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Abstract. Geoscientific models are facing increasing chal-
lenges to exploit growing datasets coming from remote sens-
ing. Universal differential equations (UDEs), aided by dif-
ferentiable programming, provide a new scientific modelling
paradigm enabling both complex functional inversions to po-
tentially discover new physical laws and data assimilation
from heterogeneous and sparse observations. We demon-
strate an application of UDEs as a proof of concept to learn
the creep component of ice flow, i.e. a nonlinear diffusiv-
ity differential equation, of a glacier evolution model. By
combining a mechanistic model based on a two-dimensional
shallow-ice approximation partial differential equation with
an embedded neural network, i.e. a UDE, we can learn parts
of an equation as nonlinear functions that then can be trans-
lated into mathematical expressions. We implemented this
modelling framework as ODINN. j1, a package in the Julia
programming language, providing high performance, source-
to-source automatic differentiation (AD) and seamless inte-
gration with tools and global datasets from the Open Global
Glacier Model in Python. We demonstrate this concept for
17 different glaciers around the world, for which we success-
fully recover a prescribed artificial law describing ice creep
variability by solving ~ 500000 ordinary differential equa-
tions in parallel. Furthermore, we investigate which are the
best tools in the scientific machine learning ecosystem in Ju-
lia to differentiate and optimize large nonlinear diffusivity
UDE:s. This study represents a proof of concept for a new
modelling framework aiming at discovering empirical laws

for large-scale glacier processes, such as the variability in ice
creep and basal sliding for ice flow, and new hybrid surface
mass balance models.

1 Introduction

In the past decade, remote sensing observations have sparked
a revolution in scientific computing and modelling within
Earth sciences, with a particular impact on the field of
glaciology (Hugonnet et al., 2020; Millan et al., 2022). This
revolution is assisted by modelling frameworks based on
machine learning (Rasp et al., 2018; Jouvet et al., 2021),
computational scientific infrastructure (e.g. Jupyter and Pan-
geo, Thomas et al., 2016; Arendt et al., 2018) and mod-
ern programming languages like Julia (Bezanson et al.,
2017; Strauss et al., 2023). Machine learning methods have
opened new avenues for extending traditional physical mod-
elling approaches with rich and complex datasets, offering
advances in both computational efficiency and predictive
power. Nonetheless, the lack of interpretability of some of
these methods, including artificial neural networks, has been
a frequent subject of concern when modelling physical sys-
tems (Zdeborovd, 2020). This “black box” effect is partic-
ularly limiting in scientific modelling, where the discovery
and interpretation of physical processes and mechanisms are
crucial to both improving knowledge on physics and improv-
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Figure 1. Basic representation of universal differential equations
(UDEs) and their associated modelling philosophy. UDE:s sit at the
intersection of physical domain knowledge, represented by differ-
ential equations, numerical methods used to solve the differential
equations and data-driven models, often represented as machine
learning.

ing predictions. As a consequence, a new breed of machine
learning models has appeared in the last few years, attempt-
ing to add physical constraints and interpretability to learning
algorithms (Raissi et al., 2017; Chen et al., 2019; Rackauckas
et al., 2020).

Universal differential equations (UDEs; Rackauckas et al.,
2020), also known as neural differential equations when us-
ing neural networks (Chen et al., 2019; Lguensat et al., 2019;
Kidger, 2022), combine the physical simulation of a differ-
ential equation using a numerical solver with machine learn-
ing (Fig. 1). Optimization algorithms based on exact calcula-
tions of the gradient of the loss function require a fully dif-
ferentiable framework, which has been a technical barrier for
some time. Python libraries such as PyTorch (Paszke et al.,
2019), TensorFlow (Abadi et al., 2016) or JAX (Bradbury
et al., 2020) require rewriting the scientific model and the
solver with the specific differentiable operations of each li-
brary, making it very costly to apply it to existing models or
making solutions very library-centred. Alternatively, the Ju-
lia programming language (Bezanson et al., 2017), designed
specifically for modern scientific computing, has approached
this problem in a different manner. Instead of using library-
specific differentiable operators, it performs automatic dif-
ferentiation (AD) directly on source code. This feature, to-
gether with a rich differential equation library (Rackauckas
and Nie, 2017), provides a suitable scientific machine learn-
ing ecosystem to explore new ways to model and understand
physical systems (Rackauckas et al., 2019).

In glaciology, models have not escaped these general
trends. As for machine learning in general, classification
methods have been more popular than regression meth-
ods (e.g. Baumhoer et al., 2019; Mohajerani et al., 2019).
Nonetheless, progress has been made with surrogate mod-
els for ice flow modelling (Riel et al., 2021; Jouvet et al.,
2021), subglacial processes (Brinkerhoff et al., 2020), glacier
mass balance modelling (Bolibar et al., 2020a, b; Anilku-
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mar et al., 2023; Guidicelli et al., 2023) or super-resolution
applications to downscale glacier ice thickness (Leong and
Horgan, 2020). In terms of modelling glacier processes re-
gionally or globally, it is still very challenging to move from
small-scale detailed observations and physical processes to
large-scale observations and parametrizations. When mod-
elling glaciers globally, simple empirical models such as
temperature-index models are used due to their robustness
to noise and the lack of observations needed to support more
complex models. The same applies for ice flow dynamics,
with flowline models based on the shallow-ice approxima-
tion (SIA; Hutter, 1983) being widely used, as it provides
a good approximation, particularly with noisy and coarse-
resolution input data typical of large-scale models (Maussion
et al., 2019; Zekollari et al., 2019). Moreover, it also helps
to reduce the computational cost of simulations with respect
to higher-order models. Therefore, there is a broad need for
new methods enabling a robust calibration and discovery of
more sophisticated, nonlinear interpretable parametrizations
in geosciences in general but also for both glacier mass bal-
ance and ice flow dynamics. These include the need to tran-
sition towards non-constant melt and accumulation factors
for temperature-index mass balance models (Bolibar et al.,
2022) or the need to find a robust relationship to calibrate
ice creep and basal sliding for different regions, topographies
and climates (Hock et al., 2023).

In terms of data assimilation and model parameter cali-
bration, many different approaches to obtain differentiable
glacier models have been developed (MacAyeal, 1993; Gold-
berg and Heimbach, 2013; Brinkerhoff et al., 2016). These
inverse modelling frameworks enable the minimization of a
loss function by finding the optimal values of parameters via
their gradients. Such gradients can be found by either com-
puting the associated adjoint or by using AD. Nonetheless,
all efforts so far have been applied to the inversion of scalar
parameters and sometimes their distributions (in the context
of Bayesian inference), i.e. parameters that are stationary for
a single inversion given a dataset. This means that the poten-
tial of learning the underlying physical processes is reduced
to the current structure of the mechanistic model. No changes
are made to the equations themselves, with the main role of
the inversions being the fitting of one or more parameters
already present in the equations. To advance beyond scalar
parameter inversions, more complex inversions are required,
shifting towards functional inversions. Functional inversions
enable the capture of relationships between a parameter of
interest and other proxy variables, resulting in a function that
can serve as a law or parametrization. These learnt functions
can then be added in the currently existing equation, thus ex-
panding the underlying model with new knowledge.

We present an application of universal differential equa-
tions, i.e. a differential equation with an embedded func-
tion approximator (e.g. a neural network). For the purpose
of this study, this NN is used to infer a prescribed artificial
law determining the ice creep coefficient in Glen’s law (Cuf-
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fey and Paterson, 2010) based on a climate proxy. Instead
of treating it as a classic inverse problem, where a global
parameter is optimized for a given point in space and time,
neural networks learn a nonlinear function that captures the
spatiotemporal variability in that parameter. This opens the
door to a new way of learning parametrizations and empir-
ical laws of physical processes from data. This case study
is based on ODINN. j1 v0.2 (Bolibar and Sapienza, 2023), a
new open-source Julia package, available on GitHub at https:
//github.com/ODINN-SciML/ODINN jl (last access: 13 June
2023). With this study, we attempt to share and discuss what
the main advances and difficulties in applying UDEs to more
complex physical problems are, we assess the current state
of differentiable physics in Julia, and we suggest and project
the next steps in order to scale this modelling framework to
work with large-scale remote sensing datasets.

2 Methods

In this section we introduce the partial differential equation
(PDE) describing the flow of ice through the SIA equation,
and we present its equivalent universal differential equation
(UDE) with an embedded neural network.

2.1 Glacier ice flow modelling

We consider the SIA equation to describe the temporal vari-
ation in the ice thickness (Cuffey and Paterson, 2010). As-
suming a small depth-to-width ratio in ice thickness and that
the driving stress caused by gravity is only balanced by the
basal resistance, the evolution of the ice thickness H (x, y, )
can be described as a diffusion equation,
oH .
)
ot
2A n rrn+1 n—1
+VA\NC+—=H ) ()" H VST VS|, (1)
n+2

where n and A are the creep exponent and parameter in
Glen’s law, respectively; b is the surface mass balance
(SMB); C is a basal sliding coefficient; and VS is the gra-
dient of the glacier surface S(x, y,t) = B(x,y)+ H(x, y,1),
with B(x, y) being the bedrock elevation, and || VS| denotes
its Euclidean norm.! A convenient simplification of the SIA
equation is to assume C =0, which implies a basal veloc-
ity equal to O all along the bed. This is reasonable when large
portions of the glacier bed experience minimal sliding. In that
case, Eq. (1) of the SIA can be written in the compact form

oH .
ﬁzb—i—V(DVS), 2)
where D stands for an effective diffusivity given by

_ 2A
D=TH"?|vs|"!, TI'= e 3)

! Gradients here always refer to the spatial derivatives in x and
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Except for a few engineered initial glacier conditions, no ana-
lytical solutions for the SIA equation exist, and it is necessary
to use numerical methods (Halfar, 1981).

Importantly for our analysis, some of the coefficients that
play a central role in the ice flow dynamics of a glacier (e.g.
A, n and C) are generally non-constant and may vary both
temporally and spatially. Although it is usually assumed that
n ~ 3, this number can vary between 1.5 and 4.2 for differ-
ent ice and stress configurations. Furthermore, the viscosity
of the ice and consequently the Glen parameter A are affected
by multiple factors, including ice temperature, pressure, wa-
ter content and ice fabric (Cuffey and Paterson, 2010). For
example, ice is harder and therefore more resistant to defor-
mation at lower temperatures. The parameters A, n and C are
usually used as tuning parameters and may or may not vary
between glaciers depending on the calibration strategy and
data availability.

An important property of the SIA equation is that the ice
surface velocity u can be directly derived from the ice thick-
ness H by the equation

2A
u=———(pg)"H""|Vs|""Vs. (4)
n+1

Notice that the velocity field is a two-dimensional vector field
that can be evaluated at any point in the glacier and points to
the maximum direction of decrease in surface slope.

2.2 Universal differential equations

In the last few years there has been an increasing interest in
transitioning physical models to a data-driven domain, where
unknowns in the laws governing the physical system of inter-
est are identified via the use of machine learning algorithms.
The philosophy behind universal differential equations is to
embed a rich family of parametric functions inside a differ-
ential equation so that the base structure of the differential
equation is preserved, but more flexibility is allowed in the
model at the moment of fitting observed data. This family
of functions, usually referred to as the universal approxima-
tor because of their ability to approximate a large family of
functions, includes, among others, neural networks, polyno-
mial expansions and splines. An example of this is a univer-
sal ordinary differential equation (Rackauckas et al., 2020):

du B U 5
E—f(u,t, o(u,1)), (%)

where f is a known function that describes the dynamics
of the system, and Uy (u, t) represents the universal approxi-
mator, a function parametrized by a vector parameter 6 that
takes as an argument the solution # and time #, as well as
other parameters of interest, to the physical system.

In this study, the function f to be simulated is the SIA
(Eq. 2). Training such a UDE requires that we optimize with
respect to the solutions of the SIA equation, which needs to
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be solved using sophisticated numerical methods. The ap-
proach to fit the value of 6 is to minimize the squared error
between the target ice surface velocity profile (described in
Sect. 3.1 together with all other datasets used) at a given time
and the predicted surface velocities using the UDE, an ap-
proach known as trajectory matching (Ramsay and Hooker,
2017). For a single glacier, if we observed two different ice
surface velocities ug and u; at times g and #, respectively,
then we want to find 6 that minimizes the discrepancy be-
tween u; and SIASolver(Hy, ty, 1, Dy), defined as the for-
ward numerical solution of the SIA equation yielding a sur-
face ice velocity field following Eq. (4). When training with
multiple glaciers, we are instead interested in minimizing the
total level of agreement between observation and predictions,

min £(0) = Xk:wkﬁk(e),

Li(0) = ||u\ — SIASolver(Hy, 10, 11, Do) | -, 6)

where | - || r denotes the Frobenius norm, that is, the square
root of the sum of the squares of all matrix entries, and each
k corresponds to a different glacier. The weights wy are in-
cluded in order to balance the contribution of each glacier
to the total loss function. For our experiments, we consider
o =1 /||u15||1:, which results in a rescaling of the surface
velocities. This scaling is similar to the methods suggested
in Kim et al. (2021) to improve the training of stiff neural
ODEs.

2.3 Functional inversion

We consider a simple synthetic example where we fix n = 3,
a common assumption in glaciology; C = 0; and model the
dependency of Glen’s creep parameter A and the climate
temperature normal T, i.e. the average long-term variabil-
ity in air temperature at the glacier surface. T is computed
using a 30-year rolling mean of the air temperature series,
used to drive the changes in A in the prescribed artificial law.
Although simplistic and incomplete, this relationship allows
us to present all of our methodological steps in the process of
identifying more general phenomenological laws for glacier
dynamics. Any other proxies of interest could be used instead
of T for the design of the model. Instead of considering that
the diffusivity Dy is the output of a universal approximator,
we replace the creep parameter A in Eq. (3) with a neural
network with input 7:

2 Ag(T)

G2 H" 2 |vs|" . 7

Dy(T) =
In this last equation, Dy (Ts) parametrized using the neural
network Ag(Ty) plays the role of Uy in Eq. (5), allowing the
solutions of the PDE to span over a rich set of possible so-
lutions. The objective of Ag(T) will be to learn the spatial
variability (i.e. among glaciers) in A with respect to T for
multiple glaciers in different climates. In order to generate
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this artificial law, we have used the relationship between ice
temperature and A from Cuffey and Paterson (2010) and re-
placed ice temperatures with a relationship between A and
T;. This relationship is based on the hypothesis that Ty is a
proxy of ice temperature and therefore of A. However, it ig-
nores many other important physical drivers influencing the
value of A, such as a direct relationship with the tempera-
ture of ice, the type of fabric and the water content (Cuf-
fey and Paterson, 2010). Nonetheless, this simple example
serves to illustrate the modelling framework based on UDEs
for glacier ice flow modelling while acting as a platform to
present both the technical challenges and the adaptations per-
formed in the process, as well as the future perspectives for
applications at larger scales with additional data. Given this
artificial law for A(Ty), a reference dataset of velocities and
ice thicknesses is generated by solving Eq. (2) of the SIA.

3 Experiment implementation in Julia

The combination of Python tools from the Open Global
Glacier Model (OGGM) with the UDE glacier modelling
framework in Julia has resulted in the creation of a new Julia
package named ODINN. j1 (OGGM + Dlfferential equation
Neural Networks; Bolibar and Sapienza, 2023). For the pur-
pose of this study, ODINN has been used to study the viabil-
ity of UDE:s to solve and learn subparts of the SIA equation.
The use of PyCall. j1 enables a seamless integration of
Python libraries such as OGGM and xarray (Hoyer and
Hamman, 2017) within ODINN.

3.1 Training dataset

The following data are used for the initial conditions of simu-
lated glaciers: a digital elevation model (DEM) for the glacier
surface elevation S based on the Shuttle Radar Topography
Mission from the year 2005 (SRTM; Farr et al., 2007) and es-
timated glacier ice thickness H from the global dataset from
Farinotti et al. (2019) based on the glacier outlines around
the year 2003 of the Randolph Glacier Inventory (Consor-
tium, 2017). All these datasets, together with all glacier infor-
mation, are retrieved using the Open Global Glacier Model
(OGGM), an open-source glacier evolution model in Python
providing a vast set of tools to retrieve and process climate
and topographical data related to glaciers (Maussion et al.,
2019). Since these datasets are only available for just one or
a few times but have a global spatial coverage of almost all
of the ~ 220000 glaciers on Earth, we perform this training
for 17 different glaciers (see table in Appendix C) distributed
in different climates around the world. This enables a good
sampling of different climate conditions from which to take
T; to compute A. All climate data were based on the W5ES
climate dataset (Lange, 2019), also retrieved using OGGM.
For the purpose of the synthetic experiments, some of the
boundary conditions (surface topography, glacier bedrock in-
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Figure 2. Overview of ODINN. j1’s workflow to perform functional inversions of glacier physical processes using universal differential
equations. The parameters (9) of a function determining a given physical process (Dy), expressed by a neural network NNp, are optimized in
order to minimize a loss function. For this study, the physical law was constrained only by climate data, but any other proxies of interest can
be used to design it. The glacier surface mass balance is downscaled (i.e. it depends) on S, which is updated by the solver, thus dynamically

updating the state of the simulation for a given time step.

ferred from topography and ice thickness) are assumed to be
perfectly known.

3.2 Differential equation solver

In order to solve Eq. (2) of the SIA, we perform a discretiza-
tion in the spatial domain to solve the problem as a combina-
tion of ordinary differential equations (ODEs). The solution
of the ODE:s is evaluated in a constant grid, determined by the
preprocessed datasets by OGGM. The resolution of the spa-
tial grid is automatically adjusted depending on the glacier
size and domain size, typically ranging between 100 x 100
and 200 x 200 grid points, which leads to a system of coupled
ODEs ranging from 10000 to 40 000 equations per glacier.
All gradients and divergences are computed in a staggered
grid to improve stability (see Appendix A). Once the prob-
lem has been discretized in the spatial domain, we use the
numerical solver RDPK3Sp35 (Ranocha et al., 2022) imple-
mented in DifferentialEquations. j1 (Rackauckas
and Nie, 2017) to solve the SIA forward in time. The method
implements an adaptive temporal step size close to the max-
imum value satisfying the CFL conditions for numerical sta-
bility at the same time that it controls numerical error and
computational storage (Ranocha et al., 2022).
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In order to create conditions similar to those one would
encounter when using remote sensing observations for the
functional inversions, we add Gaussian noise with a mean of
0 and standard deviation of 6 x 10™!8 (around 30 % of the
average A value) to the output of the prescribed law (Fig. 3).
This setup is used to compute the reference synthetic solu-
tions (u’l‘ in Eq. 6), which will then be used by the UDE to
attempt to infer the prescribed law indirectly from glacier ice
surface velocities and/or ice thickness.

For the STA UDE, we substitute A by a small feed-forward
neural network using Flux. 71 (Innes et al., 2018). The ar-
chitecture of the neural network consists of one single input
variable; three hidden layers with 3, 10, and 3 units, respec-
tively; and one single output variable. Since the optimiza-
tion problem is much more constrained by the structure of
the solutions of the PDE compared to a pure data-driven ap-
proach (Rackauckas et al., 2020), a very small neural net-
work is enough to learn the dynamics related to the subpart
of the equation it is representing (i.e. A). This network has
a single input and output neuron, thus producing a one-to-
one mapping. This small size is one of the main advantages
of UDEs, which do not require as much data as traditional
data-driven machine learning approaches. We use a softplus
activation function in all layers except for the last layer, for
which we use a rescaled sigmoid activation function which
constrains the output within physically plausible values (i.e.

Geosci. Model Dev., 16, 6671-6687, 2023



6676

8720 to 8717 yr~! Pa=3). Constraining the output values of
the neural network is necessary in order to avoid numerical
instabilities in the solver or very small step sizes in the for-
ward model that will lead to expensive computations of the
gradient. The use of continuous activation functions has been
proven to be more effective for neural differential equations,
since their derivatives are also smooth, thus avoiding prob-
lems of vanishing gradients (Kim et al., 2021).

3.3 Surface mass balance

In order to compute the glacier surface mass balance (i.e. a
source/sink) for both the PDEs and the UDEs, we used a very
simple temperature-index model with a single melt factor and
a precipitation factor set to Smmd~! °C~! and 1.2, respec-
tively. These are average values found in the literature (Hock,
2003), and despite its simplicity, this approach serves to add
a realistic SMB signal on top of the ice rheology in order to
assess the performance of the inversion method under realis-
tic conditions. In order to add the surface mass balance term
b in Eq. (2) of the SIA, we used a DiscreteCallback
from DifferentialEquations. j1. This enabled the
modification of the glacier ice thickness H with any desired
time intervals and without producing numerical instabilities
when using all the numerical solvers available in the package
(Rackauckas and Nie, 2017). We observed this makes the so-
lution more stable without the need for reducing the step size
of the solver.

In order to find a good compromise between computa-
tional efficiency and memory usage, we preprocess raw cli-
mate files from W5ES5 (Lange, 2019) for the simulation pe-
riod of each glacier. Then, within the run, for each desired
time step where the surface mass balance needs to be com-
puted (monthly by default), we read the raw climate file for
a given glacier, and we downscale the air temperature to
the current surface elevation S of the glacier given by the
SIA PDE. For that, we use the adaptive lapse rates given by
WS5ES, thus capturing the topographical feedback of retreat-
ing glaciers in the surface mass balance signal (Bolibar et al.,
2022).

3.4 Sensitivity methods and differentiation

In order to minimize the loss function from Eq. (6), we need
to evaluate its gradient with respect to the parameters of the
neural network and then perform gradient-based optimiza-
tion. Different methods exist to evaluate the sensitivity or
gradients of the solution of a differential equation. These can
be classified depending on if they run backward or forward
with respect to the solver. Furthermore, they can be divided
between continuous and discrete, depending on if they ma-
nipulate a discrete evaluation of the solver or if instead they
solve an alternative system of differential equations in or-
der to find the gradients (see Fig. B1). For a more detailed
overview on this topic, see Appendix B.
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Here we compare the evaluation of the gradients using a
continuous adjoint method integrated with automatic differ-
entiation and a hybrid method that combines automatic dif-
ferentiation with finite differences.

34.1 Continuous adjoint sensitivity analysis

For the first method based on pure automatic differentiation,
we used the SciMLSensitivity. jl package, an evolu-
tion of the former DiffEgFlux. j1 Julia package (Rack-
auckas et al., 2019), capable of weaving neural networks and
differential equation solvers with AD. In order to train the
SIA UDE from Eq. (7), we use the same previously men-
tioned numerical scheme as for the PDE (i.e. RDPK3Sp35).
Unlike in the original neural ODEs paper (Chen et al., 2019),
simply reversing the ODE for the backward solve results in
unstable gradients. This has been shown to be the case for
most differential equations, particularly stiff ones like the
one from this study (Kim et al., 2021). In order to over-
come this issue, we used the full solution of the forward
pass to ensure stability during the backward solve, using
the InterpolatingAdjoint method as described in the
stiff neural ODEs paper (Kim et al., 2021). This method com-
bined with an explicit solver proved to be more efficient than
using a quadrature adjoint. It is also possible to use check-
pointing and just store a few evaluations of the solution.
This has the advantage of reducing memory usage at the
cost of sacrificing some computational performance (Scha-
nen et al., 2023; Griewank and Walther, 2008). To compute
the vector Jacobian products involved in the adjoint calcula-
tions of the SIA UDE, we used reverse-mode AD with the
ReverseDiff. jl package with a cached compilation of
the reverse tape. We found that for our problem, the limita-
tion of not being able to use control flow was easily bypassed,
and performance was noticeably faster than other AD pack-
ages in Julia, such as Zygote. j1.

3.4.2 Finite differences

The second method consists of using AD just for the neural
network and finite differences for capturing the variability in
the loss function with respect to the parameter A. Notice that
in Eq. (6) we can write L (0) = L (Ag(Ty)), with A(6) be-
ing the function that maps input parameters 7 into the scalar
value of A (which for this example is assumed to be a single
scalar across the glacier) as a function of the neural network
parameters 6. Once A has been specified, the function Ly is
a one-to-one function that is easily differentiable using finite
differences. If we define g = Vg A(T}) as the gradient of the
neural network that we obtain using AD, then the full gra-
dient of the loss function can be evaluated using the centred
numerical approximation

~ LEO+ng)—LEO—ng)

VoLl
o 2lgI?

g &=VoAT), (8
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where 7 is the step size used for the numerical approxima-
tion of the derivative. Notice that the first term on the right-
hand side is just a scalar that quantifies the sign and ampli-
tude of the gradient, which will always be in the direction
of Vg A(Ty). The choice of step size 1 is critical in order to
correctly estimate the gradient. Notice that this method only
works when there are a few parameters and will not gener-
alize well to the case of an A that varies in space and time
for each glacier. The main advantage of this method is that it
runs orders of magnitude faster than a pure AD one.

3.5 Optimization

Once the gradient has been computed by one of the previ-
ous methods, optimization of the total loss function without
any extra regularization penalty to the weights in the loss
function is performed using a Broyden—Fletcher—Goldfarb—
Shanno (BFGS) optimizer with parameter 0.001. We also
tested ADAM (Mogensen and Riseth, 2018) with a learning
rate of 0.01. BFGS converges in fewer epochs than ADAM,
but it has a higher computational cost per epoch. Overall,
BFGS performed better in different scenarios, resulting in a
more reliable UDE training. For this toy model, a full epoch
was trained in parallel using 17 workers, each one for a sin-
gle glacier. Larger simulations will require batching either
across glaciers or across time in the case that a dataset with
dense temporal series are used.

3.6 Scientific computing in the cloud

In recent years, scientific workflows in Earth and environ-
mental sciences have benefited from transitioning from lo-
cal to cloud computing (Gentemann et al., 2021; Abernathey
et al., 2021; Mesnard and Barba, 2020). The adoption of
cloud computing facilitates the creation of shared computa-
tional environments, datasets and analysis pipelines, which
leads to more reproducible scientific results by enabling stan-
dalone software containers (e.g. Binder, Project Jupyter et al.,
2018) for other researchers to easily reproduce scientific re-
sults. As part of this new approach in terms of geoscien-
tific computing, we are computing everything directly in the
cloud using a JupyterHub (Granger and Pérez, 2021). This
JupyterHub allows us to work with both Julia and Python, us-
ing Unix terminals, Jupyter notebooks (Thomas et al., 2016)
and Visual Studio Code directly on the browser. Moreover,
this provides a lot of flexibility in terms of computational
resources. When logging in, one can choose between differ-
ent machines, ranging from small ones (1-4 CPUs, 4-16 GB
RAM) to very large ones (64 CPUs, 1 T4 tensor core GPU,
1TB RAM), depending on the task to be run. The largest
simulations for this study were run in a large machine, with
16 CPUs and 64 GB of RAM.

https://doi.org/10.5194/gmd-16-6671-2023

6677

4 Results

Despite its apparent simplicity, it is not a straightforward
problem to invert the spatial function of A with respect to
the predictor indirectly from surface velocities, mainly due
to the highly nonlinear behaviour of the diffusivity of ice (see
Eq. 2). We ran a functional inversion using two different dif-
ferentiation methods for 17 different glaciers (see Table C1)
for a period of 5 years.

Training the UDE with full batches using the continu-
ous adjoint method described in Appendix B2 converges in
around 20 epochs. The NN is capable of successfully approx-
imating the prescribed nonlinear function of A. The loss sees
a steep decrease in the first epochs, with BFGS optimizing
the function towards the lowest values of A, which correctly
approximate the majority of values of the prescribed nonlin-
ear function. From this point, the function slowly converges
until it finds an optimal non-overfitted solution (Fig. 3b). This
simulation took about 3 h to converge, with a running time of
between 6 to 12 min per epoch, in a machine in the cloud-
based JupyterHub with 16 CPUs and 64 GB of RAM, using
all available CPUs to simulate in parallel the 17 glaciers in
batches and using the full 64 GB of memory. Figure 3a shows
the parametrization of A as a function of 7 obtained with
the trained NN. We observe that the neural network is able
to capture the monotonic increasing function A(7s) with-
out overfitting the noisy values used for training (dots in the
plot). Interestingly, the lack of regularization did not affect
overfitting. We are unsure about the reasons behind this be-
haviour, but we suspect this could be related to an implicit
regularization caused by UDEs. This property has not been
studied yet, so more investigations should be carried out in
order to better understand this apparent robustness to overfit-
ting.

We also compared the efficiency of our approach when us-
ing the finite-difference scheme. Since this does not require
heavy backward operations as the continuous adjoint method
does, the finite-difference method runs faster (around 1 min
per epoch). However, we encountered difficulties in picking
the right step size 1 in Eq. (8). Small values of n lead to
floating number arithmetic errors and large n to biased es-
timates of the gradient. On top of this effect, we found that
numerical precision errors in the solution of the differential
equation result in wrong gradients and the consequent fail-
ure in the optimization procedure (see discussion about this
in Sect. 5.2.3). A solution for this would be to pick n adap-
tive as we update the value of the parameter 6. However, this
would lead to more evaluations of the loss function. Instead,
we applied early stopping when we observed that the loss
function reached a reasonable minimum.

4.1 Robustness to noise in observations

The addition of surface mass balance (i.e. a source/sink) to
the SIA equation further complicates things for the functional
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Figure 3. (a) Inferred function by the NN embedded in the SIA PDE using full automatic differentiation. The NN learnt the prescribed
noisy function (each dot represents a glacier), which relates Glen’s coefficient A with a proxy of interest (i.e. the long-term air temperature
Ts). (b) Evolution of the loss through training, using a BFGS optimizer. The loss is based on a scaled mean squared error in the difference
between the simulated and target ice surface velocities. The scaling is used to correctly account for values of different orders of magnitude.
Without any use of regularization, the optimization converges in around 20 epochs. Note that the loss is shown in log scale.

inversion, particularly from a computational point of view.
The accumulation and ablation (subtraction) of mass on the
glacier introduces additional noise to the pure ice flow signal.
The mass loss in the lower elevations of the glacier slows
down ice flow near the tongue, whereas the accumulation of
mass in the higher elevations accelerates the ice flow on the
upper parts of the glacier.

As an experiment to test the robustness of the functional
inversions made by the UDE, we used different surface mass
balance models for the reference simulation (i.e. the ground
truth) and the UDE. This means that the surface mass balance
signal during training is totally different from the one in the
ground truth. We achieved this by using a temperature-index
model with a melt factor of 4mmd~—'°C~! and a precipita-
tion factor of 2 for the reference run, as well as a melt fac-
tor of $mmd~—! °C~! and a precipitation factor of 1 for the
UDE. This means that the UDE is perceiving a much more
negative surface mass balance than the actual one from the
ground truth. Despite the really large difference that can be
seen in Fig. 4, the UDE was perfectly capable of inverting
the nonlinear function of A. The evolution of the loss was
less smooth than for the case of matching surface mass bal-
ance rates, but it also converged in around 20 epochs, with
no noticeable difference in final performance.

This shows the robustness of this modelling approach, par-
ticularly when the ice surface velocities u are used in the
loss function. Unlike the glacier ice thickness, u is much less
sensitive to changes in surface elevation, making it a per-
fect datum for inferring ice rheology properties. This is also
due to the fact that we are using ice surface velocities aver-
aged across multiple years, which lessen the importance of
changes in surface elevation. When working with velocities
with a higher temporal resolution, these will likely become
more sensitive to noise. This weak dependence on the sur-
face mass balance signal will be highly beneficial for many
applications, since it will imply that the inversion can be
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done even if we only have an approximate representation of
the surface mass balance, which will be the case for many
glaciers. Various tests using H instead of u as the target data
showed that A cannot be successfully inverted in the pres-
ence of a surface mass balance signal.

5 Discussion: challenges and perspectives

5.1 Application to functional inversions of glacier
physical processes

This first implementation of a UDE on glacier ice flow mod-
elling serves as a baseline to tackle more complex problems
with large datasets. One main simplification of this current
setup needs to be overcome in order to make the model use-
ful at a global scale for exploring and discovering empiri-
cal laws. In this study, only ice deformation (creep) has been
taken into account in the diffusivity. Basal sliding, at the ice—
bedrock interface, will have to be included in the SIA equa-
tion to accommodate different configurations and behaviours
of many glaciers around the world. Therefore, a logical next
step would be to infer D in Eq. (3), including the sliding co-
efficient C from Eq. (2) using a UDE. Nonetheless, despite
a scale difference between these two processes, this can be
an ill-posed problem, since the only available ice velocity
observations are from the surface, encompassing both creep
and basal sliding. This results in degeneracy (i.e. equifinal-
ity), making it very challenging to disentangle the contribu-
tions of each physical process to ice flow. This is particu-
larly true for datasets with average annual surface velocities,
since both physical processes contribute to glacier velocities,
with no obvious way of separating them. In order to over-
come such issues, using new remote sensing datasets with
high temporal resolution, like Nanni et al. (2023) with ob-
servations every 10d, can help to better constrain the con-
tribution of each physical process. This implies that we can
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Figure 4. Differences in surface elevation for a 5-year simulation, coming from the different applied surface mass balance rates, between the
ground truth data and the training of the UDE. Despite the noise coming from the different surface mass balance signals, the UDE is perfectly
capable of learning the underlying nonlinear function of A. This proves the robustness against noise of this functional inversion framework
for glacier rheology when using ice surface velocities. Only 12 of the total of 17 glaciers are shown.

exploit not only the spatial dimension with multiple glaciers,
but also rich time series of the fluctuations in glacier veloc-
ities along the seasons. Such dynamics can help disentangle
the main contributions of creep during the winter season and
the onset of sliding during the summer season as the sub-
glacial hydrological network activates due to melt.

Interestingly, depending on the ice surface velocity obser-
vations used, the need for a numerical solver and a UDE is
not imperative for a functional inversion. For a single snap-
shot of ice surface velocities between two dates (e.g. 2017—
2018 in Millan et al., 2022), a functional inversion can be
performed directly on the SIA equation without the need for
a solver. The average ice surface velocities can be directly
inverted if the geometry is known. This reduces the technical
complexity enormously, enabling one to focus on more com-
plex NN architectures and functions to inverse ice rheology
and basal sliding properties. Some initial tests have shown
that such problems train orders of magnitude faster. How-
ever, since only one timestamp is present for the inversions,
the inversion is extremely sensitive to time discrepancies in
the input datasets, making it potentially quite vulnerable to
noisy or temporally misaligned datasets.

Alternatively, the optimization of the NN for ice rheology
inference based on ice surface velocities has proved to be ro-
bust to the noise added by the SMB component. This serves
to validate an alternative glacier ice dynamic model calibra-
tion strategy to that of the majority of large-scale glacier
models (e.g. OGGM and GloGEM; Huss and Hock, 2015).
By being able to calibrate ice rheology and mass balance
(MB) separately, one can avoid many equifinality problems
that appear when attempting to calibrate both components
at the same time (Arthern and Gudmundsson, 2010; Zhao
et al., 2018). A classic problem of a joint calibration is the
ambiguity in increasing/decreasing accumulation vs increas-
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ing/decreasing Glen’s coefficient (A). ODINN. j1, with its
fully differentiable code base, provides a different strategy
consisting of two main steps: (i) calibrating the ice rheology
from observed ice surface velocities (Millan et al., 2022), ob-
served ice thicknesses (GlaThiDa Consortium Consortium,
2019) and DEMs and (ii) calibrating the MB component (e.g.
melt and accumulation factors) with the previously calibrated
ice rheology based on both point glaciological MB observa-
tions and multiannual geodetic MB observations (Hugonnet
et al., 2020). This maximizes the use of current glaciological
datasets for model calibration, even for transient simulations.
Such a differentiable modelling framework presents both the
advantages of complex inversions and the possibility of per-
forming data assimilation with heterogeneous and sparse ob-
servations.

5.2 Scientific machine learning
5.2.1 Automatic differentiation approaches

Automatic differentiation is the centrepiece of the modelling
framework presented in this study. In the Julia programming
language, multiple AD packages exist, which are compatible
with both differential equation and neural network packages,
as part of the SciML ecosystem. Each package has advan-
tages and disadvantages, which make them suitable for dif-
ferent tasks. In our case, ReverseDiff. jl turned out to
be the best-performing AD package due to the speed gained
by reverse tape compilation. Together with Zygote. jl
(Innes et al., 2019), another popular backward AD package,
they have the limitation of not allowing mutation of arrays.
This implies that no in-place operations can be used, thus
augmenting the memory allocation of the simulations con-
siderably. Enzyme . j1 (Moses et al., 2021) is arising as a
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promising alternative, with the fastest gradient computation
times in Julia (Ma et al., 2021). It directly computes gradi-
ents on statically analysable LLVMs, without differentiating
any Julia source code. Nonetheless, Enzyme . j1 is still un-
der heavy development, and it is still not stable enough for
problems like the ones from this study. As Enzyme . 31 will
become more robust in the future, it appears likely to become
the de facto solution for AD in Julia.

Overall, the vision on AD from Julia is highly ambitious,
attempting to perform AD directly on source code, with min-
imal impact on the user side and with the possibility of eas-
ily switching AD back ends. From a technical point of view,
this is much more complex to achieve than hard-coded gra-
dients linked to specific operators, an approach followed by
JAX (Bradbury et al., 2020) and other popular deep learn-
ing Python libraries. In the short term, the latter provides a
more stable experience, albeit a more rigid one. However,
in the long term, once these packages are given the time to
grow and become more stable, differentiating through com-
plex code, like the one from UDE:s, they should become in-
creasingly straightforward.

5.2.2 Replacing the numerical solver with a statistical
emulator

In this work, we model glacier ice flow using a two-
dimensional SIA equation described by Eq. (2). This decision
was originally driven by the goal of using a differential equa-
tion that is general enough for modelling the gridded remote
sensing available data but also flexible enough to include un-
knowns in the equation in both the diffusivity and the surface
mass balance terms. Nonetheless, the approach of UDEs and
functional inversions is flexible and can be applied to more
complex ice flow models, such as full-Stokes. It is impor-
tant to keep in mind that for such more complex models, the
numerical solvers involved would be computationally more
expensive to run, in both forward and reverse mode.

A recent alternative to such a computationally heavy ap-
proach is the use of convolutional neural networks as emula-
tors for the solutions of the differential equations of a high-
order ice flow model (Jouvet et al., 2021; Wang et al., 2022).
Emulators can be used to replace the numerical solver shown
in the workflow illustrated in Fig. 2 while keeping the func-
tional inversion methodology intact. This in fact translates to
replacing a numerical solver with a previously trained neural
network, which has learnt to solve the Stokes equations for
ice flow. Embedding a neural network inside a second neural
network that gives approximate solutions instead of a PDE
solved by a numerical solver allows for computing the full
gradient of the loss function by just using reverse AD. Neural
networks can very easily be differentiated, thus resulting in a
simpler differentiation scheme. At the same time, as shown
in Jouvet (2023), this could potentially speed up functional
inversions by orders of magnitude while also improving the
quality of the ice flow simulations transitioning from the SIA,
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with its vertically integrated ice column assumption, to full-
Stokes.

5.2.3 New statistical questions

The combination of solvers for differential equations with
modern machine learning techniques opens the door to new
methodological questions that include the standard ones
about the design of the machine learning method (loss func-
tion, optimization method, regularization) but also new phe-
nomena that emerge purely by the use of numerical solutions
of differential equations in the loss function. Although this
intersection between data science and dynamical systems has
been widely explored (see Ramsay and Hooker, 2017), the
use of adjoints for sensitivity analysis integrated with AD
tools for optimization and the properties of the landscape
generated when using numerical solvers have not. Because
numerical methods approximate the solution of the differen-
tial equation, there is an error term associated with running
the forward model that can be amplified when running the
model backward when computing the adjoint. This can lead
to inaccurate gradients, especially for stiff differential equa-
tions (Kim et al., 2021). Furthermore, when computing a loss
function that depends on the solution of the differential equa-
tion for a certain parameter 6, the loss depends on 6 because
local variations in 6 result in changes in the error itself but
also because of hyper-parameters in the numerical solver (for
example, the time step used to ensure stability) that are adap-
tively selected as a function of 8. This double dependency of
the loss as a function of 6 results in distortions of the shape of
the loss function (Creswell et al., 2023). Further investigation
is needed in order to establish the effect of these distortions
during optimization and how these can impact the calculation
of the gradient obtained using different sensitivity methods.
Another interesting question pertains to the training and
regularization of UDEs and related physics-informed neu-
ral networks. During training, we observed that the neural
network never overfitted the noisy version of prescribed law
A(T;) (see Sect. 3.2). We conjecture that one reason why this
may be happening is because of the implicit regularization
imposed by the form of the differential equation in Eq. (2).

6 Conclusions

Despite the ever-increasing numbers of new Earth observa-
tions coming from remote sensing, it is still extremely chal-
lenging to translate complex, sparse, noisy data into actual
models and physical laws. Paraphrasing Rackauckas et al.
(2020), in the context of science, the well-known adage a
picture is worth a thousand words might well be a model
is worth a thousand datasets. Therefore, there is a clear
need for new modelling frameworks capable of generating
data-driven models with the interpretability and constraints
of classic physical models. Universal differential equations
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(UDEs) embed a universal function approximator (e.g. a neu-
ral network) inside a differential equation. This enables addi-
tional flexibility typical of data-driven models into a reliable
physical structure determined by a differential equation.

We presented ODINN. j1, a new modelling framework
based on UDEs applied to glacier ice flow modelling. We
illustrated how UDEs, supported by differentiable program-
ming in the Julia programming language, can be used to re-
trieve empirical laws present in datasets, even in the presence
of noise. We did so by using the shallow-ice approximation
PDE and learning a prescribed artificial law as a subpart of
the equation. We used a neural network to infer Glen’s co-
efficient A, determining the ice viscosity, with respect to a
climatic proxy for 17 different glaciers across the world. The
presented functional inversion framework is robust to noise
present in input observations, particularly with regard to the
surface mass balance, as shown in an experiment.

This study can serve as a baseline for other researchers
interested in applying UDEs to similar nonlinear diffusivity
problems. It also provides a code base to be used as a back-
bone to explore new parametrizations for large-scale glacier
modelling, such as for glacier ice rheology, basal sliding or
more complex hybrid surface mass balance models.

Appendix A: Numerical solution

Solving Eq. (2) is challenging since the diffusivity D de-
pends on the solution H. Furthermore, the SIA equation is
a degenerate diffusion equation since the diffusivity D van-
ishes as H — 0 or VS — 0. In cases where the glacier does
not extend to the margins of our domain, this allows us to
treat the SIA equation as a free-boundary problem (Fowler
and Ng, 2020). However, at the moment of solving the dif-
ferential equation with a numerical solver, we still need to
impose the constraint that the ice thickness is non-negative,
that is, H > 0.

We consider a uniform grid on points (x;, yx), with j =
1,2,...,Ny and k=1,2,...,Ny, with Ax=Ay=x11 —
Xj = Yk+1 — Yk- Starting from an initial time #p, we update
the value of the solution for H by steps At;, with t; =
ti_1 + At;_1. We refer to H! « for the numerical approxima-
tion of H(t;,x}, yi). In this Way, we have a system of ODEs
for each Hj .

An important consideration when working with numeri-
cal schemes for differential equations is the stability of the
method. Here we consider just explicit methods, although the
spatial discretization is the same for implicit methods. Ex-
plicit methods for the SIA equation are conditionally stable.
In order to get stability, we need to undertake the following
(Fowler and Ng, 2020):

1. Evaluate the diffusivity in a staggered grid D;, 1 ,, 1
2’ 2

labelled by semi-integer indices (circles on the dotted
grid in Fig. Al). This grid is closely related to Scheme
E of Arakawa grids (Arakawa and Lamb, 1977).
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2. Choose a temporal step size Ar such that Ar <
Ax?/4Dmax, where Dyay is the maximum diffusivity.

The algorithm to solve the SIA equation follows the next
steps:

1. Assume we know the value of Hj = H j’ ¢ at a given
time ;. Then, we compute all the diffusivities on the
staggered grid. As we mentioned before, the diffusivity
is a function of H, and "S . Instead of using one sin-
gle estimate of H t0 approx1mate all these quantities,
the idea is to use average quantities on the primal grid
to compute the diffusivity on the staggered grid (red ar-
rows in Fig. Al). We define the average quantities as

Hj+%,k+% =
1
Z(Hj,k+Hj+l,k+Hj,k+l + Hjy1k41), (A1)
<8S> _
0%/ j L rd
1 —Hj k H; — H;
L ]+1 k Js JH+1,k+1 Jok+1 . (A2)
2 Ax
(&),...
3y ? 7
1 Hit1 k41 — Hit1k
— : —~ . A3
3 ( L Ay (A3)

Then, we compute the diffusivity on the staggered grid
as

D =D|H (—)

1 1 L1 1

Jjt+5.k+3 Jt+5.k+35° ’
2 2 2 2 8)6 j é,k %

(§> . (A4)
Y/ j+dkrd

2. Compute (another) average diffusivity but now on the
edges of the primal grid (blue arrows in Figure Al):

1
jkt3 T 5 (Dj—%,k:t% + Dj+%,k:l:%>’ (A3)

1
Diaya =5 (Pretact +Pjepart) (46)

D

3. Compute the diffusive part of the SIA equations on the
point in the primal grid (j, k) as

V(DVS)j i =
D‘/+%,k(sj+l,k —Sik)— ,-_, K Sik—Sj—1.6)
Ax?
Dy ) Sjkat = 800 = Dj i 1(Sjik = Sjk—1)
e . (A7)

4. Update the value of H following an explicit scheme.
Here we use the different solvers available in
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Figure Al. Staggered grid used to solve the shallow-ice approx-
imation PDE. The black squares represent the primal grid, empty
circles the staggered grid, diamonds the points in the grid where the
diffusivity evaluated in the staggered grid is averaged (Eqs. A5 and
A6), blue arrows operations in the edges of the primal grid and red
arrows operations in the staggered grid.

DifferentialEquations. jl. Just for illustra-

tion, a simple explicit scheme could be one that updates

the values of the ice thickness following

HI = H, + Ay (l%;,k + V(DVS)l"/’k) , (A8)
where At; is the time step, which in our case is auto-
matically selected by the numerical solver to ensure sta-
bility.

In practice, the step size Atf; is chosen au-
tomatically by the numerical solver included in
DifferentialEquations.jl (Rackauckas  and
Nie, 2017). However, this does not automatically guaran-
tee that the updates in the ice thickness (Eq. A8) make
Hﬁl > 0. A sufficient condition is given by (Imhof, 2021)

—H,’Z,k <Sjt1k— Sjks (A9)
—H} < Sjrs1— Sjk (A10)

This condition guarantees that the computed diffusivity
(Eq. A7) satisfies

; 4Dmax i
VDV z =5 Hjx (ALD)
and hence
) . .. 4At; Dy, i
i+1 i ) = (R
Hj,k > Hj,k + At; ik Ax2 Hj,k =
4At; Dy i > L
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where the last inequality is a consequence of the stability
condition Az; < Ax? /4Dmax. In cases where no mass bal-
ance term is added (b;y « = 0), we simply have that Hj’._fkl >0
for all grid points. In the general case with mass balance, we
still need to clip the updated ice thickness by replacing H j”,“(l

by max{0, H ]l+/<] }. This includes the cases with excessive ab-
lation.

Appendix B: Overview of sensitivity methods

In this section we provide a high-level explanation of the
two methods we used to compute the gradient of functions
involving solutions of differential equations, namely finite
differences and continuous adjoint sensitivity analysis. Con-
sider a system of ordinary differential equations given by

du
E:f(u,@,t), (B1)

where u € R" and 6 € R”. We are interested in computing
the gradient of a given loss function L(u(-,6)) with respect
to the parameter 6.

B1 Finite differences

The simplest way of evaluating a derivative is by comput-
ing the difference between the evaluation of the function at
a given point and a small perturbation of the function. In the
case of a loss function, we can approximate

L0 +ee;) — L(O)
. :

dL 0) ~ B2
o, 0) ~ (B2)
with e; being the ith canonical vector and ¢ a small num-
ber. Even better, it is easy to see that the centred difference
scheme
dL 9) & L0 +cej)— L0 —c¢ce;)
a6, "~ 2
also leads to a more precise estimation of the derivative.
However, there are a series of problems associated with
this approach. The first one is how this scales with the num-
ber of parameters p. Each directional derivative requires the
evaluation of the function twice. For the centred difference
approach in Eq. (B3), this will require 2p function evalua-
tions, which demand to solve the differential equation in for-
ward mode each time. A second problem is due to truncation
errors. Equation (B2) involves the subtraction of two num-
bers that are very close to each other. As ¢ gets smaller, this
will lead to truncation of the subtraction, introducing numer-
ical errors that then will be amplified by the division by e.
Due to this, some heuristics have been introduced in order to
pick the value of ¢ that will minimize the error, specifically
picking * = | /€machine |0, With €machine being the machine
precision (e.g. Float 64). However, in practice it is difficult
to pick a value of € that leads to universal good estimations
of the gradient.

(B3)
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B2 Continuous adjoint sensitivity analysis (CASA)

Consider an integrated loss function of the form

n

L(u;0) =/h(u(t;0),0)dt, (B4)

fo

which includes the simple case of the loss function £ (6) in
Eq. (6). Using the Lagrange multiplier trick, we can write a
new loss function / (f) identical to L(6) as

n

I(Q):L(G)—/A(t)T <(:1—L;—f(u,t,9)) dr, BS5)

Iy

where A(¢) € R” is the Lagrange multiplier of the continuous
constraint defined by the differential equation. Now,

t
dL _dI /‘ah h du
Z L8 ) g,
o 90 " ou a0

]
1
ddu afdu @
—/m)T ddu_ofdu 97N, (B6)
drdo  dudo 96

We can derive an easier expression for the last term using

integration by parts. We define the sensitivity as s = gg and

then perform integration by parts in the term AT % gg, where
we derive
a
L 70
— = / — +A f dr,
do 30 30
fo
fooaT h
Iy 0 0
—/ — T —f—— s()dr,
dt ou Jdu
fo
- (x(n)Tsm) — )»(to)TS(to)>~ (B7)

Now, we can force some of the terms in the last equation to
be 0 by solving the following adjoint differential equation for
2($)T in backward mode:

. (9 an\"
() () B8)
o~ \ou ou
with the final condition being A(#;) = 0. Then, in order to
compute the full gradient ‘;—é, we

1. solve the original differential equation ‘Cil—‘t‘ =

fu,t,0),

2. solve the backward adjoint differential equation
Eq. (B8) and

https://doi.org/10.5194/gmd-16-6671-2023

3. compute the simplified version of the full gradient in
Eq. (B7) as

il
dL_ T Taf
=i (to)S(t0)+f<89+A 89) (BY)

fo

In order to solve the adjoint equation, we need to know u(z)
at any given time. There are different ways in which we
can accomplish this: (i) we can again solve for u(¢) back-
ward, (ii) we can store u(¢) in memory during the forward
step, or (iii) we can do checkpointing to save some reference
values in memory and use them to recompute the solution
between them (Schanen et al., 2023). Computing the ODE
backward can be unstable and can lead to exponential er-
rors (Kim et al., 2021). In Chen et al. (2019), the solution
is recalculated backward together with the adjoint simulat-
ing augmented dynamics. One way of solving this system of
equations that ensures stability is by using implicit methods.
However, this requires cubic time in the total number of or-
dinary differential equations, leading to a total complexity
of O((n + p)3) for the adjoint method. Two alternatives are
proposed in Kim et al. (2021): the first one called quadrature
adjoint produces a high-order interpolation of the solution
u(t) as we move forward, then solves for A backward us-
ing an implicit solver and finally 1ntegrates g’é in a forward
step. This reduces the complexity to O(n® + p), where the
cubic cost in the number of ODEs comes from the fact that
we still need to solve the original stiff differential equation in
the forward step. A second but similar approach is to use an
implicit—explicit (IMEX) solver, where we use the implicit
part for the original equation and the explicit for the adjoint.
This method will also have the complexity O(n3 + p).

Appendix C: Glaciers used in the study

Table C1 includes all the details of the glaciers used in
this study to train the UDE. Glaciers were picked randomly
across the world to sample different climates with long-term
air temperatures ranging from —20 °C to close to 0 °C. These
data were retrieved using OGGM'’s preprocessing tools from
the Randolph Glacier Inventory v6 (Consortium, 2017). Note
that OGGM processes the necessary gridded data (i.e. DEMs,
ice thickness data) in a constant adaptive grid, which depends
on glacier size.

Geosci. Model Dev., 16, 6671-6687, 2023
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Table C1. Table of glaciers used for training the UDE. Grid size and grid res (i.e. resolution) indicate the adaptive constant grid used by

OGGM to adapt all gridded data for each glacier.

RGI ID Glacier name Region Area (km2) Long, Lat (°) Grid size  Grid res (m)
RGI60-11.03638  Glacier d’ Argentiere Central Europe 13.79 (6.98,45.95) (138, 129) 62
RGI60-11.01450  Aletschgletscher Central Europe 82.2 (8.02,46.50) (107, 154) 137
RGI60-08.00213  Storglacidren Scandinavia 3.40 (18.57, 67.90) (110, 75) 36
RGI60-04.04351 - Arctic Canada South 24.77 (—63.21, 66.52) (132, 104) 80
RGI60-01.02170  Esetuk Glacier Alaska 7.5 (—144.30,69.29) (138, 111) 48
RGI60-02.05098  Peyto Glacier Western Canada and US 9.69 (—=116.56,51.65) (104, 105) 54
RGI60-01.01104  Lemon Creek Glacier Alaska 9.52 (—134.35, 58.38) (75, 125) 53
RGI60-01.09162  Wolverine Glacier Alaska 16.74 (—148.90, 60.41) (96, 122) 67
RGI60-01.00570  Gulkana Glacier Alaska 17.56 (—145.42,63.28) (132, 103) 69
RGI60-04.07051 - Arctic Canada South 58.21 (—80.31,73.52) (102, 185) 117
RGI60-07.00274  Edvardbreen Svalbard 61.18 (17.57,77.88) (132, 133) 120
RGI60-07.01323  Biskayerfonna Svalbard 12.72 (12.28,79.79) (80, 122) 60
RGI60-01.17316  Twaharpies Glacier Alaska 54.66 (—142.08, 61.36) (195, 109) 114
RGI60-07.01193  Skaugumbreen Svalbard 8.36 (14.72,79.54) (129, 116) 50
RGI60-01.22174  Buckskin Glacier Alaska 46.46 (—150.45, 62.98) (222, 93) 105
RGI60-14.07309  West Ching Kang Glacier ~ South Asia West 30.30  (75.9869, 35.4805) (118, 135) 87
RGI60-15.10261 - South Asia East 342 (85.788, 28.404) (85, 138) 36

Code and data availability. The
v0.2.0 (Bolibar and Sapienza, 2023) used in this study
is available as an open-source Julia package: https:
//github.com/ODINN-SciML/ODINN.jl (last access: 13 June
2023). The package includes continuous integration tests, instal-
lation guidelines on how to use the model and a Zenodo DOI:
https://doi.org/10.5281/zenodo.8033313 (Bolibar and Sapienza,
2023). OGGM v1.6 (https://doi.org/10.5281/zenodo.7718476
Maussion et al., 2023) is also available as an open-source Python
package at https://github.com/OGGM/oggm (last access: 10
March 2023), with documentation and tutorials available at
https://oggm.org (last access: 13 June 2023).

source code of ODINN.jl
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