
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Lie Deng,
Southwest University, China

REVIEWED BY

Yi Yang,
Beijing Technology and Business
University, China
Leiqing Pan,
Nanjing Agricultural University, China

*CORRESPONDENCE

Huijie Peng

779642214@qq.com

Jiangbo Li

lijb@nercita.org.cn

RECEIVED 19 October 2023

ACCEPTED 30 October 2023
PUBLISHED 16 November 2023

CITATION

Mei M, Cai Z, Zhang X, Sun C, Zhang J,
Peng H, Li J, Shi R and Zhang W (2023)
Early bruising detection of ‘Korla’ pears
by low-cost visible-LED structured-
illumination reflectance imaging and
feature-based classification models.
Front. Plant Sci. 14:1324152.
doi: 10.3389/fpls.2023.1324152

COPYRIGHT

© 2023 Mei, Cai, Zhang, Sun, Zhang, Peng,
Li, Shi and Zhang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 16 November 2023

DOI 10.3389/fpls.2023.1324152
Early bruising detection of ‘Korla’
pears by low-cost visible-LED
structured-illumination
reflectance imaging and feature-
based classification models

Mengwen Mei1, Zhonglei Cai1, Xinran Zhang1, Chanjun Sun2,
Junyi Zhang1, Huijie Peng1,3,4*, Jiangbo Li5,6*, Ruiyao Shi5

and Wei Zhang7

1College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China, 2Jiangsu
Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural
Equipment, Jiangsu University, Zhenjiang, China, 3Xinjiang Production and Construction Corps Key
Laboratory of Modern Agricultural Machinery, Shihezi, China, 4Engineering Research Center for
Production Mechanization of OasisCharacteristic Cash Crop, Ministry of Education, Shihezi, China,
5Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences,
Beijing, China, 6National Engineering Research Center for Information Technology in Agriculture,
Beijing, China, 7Department of Computer Technology and Science, Anhui University of Finance and
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Introduction: Nondestructive detection of thin-skinned fruit bruising is one of

the main challenges in the automated grading of post-harvest fruit. The

structured-illumination reflectance imaging (SIRI) is an emerging optical

technique with the potential for detection of bruises.

Methods: This study presented the pioneering application of low-cost visible-

LED SIRI for detecting early subcutaneous bruises in ‘Korla’ pears. Three types of

bruising degrees (mild, moderate and severe) and ten sets of spatial frequencies

(50, 100, 150, 200, 250, 300, 350, 400, 450 and 500 cycles m-1) were analyzed.

By evaluation of contrast index (CI) values, 150 cycles m-1 was determined as the

optimal spatial frequency. The sinusoidal pattern images were demodulated to

get the DC, AC, and RT images without any stripe information. Based on AC and

RT images, texture features were extracted and the LS-SVM, PLS-DA and KNN

classification models combined the optimized features were developed for the

detection of ‘Korla’ pears with varying degrees of bruising.

Results and discussion: It was found that RT images consistently outperformed

AC images regardless of type of model, and LS-SVM model exhibited the highest

detection accuracy and stability. Across mild, moderate, severe andmixed bruises,

the LS-SVM model with RT images achieved classification accuracies of 98.6%,

98.9%, 98.5%, and 98.8%, respectively. This study showed that visible-LED SIRI

technique could effectively detect early bruising of ‘Korla’ pears, providing a

valuable reference for using low-cost visible LED SIRI to detect fruit damage.

KEYWORDS

pears, early bruise detection, classification, machine learning, visible LED
structured illumination
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1 Introduction

Bruising is the most common type of mechanical damage

(Opara and Pathare, 2014), particularly on fruit like pears which

are sensitive to mechanical damage (Celik, 2017). Bruises may occur

when the stress on the fruit surface exceeds the failure stress of fruit

tissue. It is a kind of subcutaneous tissue injury without rupture of

the skin of fruit (Opara and Pathare, 2014; Hussein et al., 2019; Mei

and Li, 2023). The formation of bruise will not only lead to

physiological changes in fruit density, moisture content, browning

degree and firmness, but also accelerate the respiration rate of fruit

and increase the production of ethylene (Khurnpoon and

Siriphanich, 2011; Polat et al., 2012; Bian et al., 2020), thereby

accelerating the decay process of fruit and leading to significant

economic losses. However, the non-destructive and accurate

detection of early bruised fruit is extremely challenging.

Many techniques have been used for bruising detection of pears,

including hyperspectral imaging (HSI) (Lee et al., 2014; Fu and

Wang, 2022; Tian et al., 2023), magnetic resonance imaging (MRI)

(Razavi et al., 2018; Razavi et al., 2020), X-ray computed

tomography (CT) (Azadbakht et al., 2019a; Azadbakht et al.,

2019b), thermal imaging (TI) (Kim et al., 2014; Zeng et al., 2020),

Optical coherence tomography (OCT) (Zhou et al., 2019), etc. HSI

has been widely used in fruit damage detection and has been proven

effective in this regard. However, its capabilities for detection of

early-stage bruises, especially immediate post-bruise detection, still

require enhancement. Additionally, HSI is too slow and expensive

for commercial applications (Tian et al., 2021). For MRI, CT, OCT,

they can capture high contrast images but equipment cost is an

important consideration factor in practical applications. TI is a

detection technology that does not require a light source. It can

non-invasively convert the radiation of an object into a surface

temperature distribution for bruising detection (Zeng et al., 2020).

However, it has strict temperature requirements, and the fruit may

be affected by the heating/cooling process.

Traditional imaging systems (e.g. HSI, multispectral imaging

and machine vision) commonly used uniform or diffuse

illumination for fruit quality detection, making it difficult to

control light penetration and interaction with biological tissue,

which limits their performance in detecting depth-specific

information such as subsurface tissue bruising in fruit (Lu and

Lu, 2017; Lu and Lu, 2019). Structured illumination (SI) can be used

to enhance the detection of subsurface defects in fruit by varying the

spatial frequency of the illumination to control the depth of light

penetration into the tissue (Li et al., 2023; Li et al., 2024). Depending

on the purpose of the application, SI techniques can be

implemented using either inverse or forward methods. Spatial

frequency domain imaging (SFDI) based on inverse methods can

be used to obtain absorption coefficients and approximate scattering

coefficients of fruit tissue by means of inverse algorithmic diffusion

models (Sun et al., 2019). This method has also been used for bruise

detection in pears (He et al., 2018). Different from SFDI, structured-

illumination reflection imaging (SIRI) is used to enhance the

detection of subsurface damage of fruit in a simpler and faster

way. The pattern image obtained by demodulation can obtain direct
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component (DC) and alternating component (AC) images, in

which the AC image carries depth resolution information and can

be used for the detection of subsurface tissue bruising in fruit (Lu

et al., 2016a; Li et al., 2023). SIRI has now been used to detect

bruises on apples (Lu et al., 2016a) and pickling cucumbers (Lu

et al., 2021) with good results. Recently, our laboratory developed a

new SIRI system based on light-emitting diode (LED) light source

and monochromatic camera, which can realize fruit detection in

visible light band, and further reduce the cost of SIRI system while

obtaining good subcutaneous damage detection effect. The system

has been used to detect the early decay of oranges (Cai et al., 2022).

The aim of this study was to demonstrate the ability of low-cost

visible-LED SIRI to detect pear bruising at an early stage. The

specific objectives were to: (1) Acquire DC and AC images for

‘Korla’ pears with three types of bruising degrees at ten sets of

spatial frequencies using a visible-LED SIRI system to determine the

optimal spatial frequency combined with a three-phase image

demodulation scheme and contrast index analysis; (2) Extract the

texture features of AC and ratio (RT) images through the gray level

co-occurrence matrix (GLCM) and select the appropriate features

based on the random frog algorithm; (3) Develop the least squares

support vector machine (LS-SVM), partial least squares

discriminant analysis (PLS-DA), and K-nearest neighbor (KNN)

classification models combined with selected texture features to

classify sound and bruised pears; and (4) Evaluate the independent

bruising degree prediction models and mixed bruising degree

prediction model to determine the optimal one for classification

of bruised ‘Korla’ pears.

2 Materials and methods

2.1 Sample preparation

‘Korla’ pears were used in the study. ‘Korla’ pear is a

characteristic fruit in Xinjiang, China. It is famous for its fine

flesh, juicy juice and strong aroma. However, the peel of this pear is

very thin and easily damaged. The ‘Korla’ pears were purchased

from a local fruit store in Beijing, China. The ‘Korla’ pear can be

roughly divided into two distinct maturation periods, namely, the

green maturation period and the yellow maturation period. During

the green maturation period, the skin of the pear appears green,

while in the yellow maturation period, it turns fully yellow. Over the

course of storage, the color of the pear peel undergoes a transition

from green to yellow. Most of the pears sold in the fruit store are in

the green maturation period, but according to the different sales

time, the epidermis of some pears will gradually become yellow,

even full yellow, and some pears also may be reddish in color. In this

study, the color of the pears was not taken into account during the

purchasing process. For all pear samples, green samples accounted

for the majority, with a small amount of red or yellow samples. By a

simple visual inspection, 403 pears (three pears were used for spatial

frequency selection) without external defects were selected as

experimental samples. The pear size varies among them. To

replicate the real detection environment, this experiment

deliberately refrains from making any distinctions.
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The static load range of pear fruit during harvesting, storage and

transportation is 60-200 newtons (N) (Wu et al., 2013). Therefore,

this study selected 50 N, 100 N, and 150 N as the static load pressure

level to induce early bruising in pears. Four hundred pears were

randomly divided into 4 groups, with 100 in each group, which were

sound group (recorded as S0), mild bruise group (recorded as S1),

moderate bruise group (recorded as S2) and severe bruise group

(recorded as S3). The pears were balanced at room temperature

(temperature 24°C, humidity 42%) for 24 h. After that, the 100

pears in the S0 group were not treated. The pears of S1, S2 and S3

were bruised by pressing presses. The pressure probe end of the

press is a cylindrical plastic with a diameter of 3 cm and is

connected to a pressure sensor with a display screen. Due to the

high curvature radius of the equatorial part of ‘Korla’ pear, it is

more vulnerable to form bruises during sorting and packaging.

Consequently, the equatorial section of the pear is chosen and

subjected to pressure using a press to induce a static pressure bruise.

During sample preparation, the pear sample was placed

horizontally under the pressure probe of the press. The pear was

placed on a sponge-buffered fruit tray and the handle was slowly

pressed. When the pressure sensor display reached a specific

reading (50N, 100N and 150N represent S1, S2 and S3,

respectively), the pressing was stopped. After standing still for 3

seconds, the handle was slowly loosened and the sample was taken

out. Figure 1A depicts the RGB images of pears exhibiting three

distinct bruise degrees (S1, S2, S3), which also includes the control

group (S0). Figure 1B shows the preparation of bruise samples.
2.2 SIRI system and image acquisition

The SIRI system used in this experiment is mainly composed of

a digital projector (DLP4500, Texas Instruments, Dallas, TX,

United States) with visible LED lights, a monochromatic camera

(MV-CA050-10GM, Hangzhou Hikrobot Intelligent Technology

Co., Ltd., Hangzhou, China) with an adjustable focal length lens

(MVL-MF1628M-8MP, Hangzhou Hikrobot Intell igent

Technology Co., Ltd., Hangzhou, China), two polarizers (PL-D50,

RAYAN Technology Co., Ltd., Changchun, China), a long-wave

pass filter (the cut-off frequency is 450 nm) (GCC-300201, Daheng
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New Epoch Technology Inc., Beijing, China), an adjustable sample

stage (600LW-WT, Shanghai Weimu Automation Equipment Co.,

Ltd., Shanghai, China) and a computer that can perform sampling

and data processing (Cai et al., 2022). The projector and the camera

are located directly above the sample to be tested, perpendicular to

the horizontal axis. Additionally, a pair of linear polarizers is placed

in front of the projector and the camera to eliminate specular

reflection. The projector and the camera are connected to the

computer through the data line and controlled by the computer

through the binding software. The basic composition and real

system of the SIRI system is shown in Figure 2. The SIRI system

based on LED light and monochrome camera can obtain SI images

in the visible light band, which further reduces the equipment cost.

Images were collected immediately after static pressure was

applied to each pear. The sample is positioned on the imaging stage

with the bruising area facing upward toward the projector and

camera. The height of the platform is adjusted to accommodate all

sizes of pears before imaging each sample. The distances from the

pear sample to the projector and camera was set at approximately

30 cm. Three phase-shifted sinusoidal patterns (with phase offsets of

-2p/3, 0 and 2p/3) in 8-bit bmp format were created in Matlab (The

Mathworks, Inc., Natick, MA, USA) and uploaded to the projector

control software on the computer, and then imported into the

projector for sample illumination. The camera is set to an exposure

time of 50 ms to obtain an 8-bit grayscale image for each pattern

projected onto the sample.
2.3 Image demodulation and processing

The pear pattern image collected from the SIRI system cannot

be directly used for bruising detection, but needs further image

demodulation processing. The image demodulation method used in

this experiment is a three-phase demodulation (TPD) method. It is

a commonly used sinusoidal image demodulation scheme. This

method requires three images with equal phase steps for image

demodulation. Through the SIRI system, three images are obtained

at each frequency, and the phase offsets are − 2p=3, 0 and 2p=3,
respectively (Schreiber and Bruning, 2007). Typically, a two-

dimensional sinusoidal fringe pattern can be represented as follows:
BA

FIGURE 1

(A) Typical ‘Korla’ pear samples (Unpeeled and peeled) with different degrees of bruising (S0: sound, S1: mild bruises, S2: moderate bruises, S3:
severe bruises). (B) Preparation of bruise samples.
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In(x, y) = IDC(x, y) + IAC(x, y) cos (2p fx + 2p fy + jn) (1)

where IDC(x, y) and IAC(x, y) are DC and AC, respectively. fx
and fy are the spatial frequencies along the x and y axes, respectively.

According to the experimental requirements, only the spatial

frequency in one direction is required, so fy is 0 in this

experiment. jn is the phase shift of the nth pattern image. In this

experiment, j1, j2 and j3 corresponding to the sinusoidal fringe

patterns I1(x, y), I2(x, y) and I3(x, y) are − 2p=3, 0 and 2p=3,
respectively. The DC and AC are the final results obtained by

image demodulation, which can be obtained by the following

equation (for simplicity, the coordinate symbol is omitted).

IDC =   13 (I1 + I2 + I3) (2)

IAC =
ffiffi
2

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(I1 − I2)

2 + (I1 − I3)
2 + (I2 − I3)

2
p

(3)

The aforementioned equations (3) demonstrate that TPD

exclusively relies on straightforward pixel-by-pixel algebraic

operations, resulting in efficient computation. Moreover, the

subtraction operation effectively mitigates common noise across

the three images, enhancing its robustness. The demodulated image

DC and AC images correspond to the images acquired under

uniform diffuse illumination and the images resulted from the

sinusoidal illumination pattern, respectively. The AC image

contains depth information, which varies with the spatial

frequency of the illumination pattern. Specifically, as the spatial

frequency of the illumination patterns increased, the depth of tissue

interrogation in the AC images decreased (Lu and Lu, 2019).

Although AC image has the ability of enhanced detection, there

are still some deficiencies, such as low intensity, uneven brightness

distribution, and large noise. Since DC images also have similar

problems, the AC image can be divided by the corresponding DC

image to obtain a ratio image RT image to improve the image

quality. RT image can make the image background more uniform

and enhance the image contrast. It is defined as follows:

RT = IAC
IDC

=
ffiffi
2

p
I1+I2+I3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(I1 − I2)

2 + (I1 − I3)
2 + (I2 − I3)

2
p

(4)
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2.4 Spatial frequency selection

Since the different penetration depths of structured light at

different spatial frequencies, it is crucial to select the appropriate

frequency for accurate detection of pear bruises. Through preliminary

experiments, it was found that the detection effect of bruising was

good when the spatial frequency was between 0 and 500 cycles m-1.

Therefore, the spatial frequencies of 50, 100, 150, 200, 250, 300, 350,

400, 450 and 500 cycles m-1 were selected for imaging, and the optimal

frequency that can accurately detect the bruises was selected by

comparing the demodulation results. Prior to conducting the

experiment, it is essential to generate sinusoidal fringe patterns with

varying spatial frequencies on the computer. The generation formula

is presented in equation (1). The value IDC and IAC were set to (255/2).

By adjusting the parameters fx or fy within the equation, fringe

patterns corresponding to different spatial frequencies can be

generated. These fringe patterns are visually recognizable, appearing

as densely-packed black and white stripes at higher spatial frequencies,

and sparser black and white stripes at lower spatial frequencies.

The contrast index (CI) is introduced to compare the

enhancement effect of pear bruises at each spatial frequency. CI can

quantitatively evaluate the image contrast, that is, the distinguishability

of the bruised part relative to the whole part of the fruit. It needs to

divide the pear to be detected into two parts, namely bruised tissue and

sound tissue. Afterward, the ratio of the between-class variance to the

total variance of the pixel intensity is calculated to obtain CI:

CI =
Nx(�x−�z)

2+Ny(�y−�z)
2

o
Nz
i=1(zi−�z)

2 (5)

where Nx , Ny , Nzare the number of pixels in the bruised, sound

tissue and the whole region, respectively. And �x, �y and �z are the

average strength of the bruised, sound tissue and the whole region,

respectively. The value of CI is between 0 and 1, where a higher value

indicates the better visibility and distinguishability of the bruised area.

Calculating the CI involves segmenting both bruised and sound

areas, which can be challenging to achieve in AC images depicting

mild bruises. On the contrary, RT images are more easily segmented

due to contrast enhancement. Consequently, this study opts to
BA

FIGURE 2

Schematic diagram (A) and real system (B) of the SIRI system.
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employ RT images rather than AC images to calculate CI for

optimizing the spatial frequency. After removing the background

by threshold segmentation, the Otsu threshold segmentation method

(Otsu, 1979) was used to segment the bruise area to obtain the images

of the bruised area, the sound area and the whole fruit area, and then

the CI value was calculated according to Equation (5). The CI values

under different spatial frequencies and different degrees of bruising

were compared, and the optimal spatial frequency suitable for all

degrees of bruising was selected for the next study.
2.5 Feature extraction and selection

Before using the machine learning algorithm to classify the

images of pears, it is usually necessary to extract the features of the

images, and use the extracted discriminant features to represent

the images. Texture is one of the important features used to

identify the object or region of interest in the image. Therefore, the

texture features are also often applied to image classification in the

fruit defect detection (Lu et al., 2021; Cai et al., 2022). Gray level co-

occurrence matrix (GLCM) is a commonly used statistical method for

image processing and texture analysis. It characterizes the texture of

the image by calculating the frequency of pixel pairs with specific

values and specific spatial relationships in the image to obtain GLCM,

and then extracts statistical measures from the matrix. The Haralick

features calculated based on GLCM are functions of distance and

angle. In this study, 56 Haralick features with a distance of 1 were

extracted in four directions (angles 0°, 45°, 90°135°) (Haralick et al.,

1973). Therefore, 56 complete feature sets were extracted from each

picture for bruise detection.

Feature selection is the process of selecting available feature subsets

for predictionmodels. Feature selection serves to eliminate irrelevant or

redundant features, resulting in a reduced feature set that can enhance

model accuracy and decrease computation time. When dealing with

limited data sets, feature selection can improve the generalization

ability of machine learning models and mitigate overfitting

occurrences. The Random Frog algorithm, originally introduced for

gene selection, is a reversible jump Markov chain Monte Carlo

(MCMC)-like algorithm Yun et al. (2013). This algorithm was used

for feature selection. The process of feature selection includes feature

subset search, feature subset evaluation and feature subset verification.

Furthermore, choosing an appropriate stopping criterion can not only

optimize the feature selection process but also reduce the overall

selection time. The core idea of the random frog leaping method is

to randomly select feature subsets. In this study, the performance

evaluation and ranking of these subsets were conducted using the PLS-

DA combined with cross-validation method. The outcomes of the

feature selection were utilized to create a feature subset that will be

employed for subsequent model classification.
2.6 Bruise classification algorithm

The pears with three degrees of bruising were classified. For

each degree of bruising, the data set was randomly divided into

training set and test set according to the ratio of 7:3.
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This study developed three classification methods. LS-SVM is a

variant of the standard Support Vector Machine (SVM). Unlike the

latter, LS-SVM obtains the final decision function by solving linear

equations instead of quadratic programming problems. As a result,

it exhibits excellent generalization performance and requires lower

computational cost (Suykens and Vandewalle, 1999). In this study,

the radial basis function (RBF) kernel function was applied to the

calculation of the LS-SVM, and the regularization parameters of

the LS-SVM model were determined by ten-fold cross-validation.

The purpose was to identify the parameter values that yield the best

performance on the given dataset. PLS-DA is a supervised

classification method, which was developed using the Partial Least

Squares (PLS) algorithm initially designed for multivariate

calibration (Wold et al., 2001). When employing the PLS-DA

model for classification, it is crucial to ascertain the optimal

number of latent variables for modeling. In this study, the

number of latent variables in the PLS-DA model was determined

based on the criterion of the smallest prediction error observed in

the leave-one-out cross-validation. KNN is a widely employed

machine learning algorithm for tackling supervised classification

tasks. It functions by calculating the distance between various

feature vectors and employs cross-validation to determine the

most suitable value of K.

To address the variability introduced by data division, each of

the aforementioned training instances is replicated 30 times. Each

bruise degree and the overall samples were then modeled

independently. The training was conducted using two distinct

image inputs (AC and RT). Subsequently, a fair comparison was

made between the outcomes obtained from the different image

inputs and the three classifiers.

Three commonly used metrics are employed to assess the

effectiveness of various classification models. These metrics

include True Positive (TP), True Negative (TN), and Overall

Accuracy (ACC). The TP and TN rates are computed as the

ratios of accurately classified bruised and sound samples,

respectively, to the total samples in their respective categories.

ACC represents the proportion of all correctly classified samples

to the total number of test samples. The aforementioned

performance indicators are derived from the average values

computed across thirty randomly partitioned datasets utilized

for modeling.

The image preprocessing, feature extraction, and model training

procedures were carried out using Matlab R2017a (The Mathworks,

Inc., Natick, MA, USA).
3 Results and discussion

3.1 Performance of bruising detection
based on different spatial frequencies

Figure 3 shows the basic image processing, including three-

phase demodulation, background segmentation and frequency

domain filtering. Using the three-phase demodulation method,

the collected three SI images can be demodulated to obtain AC

images and DC images. Background segmentation mainly used the
frontiersin.org
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threshold method to generate the pear area mask to remove the

influence of the background on the bruise detection. Here, the DC

image was used as a reference, and the mask was generated by

manual threshold segmentation. The threshold is manually adjusted

in a small increment to obtain the appropriate value, and the

morphological operation is supplemented to generate the

appropriate mask. Since the detection environment is stable,

the value is used to generate a mask for all samples to segment

the pear area from the image background. In addition, a Gaussian
Frontiers in Plant Science 06
low-pass filter was used to denoise the AC images and enhance the

bruise detection effect of the AC images. The processed AC images

were used for the next step of image processing and classification.

Figure 4 displays the DC and RT images of three degrees of

bruising (S1, S2, and S3) captured at different spatial frequencies. It

should be noted that each spatial frequency produces a DC image, but

all DC images remain basically the same. Upon visual inspection, it is

observed that except for the spatial frequency of 50 cycles m-1, RT

images at different spatial frequencies can effectively identify the
FIGURE 3

Three-Phase Demodulation and image processing. * Represents the dot product of Mask and DC or AC images.
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subcutaneous bruising area of pears, while the DC image, equivalent

to the image under uniform illumination, does not show hidden

bruises. In addition, the RT image led to a more uniform image

background. Due to the curvature of the pear surface, the RT image

has a positive effect on the correction of intensity distortions, which

can greatly eliminate the influence of uneven illumination, while the

DC image obviously shows a darker background edge. As the spatial

frequency of the SI increases, the overall brightness of the RT image

decreases. At higher spatial frequencies, as the overall brightness
Frontiers in Plant Science 07
decreases, the bruise contrast decreases significantly. The darkening

of RT images at high spatial frequencies can be attributed to the

characteristics of SI. The SI attenuation rate at high spatial frequency

is high, resulting in signal attenuation, so the AC image will be

darkened. The brightness of the DC image at different frequencies

does not change significantly, so the ratio image eventually darkens,

as shown in Equation (4). In general, RT images at all frequencies

except the lowest frequency achieved consistently good performance

in detecting different fresh bruises on pears.
FIGURE 4

RT images and DC images for the mild (S1), moderate (S2) and severe bruised (S3) ‘Korla’ pears at the spatial frequencies of 50, 100, 150, 200, 250,
300, 350, 400, 450 and 500 cycles m-1, respectively.
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To further quantify the distinguishability of subcutaneous

bruises in pears, the CI values were calculated for different bruise

degrees at various spatial frequencies, as presented in Table 1. The

table reveals a consistent pattern across different degrees of bruising:

as the spatial frequency increases, the CI initially rises, reaching a

peak at a certain frequency, and then gradually decreases. Indeed,

except for the CI at spatial frequency of 50 cycles m-1, bruises at low

spatial frequencies are more distinguishable, which is in line with

the visual observations.

Among them, S1 and S2 samples achieve the maximum CI at

the spatial frequency of 150 cycles m-1, whereas S3 samples reaches

its highest CI at 100 cycles m-1. Considering that mild bruises are

more difficult to be detected, it is necessary to focus on the

detectability of bruises in S1 and S2 samples. Moreover, it can be

seen from the table that the CI values at 100 and 150 cycle m-1 in S3

are still at a high level. Hence, this study selected 150 cycle m-1 as

the final spatial frequency for the subsequent bruise detection of

all samples.
Frontiers in Plant Science 08
3.2 Image demodulation results

Figure 5 shows typical samples of three different degrees of

bruising, all of which were detected immediately after the bruising

occurred. These pears underwent varying degrees of bruising when

exposed to different levels of static pressure. With naked eyes

observation, bruises on pears are readily discernible in AC and

RT images, whereas they are almost imperceptible in RGB and DC

images. The bruised area appears as a darker region in the image.

Nevertheless, it is impractical to determine the extent of bruising by

relying solely on the grayscale values in this region. This limitation

arises from the lack of discernible differences in intensity among the

three distinct levels of bruising, particularly in RT image. The RT

image clearly demonstrates effective image enhancement achieved

by the ratio of AC to DC image. The contrast in the RT image is

noticeably higher compared to the AC image, and it successfully

eliminates artifacts resulting from the pear’s surface color and

irregular shape.
TABLE 1 Contrast indexes (CIs) obtained under for different spatial frequencies (cycles m-1) three bruise degrees.

Bruise degree 50 100 150 200 250 300 350 400 450 500

S1 0.205 0.486 0.501 0.478 0.438 0.400 0.359 0.312 0.275 0.235

S2 0.382 0.611 0.625 0.536 0.486 0.433 0.384 0.343 0.309 0.276

S3 0.340 0.592 0.544 0.458 0.393 0.346 0.309 0.280 0.251 0.231
frontier
FIGURE 5

Typical RGB, DC, AC, RT images of mild (S1), moderate (S2) and severe (S3) bruise of ‘Korla’ pears.
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It can be seen from the Figure 5 that pears at two maturity stages

(green maturation period and yellow maturation period) can obtain

good detection results. In addition, although some pears have red

stripes, they have no effect on the final detection results including

DC, AC and RT images. However, the irregular shape of pears does

affect the detection results, mainly in DC and AC images, while RT

images completely eliminate this negative influence.
3.3 Bruise classification

The classification outcomes of three classification models (LS-

SVM, PLS-DA and KNN) when AC and RT images were employed

as inputs for independent data were shown in Figures 6, 7,

respectively. The diagrams illustrated that it was viable to employ

visible LED SIRI technique to immediately detect the bruising on

‘Korla’ pears, resulting in a commendable level of detection

accuracy. The detection accuracy of RT images under each

classification model surpasses that of AC images, aligning with

the observations made by visual inspection. The LS-SVM model

exhibits both the highest detection accuracy and the greatest model

stability. When compared to the PLS-DA and KNN models, LS-

SVM demonstrates superior detection outcomes across three bruise

severity levels and two image inputs. When AC images were used as

input, the classification accuracy and stability of the LS-SVM model
Frontiers in Plant Science 09
elevate as the degree of pear bruising. Notably, an overall

classification accuracy exceeding 90% can still be achieved in the

identification of mild bruising. From the perspective of ACC, the

classification accuracy of LS-SVM, PLS-DA and KNN models

increased with the increase of pear bruise degree. Among them,

the accuracy of PLS-DA in detecting samples with severe bruise

degree was close to that of LS-SVM model, but its stability was still

not as good as the latter. The KNNmodel also achieved 92.3% ACC,

but its stability is far less than the former two. In actual production,

the degree of bruising of pears is not the same, which is related to

the environment of pears in production and transportation.

Therefore, the overall detection accuracy of different degrees of

bruising may be more in line with the actual situation. Although the

LS-SVMmodel achieves high accuracy and stability in the detection

of samples with a single degree of bruising, it’s not very outstanding

in the detection of bruises in mixed samples with three degrees of

bruising due to only 85.6% of sound fruit recognition accuracy.

Therefore, AC images may not be suitable for bruise detection of

pears in commercial production.

When RT images were used as input, the three classification

models show excellent performance in bruise detection accuracy,

and were superior to AC images in terms of detection accuracy and

model stability. Moreover, according to the error bar, the stability of

the LS-SVM model is still higher than that of the other two models.

For individual and combined samples with different degrees of
B

C D

A

FIGURE 6

Classification results for bruise detection by using three classification models with AC images. (A) Classification results of mild bruises (S1).
(B) Classification results of moderate bruises (S2). (C) Classification results of severe bruises (S3). (D) Overall classification results of the three levels
of bruising. Error bars on the chart signifies the corresponding standard errors of the evaluation index derived from 30 modeling instances.
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bruising, the three evaluation indexes (TP, TN and ACC) of the LS-

SVM model all exceeded 98%. Notably, when the classification

model was employed for identifying bruises in RT images, it

consistently maintains a high level of accuracy in detecting

bruises of varying severities, with little fluctuation. This shows

that compared with AC images, the detection effect of RT images

is less correlated with the degree of pear bruising. The detection

accuracy of RT images in each degree of bruise was greater than the

best result of AC images in detecting bruises (severe bruises).

Therefore, it is a better choice to use RT images as the basis for

pear bruising detection. Especially, the detection performance is still

very good when the RT image performs mixed detection of pears

with different bruising degrees. Hence, RT image was proved to be a

more favorable option for detecting bruises on pears with varying

degrees. It is feasible to use RT images for bruising detection of

‘Korla’ pears in practice.

In feature selection, different feature subsets will be generated

according to the different division of sample sets. In this study,

based on the random frog feature selection algorithm, the optimal

ten features were selected as feature subsets. With the division of

each data set, the number of times each feature is selected as a

feature subset is counted, as shown in Figure 8. Ten features with

the most selected times are selected to establish a new feature subset.

It can be seen from the figure that the feature subsets of different
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degrees of bruising are not the same, and the feature subsets of AC

images and RT images are also quite different. Among them, the

feature subsets of AC images with different degrees of bruising are

quite different, and there are few common features, while there are

many common features for RT images, which further proves that

the stability of RT image for detection of bruising is higher than that

of AC image. In addition, for the mixed data sets of three bruising

degrees, the feature subset of the AC image only contains the most

frequently selected features in the independent data sets of different

bruising degrees, while the RT image contains many common

features, which indicates that it is easier to obtain the best subset

of features from the feature set of the RT image to achieve the

highest classification accuracy. From the perspective of detection

accuracy, the accuracy of the classification model with AC image as

input will increase with the increase of the degree of bruising, while

the classification model with RT image as input has little difference

in accuracy, which is consistent with the results of feature selection.

Table 2 summarizes the classification accuracy of bruised pears

by three kinds of models established based on ten features. These

features were selected based on the above highest frequency. It can

be noted that different models have varying classification accuracy

for inputs with different degrees of bruising and AC/RT images. The

classification accuracy of the model with RT image as input is still

higher than that of AC image regardless of type of model, and the
B

C D

A

FIGURE 7

Classification results for bruise detection by using three classification models with RT images. (A) Classification results of mild bruises (S1).
(B) Classification results of moderate bruises (S2). (C) Classification results of severe bruises (S3). (D) Overall classification results of the three levels
of bruising. Error bars on the chart signifies the corresponding standard errors of the evaluation index derived from 30 modeling instances.
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LS-SVM model is the optimal classification model. The overall

detection accuracies of slight, moderate, severe and mixed degree of

bruising were 99%, 98.11%, 98.44% and 98.64%, respectively. By

using the feature subset with the highest frequency, the LS-SVM

model improved the effect of detecting mild bruises when RT image

was used as input. Further examining the ten selected texture

features, it is found that they mainly come from the Angular

Second Momen, sum entropy, entropy, and maximum correlation
Frontiers in Plant Science 11
coefficient in different directions, indicating they, combined with

RT image, are important for detecting ‘Korla’ pear bruises.
4 Conclusion

This study successfully demonstrated the feasibility of low-cost

visible-LED SIRI technique for the early detection of varying
FIGURE 8

The feature selection results of independent data set and mixed data set of AC image and RT image with mild (S1), moderate (S2) and severe (S3) bruises.
The first ten most discriminative features are selected by the random frog feature selection algorithm, and the frequency of each feature selected when
the data set is randomly divided for thirty times is counted. The top ten features according to selected frequency are highlighted in red.
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degrees of subcutaneous bruising in ‘Korla’ pears. The 150 cycles m-

1 was determined as the optimal structural illumination spatial

frequency. For detection of three degrees of bruised pears, RT and

AC images were significantly superior to DC images, and RT image

was best due to the ability of enhanced image contrast and

brightness unevenness correction. Texture features can serve as

important features for classifying bruised and sound pears and

random frog was an effective texture feature optimization

algorithm. Among three types of texture feature models (LS-

SVM, PLS-DA and KNN models), the LS-SVM model exhibited

superior detection performance with the highest detection accuracy

and stability, regardless of single bruising degree classification or

mixed bruising degree classification. The LS-SVM model

established using ten appropriate features extracted from RT

images achieved classification accuracies of 98.6%, 98.9%, 98.5%,

and 98.8% for mild, moderate, severe and mixed bruises,

respectively, indicating the outstanding ability of the proposed

methodology in detecting the bruising of pear fruit in this study.

Subsequent study should improve the hardware system and

algorithms so that this low-cost SIRI technique can be

implemented for online detection of pear bruising. Furthermore,

the capacity for the early bruising detection of other thin-skinned

fruit (e.g. apple and peach) should be also assessed to expand the

application of this technology.
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TABLE 2 The classification accuracy (%) of bruised pears by three kinds of models established based on ten features with the highest frequency of
selection.

Input Degree
LS-SVM PLS-DA KNN

TP TN ACC TP TN ACC TP TN ACC

AC

S1 89.33 92.33 90.83 84.78 88.78 86.78 77.33 89.89 83.61

S2 92.22 94.00 93.11 85.78 89.22 87.50 85.78 90.89 88.33

S3 96.11 98.56 97.33 94.56 90.00 92.28 89.67 96.44 93.06

ALL 96.59 88.00 94.44 90.04 94.33 91.11 93.41 79.67 89.97

RT

S1 99.00 99.00 99.00 93.44 92.56 93.00 95.67 97.44 96.56

S2 97.33 98.89 98.11 88.44 93.56 91.00 98.44 98.44 98.44

S3 98.00 98.89 98.44 99.44 98.89 99.17 96.44 95.78 96.11

ALL 99.11 97.22 98.64 92.26 92.89 92.42 96.78 85.44 93.94
frontie
ALL refers to a collection of mild (S1), moderate (S2) and severe (S3) bruising samples.
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