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GPR35 is a G protein-coupled receptor with notable involvement in modulating

inflammatory responses. Although the precise role of GPR35 in inflammation is

not yet fully understood, studies have suggested that it may have both pro- and

anti-inflammatory effects depending on the specific cellular environment. Some

studies have shown that GPR35 activation can stimulate the production of pro-

inflammatory cytokines and facilitate the movement of immune cells towards

inflammatory tissues or infected areas. Conversely, other investigations have

suggested that GPR35 may possess anti-inflammatory properties in the

gastrointestinal tract, liver and certain other tissues by curbing the generation

of inflammatory mediators and endorsing the differentiation of regulatory T cells.

The intricate role of GPR35 in inflammation underscores the requirement for

more in-depth research to thoroughly comprehend its functional mechanisms

and its potential significance as a therapeutic target for inflammatory diseases.

The purpose of this review is to concurrently investigate the pro-inflammatory

and anti-inflammatory roles of GPR35, thus illuminating both facets of this

complex issue.

KEYWORDS

GPR35, pro-inflammatory, anti-inflammatory, inflammatory diseases, therapeutic
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Introduction

Inflammation is a multifaceted physiological reaction that serves a critical role in the

immune response against infection, tissue injury, and other provocations. It orchestrates a

series of cellular and molecular activities with the ultimate goals of eradicating pathogens,

repairing damaged tissues, and reinstating homeostasis (1). However, a dysregulated or

persistent inflammatory response can pave the way for numerous diseases, encompassing

autoimmune disorders where the body mistakenly attacks its cells, chronic inflammatory

conditions that endure over extended periods, and even cancer where abnormal cells
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proliferate uncontrollably (2–4). The link between inflammation

and such diverse diseases underscores the importance of

understanding and effectively managing inflammation.

G protein-coupled receptors (GPCRs) constitute a vast family of

cell surface receptors that fundamentally mediate cellular responses to a

myriad of stimuli, including inflammatory (5, 6). Among these

receptors, GPR35 has recently drawn considerable interest due to its

suspected role in inflammatory processes. Discovered in 1998, GPR35

is highly expressed in the intestine and various immune cells. Owing to

its wide expression and the significance of its function, it is perceived as

a prospective therapeutic target for various diseases (7–9).

The involvement of GPR35 in inflammation is complex and

context-dependent, demonstrating both pro-inflammatory and anti-

inflammatory effects in disparate cellular and tissue settings. GPR35 has

been implicated in modulating an array of inflammatory responses,

including the activation of immune cells, production of cytokines, and

chemotactic movements (10–12). It interacts with several signaling

pathways, such as MAPK, NF-kB and others, thereby modulating

inflammatory signaling dynamics. Furthermore, the functionality of

GPR35 can be influenced by various ligands, ranging from endogenous

metabolites to synthetic compounds, thus impacting its downstream

effects in the inflammation process (13). Through these complex

interactions and functions, GPR35 illustrates the multifactorial nature

of inflammation and the intricate molecular dance that enables the

body to respond appropriately to internal and external stressors. Yet, it

also underscores the delicate balance that must be maintained, as

dysregulated signaling via pathways involving GPR35 could potentially

lead to pathological inflammation, underscoring the need for further

research to elucidate its precise role and regulatory mechanisms.

In this comprehensive review, we explored the current

understanding of GPR35, with a particular focus on its role in

inflammation. We began by presenting a detailed overview of

GPR35, discussing aspects such as its expression pattern, signaling

mechanisms, and the variety of ligands it interacts with. From there, we

investigated the pro-inflammatory role of GPR35, and its activation

influences the immune response, including the impact on immune cell

activation, cytokine production, and chemotactic activity within

various immune cells such as neutrophils, macrophages, and

invariant natural killer T (iNKT) cells. Subsequently, we discussed an

in-depth examination of the anti-inflammatory role of GPR35 and

covered aspects such as its impact on immune cell signaling, cytokine

generation, and the resolution of inflammation. In addition, we

explored the intricate signaling pathways and mechanisms

underpinning the pro-inflammatory and anti-inflammatory effects

that are triggered following GPR35 activation. This comprehensive

exploration will serve as a map guiding us through the complicated

roles of GPR35 in inflammation, shedding light on its significance and

potential therapeutic value.
Expression pattern of GPR35

GPR35 is classified as a class A orphan GPCR compromising

nearly 85% of all GPCRs. GPCRs play a pivotal role in metabolite

sensing within the intestine, acting as a significant connector linking

the microbiota, immune system, and intestinal epithelium (14).
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Most GPCRs are predicted to be responsible for encoding olfactory

receptors, while the rest are divided between receptors that bind

with recognized endogenous compounds and those termed as

orphan receptors because their specific endogenous activators

remain unidentified (15).

Despite various endogenous ligands of GPR35, a definitive

endogenous activator has not yet been firmly established, which

maintains its status as an orphan receptor (13). Human GPR35 gene

is transcribed and translated into three distinct variants (16). Both

variants 2 and 3 encode the longer isoform GPR35b, which diverges

from GPR35a by possessing an extended N-terminal sequence of 31

additional amino acids, thereby lengthening its extracellular

domain. Despite this distinction, the subsequent sequences of the

two isoforms are identical. mRNA expression of GPR35a and

GPR35b have been identified in human tissues. Notably, GPR35b,

which is highly expressed in gastric and colon cancer tissues, may

have associations with carcinogenesis (17). Intriguingly, GPR35b

demonstrates a lower agonist response efficacy than GPR35a (18). It

was reported that the elongated N-terminus of the longer isoform

may constrain G protein activation while boosting the interaction

with b-arrestin (19).

GPR35 expression pattern suggests its pivotal role in immune

responses and inflammation. GPR35 expression is particularly

prominent in the small intestine and colon, with moderate but

noticeable expression in the stomach, liver, spleen, kidney, and

sympathetic neurons (20, 21). This widespread presence across

various organ systems indicates its broad functionality within the

body. Moreover, GPR35 expression is not limited to these organ

systems. It also appears in various immune cells, including

monocytes (CD14+), T-cells (CD3+), neutrophils, assorted

dendritic cells, and invariant natural killer T cells (22–24),

highlighting its integral role in immune responses. Among these,

dendritic cells (CD103+/CD11b−) and macrophage clusters from

the lamina propria and Peyer’s patch cells in mouse small intestine

are noted for their high expression of GPR35 (25).

Furthermore, there is a significant upregulation of GPR35 in

neutrophils and intestinal tissues during the invasion of pathogenic

microbes, as well as in mast cells during the stimulation of IgE

antibodies, indicating a pronounced inflammatory response (21, 26,

27). Additionally, GPR35 presence in epithelial and endothelial

cells, which are key participants in the inflammatory response (28),

further underscores broad impact across numerous cell types and

physiological processes. This ubiquitous distribution and varied

presence underscore GPR35 potential as a major player in immune

responses and inflammation. GPR35 presents the intriguing

features with tissue specificity and different isoforms, taking into

consideration when examining the potential of GPR35 as a

therapeutic target for inflammation-related conditions.
GPR35 involved inflammation-related
pathways

G proteins serve as the primary effector proteins for GPCRs.

Typically, G proteins exist as a trimeric complex composed of a, b,
and g subunits. Upon activation of the GPCR, it binds to the Ga
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subunit and facilitates the exchange of GDP for GTP on Ga. This
process leads to the disassociation of Ga from the Gbg dimer.

Following this separation, both Ga and Gbg can independently

initiate their respective signaling pathways (29).

Four principal Ga protein families exist, and GPR35 has been

found to couple predominantly with Ga12/13 and Gai/o proteins

(7, 24, 30) (Figure 1A). Gai/o protein interacts with adenylate

cyclase (AC), inhibiting its activity and consequently reducing

intracellular cAMP levels, resulting in the dampening of the

MAPK/ERK pathway (31). Interestingly, ERK may serve as an

anti-inflammatory signal, suppressing the production of NF-kB
dependent inflammatory factors through the inhibition of IKK

activity (32). Gbg dimer can activate phospholipase C beta

(PLCb), which results in phosphoinositide generation and

activation of the PI3K/AKT pathway. This leads to the activation

of a host of downstream transcription factors, notably NF-kB, a
major player in the expression of genes encoding inflammatory

factors (33). In the case of Ga12/13, activation leads to Rho-

mediated cytoskeleton reorganization, collaborating with Gbg to

regulate immune cell chemotaxis to inflammation sites - these

actions primarily result in pro-inflammatory effects (34, 35). Gaq
coupled with GPR35 directly inhibits the PI3K catalytic subunit and

then suppresses Akt activation. Additionally, Gaq plays a role in the
activation of ERK through the PLCb/Ca2+/Src signaling cascade

(19, 36).

GPR35 has been demonstrated to directly engage with b-
arrestin upon activation by agonists, leading to its internalization

and desensitization (37). Beyond that, b-arrestins also function as

signaling scaffolds, interacting with various pathways including the

c-Jun N-terminal kinase, protein kinase B, and the extracellular

signal-regulated kinase (ERK1/2) pathway in a G protein
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independent manner, leading to anti-inflammatory effects (38–

40). In addition, b-arrestins interact with IkBa, leading to the

suppression of NF-kB activation (41). It is worth noting that there

are certain ligands capable of activating GPR35 without facilitating

the interaction between GPR35 and b-arrestin, such as kynurenic

acid (19, 42), 5-HIAA (42) and DHICA analogues (43). Moreover,

GPR35 interacts with the sodium-potassium pump (Na/K-ATPase),

a vital regulator of cellular electrochemical gradients and Src family

kinase signaling (44). This interaction enhances Na/K-ATPase

pump function, aiding in the regulation of Ca2+ homeostasis.

Also, Na/K-ATPase directly activates the kinase Src, leading to

ERK activation in macrophages and enterocytes (45). Given that

elevated cytoplasmic Ca2+ levels promote ERK and NF-kB
activation via PKC in inflammation, alterations in Ca2+

homeostasis have context-dependent impacts on inflammation

(46, 47) (Figure 1B).

Furthermore, GPR35 has also been reported to modulate the

production of reactive oxygen species (ROS), key mediators of

inflammation. Under mechanical stress, GPR35 activation has

been shown to enhance ROS production, and excessive ROS

triggers further GPR35 expression (48). Conversely, GPR35

activation with Kynurenic acid in macrophages suppresses

NLRP3 inflammasome activation and related inflammation by

reducing mitochondrial damage and mitochondrial ROS

production (49). These studies, despite showing divergent

outcomes, reveal the significant role of GPR35 in modulating

inflammation via ROS-mediated pathways.

In sum, a growing body of evidence proposes a sophisticated

and intricate role of GPR35 in inflammation. It appears to exert

both pro-inflammatory and anti-inflammatory influences, which

depend on the type of cell, the specific signaling pathways, and the
BA

FIGURE 1

Inflammation-related downstream pathways of GPR35. (A) G proteins interacting with GPR35 transmit pro-inflammatory downstream pathways.
(B) GPR35 transmits anti-inflammatory downstream pathways.
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availability of ligands. The precise mechanisms through which

GPR35 impacts inflammation-related pathways, however, remain

somewhat elusive. Therefore, it necessitates additional research to

comprehensively understand the subtleties of its signaling.
Primary ligands with activity at GPR35

A pivotal element influencing the activity of GPR35 are its

ligands, otherwise referred to as agonists and antagonists. Agonists

are molecules that initiate signaling by binding to the receptor,

thereby triggering downstream cellular responses. Conversely,

antagonists exert opposing effects. Furthermore, the activation of

receptors is not always fully “on or off” scenario while some agonists

can activate the corresponding receptors in a biased manner. For

instance, in the case of the kynurenic acid/GPR35 axis, while

kynurenic acid triggers the activation of G proteins downstream

of GPR35, it scarcely facilitates the interaction between GPR35 and

b-arrestin (42, 43).

There are multiple single nucleotide polymorphisms (SNPs)

located within the GPR35 gene linked with various immune and

inflammation-related diseases, such as inflammatory bowel

diseases, ankylosing spondylitis, and primary sclerosing

cholangitis (9). One of the most prevalent variants, rs3749171,

induces the replacement of a threonine with methionine in

transmembrane domain III (T108M), demonstrating a significant

correlation with inflammatory bowel disease (50). Although most

SNP-induced variations do not significantly affect the potency of

agonist ligands, the V76M variant (rs13387859) does exhibit a

reduction in agonist potency (51). While this variant is present at

a 2% allele frequency, it has not been associated with any disease.

In recent years, a multitude of both endogenous and synthetic

GPR35 ligands have been discovered, enriching our understanding

of this involvement in inflammation and a host of other biological

phenomena (Table 1).
Endogenous agonists

Kynurenic acid, a metabolite derived from tryptophan, is noted

for its roles in the central nervous system, as well as anti-

inflammatory property (73, 74). Its ability to activate GPR35 is

significantly more potent in mice and rats compared to humans,

where it requires 40- to 100-fold higher concentrations (20),

occasionally failing to activate human GPR35 at high doses (27,

54). This species-selective aspect of the kynurenic acid/GPR35 axis

has stirred discussion on whether this interaction is truly

physiological, particularly in humans, leaving kynurenic acid as a

potential endogenous ligand for GPR35 (7). Recently, it was

demonstrated that pre-treatment with kynurenic acid mitigated

the injuries sustained by both human iPS-cardiomyocytes and

mouse cardiomyocytes following simulated ischemia/reperfusion

(I/R) ex vivo (8). In mice, kynurenic acid stimulates the migration of

CX3CR1+/GPR35+ macrophages in the small intestine, but not

GPR35- macrophages (75).
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Lysophosphatidic acid (LPA), an active phospholipid derivative,

is present in cell membranes and can be produced extracellularly to

activate six known GPCRs including LPAR1-6 (76). It was

displayed that the Ca2+ response triggered by 2-acyl LPA was

significantly stronger in GPR35-expressed HEK293 cells

compared to the response in the control cells, which pronounced

difference was not observed when 1-acyl LPA was applied (54).

GPR35 deficiency was found to inhibit LPA-induced Ca2+ signaling

in bone marrow-derived macrophages (BMDMs). However, it was

posited that GPR35 deficiency might compromise LPA signaling via

other LPA receptors (45). Recently, GPR35 was affirmed as a

potential LPA receptor linked to an inhibitory G protein (Gi)

(27). However, there LPA failed to activate GPR35 in other

experimental settings, which leaves the question open on whether

LPA acts as an endogenous agonist for GPR35 (26, 77).

CXCL17, a homeostatic chemokine in mucosa, attracts

dendritic cells and macrophages but can be expressed elsewhere

during inflammation (78). It was reported that CXCL17 influenced

GPR35 at nanomolar levels within a physiological range, unlike

kynurenic acid (56). However, subsequent studies failed to show

that CXCL17 induced migration or signaling responses in GPR35-

expressing cells (79, 80). Further, the actions of CXCL17 in a

neuropathic pain model in mice were decreased by kynurenic

acid and zaprinast, suggesting the presence of a CXCL17 receptor

other than GPR35 (81).

Recent findings indicate that 5-Hydroxyindoleacetic acid (5-

HIAA), a metabolite of 5-hydroxytryptamine generated by

activated platelets and extravascular mast cells, can act as an

agonist for GPR35, promoting the recruitment of neutrophils (26)

and the migration of eosinophils (82). Interestingly, this perspective

offers fresh insight into the role GPR35 regulating pain sensations

due to the association of 5-HIAA with pain and sensory neurons

(83). Additionally, GPR35 plays a role in modulating cAMP

production and inhibiting N-type Ca2+ channels in neurons and

astrocytes, showcasing its potential involvement in pain

management treatments (84). Moreover, other endogenous

molecules such as 5,6-dihydroxyindole-2-carboxylic acid

(DHICA), reverse T3 (3,3,5- triiodothyronine), and cyclic

guanosine 3′-5′ monophosphate (cGMP) have demonstrated a

degree of activity towards GPR35, albeit with modest potency.

However, these observations require further validation (40, 58).
Synthetic agonists

Zaprinast (2-(2-propyloxyphenyl) -8-azapurin-6-one),

originally identified as a cGMP phosphodiesterase inhibitor, is

one of the earliest discovered GPR35 ligands. Notably, the effects

of Zaprinast on GPR35 can be separated from its cGMP

phosphodiesterase inhibition properties with the intracellular

calcium mobilization (59). With its moderate-to-high potency

across human, mouse, and rat orthologs, Zaprinast has

established its status as a go-to reference agonist for GPR35

research (30, 72). Its efficacy and wide applicability across

different species have aided in comparative studies and offered
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TABLE 1 A schematic representation of GPR35 ligands.

Name Type Potency (EC50) Role in inflammation References

Kynurenic acid Metabolite of
L-tryptophan

Human: 217 mM
Rat: 66 mM

Anti-inflammatory (52, 53)

LPA Phospholipid derivative Not reported Pro-inflammatory (54, 55)

5-HIAA Serotonin metabolite Not reported Pro-inflammatory
in Neutrophils

(26)

CXCL17 Endogenous peptide Not reported Anti-inflammatory (56, 57)

cGMP Cyclic nucleotide derived from GTP Human: 131 mM No conclusion (58)

DHICA Intermediate in the
biosynthesis of elanin

Human: 22 mM No conclusion (40)

Reverse T3 Hormone produced in the thyroid
gland

Human: 100 mM No conclusion (40)

Zaprinast Synthetic agonist Human: 2-8 mM
Mouse: 1 mM
Rat: 100 nM

No conclusion (59)

Pamoic acid Synthetic agonist Human: 30-50 nM
Mouse: Inactive
Rat: >100 mM

Anti-inflammatory (60, 61)

YE120 Synthetic agonist Human: 30-35 nM Anti-inflammatory (62, 63)

Lodoxamide Synthetic agonist Human: 4 nM
Rat: 13 nM

Allergic inhibition (51)

Bufrolin Synthetic agonist Human: 13 nM
Rat: 10 nM

Allergic inhibition (51)

Compound 1 Synthetic agonist Human: 26 nM
Mouse: 17 mM
Rat: 8 mM

No conclusion (64)

PSB-13253 Synthetic agonist Human: 12 nM
Mouse: Inactive
Rat: 1.4 mM

No conclusion (65)

Amoxanox Synthetic agonist Human: 4 mM
Rat: 23 nM

Mast cell stabilizer,anti-asthma and anti-allergy
medication

(51)

Cromolyn
disodium

Synthetic agonist Not reported Mast cell stabilizer, mitigate asthma (21)

Nedocromil Synthetic agonist Human: 0.13 mM
Mouse: 7.3 mM
Rat: 2.7 mM

Mast cell stabilizer, mitigate asthma (21)

Doxantrazole Synthetic agonist Human: 3.4 mM
Rat: 300 nM

Mast cell stabilizer (51)

Pemirolast Synthetic agonist Human: Inactive
Rat: 95 nM

Mast cell stabilizer (51)

Furosemide Synthetic agonist Human: 8.3 mM Anti-inflammatory (66)

Tyrphostin-51 Synthetic agonist Human: 8 mM (DMR 120 nM) No conclusion (67)

2,3,5-THB Synthetic agonist Human: 8.4 mM
(DMR 250 nM)

No conclusion (68)

Gallic acid Synthetic agonist Human: 11.4 mM (DMR 1.16
mM)

Anti-inflammatory (69)

wedelolactone Synthetic agonist Human: 1.39 mM (DMR 2.73
mM)

Anti-inflammatory (69)

Ellagic acid Synthetic agonist Human: 2.96 mM (DMR 110
nM)

Anti-inflammatory (69)

(Continued)
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insights into the roles GPR35 plays in a myriad of

biological processes.

Pamoic acid (5-nitro-2-(3-phenylproplyamino) benzoic acid)

emerged as a potential GPR35 ligand following screening exercises

within the Prestwick Chemical Library. However, its activity at rat

and mouse orthologs of GPR35 is noticeably less potent compared to

its interaction with the human version. This lower efficacy

significantly impedes its usage in these preclinical studies (30, 60).

Despite this limitation, the discovery of pamoic acid interaction with

GPR35 has contributed to the expanding catalog of ligands and may

potentially prompt further development of more effective analogs,

thereby expanding our understanding of GPR35 physiological role.

YE120 (2-(3-cyano-5-(3,4-dichlorophenyl)-4,5-dimethylfuran-

2(5H)-ylidene) malononitrile) is another compound that was

identified as a GPR35 agonist through dynamic mass

redistribution (DMR) assays performed in the native cell line HT-

29. Remarkably, it has demonstrated superior potency compared to

zaprinast (62). This discovery indicates the continuing progress in

our understanding of GPR35, providing a new promising candidate

for the functionality and potentially enabling the development of

more effective therapeutic strategies targeting GPR35.

Lodoxamide, a widely used anti-inflammatorymast cell stabilizer,

is another synthetic agonist that targets GPR35. Its application in the

treatment of allergic keratoconjunctivitis attests to its significant role

in modulating inflammatory responses. However, despite its high

potency towards human and rat GPR35, the effectiveness of

lodoxamide is notably diminished to for the mouse orthologue,

with its potency being a 100-fold lower (51, 85). This highlights the

importance of species-specific investigations in understanding the

precise role of GPR35 and its ligands in mediating inflammatory

responses. Recently, there was a significant development in

understanding the structural attributes of GPR35 through its

structure when bound to a GPR35 agonist lodoxamide, which

shows a novel site for divalent cation coordination and a distinctive

ionic regulatory mechanism. This helps understanding the affinity of

GPR35 for other anti-asthma and anti-allergy agents, especially those

featuring symmetric diacid structures like lodoxamide. providing a

clear pathway for the binding process (86)

Aminosalicylates, a first-line treatment for inflammatory bowel

diseases (IBDs), have shown activity on both human and mouse

GPR35, although their exact target remains undefined. Of these, the

pro-drug olsalazine exhibits the greatest potency in terms of GPR35

agonism, promoting ERK phosphorylation and the translocation of

b-arrestin2. Notably, in a model of dextran sodium sulfate (DSS)-

induced colitis, the protective effects of olsalazine on disease

progression and its inhibitory effect on TNFa mRNA expression,
Frontiers in Immunology 06
as well as the NF-kB and JAK-STAT3 pathways, are significantly

reduced in mice with GPR35 knockout, thus suggesting a critical

role of GPR35 in these anti-inflammatory actions (70).

Recently, a group of 2H-chromen-2-one derivatives has been

identified as agonists for GPR35 using dynamic mass redistribution

assays in HT-29 cells. The compound 6-Bromo-7-hydroxy-8-nitro-

3-(1H-tetrazol-5-yl)-2H-chromen-2-one (Compound 50) emerged

as the most potent GPR35 agonist with an EC50 of 5.8 nM (71). In

another development, GPR35 fluorescent probes were designed

based on known GPR35 agonists. These serve as valuable tools

for GPR35 research and for the discovery of new synthetic GPR35

agonists. The most promising compound from this series exhibited

the highest binding potency, along with a minimal nonspecific

Bioluminescence Resonance Energy Transfer (BRET) binding

signal, with a Kd value of 3.9 nM (87).
Antagonists

CID2745687, known as methyl-5- [(tert-butylcarbamothioylhydra

zinylidene)methyl] -1-(2,4- difluorophenyl)pyrazole-4-carboxylate, is a

well-known antagonist of GPR35. It demonstrates the ability to

obstruct the effects of the agonists pamoic acid and zaprinast in cells

expressing either variant of human GPR35a or GPR35b. It is estimated

that the inhibitor constant Ki is in the range of 10-20 nM, suggesting

potential competitive function in a competitive manner (60).

CID2745687 has a higher affinity for human GPR35 compared to its

mouse and rat counterparts, limiting its application primarily to in vitro

studies rather than rodent models (88). Another antagonist of GPR35

is ML-145, or 2-hydroxy-4- [4-(5Z)-5-[(E)-2-methyl-3- phenylprop-2-

enylidene] -4-oxo-2-sulfanylidene-1,3- thiazolidin-3-yl]

butanoylamino] benzoic acid. This compound also demonstrates

high affinity for human GPR35 but shows appreciable affinity for the

mouse and rat orthologues (72).

These antagonists and their specificity for the human GPR35

over rodent versions provide valuable insights into the diverse

functionality and pharmacology of GPR35. They underline the

challenges of studying GPR35 across different species but also

offer opportunities for the development of novel therapeutic

agents targeting the human GPR35 receptor.
Pro-inflammatory roles of GPR35

GPR35 activation has been demonstrated to induce a pro-

inflammatory state within cells, leading to increased production
TABLE 1 Continued

Name Type Potency (EC50) Role in inflammation References

Aminosalicylate Synthetic agonist Not reported Anti-inflammatory (70)

Compound 50 Synthetic agonist Human: 5.8 nM No conclusion (71)

CID2745687 Synthetic antagonist Human (Ki): 10-20 nM No conclusion (60)

ML-145 Synthetic antagonist Human (Ki): 25 nM No conclusion (72)
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of pro-inflammatory cytokines and chemokines, which act as signal

carriers, promoting the recruitment and activation of specific types

of immune cells to the inflammation site (Figure 2). This process, in

essence, highlights a crucial role of GPR35 in orchestrating immune

responses, contributing to the exacerbation of inflammation, and

potentially influencing the progression of various inflammatory

conditions and diseases. There have been two diseases that are

connected to the pro-inflammatory effects of GPR35. GPR35 plays a

vital role in detecting bacteroides fragilis toxin and triggering an

immune response in bacteroides fragilis toxin-induced colitis (89),

and GPR35 loss in nucleus pulposus cells significantly reduces

intervertebral disc degeneration typically triggered by

inflammation induced by ROS or mechanical stress (49). In

addition, encephalomyelitis (EAE) is worsened through the

accumulation of GPR35+/Ly6C+ macrophages in the small

intestine, while the blockage of KYNA-GPR35 signaling can

alleviate EAE (75).
GPR35 plays a pro-inflammatory
role in neutrophils

Neutrophils, the most populous immune cells in human blood,

act as first responders in the face of tissue damage and pathogenic

infections. The journey of neutrophils from blood vessels to target

tissues is complex, traditionally classified into four stages: 1. The

egress of neutrophils from bone marrow into the bloodstream. 2. A

multi-step adhesion cascade resulting in the congregation of

adherent neutrophils in microvessels. 3. Diapedesis of neutrophils

across the vascular wall, granting access to the extravascular space.

4. Interstitial migration of neutrophils to their ultimate target sites
Frontiers in Immunology 07
(90). Various small molecules and cytokines orchestrate these

stages, resulting in a highly redundant regulatory system, which

complicates the task of identifying dominant chemokines (91).

Interestingly, GPR35 expression is observed to be relatively low

in inactive neutrophils, while it increases substantially in activated

neutrophils, which aligns with the role of GPR35 in promoting

neutrophil recruitment to inflammatory tissues (26). While GPR35

deficiency was found to somewhat dampen neutrophil adherence to

blood vessel walls, this effect was not significantly observed in

animal studies. Nevertheless, the role of GPR35 in neutrophil

diapedesis has been identified as non-redundant (92). Moreover,

5-HIAA produced by activated platelets and extravascular mast

cells, can activate GPR35 as an agonist, thus encouraging the

recruitment of neutrophils (93).

In summary, through the complex interactions of these various

mechanisms, GPR35 plays a significant role in promoting an

inflammatory response in neutrophils by facilitating neutrophil

recruitment, reinforcing its central role in the body response

to inflammation.
GPR35 plays a pro-inflammatory
role in macrophages

Macrophages are specialized cells derived from monocytes in

the bloodstream, and they play crucial roles in identifying,

engulfing, and destroying bacter ia , thereby init iat ing

inflammation. These activated macrophages are classified into two

types based on their involvement in inflammation: pro-

inflammatory (M1) and anti- inflammatory (M2). M1

macrophages secrete pro-inflammatory cytokines such as IL-1, IL-
FIGURE 2

GPR35 plays a double-edged sword role in inflammation. GPR35 plays an anti-inflammatory role in colorectum, adipose tissue and liver, while plays
a pro-inflammatory role in macrophages, neutrophils and iNKT.
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6, TNF-a, as well as metalloproteinases MMP-2 andMMP-9, which

help to reshape the extracellular matrix at inflammation sites.

However, M2 macrophages produce IL-10, PDGF, IGF-1, TGF-b,
and other cytokines that suppress inflammation and foster tissue

repair (94–96).

In vitro experiments reveal that the absence of GPR35 does not

influence the differentiation of macrophages into M1 and M2

subtypes. However, the level of secreted substances such as

CXCL-1, VEGF, MMP2, and MMP9 is reduced in GPR35-

deficient macrophages derived from mice with GPR35 deletion,

specifically the LysM+ cells (44, 45). When observing macrophages

in the colon, a notable difference in cytokine expression was seen

between GPR35+/+ and GPR35-/- macrophages. Proinflammatory

cytokines like IL-1 and TNF were highly expressed in GPR35+/+

macrophages. Moreover, GPR35 was predominantly expressed in

monocyte subgroups exhibiting high to medium levels of Ly6C in

the intestine, with the level of intestinal TNF significantly dropping

in GPR35-/- macrophages (27). Ly6C+ macrophages, differentiated

from monocytes expressing high to medium levels of Ly6C, are

known to be pro-inflammatory (97).

Additionally, GPR35 deficiency hinders the adhesion of human

peripheral monocytes induced by kynurenic acid (20). In contrast,

the activation of GPR35 elevates the infiltration level of

macrophages in gastric tissues (11). Taken together, it becomes

evident that GPR35 contributes to the pro-inflammatory phenotype

of macrophages.
GPR35 has pro-inflammatory function in
iNKT cells

Human iNKT cells constitute a unique subset of T cells that

feature an invariant alpha-beta T-cell receptor (TCR) along with

numerous surface molecules characteristic of natural killer (NK)

cells. These iNKT cells can become activated either directly through

the engagement of the invariant TCR with glycolipid antigens and

CD1d, or indirectly through activated antigen-presenting cell (98).

Notably, iNKT cells are critical immunoregulatory components

capable of rapid, abundant cytokine production, thus influencing

the behavior of other immune cells (99). iNKT cells have been

found to express GPR35 at high levels. Following receptor

activation, GPR35 undergoes internalization within these iNKT

cells. It has been observed that specific GPR35 agonists significantly

decrease the release of Interleukin-4 (IL-4), but not Interferon

gamma (IFN-g) (22). IL-4 secretion by iNKT cells plays a crucial

role in anti-inflammatory processes, such as M2 polarization of

macrophages, the transition of monocytes (from Ly6Chi to Ly6Clo),

and tissue repair, particularly in the liver (100–102). Thus, the

activation of GPR35 in iNKT cells, which in turn reduces the release

of IL-4, has the potential to stimulate inflammation.

Overall, it is increasingly apparent that GPR35 can play a pro-

inflammatory role under certain circumstances. This is evidenced

by the role of GPR35 in the stimulation of pro-inflammatory

cytokines and chemokines production, the activation of

inflammatory signaling pathways, and the amplification of pro-

inflammatory responses in particular cell types. However, it is
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crucial to emphasize that the pro-inflammatory effects of GPR35

may be modulated by various factors. These include the

microenvironment in which the receptor operates, the existence

of other receptor types and signaling pathways, as well as the

specific cellular type expressing GPR35. Further in-depth research

is required to unravel the underlying mechanisms and conclusively

establish the exact role of GPR35 within the context of

inflammation. The complexity of these dynamics underscores the

intricate interplay of processes within our immune responses and

the need for a comprehensive understanding of GPR35.
Anti-inflammatory role of GPR35

Although GPR35 is predominantly linked with pro-

inflammatory actions across a range of immune cells, recent

studies reveal its potential anti-inflammatory capabilities under

certain circumstances. This perspective brings to light the anti-

inflammatory roles of GPR35 (Figure 2), enriching our

understanding of its part in maintaining immune homeostasis

and potentially revealing novel therapeutic targets for treating

various inflammatory conditions.

GPR35 displays an anti-inflammatory role, particularly in

colonic inflammation. It is prominently expressed in the

gastrointestinal tract, playing a pivotal role in regulating the

healing process of gastrointestinal injuries. This means GPR35

can inhibit inflammation by maintaining gastrointestinal

homeostasis. In fact, GPR35 demonstrates protective qualities in

scenarios such as DSS-induced colitis (27, 63, 103). GPR35 agonists

such as YE120, zaprinast, and pamoic acid have been shown to

expedite wound repair in mouse colon epithelial cells by boosting

cell migration through the augmentation of fibronectin expression

and ERK phosphorylation (63). Interestingly, the recruitment of b-
arrestin 2 and the activation of ERK1/2, mediated by pamoic acid,

can be obstructed by the GPR35 antagonist CID2745687. The

endogenous ligand of GPR35, 5-HIAA, has been recognized to

mitigate the symptoms of ulcerative colitis, while the precise role of

GPR35 was not delineated further (104). This insight suggests a

potential therapeutic strategy, hinting that manipulating the activity

of GPR35 could control the inflammatory response in colonic

tissues (60).

GPR35 deficiency in intestinal epithelial cells leads to the

reduction in both the number of goblet cells and the expression

of Muc2, which occurs due to an increase in the pyroptosis of goblet

cells (77). Pyroptosis is a form of cell death that contributes to

inflammation, thus exacerbating inflammatory conditions. In

consequence of this, the epithelial barrier is weakened, leading to

increased susceptibility to infections such as those caused by

Citrobacter rodentium (105, 106). In DSS-induced colitis mouse

models, the specific deletion of GPR35 in macrophages resulted in

elevated inflammation associated with a decrease in TNF

production in macrophages (27). Although TNF is generally

recognized for its pro-inflammatory role and is routinely targeted

in treatments for IBD (107), it also serves an anti-inflammatory

function. Specifically, it can induce the production of corticosterone

in intestinal epithelial cells, a hormone that plays a key role in
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mitigating inflammation. The interplay between GPR35 and TNF

provides new insights into the mechanisms through which

inflammation can be regulated and controlled in gastrointestinal

disorders (108).

Recently, it was discovered that when GPR35 was eliminated in

the liver of non-alcoholic fatty liver disease (NAFLD) mice, there

was an increase in inflammatory cytokines such as TNFa, IL6, and
IL1b in the liver. This led to a worsening of hepatitis. However, the

overexpression of GPR35 in the liver reversed these effects, hinting

at its potential anti-inflammatory role in liver disease (109).

Additionally, Kynurenic acid was found to improve energy

metabolism and reduce inflammation in mice fed with a high-fat

diet. However, TNF in adipose tissue increased in the absence of

GPR35, and the anti-inflammatory effects of kynurenic acid were

abolished via reducing anti-inflammatory cytokines such as IL-13,

IL-4, IL-10, and IL-33 (74). This finding suggests that GPR35 might

also exhibit anti-inflammatory effects in adipose tissue. Therefore,

understanding the precise function of GPR35 could provide novel

insights into inflammation in diseases like NAFLD and obesity.

Interestingly, it is worth noting that kynurenic acid is recognized for

its anti-inflammatory effects (74, 110, 111). However, kynurenic

acid is known to interact with multiple receptors, not just GPR35,

including a7 nicotinic acetylcholine receptor (a7nAChR), the aryl

hydrocarbon receptor (AhR), and ionotropic glutamate receptors

(112). Therefore, it is challenging to discern the specific influence of

GPR35 in the observed anti-inflammatory effects of kynurenic acid.

In various tissues, different types of cells contribute to the anti-

inflammatory effects orchestrated by GPR35. In the colorectum, it

mainly operates through epithelial cells and goblet cells to exert

anti-inflammatory effects. While it is known that GPR35 also

facilitates anti-inflammatory in both the adipose tissue and the

liver, the specific cell types involved in these processes have yet to be

identified. When looking at immune cells, it was highlighted that

the activation of GPR35 with kynurenic acid in macrophages leads

to the suppression of NLRP3 inflammasome activation,

consequently reducing related inflammation (49). Moreover, it

was revealed that GPR35, along with its platelet- and mast-cell-

derived ligand 5-HIAA, facilitates eosinophils recruitment to the

lungs infected with cryptococcus neoformans and exacerbation of

disease (82).

Overall, activation of GPR35 has been demonstrated to

suppress the production of pro-inflammatory cytokines, stimulate

the output of anti-inflammatory cytokines in a variety of tissues and

organs, and fortify the integrity of the gut barrier. These findings

highlight the multifaceted and context-dependent nature of GPR35

in inflammation. Nonetheless, a full understanding of the intricacies

involved in GPR35 in counteracting anti-inflammatory demands

further investigation.
Conclusion and discussion

GPR35 is a distinctive G protein-coupled receptor with a

significant role in the regulation of inflammation, demonstrating

both pro-inflammatory and anti-inflammatory properties. Its pro-
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inflammatory effects have been witnessed in neutrophils,

macrophages, and iNKT cells, while its anti-inflammatory

attributes have been noted in varying contexts, including those in

the colorectum, adipose tissue, and liver. Furthermore, GPR35 is

increasingly recognized for its role in cancer and the related

immune response. It facilitates angiogenesis within the tumor

microenvironment, and GPR35 elimination in macrophages

results in reduced immune cell infiltration in colon tumors (44).

It was found that activating GPR35 in group 2 innate lymphoid cells

fosters an immunosuppressive environment in lung cancer, thereby

advancing the progression of lung cancer (113, 114). Consequently,

GPR35 exhibits promising potential as a therapeutic target in

cancer immunotherapy.

The question arises, “Could GPR35 be a potential target for

treating inflammation-associated diseases?” The dual role of GPR35

in inflammation could have considerable consequences for devising

therapeutic strategies centered on this receptor. For instance, the

use of GPR35 agonists or antagonists could serve to regulate

inflammatory responses in diverse diseases. In conditions

characterized by excessive inflammation, such as IBD, inhibiting

the pro-inflammatory actions of GPR35 could be advantageous.

Conversely, in conditions requiring inflammation, such as wound

healing or tissue repair, augmenting the anti-inflammatory effects of

GPR35 activation may be beneficial. However, considering the

intricate nature of GPR35 in inflammation, more comprehensive

research is required to determine its exact impact and potential as a

therapeutic target.

Currently, only two drugs targeting GPR35 have progressed to

clinical trials. The first, Lodoxamide, has been employed for the

treatment of allergic keratocon junctivitis (51), while the other,

sodium cromoglycate (also known as RVT-1601 or PA101), is being

used for treating idiopathic pulmonary fibrosis and chronic cough

(115). Despite this, the potential for GPR35-focused treatment

remains promising. GPR35 offers several advantages as a

therapeutic target. Firstly, as a receptor situated on the cell

surface, it is at the top of the signal transduction pathway. This is

particularly significant given the numerous redundancies and

compensatory mechanisms that exist within inflammation-related

signal pathways, which can minimize these effects at the

starting point.

Furthermore, GPR35 exhibits a tissue-specific expression pattern

with high expression levels observed in immune cells and the

gastrointestinal tract. The robust expression of GPR35 in immune

cells aligns with its role in the regulation of inflammation. The

substantial presence of GPR35 in the gastrointestinal tract, along

with the strong correlation between GPR35 mutation and IBD, has

led to the consideration of GPR35 as a potential target for IBD

treatment. However, it is important to acknowledge the dual role

GPR35 plays in IBD.While inhibiting GPR35 activity can diminish the

proinflammatory response of macrophages and neutrophils, it may

concurrently hinder the repair of gastrointestinal damage.

Consequently, the risk-benefit balance of targeting GPR35 for IBD

treatment remains somewhat elusive and requires further investigation.

The precise mechanisms driving the dual roles of GPR35 in

promoting and inhibiting inflammation across various cells and
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tissues remain unclear and necessitate more in-depth research. The

effects of GPR35 activation on inflammatory responses are likely

shaped by numerous factors. These include cell types, tissue

microenvironments, and the co-existence of other signaling

pathways. Additionally, the expression levels and functional

activity of GPR35 agonists may also be instrumental in steering

the direction of the inflammatory response. In conclusion, GPR35 is

a versatile receptor that can adopt either pro-inflammatory or anti-

inflammatory stances within distinct immune cells and tissues. This

warrants additional comprehensive research into GPR35 intricacies.

Recently, the unveiling of the first protein structure of GPR35

marked a significant advancement in our understanding of GPR35

(86). As our knowledge of GPR35 deepens, we can anticipate the

development and application of a broader range of GPR35-targeted

drugs in the future.
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