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Background: The use of breed-informative genetic markers, specifically coding
Single Nucleotide Polymorphisms (SNPs), is crucial for breed traceability,
authentication of meat and dairy products, and the preservation and
improvement of pig breeds. By identifying breed informative markers, we
aimed to gain insights into the genetic mechanisms that influence production
traits, enabling informed decisions in animal management and promoting
sustainable pig production to meet the growing demand for animal products.

Methods: Our dataset consists of 300 coding SNPs genotyped from three Italian
commercial pig populations: Landrace, Yorkshire, and Duroc. Firstly, we analyzed
the genetic diversity among the populations. Then, we applied a discriminant
analysis of principal components to identify the most informative SNPs for
discriminating between these populations. Lastly, we conducted a functional
enrichment analysis to identify the most enriched pathways related to the
genetic variation observed in the pig populations.

Results: The alpha diversity indexes revealed a high genetic diversity within the
three breeds. The higher proportion of observed heterozygosity than expected
revealed an excess of heterozygotes in the populations that was supported by
negative values of the fixation index (FIS) and deviations from the Hardy-Weinberg
equilibrium. The Euclidean distance, the pairwise FST, and the pairwise Nei’s GST

genetic distances revealed that Yorkshire and Landrace breeds are genetically the
closest, with distance values of 2.242, 0.029, and 0.033, respectively. Conversely,
Landrace and Duroc breeds showed the highest genetic divergence, with distance
values of 2.815, 0.048, and 0.052, respectively. We identified 28 significant SNPs
that are related to phenotypic traits and these SNPs were able to differentiate
between the pig breeds with high accuracy. The Functional Enrichment Analysis of
the informative SNPs highlighted biological functions related to DNA packaging,
chromatin integrity, and the preparation of DNA into higher-order structures.

Conclusion: Our study sheds light on the genetic underpinnings of phenotypic
variation among three Italian pig breeds, offering potential insights into the
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mechanisms driving breed differentiation. By prioritizing breed-specific coding
SNPs, our approach enables a more focused analysis of specific genomic regions
relevant to the research question compared to analyzing the entire genome.

KEYWORDS

single nucleotide polymorphisms, informative markers, discriminant analysis of principal
components, pig breeds, genetic diversity, functional enrichment analysis

1 Introduction

The domestic pig is an important livestock animal that is widely
used for redmeat, lard, and cured goods. It is a key player in themeat
industry, particularly in Europe (OECD, 2022). Previous studies
have suggested that the European domestic pig (Sus scrofa
domesticus) is primarily descended from European wild boars
(Giuffra et al., 2000). However, recent research has challenged
this notion by identifying Asian mitochondrial DNA (mtDNA)
haplotypes in European Yorkshire, Duroc, and Landrace pigs.
This finding suggests that there may have been some
interbreeding or genetic exchange between the two populations
in the past (Giuffra et al., 2000; Larson et al., 2005). Throughout
history, Italy has developed various breeds of pigs, each with unique
characteristics and uses, such as Cinta Senese (Tuscany region),
Nero Siciliano (Sicily region), and Mora Romagnola (Emilia-
Romagna region) (Franci and Pugliese, 2007). The Yorkshire
breed is one of the most commonly used commercial pig breeds
and was introduced to Italy in the early 20th century due to its fast
growth rate and high efficiency in converting feed into meat. The
Landrace breed was introduced to Italy in the mid-20th century and
has since been utilized in industrial pork production. The Duroc
breed originated in the United States in the 19th century and has
been exported to many countries, including Italy. This breed is often
used in crossbreeding programs to produce hybrid pigs with
desirable traits such as meat quality and growth rate (https://
www.thepigsite.com/).

Both genetic and environmental factors have an impact on the
phenotypic characteristics of commercial pig breeds, such as meat
quality and disease resistance (Rosenvold and Andersen, 2003).
Therefore, understanding the genetic diversity of these breeds is
crucial for enhancing animal production, conserving animal genetic
resources, and evaluating breed performance (Bovo et al., 2020;
Dadousis et al., 2022). This research can help find breeds with better
phenotypic traits and the ability to adapt to difficult conditions
(Bovo et al., 2020). It can also support the sustainable growth of
animal production in different settings and make it easier to reach
evolutionary breeding goals rapidly (Notter, 1999).

The use of genome-wide panels of single nucleotide
polymorphisms (SNPs) has transformed the study of pig breeds
by allowing for the examination of complex relationships among
them (Muñoz et al., 2019). However, processing such vast amounts
of data can be challenging, leading to the need for a more efficient
approach. One potential solution is to create less dense panels using
a smaller set of markers specific to each breed based on a reduced
number of SNPs. This approach would require less time and effort
for analysis, thus making it more feasible. Breed-specific SNPs are
frequently used in conservation biology to manage and protect
livestock resources (Ozerov et al., 2013; Huisman, 2017), as well

as for breed identification and authentication of meat and dairy
products (Russo et al., 2007; Fontanesi et al., 2010).

The use of breed-informative SNPs has shown promising results
in improving desired traits in pig breeding programs. A recent study
on Italian Yorkshire pigs found that selecting SNPs associated with
production traits, such as lean meat content, daily gain, and feed/
gain ratio, can increase the frequency of desirable alleles over time,
leading to faster improvement of these traits (Fontanesi et al., 2015).
Genome-wide association studies (GWAS) have also become a
popular way to find genetic variants linked to important
production traits like meat and carcass quality, growth, and teat
number in European pig breeds (Tang et al., 2019; Fabbri et al., 2020;
Bovo et al., 2021). To identify breed-informative SNPs, various
analytical tools, such as Random Forests, Principal Component
Analysis, Regression, allele frequency differences, and
Discriminant Analysis of Principal components, have been
developed (Wilkinson et al., 2011; Schiavo et al., 2020; Hayah
et al., 2021; Dadousis et al., 2022). These tools can help
researchers identify key genetic markers and gain a deeper
understanding of the genetic basis of production traits in pig breeds.

The aim of this study is to identify a breed-informative SNPs
panel with high power to facilitate breed traceability and
preservation efforts while also supporting breeding programs that
prioritize desirable traits in these pig breeds. We anticipate that the
identified SNPs will provide a useful tool for researchers and
breeders alike, enabling them to make more informed decisions
in animal management and breeding programs. By focusing on
coding SNPs, we hope to identify genetic markers that are
potentially functional, allowing for a better understanding of the
underlying genetic mechanisms governing desirable production
traits in commercial pig breeds. Ultimately, our research may
contribute to the long-term sustainability of pig production,
ensuring that we are able to meet the growing demand for
animal products while preserving animal genetic diversity.

2 Materials and methods

2.1 Description of the dataset

2.1.1 Source of data and SNP
The data utilized in this research is part of the MISAGEN

project’s preexisting database (Botti et al., 2006; Biffani et al.,
2011). This initiative gathered and archived a comprehensive
dataset including pedigree information, clinical symptomatology,
and health-related phenotypes from a commercial pig breeding
population, which was sampled in Northern Italy. The initial
dataset contained records from 2908 weaning piglets representing
four distinct breeds: Yorkshire, Landrace, Duroc, and Pietrain. DNA
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extraction was carried out using nasal swabs as the source material.
The subsequently extracted DNA was subjected to genotyping
procedures employing the Illumina PorcineSNP60 BeadChip,
designed to target a broad spectrum of over 60,000 Single
Nucleotide Polymorphisms (SNPs) distributed across the pig
genome.

2.1.2 Quality control and SNP extraction
The genotyped data underwent rigorous quality control utilizing

the quality control module within the GenABEL package of the R
statistical software (Aulchenko et al., 2007). Specific criteria were set
to exclude individual single nucleotide polymorphisms (SNPs):

▪ Exclusion of SNPs with a call rate less than 99% (i.e., SNPs
not detected in at least 99% of all genotyped individuals).

▪ Removal of SNPs with a Minor Allele Frequency (MAF) in
all individuals less than 0.05.

▪ Exclusion of individuals with a call rate less than 99%
(i.e., individuals with more than 1% missing genotypes).

▪ Furthermore, individuals were excluded due to excessively
high Identity By State (IBS) and sex discrepancies.

After applying these filters, a total of 14,967 SNPs (24.8% of
the available 60,123 SNPs) and 77 individuals (0.063% of the
total) were excluded from the analysis. In this study, a set of
300 coding SNP were chosen considering their physical
proximity to genes linked to pig immunity. Plink software
(Purcell et al., 2007) was used to extract those 300 coding
SNPs from the three distinct pig populations: Yorkshire (YO),
Landrace (LA), and Duroc (DU). Each breed was represented by
100 animals, resulting in a total of 300 animals analyzed in the
study.

2.2 Data analysis

2.2.1 Genetic diversity estimates
In this study, we used a range of genetic diversity metrics to

analyze our dataset; all of the analyses were conducted in R
software (R Core Team, 2020). All of the population genetics
estimates reported in this work, including allele frequencies,
expected (HE) and observed (HO) heterozygosity, the
inbreeding coefficient (FIS), alpha (α) diversity indexes, exact
tests for Hardy-Weinberg Equilibrium (HWE), under selection
variants, and fixed alleles, were implemented using the “dartR”
package (Gruber et al., 2022) and its dependencies from R
statistical software. The genetic distances between breeds were
implemented using the “dartR” package (Gruber et al., 2022) and
its dependencies from R statistical software. The graphics were
created using the “ggplot2” and “Graphics” packages (Hadley,
2016; R Core Team, 2020).

HE, HO, and FIS were estimated according to Nei (Nei, 1987).
Alpha diversity indexes for allelic richness (q = 0), Shannon
information (q = 1), and heterozygosity (q = 2) were estimated
according to Sherwin (Sherwin et al., 2017). The exact p-values for
the HWE test were calculated using the method described by
Wigginton (Wigginton et al., 2005), and the results were
visualized using a ternary plot. We used the OutFlank method

(Whitlock and Lotterhos, 2015) to find variants that were subject
to selection pressures. This method involves figuring out the neutral
fixation index (FST) distribution from the actual data and then
centering the distribution by fitting it to a chi-square model. Loci
with a p-value of less than 0.05 were considered FST outliers and
indicative of selection pressure. To estimate the pairwise FST values
for genetic distances between pig breeds, we used Weir and
Cockerham update of Wright’s approach (Wright, 1951; Weir
and Cockerham, 1984), while we used Nei’s approach (Nei, 1987)
to estimate the pairwise GST values for genetic distances between
populations.

2.2.2 Discriminant analysis of principal
components (DAPC)

Our study implemented the Discriminant Analysis of Principal
Components method with a three-fold purpose. Our first objective
was to assess the discriminatory power of individual SNPs in
distinguishing the three breed clusters. We aimed to optimize the
separation of individuals into predefined groups using discriminant
functions of principal components by maximizing between-group
diversity and minimizing within-group diversity. Our second
objective was to investigate the genetic structure of the
population, considering the existing knowledge about the pig
breeds and their genetic variation. Finally, our third objective was
to determine the probability of animals joining a particular
population based on their genetic background.

After identifying SNPs of significant importance, we utilized the
Variant Effect Predictor (VEP) tool from the Ensembl database
(McLaren et al., 2016) to compare them with the “Pig Reference
(Sus_scrofa)” database. This comparison aimed to uncover the genes
and biological pathways associated with these SNPs. Additionally,
we conducted a search in the “NCBI database” using the SNPmarker
names as keywords to investigate their involvement in biological
processes.

To analyze the population structure, we employed the
“adegenet” package in the R software (Jombart, 2008) to
perform Discriminant Analysis of Principal Components.
Subsequently, we employed the “pca3d” package (Weiner,
2020) to visualize how the most significant SNPs segregated
individuals into different clusters.

2.2.3 Functional enrichment analysis (FEA) of the
most discriminating SNPs between the pig breeds

To determine the crucial biological functions that differentiate
our three pig breeds, we performed a Functional Enrichment
Analysis on a gene list comprising the genes housing the most
significant breed informative SNPs. We utilized the “gprofiler2” R
package (Kolberg and Raudvere, 2021), which employs various
databases such as the Gene Ontology (GO) database, Kyoto
Encyclopedia of Genes and Genomes (KEGG), WikiPathways
(WP), Human phenotype ontology (HP), and micro-RNA target
(MIRNA) databases, among others. The gene list was automatically
generated from our informative SNP set identifiers and served as the
input for the “gost” function within the “gprofiler2” R package. This
function conducts Functional Enrichment Analysis, utilizing the
Gene Ontology database. Our analysis included a thorough
statistical enrichment assessment using the hypergeometric test,
and we applied multiple testing corrections to enhance result

Frontiers in Genetics frontiersin.org03

Hayah et al. 10.3389/fgene.2023.1229741

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1229741


reliability. To minimize the potential for false positives, we
established a user-defined threshold of 0.05.

3 Results

3.1 Genetic diversity within population and
among pig breeds

3.1.1 Genetic diversity within population
The population sample shows a nearly equal proportion of the first

and second alleles, with a slight preference towards the second allele
(frequencies of 0.48 and 0.52, respectively). The observed proportion of
heterozygotes in all three breeds is higher than expected, indicating a
possible excess of heterozygotes. Our analysis of alpha diversity indexes
reveals variability among different q-values, indicating a deviation from
HWE. The average values of allelic richness, Shannon information, and
heterozygosity are 2, 1.96, and 1.92, respectively (Figure 1). The negative
value of the overall fixation index (FIS = −0.03) supports this deviation
from HWE. We conducted statistical tests to identify loci that deviate
fromHWE, and 46 SNPs showed statistically significant deviations (see
Supplementary Table S1). These deviations are primarily concentrated
at the vertex that represents heterozygotes (AB). The results of the chi-
square test for selection pressure suggest that there is no evidence of
selection acting on any of the loci, and the absence of fixed alleles in any
of the three breeds supports this conclusion. The exact p-values of the
test of HWE deviations are reflected in a ternary plot (Figure 2), with
significant deviations indicated by pink dots. The blue parabola
represents the expected genotype frequencies under HWE, and the
space between the green lines indicates deviations that are not
statistically significant.

3.1.2 Genetic diversity/distance among the pig
breeds

We used Euclidean distance, pairwise FST, and pairwise Nei’s
GST to look at the genetic differences between the three groups of
pigs. The heat maps in Figure 3 show the results. The heat maps
indicate genetic divergence in red and genetic similarity in blue. Our
analysis showed that the LA and DU breeds are the most genetically
different from each other. Their estimated Euclidean distances are
2.815, their pairwise FST is 0.048, and Nei’s pairwise GST is 0.052, all
of which show that they are very different genetically. Conversely,
the YO and LA breeds were found to be the most genetically similar,
with estimated Euclidean distances of 2.242, pairwise FST of 0.029,
and Nei’s pairwise GST of 0.033, indicating a close genetic
relationship between these two breeds.

3.2 Discriminant analysis of principal
components (DAPC) to explore the pig
populations structure

To further explore the population structure, we generated a
DAPC plot based on the first and second Principal Components
(PCs) (Figure 4A). We used the alpha-score optimization method
(Jombart and Collins, 2015) to determine the necessary number of
PCs. The clusters in the DAPC plot were defined by prior knowledge
of population membership (K = 6). We retained 30 PCs, explaining
40% of the overall genetic variability, as input to the Discriminant
Analysis.

The DAPC plot showed clear clustering of individuals by breed,
with the separation between breeds being more distinct in the first
discriminant function (Figure 4B). The average assignment
probability was 99% for DU and 100% for YO and LA breeds.
We identified 28 SNPs that contributedmost to breed differentiation
based on a threshold of 0.01, and their names are listed in
Supplementary Table S2. We performed a PCA on the 300-pig
population using these 28 SNPs as variables, and the resulting plot
showed clear clustering of individuals by breed (Figure 5). The
reduced dataset’s overall assignment probability was 74%, with YO
breeds having the highest assignment rates (90%), LA breeds coming
in second (73%), and DU breeds coming in third (60%). The
assignment rate using the whole dataset was higher compared to
using only the most contributing SNPs. However, it is worth noting
that the assignment rate achieved using the most informative SNPs
remained notably high, standing at no less than 60% (Figure 6).

3.3 Functional enrichment analysis (FEA) of
the most discriminating SNPs between the
pig breeds

The functional Enrichment Analysis of the genes harboring the
most breed informative SNPs revealed three important biological
functions: (1) nucleosome, (2) DNA packaging complex, and (3)
structural component of chromatin (Figure 7). These functions are
crucial for regulating gene expression and maintaining DNA’s
structural stability within the nucleus (Alberts et al., 2002).
Nucleosomes are integral components of chromatin that organize
and compact DNA into a condensed structure. The DNA packaging

FIGURE 1
Alpha diversity q-profiles for the three populations. Allelic
richness (q = 0), Shannon information (q = 1), and heterozygosity
(q = 2).
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complex plays a crucial role in assembling and disassembling
nucleosomes and regulating chromatin structure and function.
The structural constituents of chromatin provide mechanical
support to the chromatin fiber, maintaining its integrity. Table 1
presents the short names of these functions and their corresponding
p-values, sorted in decreasing order of significance following
hypergeometric testing and multiple testing adjustments.

4 Discussion

Through our study, we have uncovered the genetic diversity
present in three commercially important pig breeds, namely,

Landrace, Yorkshire, and Duroc. These findings hold significant
implications for breeding programs and conservation initiatives
focused on preserving the genetic diversity within pig populations.

During our investigation, we observed notable genetic variability
in our coding variants across the three breeds. Additionally, the
Hardy-Weinberg equilibrium test revealed deviations from the
expected population equilibrium. We also noted variations in the
diversity q-values and an overall negative FIS value. The presence of
an excess of heterozygosity in our dataset likely contributed to the
observed HWE imbalance at 46 loci. It is noteworthy that our
population does not appear to be subjected to selective pressure, and
the deviations may be attributed to random mating among pig
individuals, resulting in an isolate-breaking effect (Hamilton, 2021).

FIGURE 2
Ternary plots illustrating the patterns of Hardy-Weinberg (HW) proportions. Each vertex on the plot represents a different genotype: homozygous
for the reference allele (AA), heterozygous (AB), and homozygous for the alternative allele (BB). The plots highlight loci that deviate significantly from
Hardy-Weinberg equilibrium, and these loci are indicated in pink. The blue parabola on each plot represents Hardy-Weinberg equilibrium, while the area
between the green lines represents the acceptance zone. The plots provide a visual representation of the distribution of the SNPs in relation to the
Hardy-Weinberg equilibrium and allow for the identification of loci that may be under selection or experiencing other evolutionary forces.
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The identification of informative SNPs, particularly those located in
coding regions, is crucial for developing cost-effective SNP panels to
facilitate efficient genotyping and breeding selection. This approach can
improve the accuracy and effectiveness of pig breeding programs,
leading to the development of more robust and productive pig
breeds (Fontanesi et al., 2015). Investigating coding SNPs is
important for preventing genetic diseases caused by mutations in
specific genes. By identifying these mutations and integrating them
into breeding programs, the prevalence of these diseases in pig
populations can be reduced, resulting in improved animal welfare
and decreased economic losses for farmers (Mellencamp et al., 2008).

Previous research has identified informative SNPs for
differentiating among various species, including cattle breeds
(Cheong et al., 2013; Zwane et al., 2016; Bertolini et al., 2018) as
well as wild boars and domestic pigs (Lorenzini et al., 2020). While
previous studies have focused on identifying informative SNPs
among commercial pig breeds (YO, DU, and LA) using non-
coding SNPs (Schiavo et al., 2020; Hayah et al., 2021), our study
aimed to identify informative SNPs using only coding variants.

In our study, we found 28 genetic markers (SNPs) that help
distinguish the three pig breeds. Of these, six specific markers did
not match what we expected based on the Hardy-Weinberg test.

FIGURE 3
Distance measures between pig populations. (A) Pairwise FST, (B) Pairwise GST, and (C) Euclidean Distance. The warmer the color, the more the two
breeds concerned are genetically distant.

FIGURE 4
Visualization of the distribution of the 300 individuals according to the 300 SNPs (A) considering the first two discriminant functions, and (B)
considering the first discriminant function only.
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The presence of these deviating SNPs highlights their
importance as potential markers for distinguishing between the
various pig breeds. However, it is essential to underscore that
further comprehensive research and studies are imperative to
validate and elucidate the precise roles and contributions of these
SNPs in breed differentiation.

It is important to highlight that previous studies have already
provided valuable insights into the implications of specific SNPs that
we have identified in our research. For instance, a previous genome-
wide association study (Große-Brinkhaus et al., 2015) demonstrated
a significant association between the SNP ALGA0039432 and boar
taint as well as testes size parameters. This finding underscores the
relevance of this particular SNP in relation to these specific traits.

Moreover, our analysis identified two SNPs, namely,ALGA0060925
and DRGA0005996, as key contributors to breed differentiation.
ALGA0060925 is positioned downstream on chromosome 11 and is
responsible for encoding a long non-coding RNA (lncRNA). In
contrast, DRGA0005996 is located on SSC5 and corresponds to the
CPNE8 gene, which is responsible for producing the copine-8 protein.
Copine-8 is a calcium-dependent phospholipid-binding molecule that
plays a crucial role in calcium-mediated intracellular processes. It is
worth noting that dysregulation of CPNE8, a member of the Copine
family, has been associated with various diseases such as prion disease
and gastric cancer in previous studies (Lloyd et al., 2013; Zhang et al.,
2022). These findings suggest that CPNE8may have multifaceted roles
beyond breed differentiation and warrants further investigation in
relation to its potential involvement in disease pathways.

Furthermore, several other SNPs within our dataset have been
previously associated with various phenotypic traits. For example, the
intergenic variant ASGA0077916 has demonstrated a significant
correlation with the fatty acid composition of the Longissimus dorsi
muscle (Sambache Tayupanta, 2016). Another SNP of interest,
ASGA0072056, is located on SSC16 within the RETREG1 gene,
responsible for encoding the reticulophagy regulator 1.

FIGURE 5
Two-Dimensional visualization of pig individuals distribution based on the 28 most informative SNPs using the first and second principal
components.

FIGURE 6
Comparison of the overall reassigning probability to actual breed
estimated with DAPC using the initial 300 SNPs and the breed-
informative selected 28 SNPs.
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Dysregulation of the RETREG1 gene has been linked to the
development of numerous diseases (Islam et al., 2018). In the
context of viral diseases, other studies have highlighted the
relationship between the absence of the RETREG1 protein and
heightened replication of Dengue and Zika viruses (Lennemann and
Coyne, 2017). ASGA0008283 is an intergenic variant on SSC1.
ASGA0072056 and ASGA0008283 have been shown to be
determinant factors in tracing the breeding farm of domesticated
pigs (Kwon et al., 2017).

Lastly, ALGA0078229 is situated on SSC14 within the RET
gene, which encodes the proto-oncogene tyrosine-protein kinase
receptor RET. Dysregulation of RET has been implicated in the
development of various tumor types (Zhao et al., 2023).
Additionally, a previous study found a significant association

between ALGA0078229 and meat quality in German Landrace
pigs (Ponsuksili et al., 2014).

Moreover, we conducted a comprehensive investigation to identify
the biological processes associated with the SNPs that exhibited
deviations from Hardy-Weinberg equilibrium. Notably, one genome-
wide association study demonstrated a significant association between
ALGA0077162 and immune-relevant traits in the Landrace breed
(Dauben et al., 2021). Additionally, ASGA0050304 was identified as
a quantitative trait locus strongly linked to intramuscular fat (IMF) in
the gluteus medius (GM) and longissimus dorsi (LD) muscles of Duroc
pigs (González Prendes, 2017).

Regarding the Functional Enrichment Analysis, our results have
revealed three enriched functions that involve three important parts: the
nucleosome, the DNA packaging complex, and the structural

FIGURE 7
A graphical representation of the adjusted p-values in the negative log10 scale for enriched functions obtained from various databases, including
Gene Ontology Molecular Functions (GO:MF), Gene Ontology Cellular Components (GO:CC), Gene Ontology Biological Processes (GO:BP), Kyoto
Encyclopedia of Genes and Genomes (KEGG), Reactome Pathway (REAC), micro-RNA target (MIRNA), Human phenotype ontology (HP), and
WikiPathways (WP). The enriched functions, namely, (1) nucleosome, (2) DNA packaging complex, and (3) structural component of chromatin, are
plotted against their respective databases.

TABLE 1 Top 3 significantly enriched functions according to their p-values.

ID Sourcea Term IDb Term namec Term sized p-value

1 GO:CC GO:0000786 Nucleosome 111 9.3 e−03

2 GO:CC GO:0044815 DNA packaging complex 144 2.0 e−02

3 GO:MF GO:0030527 Structural constituent of chromatin 82 1.8 e−02

aThe abbreviation of the data source for the term (Gene Ontology Molecular Functions (GO:MF), Gene Ontology Cellular Components (GO:CC)),
bUnique term identifier,
cThe short name of the function,
dNumber of genes that are annotated to the term.

The p-values are below 0.01 which indicate that the observed enrichment is statistically significant.
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components of chromatin. These components play crucial roles in
DNA packaging, organization, and gene expression, thereby ensuring
the efficient functioning of critical nuclear processes such as
transcription, replication, and DNA repair (Alberts et al., 2002).
Nucleosomes were identified as the most significant function with
the lowest p-value. Previous studies have demonstrated a correlation
between increased circulating nucleosomes and inflammation as well as
autoimmune diseases (Schwarzenbach et al., 2011; Pisetsky, 2012).
Therefore, nucleosomes are believed to have the potential to initiate
immune responses (Rönnefarth et al., 2006).Moreover, the activation of
chromatin is vital for the immune response, with receptor engagement
triggering reaction cascades that activate transcription factors and the
chromatin template (Paz and Josefowicz, 2021). This synergistic
activation of select genes is particularly evident in macrophages
during inflammation, where they can rapidly express hundreds of
genes (Paz and Josefowicz, 2021), thus highlighting the intricate
relationship between chromatin dynamics and immune processes.
Investigating these functions and their underlying molecular
mechanisms could offer new insights into the regulation of gene
expression associated with chromatin abnormalities.

In summary, our study highlights the effectiveness of DAPC in
evaluating the genetic structure and admixture levels of pig breeds. The
obvious breed-specific separation of individuals seen in the DAPC and
PCAplots supports our findings that these three pig breeds have distinct
genetic backgrounds. Despite using only coding variants, the SNPs
selected by the DAPC approach were able to assign individuals to their
respective breeds with a 74% probability of correct assignment.
Although this may not match the assignment rate achieved with the
full dataset, it is still a significant accomplishment and highlights the
importance of carefully selecting impactful genetic markers for analysis.
As a result, targeting coding regions associated with traits of interest
provides a more straightforward analysis of genome-wide variants and
yields more explicit results.

The SNPs discovered in this study have the potential to be used as
markers for pig breed identification and conservation initiatives.
Further research with larger sample sizes can provide a more
comprehensive understanding of the genetic structure of these pig
breeds and identify additional coding SNPs that contribute to breed
differentiation. By conducting further investigations and experiments,
we can gain a deeper understanding of the functional significance and
underlying mechanisms of these identified SNPs.

5 Conclusion

This study highlights the significant genetic variation present in
gene-coding regions among three Italian pig breeds. The Landrace
and Duroc breeds were found to be highly divergent, while the
Landrace and Yorkshire breeds exhibited closer genetic similarities.

Notably, we identified 28 coding SNPs that were particularly
informative in differentiating between these breeds, with enough
genetic information to form distinct clusters of individuals.
Investigating the signaling pathways and functional implications
of these SNPs could provide valuable insights into the underlying
genetic mechanisms that contribute to breed differentiation. While
whole-genome analysis can determine genetic diversity, focusing on
breed-specific coding SNPs can streamline the analysis by targeting
specific regions relevant to the research question.
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