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Introduction: Alzheimer’s Disease (AD) is a common dementia which a�ects

linguistic function, memory, cognitive and visual spatial ability of the patients.

Language is proved to have the relationship with AD, so the time that AD can be

diagnosed in a doctor’s o�ce is coming.

Methods: In this study, the Pitt datasets are used to detect AD which is balanced

in gender and age. First bidirectional Encoder Representation from Transformers

(Bert) pretrained model is used to acquire the word vector. Then two channels

are constructed in the feature extraction layer, which is, convolutional neural

networks (CNN) and long and short time memory (LSTM) model to extract local

features and global features respectively. The local features and global features

are concatenated to generate feature vectors containing rich semantics, which

are sent to softmax classifier for classification.

Results: Finally, we obtain a best accuracy of 89.3% which is comparative

compared to other studies. In the meanwhile, we do the comparative experiments

with TextCNN and LSTM model respectively, the combined model manifests best

and TextCNN takes the second place.

Discussion: The performance illustrates the feasibility to predict AD e�ectively by

using acoustic and linguistic datasets.
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1 Introduction

As we know, Alzheimer’s disease (AD) is a chronic and progressive disease, and the

group of people with AD is expanding with the increase in the aging population. Longfei

et al. (2020) reported that there were 15.07 million people over 60 years old suffering from

dementia in China in 2020, including 9.83 million AD patients and 3.92 million vascular

dementia. Meanwhile, there are over half a billion AD patients in America nowadays1.

AD has become a worldwide problem, and it is estimated that there will be approximately

7.6 billion patients falling ill with AD or other dementias by 2030. Although clinicians

can differentiate AD people from healthy controls by a combination of cognitive test

scales (Mesulam et al., 2012), it is usually time-consuming and inaccurate. Therefore, it is

essential to develop a more reliable but simple method to differentiate different cognitive

impairments, especially for the early diagnosis of AD.

A precious study in this area mainly includes two methods. The first one is feature

extraction manually combined with machine learning to recognize AD properly, and it

usually needs expertise and knowledge in order to extract more distinguishing features, so

1 https://www.alz.org/alzheimers-dementia/facts-figures
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the accuracy and integrity of features cannot be guaranteed. The

second one is deep learning, which uses a powerful deep learning

model with multiple hidden layers without feature engineering,

and a deep neural network can learn feature representations from

datasets by using cascades of multilevel non-linear processing units

for feature extraction. Moreover, the performance of deep learning

is usually better than the first method, but the interpretability of the

second method is poor.

The first method includes the conventional linguistic features

extraction manually and the machine learning method. For

example, Fraser et al. (2016) extracted mel-frequency cepstral

coefficient (MFCC) features (Chen et al., 2014) on Pitt datasets, and

this method was the first to carry out acoustic-prosodic analysis

to recognize AD patients. Roark et al. (2011) employed natural

language processing (NLP) and automatic speech recognition

(ASR) to differentiate mild cognitive impairment (MCI) from

healthy controls (HC), and the extracted features included pause

frequency and duration. Finally, they used the SVM classifier

combining the extracted features and yielded the best area under

curve (AUC) of 0.861 by combining automated speech, linguistic

features, and cognitive test scores. Zehra et al. (2021) extracted

graph-based features encoding patterns and speech rate (Luz, 2013)

from the Carolina Conversations Collection (Pope and Davis,

2011) and employed a logistic regression classifier to achieve a

best accuracy of 85% when distinguishing AD from NC. Guo

et al. (2021) extracted low-level acoustic features such as the

number of utterances, speech rate, and vocal events, then employed

the Bayesian classifier to train on low speech datasets extracted

from the recordings, and finally obtained an accuracy of 68%

for classifying AD and older adults controls. Antonsson et al.

(2020) measured semantic ability quantitatively and employed the

support vector machine (SVM) to recognize AD from NC, and

the area under curve (AUC) value is 0.93. Clarke et al. (2021)

measured 286 linguistic features to train the SVM model, and

the final accuracy is 62–78% for AD+MCI vs. HC, 59–90% for

AD vs. HC, and 50–78% for MCI vs. HC. Shamila et al. (2021)

investigated conversational features such as disfluency, overlap,

pause, and other elements in AD detection and employed Carolinas

Conversations Collection Classifier (Zehra et al., 2021), and finally

achieved an accuracy of 90% on Alzheimer’s Dementia Recognition

through Spontaneous Speech (ADReSS) datasets. Jarrold et al.

(2014) extracted acoustic and linguistic features combined with

the logistic regression classifier and achieved the best accuracy

of 85.4% on DementiaBank datasets. Haulcy and Glass (2021)

extracted features of x-vectors and i-vectors (Snyder et al., 2018)

for tackling AD detection and phonetic features and obtained

an accuracy of 85.4% in AD detection with SVM and random

forest classifier.

In recent years, the deep learning method for AD diagnosis

has become popular. For example, Aparna et al. (2021) pretrained

the Bidirectional Encoder Representations from Transformers

(BERT) model to recognize AD with ADReSS datasets and

finally obtained an accuracy of 83.33%, which is better than

feature extraction manually. The study (Chen et al., 2019)

proposed an attention network composed of GRU and CNN

modules and obtained an accuracy of 97% in distinguishing

AD from normal controls. Amit et al. (2021) used the fastText

and CNN models to recognize AD, respectively, and the

fastText model obtained a best of 83.3% accuracy which is

better than the performance of acoustic and linguistic features

manually. The study (Fritsch et al., 2019) trained the LSTM

model with the n-gram language model and obtained the best

accuracy of 85.6%. Guo et al. (2021) used the BERT model

on ADReSS and DementiaBank datasets and also obtained a

competitive result.

The Text Convolutional Neural Network (TextCNN) was first

proposed by Kim (2014) in the CV field in 2014, and the model

used the convolution windows of different sizes to extract the

local semantic information from the text vector and obtained the

text representation after the pooling layer and fully connected

layer; finally, they made a classification after the Softmax classifier.

TextCNN has a better performance in many text classification

tasks. For example, Kalchbrenner et al. (2014) proposed a dynamic

convolutional neural network (DCNN) model that used dynamic

K-max pooling in the pooling layer to obtain better adaptability

for sentence modeling. Zhang et al. (2015) proposed a CNN

text classification model with the character level, and the model

can achieve an ideal classification effect without syntactic and

semantic information. Compared with TextCNN, the module is

more robust when faced with typos and emoticons. Liu and Guo

(2019) extracted features for text sequence by using LSTM and

the attention mechanism which could understand the contextual

semantics of text. Although TextCNN learned the features of

text sequences, it could only capture shallow meanings and

was unable to mine deep semantic information. However, as

far as we know, TextCNN was not applied to AD diagnosis

by transcript.

With the development of science and technology, as well

as the enhancement of computing power, large-scale pretrained

language models have developed rapidly. In 2018, Devlin et al.

(2019) introduced BERT, a self-coding language model that swept

the natural language processing (NLP) tasks and redefined several

records in this field. The BERT model used the multi-layer encoder

of a bidirectional transformer and first proposed the next sentence

FIGURE 1

Cookie theft picture.
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prediction task and sentence mask innovatively. In this study,

we propose a deep learning model that combines TextCNN and

LSTM. The extracted features consider both short-term and long-

term features. At last, we obtained the best accuracy of 89.3%,

which is more competitive than other studies. The performance is

better than the TextCNN and LSTM models, respectively, which

means the extracted features are more comprehensive than both

models. We also list many studies in this area with deep learning

and machine learning methods, and the performance of our study

is the most competitive. The contributions of this study are

as follows:

- To propose a novel deep learning model combining TextCNN

with LSTM for the diagnosis of AD.

- To build a model with excellent classification performance in

a challenging scenario.

- To compare the proposed model with other machine

learning and deep learning models to detect AD

using short-term and long-term features obtained

from transcripts.

2 Materials

2.1 Pitt corpus

The data used in this study is obtained from the DementiaBank

website (https://sla.talkbank.org/TBB/dementia/English/Pitt)

(Becker et al., 1994). Figure 1 is a cookie theft picture from the

Boston Aphasia Examination (Chen et al., 2019), which was

designed by Goodglass and Kaplan in 1972. The experiment

is processed in a quiet room, where the participant is shown

the picture and asked to describe the picture as detailed as

possible (Figure 2), and it is a natural conversation between

the doctor and the participant without tips during the process.

Then, the corpus is transcripted through the CLAN system

(Lin and Chen, 2018), which is a language manage software

for transcribing the speech into professional datasets through

recording, word segmentation, and parts-of-speech (POS) tagging.

The transcripts from voice recordings were gathered from the

School of Medicine at the University of Pittsburgh. Every audio file

is associated with a transcript; 498 participants in this study were

enrolled and obtained the corresponding transcripts after data

pre-processing, including 256 people with probable and possible

AD and 242 normal controls. The demographic information is

shown in Table 1.

An example of the datasets from Pitt datasets is shown below:

a little boy is stepping on a ladder that’s cockeyed. and the

ladder has it’s a tripodal it isn’t a ladder it’s a stool. and it’s

a a three legged stool. and he’s getting cookies outof a jar. and

he’s handing a cookie to the little girl who’s saying “shho” to the

mother. and the mother is wiping dishes with water running all

over the kitchen floor. and 1pause1. oh god. oh she’s she has an

open window. and there are bushes in front of the window either

in the house next door or some place else. and then there’s a

tree that doesn’t have a trunk.. and. there are two cups and the

handles are in opposite directions. and she’s sort of dumb because

TABLE 1 Demographics of Pitt datasets.

CTRL (242) Possible/
probable AD

(256)

Age (years) 65.2 (7.8) 71.8 (8.5)

Education (years) 14.1 (2.4) 12.5 (2.9)

Sex (male/female) 86/156 90/166

Mini-mental state exam 29.1 (1.1) 18.5 (5.1)

Tips: CTRL refers to normal controls.

FIGURE 2

Process of the experiment.
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FIGURE 3

Architecture of LSTM-TextCNN.

FIGURE 4

TextCNN model structure.

she doesn’t turn off the water. she’s letting it run on her feet. and

half of the kitchen cupboard doors don’t have handles. 1pause1.

I don’t think. and she’s wiping the dish with two towels. and she

isn’t watching her dear darling children fall off the stool. okay

isn’t that about enough? [sic]

3 Methods

3.1 TextCNN

TextCNN is particularly effective in extracting short-term

features or local patterns from datasets, and it has become an

important feature extractor. The window sliding of TextCNN

has no sequence relationship, different convolution kernels do

not influence each other; therefore, it has a very high parallel

degree. Compared with the traditional Bag-of-Words (BoW)

model, TextCNN may be considered more effective in extracting

text sequence features (Li et al., 2023). TextCNN includes four

layers: convolution layer, pooling layer, fusion layer, and fully

connected layer. The model has four filters to obtain multiple

features which form the penultimate layer, we extract the linguistic

features by convolution operation, the convolution kernel of which

only convolution along the time step sequence, the width of every

convolution kernel is the same as the dimension of the word

vector, mainly for ensuring that the convolution kernel processes

the word vector every time, the output is the eigenvector we need.

This is the process by which TextCNN extracts features. After

the convolution layer, the model extracted the most significant

features by the max-pooling layer that can reduce dimension.

Finally, a fully connected layer is added to finish the text

classification task.
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3.2 LSTM

A gate mechanism is designed by LSTM to control the flow

of information in the network. The gate mechanism consists

of specialized neurons that decide which information should

be retained or forgotten and where to incorporate the retained

information into the next moment. In order to solve the problem

of gradient explosion and long-range information disappearance

existing in RNN effectively, the LSTMmodel deals with a long-term

dependence based on time series through the operation of three

gates, which is crucial for understanding semantics and capturing

long-distance features. LSTM is particularly suitable for the linear

sequence application scenario of NLP, which makes it so popular in

the natural language process (NLP) field.

3.3 LSTM-TextCNN

LSTM-TextCNN is the combination of LSTM and TextCNN

models. The LSTM model can capture long-term dependencies in

sentences, establish hidden states in the sequence, and improve the

ability of information fusion in the sequence. The TextCNNmodel

can capture local features effectively and calculate in parallel to

reduce the computational complexity. The local features extracted

from the TextCNN model and the long-distance features from the

LSTMmodel are connected as the input of the next fully connected

layer. Specifically, the overall framework of our model is shown in

Figure 3.

3.3.1 Input layer
Convert words into vectors using the BERT pre-training model

and form a sequential vector as the input.

3.3.2 LSTM layer
Learn information about long-term dependencies and hidden

states in sequences.

3.3.3 TextCNN layer
Learn local features and extract key features related

to classification.

3.3.4 Model combination
The output vector of the LSTM layer and TextCNN layer

is concatenated before the Softmax classifier to get the final

feature vectors.

3.4 BERT embedding

We fine-tuned the trained BERT base (Devlin et al.,

2018), which includes 12-layer, 12-heads, 768-hidden, and 110M

parameters. In particular, we used BERT-base uncased, where

uncased means that the text has been lower-cased before

WordPiece tokenization.

TABLE 2 Parameters of the training process.

Parameters Value

Epoch 10

Batch size 16

Learning rate 1e-5

Max grad norm 10

Dropout 0.2

TABLE 3 BERT parameters.

Parameters Value

vocab_size 30,522

num_attention_heads 12

num_ hidden_layers 12

attention_probs_dropout_prob 0.1

hidden_size 768

intermediate_size 3,072

hidden_dropout_prob 0.1

hidden_act gelu

max_position_embeddings 512

TABLE 4 Relationship between the predicted and true class.

Confusion matrix Actual class

Predicted class Positive Negative

Positive True-positive (TP) False-positive (FP)

Negative False-negative (FN) True-negative (TN)

3.5 Local features extraction from TextCNN

The local features of the text are extracted by the TextCNN

model, the model structure of which is shown in Figure 4.

TextCNN is mainly composed of the convolution layer and

pooling layer.

In the convolution layer, it first does a convolution operation

with convolution kernels of different sizes, and different sizes of

convolution kernels represent different receptive fields in order

for richer local semantic information. Every convolution kernel

scans the input text vector from BERT embedding to obtain

the feature vector. In order to improve the expression of the

model, the text features extracted by the convolution operation

can be transformed by the activation function, and we choose

the ReLU function as the activation function because it has a

high convergence rate and can solve the problem of gradient

disappearance. Then, the TextCNN model further reduces the

feature dimension by a max-pooling operation. The pooling layer

makes the model pay more attention to the most important

features, reduces the feature dimension and the number of
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FIGURE 5

Confusion matrix of the TextCNN, LSTM, and TextCNN-LSTM model.

parameters, and prevents the occurrence of overfitting to a certain

extent. At last, we obtain the final feature vectors by feature

fusion layer.

3.6 Global features extraction from LSTM

LSTM is a variant of recurrent neural network (RNN)

that can learn long periods of dependence. It relies on the

structure of some “gates” to allow information to affect

the state of each moment selectively and can decide which

information should be forgotten or reserved effectively;

therefore, LSTM can obtain long distance feature relationships

of text sequences. It can remember the past information

and also can solve the problem of gradient disappearance

in RNN. The global features extracted from the LSTM

model, combined with the local features, are used for text

classification ultimately, so it is not necessary to collect the

output of the model at every moment, but only the output of

the last moment of the model, as it includes richer contextual

semantic information.

3.7 Features fusion module

In the TextCNN model, feature regions with different sizes are

extracted by setting different sizes of convolution kernels. However,

TextCNN cannot still obtain the dependency between features of

different texts due to the particularity of the text, and the features

obtained cannot represent the whole text to a certain extent. The

memory mechanism of LSTM has great advantages in processing

long-term text information, and it can remember past information

well. Therefore, we fused both the local and global features in order

to obtain the final feature vectors.

The common feature fusion methods include concatenation,

bit addition, and average. The original linguistic features can

be preserved effectively, and the feature loss is avoided just by

concatenating feature vectors simply. Therefore, this study chooses
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TABLE 5 Accuracy of the TextCNN-LSTMmodel in 10 runs.

Runs Accuracy

1 20%

2 41.3%

3 58%

4 73.3%

5 83.3%

6 85.3%

7 86.7%

8 88%

9 89.3%

10 89.3%

to concatenate the local features extracted from the TextCNN

model and global features from the LSTM model into a feature

vector. Assume that the feature extracted by the TextCNN model

is Fl, and the feature extracted by the LSTM model is Fg, and the

two features are spliced into a new feature F. Therefore, the feature

vector F contains both the local features and the whole features of

the text, and then F can be expressed as

F = Fl ⊕ Fg (1)

Where⊕ represents vector concatenate operation.

3.8 Classification result

The fused features need to be passed into the fully connected

layer first, and the Softmax classifier is used for the classification

task. The dimension of the output vector must be the same as the

number of categories (2 in this study) in the classification. Finally,

we used the feature vector F to do the classification;

y = soft max(WcF + bc) (2)

where F represents the features after fusion, Wc is the parameter, bc
is the bias, and y represents the classification result.

3.9 Hyperparameter setting

The experiment uses an Intel Core i5 8300H quad-core

eight-thread CPU, 4 GB NVIDIA GTX 1050Ti for graphics,

Python 3.7 for programming language, and Pytorch 1.7.1+cu101

for deep learning framework. The experiment is completed

under the deep learning framework Keras, and we chose the

BERT open-source library Pytorch Transformers and the

BERT-Base pre-training model, which was released by Google.

All the models used in this study are downloaded from the

website of Hugging Face (https://huggingface.co/models?

pipeline_tag=sentence-similarity&sort=downloads) via API

(AutoModel.from_pretrained, AutoTokenizere.from_pretrained).

The parameters of the training process are shown in Table 2.

Table 3 shows the parameters of the BERT-base used in this

study.

In the TextCNN model, the dimension of the input vector is

260, the size of four convolution layers in the TextCNN model is 5,

10, 15, and 20, respectively, and the number of convolution layer is

half of the average text length (130). In the LSTM layer, the number

of units with 260 maximum text length is set to return the output

of the last time step. ReLU and AdamW are the activation function

and the optimizer, respectively, where W stands for weight decay,

and it can adapt to adjust the learning rate of each parameter with

good convergence and robustness. All models in the experiment

added dropout methods to the FC layer, which dropped 50% of the

neurons in order to avoid overfitting. The loss function is the cross

entropy which can enable the learning rate of the model controlled

by the output error, and the convergence speed is fast which can

avoid the problem of low learning rate effectively and keep the

model from falling into the local optimal solution. The formula for

cross-entropy is shown below:

C = −
1

n

∑
[y ln a+ (1− y) ln(1− a)] (3)

where C is the cost, x is the actual input, a is the actual output, y

indicates the expected output, and n is the total number of inputs.

We divided the datasets into the training sets and testing sets

by a proportion of 7:3, i.e., the number of which is 348 and 150,

respectively. We perform 10 consecutive runs for every classifier

and obtain the best performance on the results, and the prediction

result is compressed between (0,1) for AD classification.

4 Results and discussion

4.1 Evaluation metrics

According to the medical clinical diagnosis, the positive result

represents the individual with AD and the negative result represents

the healthy one. Table 4 shows the relationship between the true

class and the predicted class. We can obtain our basic indicators:

true-positive (TP), false-positive (FP), false-negative (FN), and

true-negative (TN), and these four indicators are presented in

Table 4. As the datasets in two classifications are balanced (242 and

256), we choose the accuracy and confusion matrix to evaluate the

performance of the LSTM, TextCNN, and LSTM-TextCNNmodels

on the datasets. The accuracy is derived from the confusion matrix:

Accuracy =
TP + TN

TN + FP + FN + TP
(4)

In the field of machine learning, a confusion matrix is a

specific matrix used to visualize the performance of the model.

Each row represents the predicted value, and each column is

the actual category. In Table 4, TP and TN are the number of

samples that are classified correctly by the classifier, so TP+TN

is the number of samples classified correctly. Therefore, from

Figure 5, we know that of the 150 testing sets, the correct predicted

number in the TextCNN, LSTM, and LSTM-TextCNN models is

121(61+60), 118(51+67), and 134(66+68), respectively. According

to the formula (6), the accuracy of the three models is 121/150 =

80.7%, 118/150= 78.7%, and 134/150= 89.3%, respectively, so the
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TABLE 6 AD vs. CTRL classification scores on DementiaBank datasets.

Method Embedding Classifier Precision Recall Accuracy AUC F1

Antonsson et al.

(2020)

Semantic features SVM - - - 0.93 -

Clarke et al. (2021) 286 linguistic

features

- - - 50–78 for MCI vs. HC,

59–90 for AD vs. HC,

and 62–78 for AD+MCI

vs. HC

- -

Haulcy and Glass

(2021)

x-vectors and

i-vectors features

(Snyder et al., 2018)

Random Forests

and SVM

- - 85.4 - -

Jarrold et al. (2014) Hand-craft acoustic

and linguistic

features

Logistic

regression

- - 85.4 - -

Becker et al. (1994) 35Hand-crafted

feature

Logistic

regression (LR)

- - 81.92 - -

Yancheva and

Rudzicz (2016)

12Cluster-based

features+ LS&A

Random forest 80.00 80.00 80.00 - 80.00

Sirts et al. (2017) Cluster+ PID+

SID features

LR 74.4± 1.5 72.5± 1.2 - - 72.7± 1.2

Hernández-

Domínguez et al.

(2018)

105Hand-Crafted

features

SVM 81.00 81.00 79.00 - 81.00

Li et al. (2019) 185Hand-Craft

features

LR - - 77 - -

Fraser et al. (2019) Info and LM

features

SVM - - 75 - 77

Fritsch et al. (2019) n-gram NNLM+LSTM - - 85.6 - -

Aparna et al. (2021) - BERT - - 83.33 - -

Guo et al. (2021) - BERT - - 82.1 - -

Amit et al. (2021) - FastText - - 83.3 - -

Karlekar et al.

(2018)

POS-tagged data CNN-RNN - - 91.1 - -

Orimaye et al.

(2018)

n-grams D2NN - - 88.9 - -

Pan et al. (2019) GloVe word

embedding

sequence

BiLSTM|GRU

hierarchical

attention

84.02 84.97 - - 84.43

Yuan et al. (2020) Encoding of

pauses+ERNIE

Embedding

ERNIE - - 89.6 - -

Tristan and

Saturnino (2021)

Word cooccurrence

graphs

Machine learning - - 66.7 - -

Pranav and Veeky

(2021)

Linguistic features Deep learning - - - 88 -

DistilBERT DistilBERT - 0.87 0.88 0.8627 - 0.8713

BERT BERT - 0.88 0.9149 0.8431 - 0.8776

GPT2 GPT2 - 0.88 0.9149 0.8431 - 0.8776

RoBERTa RoBERTa - 0.89 0.976 0.8039 - 0.8817

TextCNN TextCNN - 0.806 0.822 0.789 - 0.805

LSTM LSTM - 0.787 0.744 0.882 - 0.807

Our method LSTM-TextCNN Softmax 0.893 0.895 0.895 - 0.893

Bold means the max value in a column.
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performance of the threemodels is LSTM-TextCNN>TextCNN>

LSTM. The LSTM-TextCNN model has a better performance than

the singlemodelmainly because the combinedmodels can integrate

different text features extracted from the two models, and the fused

features can represent the text more precisely.

The accuracy of the TextCNN-LSTMmodel in 10 runs is shown

in Table 5, and the reason for 10 runs is that the performance of the

model has become stable gradually after 9 runs.

We compare the performance of different machine learning

and deep learning models on DementiaBank datasets, and the

performance is shown in Table 6; the first eleven rows are the

classification matrices with the machine learning method and the

remaining rows are matrices with the deep learning method.

5 Conclusion

This study used the combination of the TextCNN and LSTM

model to recognize AD from normal controls (NC), which can

combine the advantages of the TextCNN model and LSTM model.

First, we pretrained the datasets by the BERT model to obtain the

word embedding vector and then used TextCNN to extract local

features of different sizes and the LSTM model to obtain the global

features. The TextCNNmodel only obtains the local features of the

text, while the LSTM model can obtain the longer features, and

the combination of both models can represent the whole text to

a certain extent. Therefore, we concatenated the features from the

TextCNN layer and LSTM layer to get the feature representation of

the entire text, which were put into a Softmax classifier to obtain the

classification result. Finally, threemodels were tested and compared

with the evaluationmetrics. The experiment results showed that the

accuracy was 0.893 which was significantly higher than the LSTM

and TextCNN model.

Differences in oral language may supply a tool to differentiate

AD for older adults subjects based on the deep learning model, so

our study is meaningful in developing a simple but practical, low-

cost reliable tool for the early detection of AD or other dementia

disease in future based on transcripts of narrative speech. We

hope the tool can detect the change of AD gradually with the

development of the disease in real time. Based on the above

considerations, we believe the use of deep learning method to

diagnose AD is an exploring and compelling area for further

research study.
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