburo de silicio se utilizó para el mecanizado de acero D2 endurecido. Para fa-
bricar la punta de la herramienta de material compuesto se utilizó la vía de la pulvimetalurgia. La tasa de desgaste del electrodo 
y la rugosidad de la superficie se evaluaron con respecto a los diferentes parámetros del proceso como la corriente de entrada, 
el voltaje de separación, el tiempo de pulso encendido, el tiempo de pulso apagado y la presión de lavado dieléctrico. Durante 
el análisis se encontró que la corriente de entrada (Ip), el tiempo de pulso (Ton) y el tiempo de pulso (Toff) eran los parámetros 
significativos que afectaban al índice de desgaste de la herramienta mientras que el Ip, Ton y la presión de lavado afectaban más 
a la rugosidad de la superficie. La caracterización con microscopía electrónica de barrido revela que el aumento de Ip conduce 
a un aumento en la tasa de desgaste de la herramienta. Los datos obtenidos en los experimentos se utilizaron para desarrollar 
modelos sustitutivos basados en el aprendizaje automático. Los tres modelos de aprendizaje automático son el bosque alea-
torio, la regresión polinómica y el árbol de gradiente reforzado. La capacidad predictiva de los modelos sustitutos basados en 
aprendizaje automático se evaluó contrastando el R2 y el error cuadrático medio (ECM) de predicción de las respuestas. El 
mejor modelo sustitutivo se utilizó para desarrollar una función objetivo compleja para su uso en la optimización basada en el 
algoritmo de la luciérnaga de los parámetros de mecanizado de entrada para la minimización de las respuestas de salida.

PALABRAS CLAVE: Modelización basada en datos; Mecanizado por electroerosión; Algoritmo Firefly; Aprendizaje automático; 
Rugosidad superficial; Desgaste de herramientas
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1. INTRODUCTION

Electro discharge machining (EDM) is a catego-
ry of non-conventional machining process which 
basically operates on the electro thermal principal 
in which the material is removed by an electric cur-
rent and a thermal spark between two electrically 
conductive materials, i.e., the work material and 
the electrode which are submerged in the dielectric 
fluid. High frequency electric pulses are used to ma-
chine the work material so the hardened conductive 
material which is difficult to be machined by con-
ventional processes, can be easily machined. As the 
heat is generated on the electrode and subsequent-
ly on the workpiece, the material gets eroded from 
both electrodes as well as the work piece (Pay et al., 
1995; Li et al., 2001; Dimla et al., 2004; Somani et 
al., 2021a). As the EDM is also known as a replica 
process, the wear of tool profile has a direct effect on 
the finally machined cavity. As a result of this, there 
is variation in the shape and dimension of the final 
product. To overcome this, the tool has to be re-pre-
pared for machining again and again. It has been 
reported that the tool cost in the EDM process has 
the major share in total machining cost (Zaw et al., 
1999; Somani et al., 2021b). It makes the choice of 
material selection for tool very important. Copper 
is the highly preferred material for EDM tool ad-

hering to its high thermal and electrical conductivity 
but it disintegrates at a very high rate especially in 
the machining of hardened steels. Hence, there is a 
need to identify either an additive or reinforcements 
which can enhance the wear resistance of the tool.

In this modern era of technology which demands 
reducing the machining time as well saving the mon-
ey, the optimization of the process variables is re-
quired. The major limitation of the EDM process 
is that it can machine only conductive materials as 
well as it consumes high power which leads to high-
er machining cost as compared to the convention-
al machining processes like turning (Singh et al., 
2004). So, proper selection of the process variables 
is required before machining on the EDM in order 
to achieve the optimum results (Norasetthekul et al., 
1999; Tsai et al., 2003; Khanra et al., 2007; Mishra 
and Routara, 2018). From literature it is evident that 
the performance of the EDM process depends on 
the process parameters like input current, gap volt-
age, pulse on time (T

on), pulse off  time (Toff), and the 
flushing pressure. The performance of this process 
is mainly rated by criteria like electrode wear rate, 
surface roughness and material removal rate of the 
machined part.

Kumar et al. (2021) experimentally investigated 
the process parameters of wire electrical discharge 
machining (WEDM) through both integrated desir-
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ability and machine learning (ML) technique on im-
plant material (CP-Ti G2). The material removal rate 
(MRR) was considered as an output response. More-
over, machined surface topography was also analyz-
ed. The Pulse on time, pulse of time, spark voltage 
and peak current were the significant parameters that 
affect the response. Various surface defects are also 
observed in terms of debris and crater. From the re-
sults it was observed that there is a good agreement 
between experimental and predicted results. Wang et 
al. (2018) used deep learning techniques to detect ge-
ometrical defects of a fir-tree slot in WEDM. From 
the outcomes, it was observed that, despite of using 
a tolerance band of (+/−) 5 µm, results are predicted 
with an accuracy of 80%. Weiwen et al. (2018) de-
tected the break out in highspeed small hole drilling 
EDM based on ML technique. Support vector ma-
chine (SVM) was the ML approach used in the mod-
elling. Through hole machining was conducted in the 
experimental analysis. The input parameters are dis-
charge pulsed duration, pulse interval, peak current, 
effective discharge frequency and electrode feed rate. 
The results are compared with actual machining op-
eration on test specimens having various thicknesses. 
It was observed that both the cycle time and the accu-
racy were precisely predicted by the ML techniques. 
Surleraux et al. (2020) optimized the tool shape in 
die-sinking micro-EDM through ML based reverse 
modelling approach. The authors have proposed a 
new reduced modeling optimization framework as 
a reverse ML model. Two artificial neural network 
(ANN) models were trained, one with a modifica-
tion and other one without any kind of modification. 
From the results, it was found that using the ML tech-
nique, the tool shape can be produced instantly and it 
can be optimized with a deviation of only 6%. Saha et 
al. (2022) studied the uncertainty of wire EDM per-
formance features through the data-driven approach. 
Various uncertainties were taken care of, such as gap 
state, control action, power fluctuation and friction-
al forces. Six different types of process parameters 
were considered such as pulse on time, pulse of time, 
peak current, servo voltage, wire feed rate and wire 
tension. The surface roughness and the cutting rate 
were the responses. Four different ML techniques 
were used like linear regression (LR), regression trees, 
support vector machines and Gaussian process re-
gression. Pulse on time and peak current were the 
two dominating parameters affecting the responses. 
Gaussian process regression technique was found to 
be the most efficient technique in the EDM process 
modelling. Yogesh et al. (2021) predicted the MRR 
and surface roughness in wire EDM using decision 
tree and Naive Bayes algorithm and the results were 
compared with the LR model. From the outcomes, 
it was observed that both algorithms predicted the 
MRR and surface roughness accurately. Sanchez et 
al. (2018) predicted the unexpected event (change of 

material thickness) in wire EDM using deep learning 
techniques. From the outcomes it was observed that 
by applying combined convolutional layer with gated 
recurrent units, the material thickness was predicted 
with 97.4% accuracy. Walia et al. (2021) predicted the 
tool shape (roundness) in EDM of EN-31 steel us-
ing ML techniques. From the experimental outcomes 
it was found that input parameters such as pulse on 
time, pulse off time and current were the most sig-
nificant parameters. Four ML algorithms are used 
like decision trees, random forest (RF), generalized 
linear model and neural network. Better results are 
predicted using RF. Paturi et al. (2021) optimized the 
surface roughness in WEDM through both ML and 
statistical approach for Inconel-718. Three ML tech-
niques were used, i.e. SVM, GA and ANN. Pulse on 
time, pulse of time, peak current, servo voltage and 
wire feed rate were the input variables. From the out-
comes it was divulged that better results are predict-
ed through the SVM technique. Shanmugasundar et 
al., (2021) compared three ML algorithms such as 
LR, RF and AdaBoost (AB) regression in non-tra-
ditional machining. From the experimental outcomes 
it was observed that, RF and AB regression model 
performed better compared to the LR model. Wang 
et al. (2019) used unsupervised ML for the desired 
tolerance in WEDM machining of disk turbine Fir-
Tree Slots. The distribution of ionization time was 
taken as the variable. It was observed that there was a 
strong correlation between ML predicted and coordi-
nate measuring machine (CMM) based results. Total 
five clusters were observed and the tolerance limit was 
observed as ± 15 µm for clusters 3 and 5. The short 
circuit situation was observed for clusters 1 and 2. 
Ulas et al. (2020) predicted the surface roughness of 
machined aluminum alloy with WEDM machining 
using various ML algorithms. Four input parameters 
were considered, i.e. voltage, pulse on time, dielectric 
pressure and wire feed. Four ML algorithms were 
utilized such as extreme learning machine (ELM), 
Weighed-Extreme Learning Machine (WELM), SVR 
and quantum support vector classification (QSVR). 
Better results are predicted through WELM com-
pared to the other algorithms. Shukla and Priya-
darshini (2018) optimized various response variables 
in wire EDM machining of Haste alloy (C276) using 
ML techniques. The input parameters considered are 
pulse on time, pulse off time, servo voltage, wire feed 
rate, and wire tension. Three responses were con-
sidered, such as roughness, kerf width and material 
removal rate (MRR). The optimization algorithm 
used in this analysis was the gradient descent meth-
od. From the outcomes it was observed that pulse on 
time, pulse off time and peak current were observed 
to be the most dominating parameters for both sur-
face roughness and kerf width and by applying this 
method both outcomes are optimized effectively. 
Naik et al. (2021) studied the surface integrity aspects 
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of Aluminum metal matrix composite through EDM 
machining. The sustainability analysis was also ac-
complished. Flushing pressure, pulse on and off time, 
gap voltage and discharge current were considered as 
input variables. Discharge current was found to be 
the dominating one for the degradation of machined 
surface quality. Vegetable oil was observed to be an 
effective die electric for sustainable machining.

It is clear from the literature that he optimization of 
process parameters in EDM is a challenging task due 
to the complex interactions between various input var-
iables, such as pulse on-time, pulse off-time, peak cur-
rent, electrode material, and tool geometry. Traditional 
optimization approaches often rely on trial-and-error 
methods, which are time-consuming, expensive, and 
do not guarantee optimal results. Moreover, these 
methods are limited by their inability to consider the 
intricate relationships among the process variables and 
their effects on surface roughness and tool wear.

To address these challenges, a data-driven ap-
proach based on surrogate modeling has emerged as a 
promising solution for optimizing process parameters 
in EDM. By utilizing historical data and advanced 
machine learning techniques, surrogate models can 
effectively capture the complex relationships between 
process parameters and performance measures. These 
models serve as efficient approximations of the EDM 
process, enabling rapid evaluation and optimization 
of various parameter combinations without the need 
for extensive experimental trials. 

In this article, the experimental data for different 
input machining parameters and output responses 
were collected and a dataset was prepared for in 
a ML model based development of the surrogate 
models for predictive modeling of output responses 
in terms of the input machining parameters. The full 
dataset was divided into training, testing and valida-

tion dataset in appropriate ratio. Three ML models 
e.g. random forest, polynomial regression and gradi-
ent boosting regression trees are used for the surro-
gate model development. The predictive capabilities 
of all the three ML models were assessed in terms of 
the R2 and mean square error (MSE) of predictions. 
The best ML surrogate model was used to develop a 
complex objective function. The complex objective 
function was used in a swarm based optimization 
(firefly) algorithm to find the optimal values of input 
machining parameters for the minimization of the 
output responses. The rest of the article is arranged 
as follows: in section 2 the experimental setup of the 
electric discharge machining is presented. In section 
3, the experimental results are discussed. In section 
4, the ML algorithms are discussed. In section 5, the 
multi-objective optimization technique is described. 
Finally, the conclusions are discussed in detail.

2. MATERIALS AND METHODS

2.1. Workpiece material

In this work, hardened D2 steel having a hardness 
of 62 HRC was selected as the workpiece material 
as it is very difficult to machine because of its high 
hardness as well as good abrasion resistance. D2 steel 
has wide applications in shear and planer blade in-
dustries, industrial cutting tools, die and punch fabri-
cations etc. For the experimentation, the samples of 
D2 steel having a size of 50×50×10 mm3 were used. 
Energy dispersive x-ray spectroscopy (EDX, model 
KETEK VITUS H150) attached to a scanning elec-
tron microscope () was done to identify the elemental 
composition. Chemical composition of the material 
is shown in Table 1 while the EDX is shown in Fig. 1.

table 1. Chemical composition (wt. %) of D2 steel

Element C Cr Co Mn Mo P S Si Fe

Wt. (%) 1.5 13 0.7 1.56 0.8 0.02 0.03 0.6 81.7

FiguRe 1. EDX of  D2 steel.
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2.2. Electrode material and fabrication

Powder metallurgy route was used to fabricate the 
electrode tip. Copper (Cu) powder (80% by weight) 
was used as base metal and the Silicon carbide (SiC) 
(20% by weight) was used as the reinforcement mate-
rial. Copper has the major share in composition due 
to its high thermal and electrical conductivity proper-
ties. Higher hardness and wear resistance properties 
of SiC made it a very good choice for the reinforce-
ment material. Both the powders were having the av-
erage particle size of 44 µm. Figure 2 represents the 
schematic diagram of the complete procedure.

Scanning electron microscopy (SEM) micro-
graphs of the Cu and SiC powder are shown in 
Fig. 3 (a-b). From the micrographs it is clear that 
the copper powder particles are dendritic in nature 
while the SiC particles are having sharp edges. 

Initially the powders were mixed in a V shape 
blender (Bionics, BST/VB-50) at a speed of 240 rpm 
for 20 min to get the homogeneous mixture. From 
Fig. 3c it is clearly visible that the Cu and SiC pow-
der particles are homogeneously dispersed. A hy-
draulic press (Jackman, KHPL-HF-HOP) was used 
to compact the powers in cylindrical shapes of 10 
mm diameter at a pressure of 250 MPa for 30 min. 
Further, a three stage sintering of pellets was done 
in a tubular furnace (Victory Sensors, HTF- 006) for 
the heating rate of 3 °C·min-1. Initially the tempera-
ture was increased till 600 °C for degassing purpose 
and then it was raised till 850 °C followed by 950 °C 
for the purpose of stabilization and to recover the 
properties. Sintering micrographs are shown in Figs. 
3 (d-e) for two different magnifications. It is evident 
from the micrographs that due to sintering process, 

the Cu and SiC elements form a homogeneous net-
work structure which is an added advantage of the 
powder metallurgy route. The prepared pellets were 
polished and brazed to the copper rod to fabricate 
the composite tool tip electrode which was further 
used to machine the D2 steel on die sinking EDM. 

3. EXPERIMENTAL SETUP AND PROCESS 
PARAMETERS

Die-sinking EDM (ZNC, EIL, 3144-R50) ma-
chine was used to perform the experimental part 
shown in Fig. 4. Kerosene was used as dielectric flu-
id during the machining operation. From the liter-
ature, it is clear that EDM machining of hardened 
steel is dependent on various input process parame-
ters like pulse on time, pulse off  time, peak current, 
gap voltage, duty cycle and flushing pressure, etc. 
In this study, five variables were selected as process 
parameters i.e. pulse on time, pulse off  time, gap 
voltage, flushing pressure and input current. The 
selection of these process variables and their level 
had been decided based on the machine capability 
and exploratory pilot experiments. The process var-
iables for the experiments should be determined in 
such a way so as to cover the significant processing 
conditions (Pandey and Jilani., 1986; Pradhan and 
Biswas, 2009; Khan et al., 2015). The process var-
iables used for the experimental work with the re-
spective levels has been presented in Table 2. The 
machining time was kept constant for all the experi-
ments, i.e. 30 min. 

Two important parameters i.e. tool wear rate 
(TWR) and surface roughness (μm) for the tool 
tip were measured after the machining operation. 

FiguRe 2. Composite tool tip fabrication procedure.
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FiguRe 3. SEM micrographs of  (a) Cu powder (b) SiC powder (c) dispersion of  Cu-SiC powder particles after mixing (d and e) 
sintered pellets.
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Equation (1) shows the formula used to calculate 
the TWR. 

 TWR = (WBM - WAM) / T  (1)

where, WBM and WAM is the weight of the electrode 
before and after the machining and T is the machin-
ing time (30 min).  To measure the weight, weigh-
ing machine of accuracy 0.001 gm was used. Sur-
face roughness tester (SJ-210, Mitutoyo) was used 
to measure the surface roughness and for that, the 
readings were taken at six different locations and 
the average of six readings was taken as the surface 
roughness.

4. DESIGN OF EXPERIMENT

Central composite rotatable design (CCRD) 
technique was used for the design of experimental 
plan. CCRD can predict quadratic, independent 
and interaction influence of various variables on the 
response. Central composite design has three set of 
experiments. First one is the factorial design set ex-
periments which can be represented by 2n where ‘n’ is 
number of process variables. In the present study ‘n’ 
equals five, therefore, the number of experiments in 
the first set are 32. In the second set of experiments, 
a set of axial points which is equal to 2n is used. In 
present study, in this set, the total number of exper-
iments is 10. The third set of experiments is centre 
points denoted by ‘k’ and in this set contains 10 ex-

periments. In total, 52 experimental observations, 
involving five independent variables, were conduct-
ed at five levels as given in Table 1. The experimental 
conditions and the outputs are provided in Table 3.

5. RESULTS AND DISCUSSIONS

5.1. Effect of process parameters on the tool wear 
rate (TWR)

During the machining process, the tool must 
be able to resist the deformation from impact the 
force produced during the operation. The optimum 
combination of thermal, electrical and mechanical 
properties of EDM tool may increase the resisting 
capacity of tool to disintegrate. During the exper-
imentation it was found that I

p, Ton and Toff were 
the significant parameters which were affecting the 
TWR as shown in Fig. 5.

Figure 5a shows the variation of mean the TWR 
with respect to input current. It is evident that the 
increment in supply of input current increases the 
TWR. This is due to the fact that the increase in the 
current leads to an increase in spark at inter elec-
trode gap which tends to raise the temperature and, 
subsequently, increases the TWR (Hosseini and 
Kishawy, 2014; Kumar and Kumar, 2017) 

Effect of the T
on on TWR is shown in Fig. 5b 

which clearly represents that increase in Ton leads to 
decrease in the TWR. The discharge column diam-
eter increase with increase in Ton which leads to de-
crease in the energy density at the discharge point 
which helps to decrease the TWR (Patowari et al., 
2015).

Effect of Toff on TWR is shown in Fig. 5c. It can 
be observed that increase in Toff leads to decrease 
in TWR. Increase in pulse off  time results in in-
crement of the duration between the subsequent 
pulses which leads to pressure drop and ultimately 
the unstable arc will produce which will reduce the 
discharge efficiency and finally the TWR decreases 
(Patowari et al., 2015; Khan et al., 2015; Kumar and 
Kumar., 2017).

Table 2: Machining variables and their level

Parameters Levels

Discharge current, Ip (A) 4 6 8 10 12

Pulse on time, Ton (μs) 150 250 350 450 550

Pulse off  time, Toff (μs) 15 25 35 45 55

Flushing Pressure (Kgf/
cm2)

22 24 26 28 30

Gap Voltage Vg (V) 45 55 65 75 85

FiguRe 4. Die Sinking EDM machine.
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table 3. Experimental design and output

Exp. No. Ip (A) Ton (μs) Toff (μs) P (Kgf/cm2) Gap voltage (Vg) TWR (gm/min) SR (µm)
1 10 450 25 24 55 3.11 10.4
2 12 350 35 26 65 3.89 12.2
3 6 450 25 28 75 0.97 3.5
4 10 250 45 28 55 2.86 9.2
5 8 350 35 30 65 2.09 6.1
6 6 250 25 24 55 1.21 5.4
7 10 250 45 28 75 3.20 10.2
8 8 550 35 26 65 1.92 4.7
9 4 350 35 26 65 0.31 2.8
10 6 450 45 24 55 1.26 5.4
11 8 350 35 26 65 2.07 5.9
12 10 450 25 24 75 3.26 7.6
13 8 350 35 26 65 1.98 6.6
14 6 450 25 28 55 1.04 3.2
15 10 250 45 24 75 3.19 9.2
16 6 450 25 24 75 0.89 4.1
17 8 350 35 26 65 2.11 6.1
18 8 350 35 26 65 2.09 5.8
19 8 350 35 26 45 1.79 6.5
20 10 250 45 24 55 2.91 8.5
21 10 450 45 28 75 2.50 6.9
22 10 450 45 24 75 2.69 7.5
23 8 350 35 26 85 2.11 6.6
24 6 450 45 28 55 0.78 4.2
25 6 450 45 28 75 0.97 3.9
26 8 350 35 26 65 2.05 6.2
27 6 450 25 24 55 1.19 5.2
28 6 250 45 24 55 1.31 3.8
29 8 350 35 22 65 1.94 6.8
30 8 350 35 26 65 2.11 5.9
31 10 450 25 28 55 3.18 8.1
32 8 350 35 26 65 1.99 6.6
33 8 350 55 26 65 1.88 6.1
34 6 450 45 24 75 1.37 4.9
35 6 250 25 28 75 1.69 7.3
36 10 250 25 24 75 3.71 10.8
37 8 350 35 26 65 2.11 6.4
38 10 250 25 28 75 4.18 12.5
39 8 350 15 26 65 2.59 7.4
40 10 250 25 28 55 3.89 11.6
41 6 250 45 28 75 1.59 5.5
42 10 450 25 28 75 3.29 7.1
43 10 450 45 24 55 2.59 9.2
44 6 250 25 28 55 1.49 4.5
45 6 250 25 24 75 1.31 5.6
46 8 150 35 26 65 2.90 8.1
47 8 350 35 26 65 2.01 6.4
48 8 350 35 26 65 2.11 6.6
49 10 450 45 28 55 2.21 7.8
50 6 250 45 24 75 1.70 4.2
51 10 250 25 24 55 3.36 11.1
52 6 250 45 28 55 1.18 3.2
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5.2. Effect of process parameters on the surface 
roughness

As the EDM process is a replica process, the shape 
of the tool is obtained on the work material after 
the machining operation. Higher surface roughness 
(SR) on the tool leads to impart the rough surface 
on the work material. During the experimentation, 
it was observed that the I

p, Ton and flushing pressure 
were the most relevant parameters which were af-
fecting the SR as shown in Fig. 6.

Figure 6a represents the effect of the Ip on the SR 
of the tool. It was observed that increase in the Ip 
leads to an increase in the SR because at higher cur-
rent supply, current density and the impulsive force 
increases, which ultimately leads to the formation of 
craters on the surface. Besides, at higher currents, 

the suspended molten metal between tool work in-
terface increases and these factors tends to increase 
the SR (Hewidy et al., 2005; Prabhu et al., 2014).

The effect of the T
off on the SR is shown in Fig. 

6b. It can be observed that the increase in the pulse 
on time leads to increase in surface roughness. The 
increase in the pulse on time increases the formation 
of plasma channel that reduces the current density 
and also decreases the impulsive force. Due to dec-
rement in the force, the debris collected in the cavity 
was not effectively flushed out, leading to the forma-
tion of globules, which ultimately increases the SR.

Figure 6c demonstrates the effect of the flushing 
pressure (P) on the SR. It is evident from the figure 
that there is a small increment in the SR with the 
increase in flushing pressure. At lower flushing pres-
sures, the flushing is not able to remove the debris 

FiguRe 5. Effect of  (a) Ip (b) Ton (c) Toff  on the tool wear rate (TWR).
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formed after the discharge. For high flushing pres-
sures, it was observed that proper machining was 
not done as the ionized channel was continuously 
washed away leading to an increase in the relative 
wear ratio. Higher flushing pressures may also in-
crease the turbulence in the inter electrode gap (Ku-
mar et al., 2009; Munz et al., 2013; Nain et al., 2017).

6. WORN SURFACE ANALYSIS

6.1. Microstructural analysis of the tool wear

Figure 7 represents the SEM micrographs of the 
composite tool tip after EDM machining of hardened 

D2 steel for experiment no. 9 and 2. It is evident from 
these micrographs that increase in I

p leads to increase 
in the wear rate of the tool. At higher discharge cur-
rents, more electrical energy will be liberated at the in-
ter electrode gap which produce higher temperatures 
between the electrode and work-piece and, ultimately, 
will increase the edge wear and the rounding of the 
cutting edge (Nain et al., 2017; Kumar et al., 2009).

6.2. Surface texture of tool tip

Figure 8 shows the SEM micrographs for surface 
roughness of the tool surface obtained after machin-
ing of workpiece for experiment no. 9 and 2. EDM 

FiguRe 6. Effect of  (a) Ip (b) Ton (c) Flushing pressure on the surface roughness (SR).
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FiguRe 7. SEM micrographs of  the tool after machining for (a) expt. Nº 9 and (b) expt. Nº 2.

FiguRe 8. SEM micrographs of  the tool after machining for (a) expt. Nº 9 (b) expt. Nº 17 and (c) expt. Nº 2.
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is a kind of replica process in which the surface 
quality of the tool will be directly reflected on the 
work material (Somani et al., 2022). A higher sur-
face roughness of tool leads to higher rough surface 
of the counter material. It can be observed that few-
er cracks are present as well as the recast layer is also 
present on the work material surface. Micropores as 
well as the pock marks are also visible on the surface 
which increments in the surface roughness (Gill and 
Kumar., 2016; Klocke et al., 2016; Upadhyay et al., 
2017; Hadad et al., 2018).   

7. DATASET PREPARATION FOR ML MODEL 
DEVELOPMENT

The experimental dataset collected for differ-
ent EDM parameters and responses were kept in 
a excel sheet as shown in the Table 3. The machin-
ing parameters such as discharge current, pulse on 
time, pulse off  time, flushing pressure and gap volt-
age were used as features and the T (related to the 
TWR) and the S (related to the SR) were considered 
as labels for the ML models respectively. The total 
numbers of samples used were 52. For the develop-
ment of ML model, the full dataset is divided into 
train, test and prediction datasets. First, eight data 
samples were separated from the dataset, those were 
kept for prediction purpose. Those are Ip, Ton, Toff, 
P and G (10, 450, 25, 24 and 55) (6, 450, 25, 28 and 
75) (8, 350, 35, 30 and 65) (10, 250, 45, 24 and 55) 
(10, 450, 25, 28 and 55) (8, 350, 55, 26 and 65) (8, 
350, 15, 26 and 65) (6, 250, 45, 24 and 75). The rest 
of the 42 data samples were kept in a separate excel 
sheet for training and testing purpose. Among the 
42 data samples, 80% were used in the training and 
the rest (20%) were used in the model testing. All the 
features used in ML model development were scaled 
into a common range using the minmax scaler. The 
formula for feature scaling is defined as follows:

 φ− φ
φ=

φ− φ
 (2)

7.1. ML based prediction of responses

7.1.1. ML algorithms 

7.1.2. Random forest (RF) 

It is a supervised machine learning approach 
(Chung et al., 2021). It is made off  decision trees. 
This algorithm is applied to predict results in many 
industrial sectors from banking to e-commerce. 
Both regression and classification problems can be 
easily obtained through the technique. It is a group 
learning technology that combines classifiers for giv-
ing solution to the complex problem. Many decision 
trees are associated with this algorithm. The algo-

rithm is mainly trained through combining several 
individual elements. By such technique, the accura-
cy of the algorithm improved. The effectiveness of 
the prediction mainly depends upon the number of 
trees. If  the number of trees increases, the outcome 
will improve. The predicted result is calculated on 
the basis of the mean value provided by each tree. 
A better prediction can be obtained with the reduc-
tion of data over fitting in this algorithm. The RF 
algorithm begins by training multiple decision trees 
on the given dataset. Each decision tree undergoes 
a process where it branches out based on various 
features in the dataset. This process continues re-
cursively until a leaf node is reached, where further 
division is not possible. The decision nodes within 
each decision tree play a crucial role in predicting 
the outcomes by distributing the dataset among the 
leaf nodes. Each decision node evaluates specific 
features and makes decisions based on them, direct-
ing the data flow towards the appropriate leaf nodes. 
In the RF algorithm, the final prediction is made by 
aggregating the predictions of all the decision trees. 
Each tree independently predicts the outcome, and 
the most common prediction or the average predic-
tion (depending on the problem type) is chosen as 
the final result.

7.1.3. Gradient boosting (GB) 

It is a well-known and effective methodology in 
machine learning technique. In machine learning 
technique, there are two types of errors available. 
One is the error related to the bias and the other is 
the error related to the variance. In gradient boost-
ing (GB), the error related to the bias will be min-
imized. The base estimator is not normally men-
tioned in this technique. Normally a fixed value will 
be chosen for the base estimator in the GB model. 
The base estimator is normally called as the n es-
timator. The value of the n estimator is normally 
taken by the algorithm in a default manner if  not 
assigned. The default value is normally taken as 
100. The values of both regressors and classifiers 
can be easily predicted through the GB algorithm. 
Regressors are known as continuous target variable 
and classifiers are called as categorical target values. 
When the algorithm is used to predict the contin-
uous variable, the cost function will be the mean 
square error. When it is used to predict categorical 
variables, the cost function will be the log loss (Pan-
da and Warrior, 2022).

7.1.4. Polynomial regression (PR)

The polynomial regression (PR) (Ostertagová, 
2012) is a special case of multiple LRs. In polyno-
mial regression a, nth order polynomial can be used 
to find a suitable relationship between the features 
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and labels. By using the PR, a nonlinear relationship 
can be modeled. The PR normally applies to predict 
human interpretable models. The linear combina-
tions of base functions of the input parameters for 
the target variable are represented by a PR. These 
base functions can be as complex as the complexi-
ty of the problem. The mathematical expression for 
the second-order polynomial regression model can 
be written as follows:

  (3)

8. FIREFLY ALGORITHM FOR MULTI OB-
JECTIVE OPTIMIZATION

The firefly algorithm (Yang, 2008) which was de-
veloped in 2008 by Dr. Xin-She Yang mainly belongs 
to the nature inspired algorithm and mainly relies 
on lighting bugs of fireflies used to find the optimal 
solutions. The firefly algorithm is based on the flash-
ing patterns as well as on the behavior of the trop-
ical fireflies. This technique is quite simple, efficient 
and can be easily implemented for solving various 
optimization problems with respect to convention-
ally used algorithms, like the genetic algorithm. This 
algorithm has many kind of resemblance with oth-
er types of algorithms that are related to the swarm 
intelligence. Real random numbers are mainly used 
in this kind of algorithm so it is more effective espe-
cially in the case of the multi objective optimization 
problems. So, in this study the firefly algorithm was 
used for the optimization of the process parameters 
for the EDM machining of the hardened D2 steel.

This algorithm has  three precise  idealized  regu-
lations which might be primarily based on a number 
of  the  predominant  flashing  traits  of  real  fireflies 
like all fireflies are unisex whose attractiveness is 
directly proportional to its brightness as well as the 

intensity of the light is directly dependent on the 
objective function’s value. 

The firefly attractiveness functions are denoted 
as:

  (4)

where, r denotes the distance between two adjacent 
fireflies,  represents the light absorption coefficient 
and the initial attractiveness is represented by . 
The values of , , and m are taken as 2, 0.001 and 
2 respectively. If  the two adjacent fireflies are repre-
sented by the i and j for two different positions such 
as xi and xj than the Cartesian distance can be rep-
resented as:

  (5)

where, d represents the number of dimensions and 
xi,k and xj,k is the kth component of the spatial coor-
dinate xi and xj of  the ith and jth firefly.

9. RESULTS AND DISCUSSIONS (ML MOD-
ELS)

The predictive capability of the three ML models 
(polynomial regression, random forest and gradient 
boosting) is discussed in this section. For assessing 
the predictive capability, R2 and MSE of predicted 
responses were calculated as presented in Tables 4 
and 5. The R2 and MSE can be defined as follows:

  (6)

table 4. R2 and MSE of estimations of the ML models for the testing dataset for the tool wear rate (T) and the surface roughness (S).

Testing Tool wear rate (T) Surface roughness (S)

Models R2 MSE R2 MSE

RF 0.9029 3.61e-08 0.7759 0.7005

PR 0.9692 1.14e-08 0.9513 0.2136

GB 0.8854 4.25e-08 0.5935 1.2705

table 5.  R2 and MSE of estimations of the ML models for the prediction dataset for the tool wear rate (T) and the surface roughness (S).

Testing Tool wear rate (T) Surface roughness (S)

Models R2 MSE R2 MSE

RF 0.9482 2.74e-08 0.7605 1.0931

PR 0.9555 2.35e-08 0.9532 0.2136

GB 0.9013 5.22e-08 0.8829 0.5343
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Figure 10. Actual vs. Predicted values of  the output responses with different ML surrogate models for the prediction dataset.

  (7)

Tables 4 and 5 correspond to testing and predic-
tion results respectively. In Table 4: the highest value 
of R2 was observed for the PR. The R2 values are 
0.9692 and 0.9513 for the prediction of T (refers to 
the TWR) and S (refers to the SR), respectively. For 
the predictions of T, the R2 values for RF and GB 
predictions are 0.9029 and 0.8845 respectively. Sim-
ilar is the case for the prediction of S. From Table 
5, it is also clear that the R2 of T and S predictions 
are higher for PR. The actual and predicted values 
of different responses are also plotted in Fig. 9 and 
Fig. 10. Hence, we have used PR, for generating a 

regression equation, which can be used for the devel-
opment of a complex objective function to be used 
in metaheuristic algorithms.  

9.1. ML based modeling of response equations:

To model the responses of T and S, i.e. tool wear 
and surface roughness, in terms of current, pulse on 
time, pulse off  time, gap voltage and die electric pres-
sure, polynomial regression was employed. For the 
two responses, mathematical models are formulated. 
Mathematical models are developed considering the 
first data set. Mathematical models are utilized to 
formulate the complex objective function. The ob-
jective function was considered in the optimization 
process. The mathematical models for each response 
were written as follows.

FiguRe 9. Actual vs. Predicted values of  the output responses with different ML surrogate models for the testing dataset.
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T equation:
Beta_0=2.01529461e-03
Array (0.00000000e+00, 1.80965432e-03, 
-2.69356240e-04, -1.66148902e-04, 4.66876563e05, 
1.67649128e-04, 2.00000000e-05, -1.00861590e-04, 
-4.27620206e-04, 1.21409116e04, 8.16734992e-05, 
3.30000000e-04, -7.56739855e-06, -3.34152307e-04, 
-2.69454906e04, 8.34387160e-05, -1.23962097e-04, 
1.06782761e-04, -6.20727661e-05, 5.07914987e05, 
-4.93805586e-05) 

S equation:
Beta_0=6.36124794e+00
(0.00000000e+00, 4.87344755e+00, -6.02969408e-01, 
-3.65307363e-01, -4.79808971e01, -2.75964325e-01, 
1.27142857e+00, -1.83373303e+00, -4.40927499e-01, 
1.86091479e01, -9.11691019e-01, 1.71428571e-01, 
7.74193004e-01, -1.27550921e+00, -1.66341072e+00, 
1.79759589e-01, -9.93409037e-02, 8.68466112e-02, 
2.37812922e-01, 6.29338472e-01, 2.06079891e-01)

The coefficient arrays are the coefficients of the fol-
lowing terms in the polynomial regression equation 
in the respective order:

9.1.1. Multi-objective optimization

The equations learned through RF and GB re-
gression are not interpretable; hence we have used 
the equations learned through polynomial regres-
sion to prepare a complex objective function for 
optimization of the machining parameters. Here 
the objective function is to minimize the responses 
of EDM. The following complex objective function 
has been proposed:

COF (x0, x1, x2, x3, x4) = w1(T/Tm)+w2(S/Sm)

In the above equation, x0, x1, x2, x3 and x4 are the 
five input machining parameters. Tm and Sm are the 
minimum values of tool wear rate (T) and surface 
roughness (S). Here we have considered the w1 and w2 
as 0.5. The constraints of the machining operation 
were applied for minimization of the objective func-
tion. Those constraints are as follows: 4<=x0<=12, 
150 <=x1<=550, 25 <=x1<=45, 22 <=x1<=28, 45 
<=x1<=85. For optimization, the firefly algorithm 
was used. The optimized input machining param-
eters are found to be 4.86, 155.50, 30.19, 23.73 and 
71.97.

10. CONCLUSIONS

 – In the present research, pure copper and Cu-SiC 
composites were successfully sintered by using 

powder metallurgy technique. Brazing process 
was used to braze the composite tip on the cop-
per rod which was further used to machine the 
hardened D2 steel. The Central composite ro-
tatable design (CCRD) technique was used for 
design of experimentation. 

 – Result indicates that the tool wear rate (TWR) 
was significantly affected by the Ip, Ton and Toff 
while the Ip, Ton and flushing pressure had a 
greater influence on the surface roughness. From 
the SEM micrographs it was observed that the 
increase in the Ip leads to increase in the wear 
rate of the tool. The dataset collected from the 
experiments were used to model the EDM re-
sponses in terms of discharge current, pulse on 
time, pulse off  time, flushing pressure and gap 
voltage. The output responses are the tool wear 
rate (T) and surface roughness (S). Three ML al-
gorithms are used in the modeling of the output 
responses, those are random forest, polynomial 
regression and gradient boosted trees. The R2 of 
testing and predictions of T and S were found to 
be maximum for polynomial regression. 

 – The R2 value of prediction was found to be more 
than 0.95, hence we used the learned correlation 
function for T and S for developing a complex 
objective function, for optimization of input 
machining parameters. For the optimization, 
the firefly algorithm was used. The optimized in-
put machining parameters are found to be 4.86, 
155.50, 30.19, 23.73 and 71.97.
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