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Graves’ ophthalmopathy (GO) is a hyperthyroidism-related and immune-
mediated disease that poses a significant threat to human health. The
pathogenesis of GO primarily involves T cells, B cells, and fibroblasts,
suggesting a pivotal role for the thyrotropin-antibody-immunocyte-fibroblast
axis. Traditional treatment approaches for Graves’ disease (GD) or GO
encompass antithyroid drugs (ATDs), radioactive iodine, and beta-blockers.
However, despite decades of treatment, there has been limited improvement
in the global incidence of GO. In recent years, promising therapies, including
immunotherapy, have emerged as leading contenders, demonstrating substantial
benefits in clinical trials by inhibiting the activation of immune cells like Th1 and
B cells. Furthermore, the impact of diet, gut microbiota, and metabolites on GO
regulation has been recognized, suggesting the potential of non-pharmaceutical
interventions. Moreover, as traditional Chinese medicine (TCM) components have
been extensively explored and have shown effective results in treating
autoimmune diseases, remarkable progress has been achieved in managing
GO with TCM. In this review, we elucidate the pathogenesis of GO, summarize
current and prospective therapies for GO, and delve into the mechanisms and
prospects of TCM in its treatment.
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Introduction

Graves’ ophthalmopathy (GO) is an autoimmune thyroid associated disease
characterized by an inflammatory disorder of the orbit and concurrent hyperthyroidism
(Bahn, 2010). The lifetime risk of Graves’ disease (GD) is 0.5% for men and 3% for women.
Imaging studies have revealed subtle orbital abnormalities in approximately 70% of patients
with GD (Khan et al., 2021). Clinical characteristics of GO include the presence of serum
anti-thyroid antibodies and thyrotoxicosis, as well as the existence of auto-reactive
lymphocytes. The most prevalent clinical features of GO encompass upper eyelid edema,
retraction, erythema of the conjunctivae and periorbital tissues, and proptosis. These
distinctive attributes serve as diagnostic criteria for the clinical evaluation of GO.
Furthermore, it is worth noting that a subset of patients with GO, roughly comprising
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3%–5% of cases, experience a more severe form of the disease. This
manifestation is characterized by heightened intensity of symptoms
such as severe pain, inflammation, and potentially sight-threatening
complications such as corneal ulceration or compressive optic
neuropathy (Bahn, 2010). The presence of these severe symptoms
significantly impacts both the physical and mental wellbeing of
affected individuals, underscoring the urgent need for effective
interventions and treatments to mitigate their suffering.

The autoimmune response involving antigen-presenting cells
(APCs), T cells, and B cells in GO leads to the production of anti-
thyroid stimulating hormone receptor (TSHR) autoantibodies
(TRAb). These antibodies infiltrate the thyroid and bind to both
the insulin-like growth factor 1 (IGF-1) and TSHR present on
thyroid epithelial cells and fibroblasts (Douglas et al., 2008;
McLachlan and Rapoport, 2014). This binding triggers the
activation of thyroid epithelial cells and fibroblasts, resulting in
the release of inflammatory cytokines, which further amplifies the
inflammatory response (Armengol et al., 2003). In addition, the
activated infiltrating T cells recognize the orbital fibroblasts (OFs)
trough CD40 ligand interactions. These T cells then secrete
cytokines and chemokines such as IFN-γ, TNF-α, IL-1β (Th1),
and IL-4 (Th2). These factors contribute to fibroblast
differentiation and the expansion of orbital fat by stimulating the
release of glycosaminoglycans, such as hyaluronan, from OFs. This
excessive accumulation of glycosaminoglycans leads to the swelling
of orbital tissues, particularly the extraocular muscles, a hallmark of
GO pathology (Bahn, 2015; Smith and Hegedus, 2016).

For several decades, corticosteroids were considered as the
primary treatment approach for GO (Wiersinga, 2017). However,
the clinical demand for innovative treatment strategies for GD has
prompted development of various new therapies, including
biologics, small molecule peptides, and immunomodulators.
Additionally, a growing body of research has started to explore
the therapeutic potential of traditional Chinese medicine (TCM) for
GO, owing to its distinctive healing properties and associated
mechanisms of action (He et al., 2022). We have compiled a
comprehensive overview of current investigations into the
utilization of TCM for GO treatment, shedding light on their
regulatory mechanisms. Ultimately, we present a forward-looking
perspective on GO treatment possibilities, encompassing areas such
as gut microbiota.

Pathogenesis of GO

Researchers classified cells in GO orbital connective tissues into
six independent cell types—lymphocyte (mainly T and B cells),
APCs, OFs, endothelial cells, adipocytes, and myocytes—using
single cell sequencing analysis and multicolor flow cytometry
(Fang et al., 2019). Disruption of self-tolerance to the TSHR
results in the recognition of TSHR epitopes by APCs and B cells
which activate naïve T helper (Th) cells. During above process,
medications designed to target APCs, such as tocilizumab (an anti-
IL6R agent that focuses on dendritic cells), have been developed with
the aim of preventing excessive activation of APCs. Once activated,
T cells differentiate into various subsets of Th cells that secrete
different cytokines and inflammatory factors, thereby promoting the
expansion and intensification of inflammation. Therapies aimed at

targeting these inflammatory factors and cytokines serve to halt
further inflammation. Examples include adalimumab (targeting
TNF-α) and belimumab (targeting BAFF). Moreover, in addition
to cytokine targeting, drug interventions also focus on cell–cell
interactions. For instance, iscalimab, an anti-CD40 antibody,
impedes the activation of B cells by T cells through the CD154-
CD40 interaction pathway. Both activated T cells and cytokines play
a role in stimulating the production of thyroid-stimulating hormone
receptor autoantibodies (TRAb) by plasma cells derived from self-
reactive B cells. These TRAb then stimulate orbital fibroblasts (OFs),
triggering immune responses within the orbit. Additionally, CD34+

OFs, originating from peripheral fibrocytes, contribute to the
inflammation process by producing chemokines and releasing a
substantial quantity of cytokines, including IL-1β and prostaglandin
E2 (PGE2), which further exacerbate the inflammation within the
orbital tissues (Fang et al., 2021). Certainly, the pathogenesis of GO
is intricate and involves a network of interactions among various cell
types. As a result, the effects of many drugs are not limited to a single
cell type but have broader impacts. For instance, Resveratrol, an
active ingredient from Reynoutria japonica Houtt, reduced the
number of adipocytes in GO OFs in vitro by increasing the
expression of the c-Jun NH2-terminal kinase (JNK) and
transcriptional regulators phosphor–extracellular signal-regulated
kinase (ERK) which are two important pathways in the regulation of
metabolic reprogramming. In this section, we summarized the role
of T and B cells and fibroblasts in the pathogenesis of GO. In the
subsequent part, we will provide a detailed exploration of how drugs
targeting GO operate, drawing upon the mechanisms associated
with these pathogenic processes.

T cells

An early study showed that the infiltration of CD3+ cells were
observed in the orbital tissues of GD patients which provided
evidence of T cells infiltrating the inflamed orbit (Fang et al.,
2021). While both CD8+ and CD4+ cells participate in the
infiltration of orbital tissues and contribute to immune
regulation, the prevailing belief is that CD4+ cells play a more
pivotal role in the inflammatory process of GO (Zhang et al.,
2021). Research has suggested that the type 1 immune response
by Th1 may dominate in the early active of GO and the type
2 immune response by Th2 possibly plays an important role in
late inactive GO (Aniszewski et al., 2000). The secretion of IFN-γ by
Th1 cells has been found to elicit several effects within the context of
GO. It induces a shift of fibroblasts to the G0/G1 phase of the cell
cycle, leading to changes in their activity. Additionally, IFN-γ
upregulates the expression of CD40 on human fibroblasts,
thereby influencing immune interactions. Moreover, IFN-γ
enhances the synthesis of hyaluronan, particularly through the
CD40−CD40L signaling pathway, in fibroblasts of GO. This
signaling pathway contributes to the accumulation of hyaluronan,
which is associated with the swelling of orbital tissues. Furthermore,
IFN-γ strengthens the IL-1β-induced synthesis of hyaluronan in
OFs of GO by promoting the expression of the hyaluronan synthase-
2 gene. This process contributes to the inflammatory response
characteristic of GO (Han and Smith, 2006). In addition to its
direct effects, the expression of IFN-γ plays a role in the
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Th1 immunity-mediated inflammatory network in GO. It increases
the secretion of chemokines CXCL9, CXCL10, and CXCL11 by both
GO OFs and GO OF-differentiated adipocytes. These chemokines
further contribute to immune cell recruitment and inflammation
within the orbital tissues (Antonelli et al., 2006).

While IL-4 secreted by Th2 may not directly upregulate the
expression of CD40 in fibroblasts, it does inhibit the activation of
Timp1 promoter by IL-1β, which reduces the expression of TIMP-1
in GO OFs, suggesting its crucial role in GO. IL-4 inhibits the
secretion of PGE2 from the OFs of GO while promoting IL-1β-
induced synthesis of hyaluronan in fibroblasts by increasing the
expression of hyaluronan synthase-2 gene which indicates the
opposite mechanism of action (Han and Smith, 2005).

Elevated serum levels of IL-17A, IL-23, and IL-6 have been
observed in GO patients, highlighting the significance of the
Th17 pathway and IL-23/IL-17 axis in the progression of this
condition (Kim et al., 2012a; Fang et al., 2016). In GO, the
Th17 cell lineage dominates; in moderate to severe GO,
Th17.1 cells independently express retinoic acid receptor-
associated orphan receptor-γt (RORγt) and produce IL-17A; and
in severe GO, RORγt and T-bet double-positive Th17.1 cells
produce IFN-γ (Fang et al., 2020). In addition, a recent study has
provided evidence that IL-17A, rather than IFN-γ, stimulates TGF-
β-initiated myofibroblast differentiation. This study also suggests
that both CD90+ and CD90− OFs contribute to the differentiation of
Th17 cells through production of PGE2. Importantly, this effect can
be mitigated by the administration of indomethacin, a non-steroidal
anti-inflammatory drug (Fang et al., 2017).

B cells

B cells undergo a transformation into antibody-producing
plasma cells, a process that requires a secondary signal which is
typically acquired through interactions with T cells. As a result of
these interactions, plasma cells that originate from activated B cells
begin to secrete TRAb against TSHR. Furthermore, the process of
autoantibody class switching, encompassing immunoglobulin
classes such as IgE, IgM, and IgG, is facilitated by IL-4 secretion
from activated T cells, predominantly from Th2 cells (Lehmann
et al., 2008; Davies et al., 2020). A recent study has demonstrated
that the blocking of CXCL13 or CXCR5 using neutralizing
antibodies leads to a reduction in migration of B cells in GO.
This observation suggests that, beyond their antibody-secreting
function, B-cell migration also plays a pivotal role in the
pathogenesis of GO (Wan et al., 2021).

Fibroblasts

The fibrocytes derived from bone marrow differentiate into
CD34+ fibroblasts, which in turn can further specialize into either
adipocytes or myofibroblasts. These CD34+ fibroblasts coexist
within the orbital tissue alongside resident CD34− fibroblasts.
Stimulation with IL-1β, IL-6, TNF-α, and CD40 ligand-secreted
by T cells, B cells, and fibrocyte prompts the activation of CD34+

fibroblasts. Additionally, IL-17A has been identified as a factor that

promotes TGF-β-induced fibrosis in CD90+ OFs and impedes 15-
deoxy-Δ12,14-prostaglandin J2-induced adipogenesis in CD90−

OFs. In addition, the study highlights that Th17 cells contribute
to the secretion of proinflammatory cytokine in both CD90+ and
CD90− OFs, thus substantiating their role in fostering inflammation
(Fang et al., 2017).

Current treatment

Antithyroid drugs (ATD)

Thionamide-derived ATD approved for the treatment of
patients with Graves’ hyperthyroidism include methimazole
(MMI), carbimazole (which is converted to MMI after
absorption), and propylthiouracil (Bartalena, 2013). ATD have
been widely recommended for patients worldwide as the preferred
method of treatment. They work by inhibiting iodination, a
process catalyzed by thyroid peroxidase, which in turn
downregulates the production of thyroid hormones. Among
these derivatives, MMI stands out as a classical and extensively
used antithyroid drug (Brix et al., 2020). Compared with MMI,
both carbimazole and propylthiouracil have demonstrated lower
efficacy in reducing thyroid hormones. Furthermore, these two
drugs are available in significantly smaller quantities worldwide.
Although ATD, including MMI, have been regarded as the
standard therapeutic approach due to their high efficacy,
acceptability, low side effects, and extended half-life, they have
also exhibited a range of adverse effects (Cooper, 2003). The initial
remission rate for first-line treatment with ATD stood at
approximately 45.3% (351/774). However, when a second round
of ATD was administered to patients who had experienced a
relapse after initial treatment, the remission rate decreased
further, reaching 29.4%. A lower response rate implies a higher
likelihood of relapse, which in turn elevates the patient’s risk of
developing goiters (Starling, 2019).

Glucocorticoids

Glucocorticoids have been established as the primary treatment
for managing active disease. Studies have indicated that
administration of methylprednisolone effectively suppresses key
pathological factors including prostaglandin secretion, production
of glycoaminoglycan (GAG), fibroblast activity, and the expression
of pro-inflammatory cytokines in the orbital tissue (Zang et al.,
2011). Although oral glucocorticoid (GC) has been a longstanding
treatment option for GO, recent research indicates that intravenous
drug delivery (IVGC) offers enhanced efficacy. Intravenous
administration has also been associated with fewer and milder
side effects compared to oral administration. These side effects
include secondary adrenal insufficiency, cushingoid features,
elevated blood pressure, weight gain, hirsutism, muscle pain,
depression, and osteoporosis (Macchia et al., 2001; Zang et al.,
2011). However, fatal acute hepatotoxicity has been reported in four
GO patients treated with IVGC, suggesting that glucocorticoids are
not a perfect treatment strategy for GO (Le Moli et al., 2007).
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Immunotherapy targeting cytokines

BAFF

Belimumab, an anti-B cell activating factor (BAFF) monoclonal
antibody (mAb), directly interacts with transitional B cells and thus
antagonizes the bioactivity of soluble BAFF (Salvi, 2014). BAFF is
indeed a member of the tumor necrosis factor family, which controls
the survival and proliferation of B cells. And blocking the interaction
between BAFF and its receptor indirectly reducing the survival rate
of B cell and reducing the production of TRab (Stohl et al., 2012;
Campi et al., 2015).

TNF-α

The correlation between elevated levels of circulating TNF-α
levels and the severity of GO has prompted the exploration of
mAb targeting TNF-α. Notably, mAbs such as etanercept,
adalimumab, and infliximab have been investigated for their
potential in addressing this association (Kumari and Chandra
Saha, 2018). Among these, adalimumab has been approved by the
Food and Drug Administration (FDA) for the treatment of
psoriatic arthritis and inflammatory bowel disease, with
notable improvements observed. After 12 weeks therapy of
adalimumab, there was reduced inflammation in six of ten GO
patients, and increased inflammatory signs in three of the
patients (Ayabe et al., 2014). These results highlight the need
for further research to comprehensively investigate the role of
TNF-α immunosuppressive agents in the context of GO.

Immunotherapy targeting cell
receptors

CD20

Rituximab was the first biologic therapies applied to the
treatment of active GO (Genere and Stan, 2019). Through
specifically binding CD20, a molecule exclusively present on
B cells, rituximab achieves the depletion of B lymphocytes,
leading to a reduction in cytokines and the release of TRAb
(Pavanello et al., 2017). This focused inhibitor of CD20 has been
identified in case series, indicating a potentially favorable impact on
GD and GO (El Fassi et al., 2006; Khanna et al., 2010).

CD40

Iscalimab (CFZ533), an anti-CD40 mAb, targets the
CD40−CD154 costimulatory pathway that plays a crucial role in
T-cell-dependent immune responses involving activated B cells
(Ristov et al., 2018). Unlike rituximab, which depletes B
lymphocytes, iscalimab does not induce the depletion of human
CD40-expressing B cells. Instead, it disrupts the initial stages of
T-cell-dependent antibody responses in non-human primates and
inhibits the formation of germinal centers.

IL-6R

IL-6, along with its soluble receptor, is known to be activated in
patients with active GO. This proinflammatory cytokine, which is
also excessively expressed in orbital tissues of GO patients,
contributes to the inflammatory process. Tocilizumab, a mAb
targeting the IL-6 receptor (IL-6R), has been employed as a
treatment option. Its administration has shown positive
outcomes in alleviating symptoms such as exophthalmos,
extraocular muscle mass enlargement, and edema in individuals
with GO (Perez-Moreiras et al., 2014; Perricone et al., 2016; Kahaly
et al., 2020).

TSHR

Small molecule TSHR antagonists were reported to specifically
target TSHR including Antag-3, S37a, K1-70, and VA-K-14
(Neumann et al., 2010; Neumann et al., 2014). VA-K-14 and
S37a have been demonstrated to have the ability to inhibit
expression of TSH and TRAb-induced signaling in vitro (Latif
et al., 2016; Marcinkowski et al., 2019). Antag-3 has shown
inhibition of TSH-stimulated cyclic adenosine monophosphate
(cAMP) production in vitro and a reduction thyroid hormone
level in mice treated with thyroid-stimulating mAb M22. By
blocking TSHR, K1-70 decreased total T4 and free T4 levels in
rats, suggesting its potential as a novel drug to counter TSHR
stimulation by TRAb in GD (Furmaniak et al., 2012). An
encouraging case report showed that K1-70 monotherapy
decreased the thyroid stimulating antibody activity measured in
serum as well as improved symptoms (proptosis and inflammation)
in a GO patient (Ryder et al., 2021). However, specific
immunotherapy for TSHR have broad immunosuppressive effects
which may lead to infections.

IGF-1R

Likewise, activation of the IGF-1R/TSHR protein complex
increases the secretion of IL-6 and IL-8 which exacerbates
immune responses and inflammation in GO. Teprotumumab, a
human monoclonal antibody that blocks IGF-1R, represents a
significant breakthrough as the only FDA-approved drug for
treating GO. By blocking IGF-1R/TSHR crosstalk, teprotumumab
decreases the synthesis of hyaluronate and adipogenesis on the
surface of OFs and achieves therapeutic effects for GO (Smith
et al., 2017; Antonelli et al., 2020; Krieger et al., 2022).

Immunotherapy-targeted blocking of
immunoglobulin

FcRn and IgG-1

By blocking the FcRn-IgG-mediated interaction, drugs like
rozanolixizumab (an anti-FcRn mAb) and efgartigimod (a
humanized IgG-1 derived Fc fragment) hold promise as potential
therapeutic options for GO (Kiessling et al., 2017; Smith et al., 2018).

Frontiers in Pharmacology frontiersin.org04

Zhang et al. 10.3389/fphar.2023.1217253

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1217253


Inhibiting FcRn presents an appealing avenue for novel therapy,
where accelerated antibody breakdown and reduced levels
circulating pathogenic TRAb align with effective treatment for
GD (Zuercher et al., 2019). The pathogenesis and
immunotherapy strategies of GO are summarized in Figure 1.

TCM and other treatments

Polydatin

Polydatin (PD) serves as the primary active ingredient of
Polygonum cuspidatum Sie, renowned for its anti-inflammatory
and neuroprotective properties. In the context of neuropathic
pain induced by vincristine (VIN) in rats, PD was observed to
curtail the levels of TP53, IL-6, and MAPK1 (Xi et al., 2022). Further
investigations employed an in vivo model involving adenovirus-
induced GO mice expressing the TSHR A-subunit (Ad-TSHR289),
as well as an in vitro study using hydrogen peroxide (H2O2)-induced
oxidative stress on OFs. In both scenarios, PD exhibited a capacity to
mitigate the expansion of orbital muscle adipose tissue and reduce
the accumulation of lipid droplets. These effects were attributed to a
nuclear factor E2-related factor 2 (NRF2)-mediated response to
oxidative stress (Li et al., 2020c).

Diosgenin (Dio)

Diosgenin, a naturally steroidal saponin found abundantly in
various medicinal plants, is notably produced in significant
quantities in Trigonella foenum-graecum L (He et al., 2012).
Administration of Dio for 24 days dose-dependently reduced
excessive thyrocyte proliferation and reversed the morphological
changes in thyroids by reducing the thyroid size and T4 levels in GD
mice while not affecting the abnormal level of TRAb (Cai et al.,
2014). In addition, Dio has demonstrated inhibitory effects on the
activation and phosphorylation of Rap1-mitogen-activated
extracellular signal-regulated kinase (MEK) and PI3K-AKT
signaling pathways and promoted cell apoptosis and GD
remission. In terms of phosphorylation deactivation in IGF-1R,
Dio promoted Nthy-ori three to one cells (normal thyroid cells)
apoptosis in vitro and relieved GD in rats (Xin et al., 2021).

Resveratrol

Resveratrol, the active compound derived from Reynoutria
japonica Houtt, has been shown to have beneficial effects. When
combined with PD, it has demonstrated a capacity to decrease the
levels of proinflammatory cytokines IL-6, IL-8, and TNF-α in HaCat

FIGURE 1
The pathogenesis and immunotherapy strategies of GO.
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cells (Ravagnan et al., 2013). Furthermore, resveratrol treatment has
been found to effectively reduce the production of reactive oxygen
species (ROS), suppress adipogenesis, and reduce the number of
adipocytes in GO OFs in vitro by increasing the expression of the
c-Jun NH2-terminal kinase (JNK) and transcriptional regulators
phosphor–extracellular signal-regulated kinase (ERK) (Kim et al.,
2015).

Icariin

Icariin, a flavonoid isolated from Epimedium, has
demonstrated a broad spectrum of effects, particularly its
impact on lipid metabolism and reduction, suggesting its
important role in the regulation of GO in adipocytes (Wang
et al., 2020). Treatment of icariin inhibited the differentiation
of preadipocytes into mature adipocytes by suppressing the
autophagy which were regulated by the inhibition of AMP-
activated protein kinase (AMPK)/mTOR pathway activation
in vitro. In addition, it reduced lipid droplet accumulation and
orbital muscle adipose tissue expansion by inhibiting AMPK/
mTOR mediated autophagy in a TSHR-induced GO mouse model
(Li et al., 2017).

Celastrol

Celastrol, a triterpenoid compound derived from TCM sources
like Celastrus orbiculatus Thunb, has emerged as a promising
candidate for the treatment of diverse inflammatory and
autoimmune disorders. Research has illuminated celastrol’s
potential in modulating these conditions. A study showed that
celastrol reduced the expression of IL-6, IL-8, intercellular
adhesion molecule-1 (ICAM-1), and cyclooxygenase (COX)-2, as
well as inhibited IL-1β-induced increases in the expression of IL-8,
IL-6, COX-2, and ICAM-1. Additionally, the levels of PGE2
(mediated by COX-2) in OFs induced by IL-1β were also
suppressed by celastrol (Li et al., 2016).

Gypenosides

Gypenosides, saponins derived from Gynostemma
pentaphyllum, exhibit notable anti-inflammatory properties. In
a study involving the glial cell line C6 stimulated by a combination
of TNF-α and lipopolysaccharide (LPS), gypenosides significantly
attenuated the production of inducible nitric oxide synthase
(iNOS), COX-2, IL-6, IL-1β, and TNF-α, underscoring their
anti-inflammatory potential (Wang et al., 2017). GO and KEGG
(Kyoto encyclopedia of genes and genomes) pathway analysis
revealed that gypenosides’ potential curative effect on GO may
work via the JAK-STAT pathway and interleukin pathways (Li
et al., 2019). Additionally, bioinformatics analyses highlighted the
association of gypenosides with fibrosis-related and inflammation-
related target genes in GO. This was corroborated by experimental
evidence, indicating that gypenosides downregulate inflammatory
cytokines (IL-8, IL-6, TNF-α, and CCL2) and fibrotic mediators
(HAS2, COL1A2, FN1, and α-SMA) in OFs induced by IL-1β and

TGF-β. This effect is achieved by reducing the activation of toll-
like receptors (TLRs) 4/NF-κB signaling and TGF-β1/SMAD2/
SMAD4 signaling in GO OFs (Li et al., 2020b). A recent study
reported that celastrol decreased the oxidative stress level of OFs
generated by H2O2-reduced cell autophagy as well as apoptosis of
OFs (Ma et al., 2022). This suggests a multifaceted impact of
gypenosides in regulating various processes associated with GO.

Astragaloside IV

Astragaloside IV treatment significantly downregulates the
expression of IL-1β-induced inflammatory cytokine in OFs
in vitro as well as attenuated GO orbital inflammation, collagen
deposition, fat accumulation, and macrophage infiltration in vivo
(Li et al., 2018).

Ingredients from Prunella vulgaris

Using bioinformation analysis, research has elucidated that
Prunella vulgaris holds potential as a treatment against GO. It is
believed to promote apoptosis, suppress proliferation, and mitigate
inflammation via the PI3K-AKT pathway, thus positioning P.
vulgaris as a promising candidate for addressing GO (Zhang
et al., 2020b). Further analysis unveiled the interaction of key
active ingredients in P. vulgaris—quercetin, ursolic acid, and
rutin—with numerous targets related to GO. These interactions
underscore the significant roles of these compounds in the anti-GO
context. Quercetin, a flavonoid phytoestrogen, boasts antioxidant
and anti-inflammatory properties and has been linked to reduced
proliferation in orbital cells (Lisi et al., 2011; Yoon et al., 2013).
Ursolic acid and rutin have been demonstrated to promote apoptosis
and regulate immune systems in cell and animal models (Manzoni
et al., 2019; Satari et al., 2019; Zhang et al., 2020a; Lin et al., 2020).
Moreover, our research demonstrated that P. vulgaris
polysaccharides, a main component of P. vulgaris, exert their
therapeutic effect on the OFs from GO patients by inhibiting the
proliferation and promoting the apoptosis of OFs (Li et al., 2020a).

Triptolide

Triptolide, a diterpenoid tricyclic oxide composition extracted
and purified from the roots of Tripterygium wilfordii which has been
reported to induce T cell apoptosis, inhibits T cell proliferation,
reduces IL-2 synthesis, and inhibits the expression of NF-κB in
T cells (Li et al., 2002; Qiu and Kao, 2003). Triptolide relieves the
clinical manifestations of diplopia, exophthalmos, and periorbital
swelling caused by accumulation of adipose tissue and inflammatory
cell infiltration in the orbital and muscle connective tissue. The
abnormal expression of human leukocyte antigen (HLA)-DR in
fibroblasts is associated with the pathogenesis of GO (Bahn, 2020).
An in vitro experiment showed that triptolide inhibited IFN-
induced activation of retro-ocular fibroblasts (RFs) derived from
patients with GO including dose-dependently downregulating the
percentage of HLA-DR, ICAM-1, and CD40 positive cells on RFs
(Yan and Wang, 2006).
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Bupleurum saponins

Bupleurum saponins, the active component of Bupleurum
falcatum L, exert strong antioxidant effects which improve
hyperthyroidism and related organ damage induced by
Levothyroxine (LT4) (Kim et al., 2012b; He et al., 2022).
However, there is no direct evidence to prove the efficacy of
Bupleurum saponins in the treatment of GO.

Pingmu Decoction

Pingmu Decoction has been used in the treatment of inactive
GO as a TCM for over a decade, exhibiting favorable clinical
outcomes. By diminishing the viability of orbital preadipocytes
and triggering apoptosis in mature adipocytes via the Fas/Fas L
signaling pathway, Pingmu Decoction effectively curbs lipid
accumulation and reduces the expression of key regulators like

TABLE 1 TCM and other treatments of Graves’ ophthalmopathy.

Medicine Extract from Effect and mechanism

Polydatin Polygonum cuspidatum Sieb Relieved orbital muscle adipose tissue expansion and reduced lipid
droplet accumulation through NRF2-mediated oxidative stress

response and downregulation of IL-6 Li et al. (2020c), Xi et al. (2022)

Diosgenin Trigonella foenum-graecum L Reduced thyrocyte proliferation, thyroid size, and T4 levels in GD mice.
Inhibited the PI3K-AKT and Rap1-MEK signaling pathways and

promoted thyroid cell apoptosis He et al. (2012), Cai et al. (2014), Xin
et al. (2021)

Resveratrol Reynoutria japonica Houtt Reduced proinflammatory cytokine IL-6, IL-8, and TNF-α in HaCat
cells. Reduced ROS production, suppressed adipogenesis, and reduced
the number of adipocytes in GO orbital fibroblasts in vitro by increasing
the expression of the p-JNK and transcriptional regulators p-ERK

Ravagnan et al. (2013), Kim et al. (2015)

Icariin Epimedium Inhibited the differentiation of preadipocytes into mature adipocytes,
lipid droplet accumulation, and orbital muscle adipose tissue expansion
by inhibiting AMPK/mTOR-mediated autophagy in GOmouse models

Li et al. (2017), Wang et al. (2020)

Celastrol Celastrus orbiculatus Thunb Reduced the IL-1β-induced expression of IL-8, IL-6, ICAM-1, and
COX-2 in OFs from patients with GO Li et al. (2016)

Gypenosides Gynostemma pentaphyllum Downregulated IL-8, L-6, TNF-α, CCL, HAS2, COL1A2, FN1, and α-
SMA in OFs induced by IL-1β and TGF-β through reducing the

activation of TLR-4/NF-κB signaling and TGF-β1/SMAD2/
SMAD4 signaling in GOOFsWang et al. (2017), Li et al. (2019), Li et al.

(2020b), Ma et al. (2022)

Astragaloside IV Astragalus memeranaceus Downregulated inflammatory cytokines, and attenuated collagen
deposition, fat accumulation, and macrophage infiltration of GO OFs Li

et al. (2018)

Ursolic acid, rutin, and Prunella vulgaris polysaccharides Prunella vulgaris Ursolic acid and rutin promoted apoptosis and regulated immune
systems in cell and animal models Zhang et al. (2020b). Prunella

vulgaris polysaccharides exerted its therapeutic effect on the OFs from
GO patients by inhibiting the proliferation and promoting the apoptosis

of OFs Li et al. (2020a)

Triptolide Tripterygium wilfordii Induced T cell apoptosis, inhibited T cell proliferation, reduced IL-2
synthesis, and inhibited the expression of NF-κB in T cells. Relieved the

clinical symptoms of GO patients as well as downregulated the
percentage of HLA-DR, ICAM-1, and CD40 positive cells in RFs Li et al.

(2002), Qiu and Kao (2003), Yan and Wang (2006)

Bupleurum saponins Bupleurum falcatum L Improved hyperthyroidism and related organ damage induced by
LT4 Kim et al. (2012b), He et al. (2022)

Pingmu Decoction Pingmu Decoction Pingmu Decoction alleviated GO progression, reduced lipid
accumulation, and downregulated the expression of PPARγ and C/EBP
α via the Fas/Fas L signaling pathway Li et al. (2012), Zhang et al. (2017)

Berberine Rhizoma coptidis Decreased intracellular lipid accumulation in GO OFs by blocking NF-
κB signaling Diao et al. (2022)

Neferine Nelumbo nucifera Inhibited IL-13-induced inflammation, ROS production, fibrosis, and
adipogenic differentiation in GO OFs. The anti-inflammatory,

antioxidant, and anti-lipogenic effects of Neferine were accompanied by
an upregulation of Nrf2 Poornima et al. (2013), Li et al. (2021), Wang

et al. (2022a)
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PPARγ and C/EBPα. This outcome implies that Pingmu Decoction
might hold therapeutic promise for GO by mitigating orbital
adipocyte accumulation (Zhang et al., 2017). Additional research
substantiates Pingmu Decoction’s efficacy in mitigating GO
progression. This involves the attenuation of preadipocyte
proliferation and an increase in adipocyte apoptosis in orbital
adipose tissue derived from GO patients (Li et al., 2012).

Berberine

Berberine, a natural alkaloid with the chemical formula
C20H18NO4, originates from Rhizoma coptidis, a traditional Chinese
plant. Treatment of berberine dose-dependently decreased intracellular
lipid accumulation by downregulating adipogenic markers in GO OFs.
Additionally, berberine attenuated IL-1β-induced expression of
proinflammatory molecules in OFs from both GO and control
patients by blocking NF-κB signaling (Diao et al., 2022).

Neferine

Neferine, derived from the traditional Chinese medicinal plant
Nelumbo nucifera, has garnered attention for its potential therapeutic
applications. It has been shown to induce autophagy by inhibiting
PI3K/AKT signaling and triggering the generation of ROS (Poornima
et al., 2013). It effectively curtails IL-13-induced inflammation, ROS
production, fibrosis, and adipogenic differentiation in OFs derived
from GO patients. Notably, Neferine’s anti-inflammatory,
antioxidant, and anti-lipogenic effects are accompanied by an
upregulation of Nrf2, a pivotal transcription factor that safeguards
cells against oxidative stress-induced damage (Li et al., 2021). The
TCM and other treatments are summarized in the table (Table 1).

Prospective treatment

Disulfiram

Disulfiram, originally approved as an aldehyde dehydrogenase
(ALDH) inhibitor by the FDA for alcohol abuse treatment back in
1951 (Lu et al., 2021), has more recently been investigated for its
potential therapeutic applications in GO. Recent research showed that
disulfiram dose-dependently suppressed lipid accumulation during
adipogenesis in OFs of GO by decreasing the expression of key
adipogenic transcription factors, including perilipin-1 (PLIN1),
FABP4, PPARγ, and c/EBPα (CEBPA). In addition, it suppressed
inflammatory molecule expression induced by IL-1β and showed
antifibrotic effects in GO OFs (Wang et al., 2022a). Furthermore,
disulfiram dose-dependently inhibited contraction, migration,
proliferation, and fibrosis in perimysial orbital fibroblasts (pOFs)
collected from eight patients with GO (Wang et al., 2022b).

Intestinal microbiota

In the past few decades, clinical and animal studies have found
a strong link between gut microbes and autoimmune diseases

(Honda and Littman, 2016), including autoimmune arthritis (Wu
et al., 2010), ulcerative colitis (Zhao et al., 2022), and psoriasis
(Zhao et al., 2023). By regulating immune cells and affecting the
intestinal barrier, intestinal microbes may play a critical role in the
development of GO which is an autoimmune thyroid disease.

Clinical study has demonstrated that, compared with healthy
control patients, Prevotella and Veillonella were increased while
Lactobacillus was decreased in GD patients. These intestinal
microbes have also been found to act as marker bacteria in other
autoimmune diseases or to be involved in regulating diseases.
Prevotella has been reported to be associated with rheumatoid
arthritis (RA), and specific antigens of Prevotella can shape or
promote immune responses in RA joints (Pianta et al., 2017;
Pianta et al., 2021). In addition, administration of gentamicin
decreased the abundance of Prevotella and relieved the
pathogenesis of psoriasis-like phenotype in K14-VEGF-induced
psoriatic mice (Zhao et al., 2023). At present, there are few
systematic studies on the effects of intestinal microbes on GO.
Even so, Prevotella copri was reported to increase significantly in
patients with GO, while the abundance of Parabacteroides distasonis
exhibited an opposite correlation with TRAb, suggesting a potential
protection effect of P. distasonis against GO (Shi et al., 2019). The
protective effect of P. distasonis has also been reported to be
associated with psoriasis and multiple sclerosis (Cekanaviciute
et al., 2017; Zhao et al., 2023). Vancomycin significantly
decreased intestinal microbiota as well as reduced the severity
and incidence of both GO and GD. Researchers showed that the
reduced orbital pathological symptom was positively correlated with
Akkermansia spp. Additionally, mice transplanted with fecal
microbiota from GO patientsinitially inherited their donors’
microbiota, and the induced GD exacerbated, as did the orbital
brown adipose tissue volume increase in TSHRmice (Moshkelgosha
et al., 2021). As the second genome of the human body, the gut
microbiome is composed of many species, which has great potential
for exploitation (Zhu et al., 2010).Akkermansia muciniphila reduced
body weight and the levels of blood markers associated with liver
dysfunction in obese humans while Lactococcus lactis was
transplanted to patients for the treatment of vitamin K deficiency
(Depommier et al., 2019; Liu et al., 2019). Hence, the administration
of gut microbes has valuable clinical applications for the treatment
of several diseases, including GO. In conclusion, more studies are
needed to explore the mechanism of gut microbiota regulation on
GO, and to treat GO by targeting gut microbiota and supplementing
probiotics.

Conclusion

In the past decades, based on the gradual in-depth
understanding of the pathogenesis of GO, the treatment of GO
has gradually increased and changed. Glucocorticoids and anti-TSH
drugs have made great contribution to the treatment of GO for quite
a long time by reducing the TSH level, decreasing orbital
inflammation, reducing orbital adipocyte expansion, and
alleviating the progression of GO. The low remission rate of
secondary drug use and large side effects of drugs have gradually
become a drawback of the above-mentioned drug treatment for GO.
As an autoimmune disease, GO is expected to be treated with the
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regulation of immune cells and cytokines which are the potential
targets of GO. Tumor therapy with a PD-1 inhibitor caused adverse
effects similar to the symptoms of GO and exogenous PD-L1
reduced orbital inflammation of fibroblasts by inhibiting T cell
activity (Sagiv et al., 2019; Liu et al., 2022). Using single-cell
RNA sequencing, Wang et al. revealed the novel GO-specific cell
type CD4+ cytotoxic T lymphocytes (CTLs) which are characterized
by chemotactic and inflammatory features (Wang et al., 2021).
Granzyme B and IFN-γ secreted CTLs may migrate from the
circulation to orbits and trigger orbital inflammation and tissue
remodeling. Zhang et al. demonstrated that rapamycin, a mTOR
inhibitor, ameliorated orbitopathy and hyperthyroidism by
decreasing CD4+ CTLs’ accumulation and suppressing their
inflammatory in GO mice. In addition, by targeting
mTORC1 and decreasing the frequency of CD4+ CTLs,
rapamycin ameliorated diplopia and orbital inflammation in
patients with intractable GO (Zhang et al., 2023). These studies
encourage researchers to shift the focus from helper T cells to CTLs.

There are a wide range of proven immunological agents or those
under investigation for the treatment of GO, and they have favorable
biosafety profiles. However, antibody-based drugs account for a
large proportion of immunological agents which tend to be
expensive. OFs from active GO displayed hypermethylation of
genes that linked to inflammation and hypomethylated genes
that linked to adipogenesis and autoimmunity, suggesting the
important role of DNA methylation in the progression of GO
(Virakul et al., 2020). Additionally, Dottore et al. reported that
incubation with anti-TSHR antibodies significantly increased global
DNA methylation which is related with cell proliferation in
fibroblasts (Rotondo Dottore et al., 2023). Although there has
been no clinical and in-depth basic research, DNA methylation-
based gene therapy still has great prospects for the clinical treatment
of GO.

Oral doxycycline, a broad-spectrum antibiotic, resulted in
greater improvement of GO related symptoms after 12 weeks,
indicating that gut microbes are closely related to the incidence
of GO in clinical patients (Pan et al., 2022). Biscarini et al. reported
that, compared with healthy controls, Actinobacteria were
significantly increased while Bacteroidetes significantly decreased
in GD/GO patients. Bacteroides showed the positive and negative
correlations with TSH and free thyroxine. Importantly, the presence
of Clostridiales correlated with the persistence of TRAb which is
predictive of relapse, suggesting that targeting Clostridialesmay be a
means of radical treatment of recurrent GO (Biscarini et al., 2023).
Studies in mice have also partially confirmed this result (including
increased Bacteroides and decreased Actinobacteria) (Li et al., 2023).
However, at present, the studies on GO and intestinal microbiota are
relatively shallow, and the regulatory mechanism of GO should be
elaborated from the perspective of multiomics and single-bacteria
studies in the future.

What is more, some drugs that are not primarily targeted at GO
have also shown promising effects in the treatment of GO. AMPK
activity showed a reduction in the orbital tissue of GO patients, and
treatment of metformin, an AMPK activator, inhibited fibrosis and
the expression of inflammatory molecules in OFs of GO via an
AMPK/mTOR signaling pathway (Xu et al., 2022). Based on its
potential anti-inflammatory properties, reseachers found that
dihydroartemisinin (DHA), a sesquiterpene lactone which is
widely used for the treatment of malaria and fever that is
extracted from a traditional Chinese herb, Artemisia annua L.,
significantly alleviates pathogenic manifestations in OFs of GO
by inhibiting proliferation, fibrosis- and inflammation-related
gene expression, and TGF-β1-induced inflammation in OFs via
suppression of the ERK and STAT3 signaling pathways (Yang et al.,
2022).

Generally, in this review, we introduced the pathogenesis of GO
from the perspective of immunity, summarized the current
treatment methods of GO, focused on the induction of
immunotherapy and TCM treatment of GO, and discussed their
relationship with GO and the prospect of treatment of GO from the
perspective of intestinal microorganisms.
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