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The role of artificial intelligence
in the management of trigeminal
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Trigeminal neuralgia (TN) is the most frequent facial pain. It is difficult to treat
pharmacologically and a significant amount of patients can become drug-resistant
requiring surgical intervention. From an etiologically point of view TN can be
distinguished in a classic form, usually due to a neurovascular conflict, a
secondary form (for example related to multiple sclerosis or a cerebello-pontine
angle tumor) and an idiopathic form in which no anatomical cause is identifiable.
Despite numerous efforts to treat TN, many patients experience recurrence after
multiple operations. This fact reflects our incomplete understanding of TN
pathogenesis. Artificial intelligence (AI) uses computer technology to develop
systems for extension of human intelligence. In the last few years, it has been a
widespread of AI in different areas of medicine to implement diagnostic accuracy,
treatment selection and even drug production. The aim of this mini-review is to
provide an up to date of the state-of-art of AI applications in TN diagnosis and
management.

KEYWORDS

trigeminal neuralgia, neurovascular conflict, neuroanatomy, microvascular decompression,

artificial intelligence, magnetic resonance imaging

Introduction

Trigeminal neuralgia (TN) is a form of neuropathic facial pain which significantly

impacts quality-of-life of affected patients (1). Typical TN presents as relapse-remitting

pain, whereas in atypical TN a continuous component of pain is present (2). Etiologically,

it can be divided in primary and secondary TN, the latter one due to cerebellopontine-

angle tumors or multiple sclerosis. Primary TN is further divided in classic, due to a

neurovascular conflict (NVC), and idiopathic, where a clear anatomical cause is missing.

In a recent umbrella review microvascular decompression (MVD) emerged as the most

effective treatment for classic TN (3). Even if there are continuous innovations in the field

of TN, such as the understanding of the role of some biomarkers (4) and the use of

morphometric magnetic resonance imaging (MRI) (5), it is not always easy to determine

the etiology, and consequentially the appropriate treatment, in each patient. Artificial

intelligence (AI) uses computer technology to develop systems for extension of human

intelligence. It is emerging as a increasingly widespread tool in medicine to implement

diagnostic accuracy, treatment selection and even drug production (6). The aim of this

mini-review is to provide an up to date of the state-of-art of AI applications in TN

management.
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Methods

Two medical databases (PubMed and Scopus) were screened

for eligible scientific reports. The key words “deep learning”,

“machine learning”, “artificial intelligence”, “trigeminal

neuralgia”, “tic douloureux” (MeSH) have been used in any

possible combination. The last search was launched in August

2023. Two reviewers (M.B., A.I.) independently screened the

abstracts and the references list. Any difference was solved by

consensus with a third senior author (N.M.) A total of 26 articles

were identified and reviewed and finally, 17 studies were

included in the present mini-review (Figure 1).
Role of AI in the diagnosis of TN

AI has become increasingly involved in various aspects of TN

diagnosis. It plays a pivotal role in identifying signature patterns

within the cortical and subcortical regions, delineating the surgical

anatomy of the cerebello-pontine angle, and distinguishing

different types of facial pain. Liang et al. explored the capabilities

of correlation and machine learning (ML) analysis methods in

detecting activated cortical centers in TN patients. Interestingly,

they found that certain cortical areas were only activated by

conventional correlation methods, while others were detected by
FIGURE 1

Flowchart of study selection.
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convolutional neural networks (CNN) and graph convolutional

neural networks (GCNN). Their suggestion to combine these

methods aims to achieve a more comprehensive understanding of

the neural structures underlying TN pain perception (7). Zhong

et al. utilized ML for the automated segmentation of white matter

connectivity, comparing it with conventional analysis methods to

identify alterations that could distinguish TN from healthy control

subjects. Achieving a 0.96 AUC, they concluded that ML exhibits

high reliability in discerning connectivity patterns between affected

and non-affected groups (8). Mo et al. constructed a support

vector machine (SVM) model based on T1-weighted and T2-

weighted MRI data regarding cortical and subcortical

morphological characteristics to diagnose TN patients. This model

displayed high specificity, effectively distinguishing healthy

patients from those afflicted by TN (9). Chen et al. used ML to

analyze white matter fractional anisotropy differences between the

affected and unaffected sides and healthy controls in both the

trigeminalpontothalamic (TPT) and thalamocortical white matter

(S1), achieving an 85% accuracy for TPT and 76% for S1 (10). Ge

et al. used ML to extract V nerve radiomic features from 89

patients with unilateral idiopathic TN (UC-ITN), 55 of whom had

NVC on the unaffected side. Small Area Low Gray Level

Emphasis (SALGLE), Coarsenss, Minor Axis Length (MAL)

Dependence Variance (DV), Maximum MALDV, Correlation and

Offending Vessel were identified as texture features relevant to

pain occurrence (11). AI also proves valuable in differentiating
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between various facial pain syndromes through radiographic and

clinical questionnaires. Latypov et al. demonstrated 95%

prediction accuracy using Random Forest (RF) supervised learning

to distinguish classic TN from healthy controls based on T1-

weighted and DTI MRI features. However, when attempting to

differentiate between classic TN and trigeminal neuropathic pain

(TNP), the accuracy dropped to 51% (12). Limonadi et al., as

early as 2006, trained an Artificial Neural Network (ANN) to

recognize facial pain syndrome patterns based on an 18-binomial

response questionnaire. While high accuracy was achieved for

classic TN assessment, the sensitivity was 50% for atypical TN

and 33% for TNP (13). In a more recent study, McCartney et al.

developed an ANN model based on a 22-question binomial

questionnaire for distinguishing facial pain syndromes. This

approach yielded high sensitivity and specificity for classic TN

(92.5% and 87.8%, respectively). Remarkably, unlike Limonadi

et al., they achieved high sensitivity and specificity for TNP

(86.7% and 95.2%, respectively) (14). AI is also finding utility in

examining peripheral V nerve characteristics. Mulford et al.

employed a deep learning network to segment and extract

radiomic features from the pre-ganglionic V nerve to distinguish

affected from non-affected sides. Their method achieved an

accuracy of 78%, specificity of 76%, sensitivity of 82%, and an

AUC of 0.83, enabling reliable differentiation of TN-afflicted and

pain-free nerves (15). Additionally, Lin et al. utilized an AI

network to develop a V nerve and surrounding vascular structures

segmentation network, aiding surgeons in planning surgery by

creating a 3D model based on Magnetic Resonance Angiography

(MRA). Their segmentation approach exhibited higher accuracy

for V nerve segmentation (Dice similarity coefficient 0.8645,

Hausdorff distance 0.2414, and average surface distance error

0.4296) compared to cerebrovascular structures segmentation (16).
Role of AI in the treatment of TN

In contrast to Lin et al., Bai et al. introduced MVDNet, a deep

learning network focused on real-time blood vessel and cranial

nerve segmentation during MVD procedures for facial and

trigeminal nerve disorders. MVDNet achieved impressive

precision, with a 76.59% Intersection-over-Union (mIoU)

accuracy and a rapid 137.6 fps speed, surpassing other real-time

models (17). AI has brought about predictive models for

postoperative outcomes. Hao et al. developed an ANN which

forecasted long-term Barrow Neurological Institute (BNI) Scores

after MVD with an accuracy rate of 95.2% and area under the

curve of 0.862 (18). Goyal et al. evaluated an ANN model,

trained on 16 variables, to predict post-operative outcomes

following Gamma Knife Radiosurgery (GKRS). The ANN

exhibited 90.9% accuracy in predicting treatment responses (19).

Ertiaei et al. created a multidimensional ANN model for post-

GKRS predictions, including pain reduction and hypoesthesia,

achieving accuracy rates of 91.5% and 76.8%, respectively (20).

Hung et al. used SVM and sequential backward selection (SBS)

models with MRI data on cortical thickness and regional surface

area. These models showed predictive capabilities for one-year
Frontiers in Surgery 03
GKRS responses, with regional surface area at 96.7% accuracy

and regional cortical thickness at 90.5% accuracy (21). The same

team used Gaussian Process Regression (GPR) on T1-weighted

MRI data to assess brain-predicted age (Brain-AGE) differences

between TN patients and healthy controls, finding a significant

correlation with radiosurgery response (21). Willsey et al.

employed an SVM model to predict TN recurrence post-MVD

surgery, considering factors like normalized radial diffusivity

(PRD) and symptom duration. The SVM model reached an 85%

accuracy, 83% sensitivity, and 86% specificity (22).
Discussion

TN affects about 15,000 people per year in the US (23). Classic

TN is the most common type with with MVD as a specific

etiological treatment (24). NVC identification is crucial for

surgical success, but it’s not always evident pre-surgery. A recent

study by Jani et al. identified neurovascular compression in 18

out of 27 patients on T2-weighted FIESTA thin-cut sequence

performed with a 3 T scanner (25). However, Deep et al. reported

up to 53% NCV in asymptomatic patients using high-resolution

MRI on 200 examined nerves (26). Different pathophysiological

theories such as bioresonance hypothesis and ignition hypothesis

have been developed to explain the TN pathogenesis (27). Given

the crucial role of identifying NVC before MVD procedures, Lin

et al. introduced trigeminal nerve segmentation method from

MRA based on 3D convolutional neural network using CS2Net

for tubular structure segmentation (23). The proposed method

outperformed other models in segmenting the trigeminal nerve

and surrounding vascular structures near the REZ, enabling

accurate NVC identification, severity assessment, and surgical

simulation. This is enhanced by 3D rendering, enabling direct

visualization of NVC from various perspectives and zoom levels.

With advancements in neuronavigation reducing bone flaps

during MVD (28), AI intraoperative segmentation protocols, like

Bai et al. innovative encoder-decoder structure, become invaluable

for identifying vessels and nerves in tight surgical spaces (17). It

is worth noting the protocol’s impressive speed and accuracy,

providing real-time assistance to surgeons during procedures. This

was made possible by an extensive dataset comprising 3,087

MVD images labeled by experts, with 1,806 used for training.

However, it is important to note that the protocol’s accuracy

decreased notably when applied to elderly patients (age 40–50

PICA mIoU: 74.08% vs. age 60–70: 70.33%; age 40–50 AICA

mIoU: 71.43% vs. age 60–70: 68.43%), likely due to a tortuous

anatomy of intracranial vessels. Limonadi et al. and McCartney

et al., despite focusing on different aspects of TN management,

also observed reduced accuracy in their ANN predictive models

when assessing rarer pathologies [sensitivity for TN type 2 and

TNP was 50% and 33%, respectively (13); sensitivity for TN type

2 and TDP was 62.5% and 0%, respectively (14)]. These reports

raise concerns about AI’s precision with non-linear and limited

datasets, emphasizing its limited ability to draw reliable

conclusions. Limonadi et al. observed improved diagnostic

performance in the second set of patients, as evidenced by
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decreasing mean square errors during network simulations,

highlighting the importance of robust training and ample data for

AI model effectiveness. However, sensitivity in TN type 2

diagnosis remained unsatisfactory in the second set. The Authors

attributed this to initial symptom onset resembling TN type 1,

evolving into the continuous pain typical of TN type 2. This

underscores the importance of initial input from experienced

clinicians to determine essential diagnostic variables, as also

emphasized by Mulford et al. (10) and Chen et al. (15). While

ML accuracy improves with repeated calculations, manual data

input can introduce bias into dataset analyses. AI can be valuable

in preoperative outcome assessment and patient selection. Hao

et al. identified four factors affecting ANN model performance in

long-term MVD prognostication: correspondence of the

neurovascular offending site with facial pain region, immediate

postoperative pain remission, degree of nerve compression by

culprit vessels, and culprit vessel type, while age seems to not

affect long-term outcome. Recent meta-analyses highlighted

predictors like isolated venous conflict (p < 0.01), absence of

immediate postoperative pain remission (29), arterial conflict (p <

0.01) (30), symptom duration less than 5 years, SCA involvement,

and paroxysmal pain (31). A prospective non-randomized trial

documented severity of NVC (grade 2–3) as a positive predictor

(p = 0.003) (32) and a retrospective study documented the non-

inferiority of MVD in elderly people (33). Regarding GKRS long-

term outcome prediction, ANN models and conventional analyses

evaluated similar factors, including prior treatment, involved

dermatomes, post-GKRS numbness, pain type, radiosurgery

dosage, and age (19, 20, 34, 35). In summary, AI’s contribution is

not significantly superior to conventional statistical analyses.

However, its primary advantage in routine clinical use lies in

enhancing accuracy and providing real-time assistance during

outpatient assessments, compensating for the limitations of

empirical judgment derived from traditional statistical analyses.

AI’s role in TN management extends to research. Ge et al. found

that 61.80% of patients analyzed had NVC on the unaffected V

nerve, highlighting predictive radiomics features for symptomatic

TN (11). Chen et al. observed bilateral radial diffusivity changes,

even on the unaffected side of unilateral TN, differing from

healthy controls (10). Microscopic degeneration in TN patients

may affect not only the affected nerve but also the contralateral

side, potentially contributing to chronic pain and warranting

further research. While AI exhibits remarkable performance in

aiding clinical practice, its seamless integration poses significant

challenges. Ethical concerns, encompassing data privacy, informed

consent, and patient autonomy, must be addressed. Despite its
Frontiers in Surgery 04
potential drawbacks, AI is an integral part of modern healthcare.

Collaborative efforts between governments and clinicians are

essential to establish robust regulations. In conclusion, this review

highlights AI’s diverse applications in TN management,

showcasing its pivotal role in precise diagnosis, individualized

treatment, and advancing our understanding of the condition’s

pathophysiology. The future holds promise for AI-driven research

and enhanced patient care.
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