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Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and

poses a major burden on the human health worldwide. At the moment,

treatment of CRC consists of surgery in combination with (neo)adjuvant

chemotherapy and/or radiotherapy. More recently, immune checkpoint

blockers (ICBs) have also been approved for CRC treatment. In addition, recent

studies have shown that radiotherapy and ICBs act synergistically, with

radiotherapy stimulating the immune system that is activated by ICBs.

However, both treatments are also associated with severe toxicity and efficacy

issues, which can lead to temporary or permanent discontinuation of these

treatment programs. There's growing evidence pointing to the gut microbiome

playing a role in these issues. Some microorganisms seem to contribute to

radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to

reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently,

fecal microbiota transplantation (FMT) has been applied to reduce radio- and

immunotherapy-related toxicity and enhance their efficacies. Here, we have

reviewed the currently available preclinical and clinical data in CRC treatment,

with a focus on how the gut microbiome influences radio- and immunotherapy

toxicity and efficacy and if these treatments could benefit from FMT.
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1 Introduction

Colorectal cancer (CRC) is the third most commonly diagnosed

cancer and the second cause of cancer-related deaths worldwide

(Sung et al., 2021). The highest incidence of CRC can be found in

Europe, North America and Oceania, which is likely due to lifestyle

factors, i.e., less physical activity, consumption of high-calorie-

dense food, and smoking (Center et al., 2009). Indeed, the latter

have been identified as CRC risk factors, next to age, gender, family

history, colitis, alcohol consumption, high consumption of red and

processed meat, obesity and diabetes (Taylor et al., 2010; Chan et al.,

2011; Fedirko et al., 2011; Jiang et al., 2011; Jess et al., 2012; Ma

et al., 2013). On the other hand, there are also elements that are

associated with a lower chance to develop CRC, such as physical

activity, a healthy diet, removal of precancerous lesions, hormone

replacement therapy, and aspirin (Brenner et al., 2011; Bosetti et al.,

2012; Boyle et al., 2012; Lin et al., 2012; Veettil et al., 2021).

However, the reported lower incidence of CRC in Asia and Africa

might also be attributed to poor access to healthcare and screening

tools (Pourhoseingholi, 2012; Awedew et al., 2022).

Treatment of CRC is based on tumor- (e.g., tumor size/

progression, presence and localization of metastases) and patient-

related factors (e.g., prognosis, general health, age) (Mármol et al.,

2017). Generally, the standard course of treatment for CRC is

surgery (Kuipers et al., 2015). Neoadjuvant (before surgery) and

adjuvant (after surgery) therapies mostly involve chemotherapy,

radiotherapy or a combination of both (Brenner et al., 2014; Kuipers

et al., 2015). However, because treatment is adapted to the patient

during the course of treatment, it is difficult to define the percentage

of patients receiving a certain treatment course.

Radiotherapy is an important treatment option for CRC, but is

also associated with acute and/or chronic toxicity (Häfner and

Debus, 2016; Segers et al., 2019). Acute symptoms of pelvic

radiotoxicity are diarrhea, nausea, fatigue and abdominal pain

(Hauer-Jensen et al., 2014). Chronic pelvic radiotoxicity is

associated with changes in intestinal transit, malabsorption,

impaired gut motility, fistula formation, intestinal obstruction and

perforation (Hauer-Jensen et al., 2014; Segers et al., 2019). These

side effects can be so severe that treatments need to be stopped

temporarily or even permanently. The risk to develop radiation-

related side effects is partly therapy- (e.g., radiation dose, fraction,

site, and concomitant treatments) and partly patient-related (e.g.,

sex, age, genetic susceptibility, and smoking) (Bentzen and

Overgaard, 1994; Andreassen and Alsner, 2009). In addition,

radiotherapy can disrupt the gut microbiome, which in turn can

influence radiotherapy efficacy by hindering the ability to repair

radiation-induced intestinal damage (Liu et al., 2021).

Other emerging therapeutics are also being applied on CRC. As

cancer cells are able to evade the immune system, there is a scientific

ground to target the tumor by blocking these immune evasion

mechanisms or activating the immune system (Kim and Cho,

2022). Furthermore, the presence of T-cells in the CRC tumor

microenvironment is associated with better prognosis, indicating

that targeting T-cells might be useful for this cancer type (Galon

et al., 2006; Galon et al., 2007). Therefore, the use of

immunotherapy has been explored for the treatment of CRC
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(Ganesh et al., 2019). More specifically, immune checkpoint

blockers (ICBs) that enhance T-cell activation by blocking the co-

inhibitory T-cell receptor programmed cell death 1 (PD-1) or its

ligand (PD-L1) or cytotoxic T lymphocyte antigen 4 (CTLA-4) have

shown promise. Based on the KEYNOTE-177 and CheckMate 142

clinical trials, the anti-PD-1 molecules pembrolizumab and

nivolumab, and the combination of nivolumab and the anti-

CTLA-4 molecule ipilimumab have been approved by the Food

and Drug Administration (FDA) for CRC treatment (Overman

et al., 2017; Diaz et al., 2022; Lenz et al., 2022). An important

predictive marker for ICB efficacy is microsatellite instability (MSI).

Microsatellites are short tandem repeat DNA sequences that are

more susceptible to replication defects and are normally corrected

by mismatch repair (MMR) (De’ Angelis et al., 2018). An incorrect

repair by the MMR system results in the MSI phenotype with the

generation of frameshift mutations and synthesis of neoantigens,

making cancer cells more easily detectable by the immune system

(Maby et al., 2016). Based on their frequency, three different

microsatellite statuses have been characterized: high MSI (MSI-

H), low MSI (MSI-L) and microsatellite stability (MSS) (Bonneville

et al., 2020). Patients who are MSI-H can also be identified as MMR

deficient (dMMR), whereas patients who are MSI-L or MSS can be

identified as MMR proficient (pMMR) (Sinicrope and Yang, 2011).

ICBs are only applicable for MSI-H CRC patients, since MSI-L and

MSS CRC patients are unresponsive to ICBs due to the lack of

tumor mutational burden, little tumor-infiltrating lymphocytes

(TILs), low PD-L1 expression on tumor cells and low IFN-g
expression (Galon et al., 2006; Le et al., 2017; Ganesh et al.,

2019). However, only 15% of all CRC patients are MSI-H,

suggesting that only a small subset of patients could benefit from

immunotherapy (Boland et al., 1998). Furthermore, increasing

evidence suggests that the gut microbiome is another important

factor influencing anti-tumor responses and ICB efficacy in CRC

(Hou et al., 2022).

Besides the efficacy-related problems, ICBs induce the

activation of T-cells and reduce the functions of regulatory T-cells

(Tregs), which can lead to overstimulation of the immune system

(Ramos-Casals et al., 2020). This can result in immunotherapy-

related adverse events in all organs, including the gastrointestinal

(GI) (e.g., colitis, hepatitis), dermatologic (e.g., alopecia, psoriasis,

v i t i l igo) , cardiovascular (e .g . , myo- or endocardit i s ,

cardiomyopathy), pulmonary (e.g., alveolitis, pneumonitis),

neurologic (e.g., encephalitis, meningitis), systemic (e.g., cytokine

release syndrome) and endocrine (e.g., thyroiditis, adrenitis)

systems (Martins et al., 2019; Ramos-Casals et al., 2020; Chhabra

and Kennedy, 2021).

This brief introduction highlights the importance of

radiotherapy and immunotherapy as treatment options for CRC.

However, it also shows that both treatments have drawbacks

concerning inconsistency and side effects, with increasing

evidence pointing towards the gut microbiome as a driver for

these issues. In this review, we will focus on the gut microbiome

and summarize how it influences radio- and immunotherapy

efficacy and related side effects in CRC. Noteworthy, the efficacy

and toxicity of chemotherapy, one of the most common treatment

options for CRC (McQuade et al., 2017; Kumar et al., 2023), are also
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affected by the gut microbiome. We consider this out of scope and

refer to extensive reviews (Kalasabail et al., 2021; Yu et al., 2022; Liu

et al., 2023).
2 The gut microbiome in CRC

A typical healthy gut microbiome contains trillions of microbes

(Cresci and Bawden, 2015), covering between 300-1000 bacterial

species, with Bacteroidetes and Firmicutes being the most abundant

phyla (Lozupone et al., 2012). Actinobacteria, Proteobacteria and

Verrucomicrobia are also present in relatively high abundances

(Lozupone et al., 2012). The gut microbiome has three main

functions: structural (maintenance of structural integrity of gut

mucosal barrier), protective (co-relationship with the immune

system to fight against invading microorganisms) and metabolic

(e.g., participation in digestive processes, production of metabolites

or other molecules) (Jandhyala et al., 2015; Rebersek, 2021). The

host and its microbiome are one unit that co-evolve with each other

and its composition can be influenced by multiple factors (e.g., diet,
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genetic background, stress, physical activity, and anti-, pro-, pre-,

and postbiotic intake) (Figure 1) (Deschasaux et al., 2018; Leeming

et al., 2019; Clooney et al., 2021). Disruption of the intestinal

bacterial homeostasis is defined as dysbiosis, which is

characterized by an altered diversity and abundance of the

associated microbiota that can negatively impact the immune

system (DeGruttola et al., 2016; Toor et al., 2019; Berg et al.,

2020). Dysbiosis has also been linked to multiple diseases, such as

neurological diseases, inflammatory diseases (e.g., inflammatory

bowel disease (IBD)) and cancer (Hullar et al., 2014; Nishida

et al., 2018; Sun and Shen, 2018).

Evidence from several studies has shown that dysbiosis can

contribute to CRC carcinogenesis through multiple mechanisms,

such as (1) pathogenic bacteria and their toxic products, (2)

inflammation, (3) oxidative stress, (4) metabolites, and (5) biofilm

formation (Figure 1). Dysbiosis is associated with a loss of

protective bacteria, such as Bifidobacterium animalis, Clostridium

butyricum and Streptococcus thermophiles, and an enrichment of

cancer-promoting bacteria, such as Fusobacterium nucleatum,

Bacteroides fragilis, Escherichia coli, Streptococcus bovis,
FIGURE 1

Gut microbiome homeostasis can be disrupted by various factors leading to dysbiosis, which contributes to CRC development via distinct mechanisms.
Multiple factors influence the gut microbiome composition, establishing homeostasis or dysbiosis. Dysbiosis disrupts the intestinal barrier, resulting in
translocation of bacteria and their products, which starts an inflammatory cascade. Moreover, certain bacteria produce reactive oxygen species (ROS)
or genotoxins, while other bacteria activate inflammatory/oncogenic pathways. Chronic inflammation also results in the production of ROS, leading to
DNA damage. Dysbiosis can also induce changes in metabolite levels, which contribute to inflammation and tumor growth. Lastly, biofilms can be
formed due to dysbiosis, which also contribute to tumor growth.
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Enterococcus faecalis and Peptostreptococcus anaerobius (Feng et al.,

2015; de Almeida et al., 2018; Wassenaar, 2018; Long et al., 2019;

Sun et al., 2019; Cheng et al., 2020; Deng et al., 2020; Li et al., 2021;

Liu et al., 2021). It is to be noted that the contribution to CRC

cannot be attributed to a sole bacterium, but multiple bacteria elicit

negative effects that surpass those of the beneficial bacteria (Cheng

et al., 2020). Several mechanisms by which these cancer-promoting

bacteria can contribute to CRC development and progression have

been proposed. For instance, F. nucleatum contains the surface

virulence factors FadA, which activates inflammatory/oncogenic

responses via NFkB and Wnt signaling, and Fap2, which protects

CRC cells from immune attack (Sun et al., 2019). The B. fragilis

toxin has also been shown to activate NFkB and Wnt signaling

thereby promoting tumor cell proliferation and inducing metastasis

(Cheng et al., 2020). The E. coli B2 phylotype can produce the

genotoxin colibactin, which induces dsDNA breaks in the intestinal

epithelial cells (Wassenaar, 2018). S. bovis has been shown to recruit

CD11b+TLR4+ cells, which could promote a pro-tumor

microenvironment (Deng et al., 2020). E. faecalis contributes to

CRC carcinogenesis by producing reactive oxygen species (ROS),

which induce DNA damage, and metalloproteases, which

compromise barrier integrity and contribute to inflammation (de

Almeida et al., 2018). P. anaerobius contains the surface protein

PCWBR2, which preferentially interacts with CRC cells via a2/b1
integrin, after which the PI3K-Akt pathway is activated, eventually

generating a pro-inflammatory response (Long et al., 2019). The

detrimental effect of the CRC gut microbiome has been

demonstrated by transplanting fecal samples from CRC patients

to germ-free and conventional mice, leading to increased tumor

proliferation, alteration of the gut microbiome, increased expression

of pro-inflammatory genes and increased immune cell infiltration

(Wong et al., 2017). The changed microbiome composition can

affect the intestinal barrier, which results in translocation of

microbiota and their products to extraintestinal sites, such as

mesenteric lymph nodes, kidney, liver, spleen and bloodstream

(Berg, 1999; Maisonneuve et al., 2018; Zou et al., 2018).

Furthermore, bacterial translocation has been shown to

contribute to CRC metastasis (Keramidaris et al., 2013). The

translocated bacteria are recognized by immune cells via Toll-like

receptors (TLRs), which induces the expression of cytokines,

starting a pro-inflammatory cascade (Sánchez-Alcoholado et al.,

2020). Inflammation induces DNA damage in intestinal cells,

dysregulates anti-tumor immune responses and alters the gut

microbiome composition, thereby contributing to CRC

development (Nagao-Kitamoto et al., 2022). The idea that

inflammation contributes to CRC carcinogenesis is supported by

the observation that IBD patients have an increased risk of 10 – 15%

to develop CRC (Loddo and Romano, 2015). Furthermore,

dysbiosis is associated with altered levels of gut microbial

metabolites, such as short-chain fatty acids (SCFAs), bile acids,

trimethylamine (TMA), polyamines, polyphenols and vitamins

(Bhat and Kapila, 2017; Zou et al., 2018). SCFAs, such as butyrate

and propionate, can block inflammation by promoting Treg

differentiation and stimulating macrophages and T-cells to

produce IL-10 and TGF-b (Zou et al., 2018). The secondary bile

acids deoxycholic acid and lithocholic acid promote CRC
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development by activating b-catenin and epidermal growth factor

signaling and promoting cancer invasion and MAPK signaling,

respectively (Baek et al., 2010; Ha and Park, 2010). TMA is further

processed to trimethylamine-N-oxide, which is associated with

CRC development, although its mechanism is still unclear (Xu

et al., 2015). Polyamines are upregulated in CRC cells and stimulate

tumor growth and immune evasion (Casero and Marton, 2007;

Hayes et al., 2014; Novita Sari et al., 2021). Polyphenols show a

protective effect by affecting inflammation, gut microbiota,

epigenetics and mRNA expression (Ding et al., 2020). Vitamin D

also elicits anticancer effects by influencing inflammation, apoptosis

and Wnt/b-catenin signaling (Javed et al., 2020). The chronic

inflammation induced by dysbiosis can result in the release of

ROS, which can induce DNA damage of intestinal epithelial cells,

eventually contributing to CRC development (Sorolla et al., 2021).

Furthermore, it is hypothesized that certain bacteria can directly

cause DNA damage (Artemev et al., 2022). For instance, E. coli has

been shown to contribute to CRC development by downregulating

DNA MMR (Sobhani et al., 2013). Dysbiosis can also contribute to

the formation of biofilms, which have been linked to CRC

development (Chew et al., 2020). Biofilms reduce the epithelial E-

cadherin, resulting in disruption of the intestinal barrier, and

stimulate IL-6/STAT3 signaling, inducing intestinal epithelial cell

proliferation and tumor growth (Dejea et al., 2014; Johnson et al.,

2015). In addition, biofilms can contribute to the formation of

polyamine metabolites (Johnson et al., 2015).
2.1 The gut microbiome as a
biomarker in CRC

Since the gut microbiome is altered in CRC patients, the gut

microbiome is proposed as a screening, prognostic or predictive

biomarker (Rebersek, 2021). For instance, it has already been shown

that the gut microbiome differs between dMMR and pMMR cancer

patients (Tahara et al., 2014; Mima et al., 2016; Gopalakrishnan

et al., 2018; Hale et al., 2018; Matson et al., 2018; Routy et al., 2018;

Xu et al., 2020; Kang et al., 2021; Jin et al., 2022). In one study, it was

discovered that dMMR CRC patients showed a higher alpha

diversity than pMMR CRC patients (Jin et al. , 2022).

Furthermore, dMMR CRC patients carried a higher abundance of

the Fusobacteria, Firmicutes, Verrucomicrobia and Actinobacteria

phyla and Fusobacterium, Akkermansia, Bifidobacterium,

Faecalibacterium, Streptococcus and Prevotella genera. In contrast,

pMMR CRC patients showed a higher abundance of Proteobacteria

and more specifically the Serratia, Cupriavidus and Sphingobium

genera. Based on the microbiome composition, Jin et al. predicted

that the dMMR status could be associated with biosynthetic/

metabolic pathways of glycan, vitamins and nucleotides, cell

growth and death pathways, and genetic replication and repair

pathways. The pMMR status was predicted to be associated with

lipid, terpenoid, polyketone and amino acid metabolic pathways

and membrane transport pathways. Other studies with CRC

patients corroborated these observations and showed enrichment

in Fusobacteria and Bacteroidetes, and reduction in Firmicutes and

Proteobacteria in dMMR patients (Tahara et al., 2014; Mima et al.,
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2016; Hale et al., 2018; Xu et al., 2020; Kang et al., 2021). The

pMMR patients also showed altered metabolic pathways of glycerol

and phospholipid (Xu et al., 2020).

3 Radiotherapy-induced changes
in the gut microbiome and its
influence on toxicity

Despite its importance, the effect of irradiation on the human

gut microbiome has been poorly studied (Table 1). An early study

investigating the effect of pelvic radiotherapy on the gut
Frontiers in Cellular and Infection Microbiology 05
microbiome in gynecological cancer patients discovered a

decreased abundance of E. coli , Aeromonas hydrophila,

Peptococcus spp., Peptostreptococcus spp., F. nucleatum,

Enterococcus faecium and Lactobacillus, and an increased

abundance of Clostridium histolyticum, Clostridium bifermentans

and Clostridium sporogenes after radiotherapy (Cuzzolin et al.,

1992). Other studies on gynecological cancer patients found that

pelvic radiotherapy also decreased the abundance of the Firmicutes

phylum and the Lactobacillus and Bifidobacterium genera, and

increased the abundance of the Fusobacterium phylum and

Gammaproteobacteria, Bacilli and Negativicutes classes

(Garcıá-Peris et al., 2012; Nam et al., 2013; Ding et al., 2020).
TABLE 1 Radiation-induced up- or downregulation of bacteria and their correlation with radiotoxicity in cancer patients.

Abundance
GI

toxicity
Bacteria Cancer type

Place of
irradiation

Type of
irradiation

Dose Sequencing technique Reference

↑ / Dorea Rhabdomyosarcoma Pelvis
Not

specified
50.4 Gy Illumina MiSeq

(Sahly et al.,
2019)

↑ / Bacteroidetes Rhabdomyosarcoma Pelvis
Not

specified
50.4 Gy Illumina MiSeq

(Sahly et al.,
2019)

↑ / Fusobacterium
Gynecological

cancer
Pelvis

Not
specified

50.4 Gy/day
(5x/week for
5 weeks)

454 pyrosequencing
(Nam et al.,

2013)

↑ / Clostridiales Rhabdomyosarcoma Pelvis
Not

specified
50.4 Gy Illumina MiSeq

(Sahly et al.,
2019)

↑ /
Clostridium
histolyticum

Gynecological
cancer

Pelvis
Not

specified
40 Gy in 4-5

weeks
Culture counts/agar-

based methods
(Cuzzolin
et al., 1992)

↑ /
Clostridium
bifermentans

Gynecological
cancer

Pelvis
Not

specified
40 Gy in 4-5

weeks
Culture counts/agar-

based methods
(Cuzzolin
et al., 1992)

↑ /
Clostridium
sporogenes

Gynecological
cancer

Pelvis
Not

specified
40 Gy in 4-5

weeks
Culture counts/agar-

based methods
(Cuzzolin
et al., 1992)

↑ / Defluviitaleaceae Rhabdomyosarcoma Pelvis
Not

specified
50.4 Gy Illumina MiSeq

(Sahly et al.,
2019)

↑ / Ruminococcaceae Rhabdomyosarcoma Pelvis
Not

specified
50.4 Gy Illumina MiSeq

(Sahly et al.,
2019)

↑ / Subdoligranulum Rhabdomyosarcoma Pelvis
Not

specified
50.4 Gy Illumina MiSeq

(Sahly et al.,
2019)

↑ / Escherichia-shigella Rhabdomyosarcoma Pelvis
Not

specified
50.4 Gy Illumina MiSeq

(Sahly et al.,
2019)

↑ / Negativicutes
Gynecological

cancer
Pelvis

X-
irradiation

41.8 – 50.4
Gy

Illumina MiSeq
(Ding et al.,

2020)

↑ / Actinobacteria Rhabdomyosarcoma Pelvis
Not

specified
50.4 Gy Illumina MiSeq

(Sahly et al.,
2019)

↑ ↓ Clostridium XIVa Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

↑ /

Bacilli

Gynecological
cancer

Pelvis
X-

irradiation
48.1 – 50.4

Gy
Illumina MiSeq

(Ding et al.,
2020)

/ ↑ Abdominal cancer Pelvis
Not

specified

18-20 Gy/
day

(5x/week for
5 weeks)

PCR
(Manichanh
et al., 2008)

↑ /
Gammaproteobacteria

Gynecological
cancer

Pelvis
X-

irradiation
41.8 – 50.4

Gy
Illumina MiSeq

(Ding et al.,
2020)

/ ↑ Cervical cancer Pelvis 50.4 Gy Illumina HiSeq

(Continued)
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TABLE 1 Continued

Abundance
GI

toxicity
Bacteria Cancer type

Place of
irradiation

Type of
irradiation

Dose Sequencing technique Reference

Not
specified

(Wang et al.,
2019)

↑ /

Proteobacteria

Rhabdomyosarcoma Pelvis
Not

specified
50.4 Gy Illumina MiSeq

(Sahly et al.,
2019)

/ ↑ Cervical cancer Pelvis
Not

specified
50.4 Gy Illumina HiSeq

(Wang et al.,
2019)

↑

↑

Bacteroides

Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

/ Rhabdomyosarcoma Pelvis
Not

specified
50.4 Gy Illumina MiSeq

(Sahly et al.,
2019)

/ ↓ Cervical cancer Pelvis
Not

specified
50.4 Gy Illumina HiSeq

(Wang et al.,
2019)

↑ /

Streptococcus

Rhabdomyosarcoma Pelvis
Not

specified
50.4 Gy Illumina MiSeq

(Sahly et al.,
2019)

↓ / Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

↓ / Firmicutes

Gynecological
cancer

Pelvis
Not

specified

50.4 Gy/day
(5x/week for
5 weeks)

454 pyrosequencing
(Nam et al.,

2013)

Rhabdomyosarcoma Pelvis
Not

specified
50.4 Gy Illumina MiSeq

(Sahly et al.,
2019)

↓ /
Fusobacterium
nucleatum

Gynecological
cancer

Pelvis
Not

specified
40 Gy in 4-5

weeks
Culture counts/agar-

based methods
(Cuzzolin
et al., 1992)

↓ / Lactobacillus

Gynecological
cancer

Pelvis
Not

specified
40 Gy in 4-5

weeks
Culture counts/agar-

based methods
(Cuzzolin
et al., 1992)

Gynecological
cancer

Pelvis
X-

irradiation
52.2 Gy Culture counts/FISH

(Garcıá-Peris
et al., 2012)

↓ / Enterococcus faecium
Gynecological

cancer
Pelvis

Not
specified

40 Gy in 4-5
weeks

Culture counts/agar-
based methods

(Cuzzolin
et al., 1992)

↓ / Peptococcus
Gynecological

cancer
Pelvis

Not
specified

40 Gy in 4-5
weeks

Culture counts/agar-
based methods

(Cuzzolin
et al., 1992)

↓ / Peptostreptococcus
Gynecological

cancer
Pelvis

Not
specified

40 Gy in 4-5
weeks

Culture counts/agar-
based methods

(Cuzzolin
et al., 1992)

↓ / Escherichia coli
Gynecological

cancer
Pelvis

Not
specified

40 Gy in 4-5
weeks

Culture counts/agar-
based methods

(Cuzzolin
et al., 1992)

↓ / Bifidobacterium
Gynecological

cancer
Pelvis

X-
irradiation

52.2 Gy Culture counts/FISH
(Garcıá-Peris
et al., 2012)

↓ /
Aeromonas
hydrophila

Gynecological
cancer

Pelvis
Not

specified
40 Gy in 4-5

weeks
Culture counts/agar-

based methods
(Cuzzolin
et al., 1992)

↓ ↓ Faecalibacterium Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

↓ ↓ Oscillibacter Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

↓ ↑ Lachnospiraceae Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

↓ /

Roseburia

Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

/ ↑ Prostate cancer
Pelvis/
rectum

Not
specified

Different
doses/
schemes

Illumina MiSeq
(Reis Ferreira
et al., 2019)

(Continued)
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Another study investigated the effect of pelvic irradiation on the gut

microbiome of 11 patients with different cancer types and

discovered that irradiation induced an increase in Bacteroides and

Clostridium XIVa and a decrease in Lachnospiraceae,

Faecalibacterium, Roseburia, Oscillibacter and Streptococcus

(Wang et a l . , 2015) . When pedia tr i c pa t i ent s wi th

rhabdomyosarcoma near the pelvic area received pelvic

radiotherapy, the abundance of Firmicutes decreased whereas the
Frontiers in Cellular and Infection Microbiology 07
abundance of Proteobacteria, Actinobacteria and Bacteroidetes

increased (Sahly et al., 2019). Furthermore, the abundance of

Defluviitaleaceae, Ruminococcaceae, Clostridiales, Bacteroides,

Streptococcus, Dorea, Bacteroides, Subdoligranulum, Escherichia-

Shigella increased after radiotherapy. When investigating the role

of the gut microbiome on radiation-induced diarrhea in 10 patients

with abdominal cancer, it was discovered that Actinobacteria and

Bacilli were associated with radiation-induced diarrhea, whereas
TABLE 1 Continued

Abundance
GI

toxicity
Bacteria Cancer type

Place of
irradiation

Type of
irradiation

Dose Sequencing technique Reference

/ ↑ Coprococcus Cervical cancer Pelvis
Not

specified
50.4 Gy Illumina HiSeq

(Wang et al.,
2019)

/ ↑ Clostridium IV Prostate cancer
Pelvis/
rectum

Not
specified

Different
doses/
schemes

Illumina MiSeq
(Reis Ferreira
et al., 2019)

/ ↑ Erysipelotrichaceae Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

/ ↑ Dialister Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

/ ↑ Veillonella Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

/ ↑ Phascolarctobacterium Prostate cancer
Pelvis/
rectum

Not
specified

Different
doses/
schemes

Illumina MiSeq
(Reis Ferreira
et al., 2019)

/ ↑ Megamonas

Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

Cervical cancer Pelvis
Not

specified
50.4 Gy Illumina HiSeq

(Wang et al.,
2019)

/ ↑ Alistipes Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

/ ↑ Escherichia Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

/ ↑ Actinomycetota Abdominal cancer Pelvis
Not

specified

18-20 Gy/
day

(5x/week for
5 weeks)

PCR
(Manichanh
et al., 2008)

/ ↑ Novosphingobium Cervical cancer Pelvis
Not

specified
50.4 Gy Illumina HiSeq

(Wang et al.,
2019)

/ ↓ Clostridia Abdominal cancer Pelvis
Not

specified

18-20 Gy/
day

(5x/week for
5 weeks)

PCR
(Manichanh
et al., 2008)

/ ↓ Clostridium XVII Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

/ ↓ Parabacteroides Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

/ ↓ Sutterella Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

/ ↑/↓ Clostridium XI Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

/ ↓

Prevotella

Different types Pelvis
Not

specified
44-55 Gy 454 pyrosequencing

(Wang et al.,
2015)

/ ↑ Cervical cancer Pelvis
Not

specified
50.4 Gy Illumina HiSeq

(Wang et al.,
2019)
↑, increase; ↓, decrease; ↑/↓, increase and decrease.
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Clostridia was not (Manichanh et al., 2008). Before pelvic

irradiation of 11 patients with different cancer types, patients who

developed post-radiation diarrhea had increased abundances of

Bacteroides, Dialister, Veillonella and decreased abundances of

Clostridium XI, Clostridium XVII, Faecalibacterium, Oscillibacter,

Parabacteroides and Prevotella in their fecal samples (Wang et al.,

2015). Post-irradiation, the relative abundances of Clostridium XI

together with Alistipes, Bacteroides, Erysipelotrichaceae, Escherichia,

Lachnospiracea and Megamonas, were significantly higher in

patients who developed diarrhea, whereas Clostridium XIVa and

Sutterella were significantly lower. Reis Ferreira et al. investigated

the effect of the gut microbiome on radiation enteropathy in

prostate cancer patients and discovered that Clostridium IV,

Roseburia and Phascolarctobacterium were associated with

radiation enteropathy (Reis Ferreira et al., 2019). They also

showed that homeostatic intestinal mucosa cytokines related to

microbiota regulation and intestinal barrier maintenance were

reduced in patients with radiation enteropathy. Cervical cancer

patients with radiation enteritis (RE) showed a higher abundance of

Pro t eoba c t e r i a , Gammapro t eobac t e r i a , Megamonas ,

Novosphingobium and Prevotella and a decreased abundance of

Bacteroides compared to patients without RE (Wang et al., 2019).

Furthermore, patients who would later develop RE showed a

significantly higher abundance of Coprococcus, indicating that this

could be a possible biomarker predicting the chance of RE.

The effect of irradiation on the gut microbiome has been more

extensively investigated in mice, although only in healthy mice

(Table 2). Acute pelvic irradiation of mice induced intestinal

damage and inflammation, which resulted in loss of tight

junctions, eventually leading to translocation of bacteria to

mesenteric lymph nodes and dysbiosis (Segers et al., 2021).

Radiat ion-induced dysbiosis can aggravate intest inal

inflammation, which was shown by an increased expression of IL-

1b (Gerassy-Vainberg et al . , 2018). Members of the

Ruminococcaceae, Lachnospiraceae and Porhyromonadaceae

families could be identified as markers of dysbiosis (Segers et al.,

2021). Gamma irradiation of mice led to increased proportions of

Alistipes, Lactobacillus and Akkermansia, but reduced proportions

of Barnes ie l la , Prevote l la , Bacteroides , Osc i l l ibacter ,

Pseudoflavonifractor and Mucispirillum in the large intestine (Kim

et al., 2015). In the small intestine, irradiation led to an increase in

Corynebacterium and decrease in Alistipes. In addition, Gerassy-

Vainberg et al. exposed mice to rectal irradiation, leading to an

increased abundance of Proteobacteria and Verrucomicrobia and a

decreased abundance of Firmicutes (Gerassy-Vainberg et al., 2018).

When exposed to low-dose irradiation, mice showed an increased

abundance of Clostridium, Helicobacter and Oscillibacter and a

decreased abundance of Bacteroides and Barnesiella (Liu et al.,

2019). The latter study also showed that irradiated mice had

perturbed metabolite levels (e.g., downregulation of glucose,

pyruvic acid, pinitol, and upregulation of hydroquinone,

octadecanol and O-phosphoserine), which were predicted to be

involved in glucagon signaling, central carbon metabolism and type

II diabetes. Goudarzi et al. investigated the effect of X-ray radiation

on mice and discovered that irradiation led to an increased

abundance of Lactobacillaceae and Staphylococcaceae, and a
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decreased abundance of Lachnospiraceae, Ruminococcaceae and

Clostridiaceae (Goudarzi et al., 2016). The metabolomic data

revealed statistically significant changes in the microbiota-derived

products, such as pipecolic acid, glutaconic acid, urobilinogen and

homogentisic acid. In addition, significant changes were detected in

bile acids (e.g., taurocholic acid and 12-ketodeoxycholic acid),

which may be associated with an altered abundance of

Ruminococcus gnavus that is able to transform bile acids (Devlin

and Fischbach, 2015; Goudarzi et al., 2016). An increased

abundance of Bacteroidia and a decreased abundance of

Clostridia could still be observed in irradiated mice ten months

after exposure, advocating long-term effects of irradiation (Zhao

et al., 2019). The gut microbiome can also influence the risk of side

effects, corroborated by the higher survival rates of mice that

received antibiotics before radiotherapy (Cui et al., 2017).

Members of Akkermansia, Bacteroides, Parabacteroides, Sutterella

and Turicibacter were more abundant in mice who developed

radiation proctitis (Gerassy-Vainberg et al., 2018). Furthermore,

irradiation of germ-free (GF) mice that were inoculated with fecal

material from previously irradiated mice led to worse irradiation-

induced damage compared to irradiation of GF mice that were

inoculated with fecal material from naïve mice (Gerassy-Vainberg

et al., 2018).

It is proposed that the gut microbiome can influence

radiotherapy response, for which some markers have already been

defined (Liu et al., 2021). Autophagy has been shown to be related

to radiosensitivity/radioresistance of the tumor. Inhibition of

autophagy induces radioresistance whereas induction of

autophagy induces radiosensitivity (Kuwahara et al., 2011).

Fusobacterium nucleatum has been shown to activate autophagy,

leading to chemoresistance (Yu et al., 2017). Up until now, no

studies have shown the effect of the gut microbiome on

radioresistance via autophagy. Furthermore, it has been shown

that other factors such as the time when radiation is given can

affect the gut microbiome leading to differences in radiosensitivity

(Cui et al., 2016; Chan et al., 2017). Fasting-induced adipose factor

(FIAF) is a microbiota-regulated protein that has been related to the

radiosensitivity of endothelial cells and lymphocytes, and could be

used as a protector for radiotoxicity (Crawford and Gordon, 2005).

Bacteroides thetaiotaomicron and Enterococcus faecalis increase the

FIAF production, whereas Escherichia coli decreases the FIAF

production (Grootaert et al., 2011). However, there is currently

no information available about the influence of the gut microbiome

on radiotherapy efficacy as a stand-alone treatment.

We have opted to list the outcome of different studies

exhaustively in order to highlight the complex effects of

irradiation on the gut microbiome. Based on all these

observations, we can conclude that the presence of Bacilli,

Negativicutes, Lachnospiraceae, Coprococcus, Escherichia and

Alistipes seem to be related to radiation-induced toxicity in

human cancer patients, whereas Akkermansia, Bacteroides,

Sutterella, Parabacteroides and Turicibacter are associated with

radiation-induced toxicity in mice (Figure 2). However, Sutterella

and Parabacteroides seem to be associated with less toxicity in

cancer patients. In addition, Faecalibacterium and Oscillibacter

reduce toxicity and the contribution of Bacteroides remains
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TABLE 2 Radiation-induced up- or downregulation of bacteria and their correlation with radiotoxicity in healthy mice.

Abundance
GI

toxicity
Bacteria

Mouse
strain

Place of
irradiation

Type of
irradiation

Dose
Sequencing
technique

Reference

↑ / Clostridium BALB/c Whole body
Co60 g-

irradiation
0.5 Gy Illumina HiSeq (Liu et al., 2019)

↑ / Lactobacillaceae C57Bl/6 Whole body X-irradiation 5 or 12 Gy Illumina HiSeq
(Goudarzi et al.,

2016)

↑ / Staphylococcaceae C57Bl/6 Whole body X-irradiation 5 or 12 Gy Illumina HiSeq
(Goudarzi et al.,

2016)

↑ / Bacteroidia C57Bl/6 Whole body
Cs137 g-
irradiation

8 Gy Illumina HiSeq
(Zhao et al.,

2019)

↑ / Verrucomicrobia C57Bl/6 Rectum
Co60 g-

irradiation

22 Gy
(5.5 Gy/day
for 4 days)

Illumina MiSeq
(Gerassy-

Vainberg et al.,
2018)

↑ / Corynebacterium C57Bl/6 Not specified
Co60 g-

irradiation
8 Gy Illumina MiSeq (Kim et al., 2015)

↑ / Helicobacter BALB/c Whole body
Co60 g-

irradiation
0.5 Gy Illumina HiSeq (Liu et al., 2019)

↑ / Proteobacteria C57Bl/6 Rectum
Co60 g-

irradiation

22 Gy
(5.5 Gy/day
for 4 days)

Illumina MiSeq
(Gerassy-

Vainberg et al.,
2018)

↓ /

Oscillibacter

C57Bl/6
BALB/c

Not specified
Co60 g-

irradiation
8 Gy Illumina MiSeq (Kim et al., 2015)

↑ / BALB/c Whole body
Co60 g-

irradiation
0.5 Gy Illumina HiSeq (Liu et al., 2019)

↑ /

Lactobacillus

C57Bl/6 Not specified
Co60 g-

irradiation
8 Gy Illumina MiSeq (Kim et al., 2015)

↓ / C57Bl/6 Whole body
Cs137 g-
irradiation

6,5 Gy Illumina HiSeq (Cui et al., 2017)

↑/↓ / Alistipes C57Bl/6 Not specified
Co60 g-

irradiation
8 Gy Illumina MiSeq (Kim et al., 2015)

↑ /

Akkermansia

C57Bl/6 Not specified
Co60 g-

irradiation
8 Gy Illumina MiSeq (Kim et al., 2015)

/ ↑ C57Bl/6 Rectum
Co60 g-

irradiation

22 Gy
(5.5 Gy/day
for 4 days)

Illumina MiSeq
(Gerassy-

Vainberg et al.,
2018)

↑ ↑ Sutterella C57Bl/6 Rectum
Co60 g-

irradiation
Not specified Illumina MiSeq

(Gerassy-
Vainberg et al.,

2018)

↓ / Firmicutes C57Bl/6 Rectum
Co60 g-

irradiation
Not specified Illumina MiSeq

(Gerassy-
Vainberg et al.,

2018)

↓ / Pseudoflavonifractor C57Bl/6 Not specified
Co60 g-

irradiation
8 Gy Illumina MiSeq (Kim et al., 2015)

↓ / Lachnospiraceae C57Bl/6 Whole body X-irradiation 5 or 12 Gy Illumina HiSeq
(Goudarzi et al.,

2016)

↓ / Clostridia C57Bl/6 Whole body
Cs137 g-
irradiation

8 Gy Illumina HiSeq
(Zhao et al.,

2019)

↓ / Clostridiaceae C57Bl/6 Whole body X-irradiation 5 or 12 Gy Illumina HiSeq
(Goudarzi et al.,

2016)

↓ / Prevotella C57Bl/6 Not specified
Co60 g-

irradiation
8 Gy Illumina MiSeq (Kim et al., 2015)

(Continued)
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unclear. Nevertheless, comparison of mice and human data is

difficult, since besides intrinsic differences in their microbiome,

there is a lack of data about the role of the microbiome in

radiotherapy-induced toxicity in cancer-bearing mice. Moreover,

the impact of the gut microbiome on radiotherapy efficacy remains

unknown in both human and mice, presenting an intriguing area

for further investigation.
4 The influence of the gut
microbiome on anti-tumor responses
and immunotherapy efficacy

For CRC, ICBs such as anti-PD-L1, anti-PD-1 or anti-CTLA-4,

are only indicated for the treatment of dMMR cancer (Ganesh et al.,

2019). However, only 15% of all CRC patients are dMMR, meaning

only a small subset of patients will benefit from immunotherapy as a

monotherapy (Boland et al., 1998). Most patients will need

additional treatment to achieve an optimal response. As the gut

microbiome is involved in maturation of both the innate and the

adaptive immune system, perturbation can result in aberrant

immune responses that can contribute to multiple GI disorders,

such as IBD and cancer (Zheng et al., 2020; Jain et al., 2021).

Likewise, the abundance of some bacteria (e.g., Bacteroidetes,

Akkermansia, Lactobacillus) are positively correlated to antitumor

immunity, whereas others are negatively correlated (e.g., Firmicutes,
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Proteobacteria, Parabacteroides) (Xia et al., 2020). The gut

microbiome can elicit antitumor immune responses via different

mechanisms (Figure 3) (Park et al., 2020). For instance, some

microorganisms contain pathogen-associated molecular patterns

that can activate antigen-presenting cells (APCs) via pattern

recognition receptors (Panda et al., 2018). This induces the

activation of CD4+ and CD8+ T-cells, which influences cytokine

expression (TNF-a, IFN-g, IL-2) and stimulates tumor cell killing

(Li et al., 2019). Microbial and tumor cell products may also share

antigen sequences, leading to T-cell cross-reactivity between these

antigens, which induces antigen-specific immune responses known

as molecular mimicry (Baruch et al., 2021). Furthermore, multiple

gut microbiota metabolites can elicit antitumor effects. For instance,

SCFAs have been shown to reduce colon liver metastases in mice

models, activate cytotoxic CD8+ T-cells and their memory potential

and stimulate and differentiate CD4+ T-cells (Park et al., 2016;

Bachem et al., 2019; Ma et al., 2020; He et al., 2021). Inosine has

been shown to act as a carbon source for CD8+ T-cells and

stimulates T-cell proliferation and differentiation while enhancing

sensitivity to ICBs (Wang et al., 2020). Tryptophan derivatives can

stimulate the cytolytic activity of natural killer (NK) cells (Shin

et al., 2013). Finally, the gut microbiome can also modify bile acids,

which are able to activate antitumor immune cells, such as natural

killer T-cells (NKT) (Sipe et al., 2020).

Although there is a lot of knowledge on the influence of the gut

microbiome on immunotherapy efficacy for several cancer types,

there is limited information for CRC, which is surprising
TABLE 2 Continued

Abundance
GI

toxicity
Bacteria

Mouse
strain

Place of
irradiation

Type of
irradiation

Dose
Sequencing
technique

Reference

↓ / Barnesiella

C57Bl/6 Not specified
Co60 g-

irradiation
8 Gy Illumina MiSeq (Kim et al., 2015)

BALB/c Whole body
Co60 g-

irradiation
0.5 Gy Illumina HiSeq (Liu et al., 2019)

↓ / Mucispirillum C57Bl/6 Not specified
Co60 g-

irradiation
8 Gy Illumina MiSeq (Kim et al., 2015)

↓ / Ruminococcaceae C57Bl/6 Whole body X-irradiation 5 or 12 Gy Illumina HiSeq
(Goudarzi et al.,

2016)

↓ /

Bacteroides

C57Bl/6 Not specified
Co60 g-

irradiation
8 Gy Illumina MiSeq (Kim et al., 2015)

BALB/c Whole body
Co60 g-

irradiation
0.5 Gy Illumina HiSeq (Liu et al., 2019)

C57Bl/6 Whole body
Cs137 g-
irradiation

6.5 Gy Illumina HiSeq (Cui et al., 2017)

/ ↑ C57Bl/6 Rectum
Co60 g-

irradiation

22 Gy
(5.5 Gy/day
for 4 days)

Illumina MiSeq
(Gerassy-

Vainberg et al.,
2018)

/ ↑ Turicibacter C57Bl/6 Rectum
Co60 g-

irradiation

22 Gy
(5.5 Gy/day
for 4 days)

Illumina MiSeq
(Gerassy-

Vainberg et al.,
2018)

/ ↑ Parabacteroides C57Bl/6 Rectum
Co60 g-

irradiation

22 Gy
(5.5 Gy/day
for 4 days)

Illumina MiSeq
(Gerassy-

Vainberg et al.,
2018)
↑, increase; ↓, decrease; ↑/↓, increase and decrease.
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considering its involvement with the microbiome (Table 3). A study

involving a cohort of GI cancer patients, showed that the Prevotella/

Bacteroides ratio was higher in anti-PD-1 responders (Peng et al.,

2020). Anti-PD-1 responders showed an increased abundance

of Lachnoclostridium , Parabacteroides , Lachnospiraceae ,

Ruminococcaceae, Flavonifractor and Dialister, whereas non-

responders showed an increased abundance of Bacteroides,

Parabacteroides, Coprococcus and Subdoligranulum. SCFA-

producing bacteria, such as Eubacterium, Lactobacillus and

Streptococcus were associated with better anti-PD-1 efficacy for GI

cancers in general.

In CRC mice, it was shown that treatment with antibiotics and

anti-PD-1 resulted in higher tumor volumes, indicating that a

homeostatic gut microbiome is needed to achieve an optimal

anti-PD-1 response (Xu et al., 2020). Furthermore, Prevotella sp.

CAG:1031 and Akkermansia muciniphila were related to a better

anti-PD-1 response, whereas Bacteroides and Bacteroides sp.

CAG:927 appeared to be related to a poorer anti-PD-1 response.

A significant upregulation of the glycerophospholipid metabolism

could be observed in anti-PD-1 responders. This led the authors to

speculate that differences in the microbiome affect the
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glycerophospholipid metabolism, which alters IFN-g and IL-2

expression in the tumor microenvironment, resulting in better

anti-PD-1 response. When fecal samples from healthy volunteers

were administered to GF mice, the extent of IFN-g+ CD8+ T-cell

induction was donor dependent (Tanoue et al., 2019). Eleven

species were positively associated with IFN-g+ CD8+ T-cell

induction: Parabacteroides distasonis, Parabacteroides gordonii,

Alistipes senegalensis, Parabacteroides johnsonii, Paraprevotella

xylaniphila, Bacteroides dorei, Bacteroides uniformis JCM 5828,

Eubacterium limosum, Ruminococcaceae bacterium cv2 ,

Phascolarctobacterium faecium and Fusobacterium ulcerans.

Furthermore, MC38-tumor bearing mice showed a better

response to anti-PD-1 and anti-CTLA-4 treatment after

engraftment with these eleven strains. Treatment of the more

physiological AOM/DSS CRC mouse model with anti-CTLA-4 or

anti-PD-L1 led to smaller and fewer tumors, reduced cancer stem

cells, increased immune cell infiltration into tumors, increased

CD8+ T-cell frequencies in tumor draining lymph nodes and

increased splenic CD4+ and CD8+ T-cell activation (Mager et al.,

2020). The metabolite inosine seemed to be responsible for

enhancing ICB efficacy. At microbiome level, Bifidobacterium
FIGURE 2

Comparison of the effect of radiotherapy on the gut microbiome of mice and humans. Each distinct phylum is represented by a separate color, as
are distinct taxonomic classes, orders, families and genera. Similar observations are connected. Additional information is provided for each
observation, including its occurrence in literature (line, scale maximum is 7), (relative) abundance of member and toxicity (increased: red; decreased:
green; undefined: grey).
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pseudolongum, Olsenella sp., Colidextribacter sp., Bacillus

thermoamylovorans, Prevotella sp., Lactobacillus reuteri,

Akkermansia muciniphila could only be found in ICB-treated

tumors, whereas Collinsella sp., Clostridium cocleatum and

Bacteroides sp. were exclusively found in control-treated tumors.

Afterwards, it was shown that Bifidobacterium pseudolongum and

Olsenella sp. were associated with better ICB-efficacy. Another

study on AOM/DSS CRC mice discovered that treatment with

anti-CTLA-4 and lysates of Lactobacillus acidophilus reduced the

amount of tumors and Tregs and M2 macrophages in mesenteric

lymph nodes and increased the amount of IL-2 and IFN-g in the

serum, and CD8+ T-cell infiltration in the tumor (Zhuo et al., 2019).

Furthermore, combined treatment with anti-CTLA-4 and

Lacobacillus acidophilus lysates restored the dysregulated CRC

microbiome by reducing the abundance of Proteobacteria that

was increased after tumor development.

Based on these observations (Table 3; Figure 4), SCFA-

producing bacteria, such as Lactobacillus and Eubacterium, seem

to enhance immunotherapy efficacy in both mice and humans.

Parabacteroides and Akkermansia also seem to be associated with

better immunotherapy efficacy in mice, which contradicts their

previously mentioned role in radiation-induced toxicity.

Bacteroides seems to be negatively related to immunotherapy

efficacy in humans, but its impact on immunotherapeutic efficacy

in mice is unclear and requires further investigation. As

Coprococcus is associated with radiation-induced toxicity as well

as worse ICB efficacy, it is a potential detrimental genus for both

treatments. Finally, since the role of the gut microbiome on
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immune-related adverse events has not yet been investigated for

CRC, this is an interesting subject for prospective research.
5 Combined radio- and
immunotherapy treatment

The view of radiotherapy as a simple cytotoxic agent has

dramatically changed in recent years. It is now accepted that

radiotherapy can reshape the tumor microenvironment by

modulating the immune response (Frey et al., 2017). Therefore,

there is a rationale to use immunotherapy together with

radiotherapy to boost therapeutic outcomes. However, there is

still a need to define biomarkers to identify patients who would

benefit most from dual radio- and immunotherapy, optimize

optimal sequences/schedules for combined radio- and

immunotherapy and identify mechanisms to overcome resistance

(Mondini et al., 2020). Furthermore, the effects of dual radio- and

immunotherapy on healthy tissues and related toxicity remain

largely unknown.
5.1 Immune activating and suppressing
effects of radiotherapy

Radiotherapy can induce both immune-activating and

immune-suppressing effects, which are summarized in Figure 5.

Radiotherapy can promote cancer cell killing by inducing DNA
FIGURE 3

Antitumor immune effects of the gut microbiome. The gut microbiome possesses multiple immune-related antitumor mechanisms. First of all,
certain microorganisms release pattern-associated molecular patterns (PAMPs), which activate antigen-presenting cells (APCs) to stimulate CD4+

and CD8+ T-cell responses. Molecular mimicry between tumor and microbial antigens can contribute to these responses as well. Lastly, gut
microbiome metabolites, such as short-chain fatty acids (SCFAs), inosine, tryptophan derivatives and bile acids, can activate antitumor immune cells.
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TABLE 3 Bacteria and their correlation with ICB efficacy in CRC mice and GI cancer patients.

Bacteria
Effect on

ICB
efficacy

Type of
ICB

Dose ICB frequency
Mice/
human

Reference

Ruminococcaceae Positive Anti-PD-1
Not

specified
Every 2/3 weeks Human (Peng et al., 2020)

Lachnospiraceae Positive Anti-PD-1
Not

specified
Every 2/3 weeks Human (Peng et al., 2020)

Lachnoclostridium Positive Anti-PD-1
Not

specified
Every 2/3 weeks Human (Peng et al., 2020)

Flavonifractor Positive Anti-PD-1
Not

specified
Every 2/3 weeks Human (Peng et al., 2020)

Dialister Positive Anti-PD-1
Not

specified
Every 2/3 weeks Human (Peng et al., 2020)

Subdoligranulum Negative Anti-PD-1
Not

specified
Every 2/3 weeks Human (Peng et al., 2020)

Coprococcus Negative Anti-PD-1
Not

specified
Every 2/3 weeks Human (Peng et al., 2020)

Parabacteroides Positive/negative Anti-PD-1
Not

specified
Every 2/3 weeks Human (Peng et al., 2020)

Bacteroides
Negative Anti-PD-1

Not
specified

Every 2/3 weeks Human (Peng et al., 2020)

Negative Anti-PD-1 250 µg Every 3 days for a total of 5 injections Mice (BALB/c) (Xu et al., 2020)

Bacteroides_sp._CAG:927 Negative Anti-PD-1 250 µg Every 3 days for a total of 5 injections Mice (BALB/c) (Xu et al., 2020)

Prevotella_sp._CAG:1031 Positive Anti-PD-1 250 µg Every 3 days for a total of 5 injections Mice (BALB/c) (Xu et al., 2020)

Akkermansia muciniphila Positive Anti-PD-1 250 µg Every 3 days for a total of 5 injections Mice (BALB/c) (Xu et al., 2020)

Bifidobacterium
pseudolongum

Positive Anti-CTLA-4 100 µg Every 3 days for a total of 5 injections Mice (C57Bl/6J)
(Mager et al.,

2020)

Olsenella Positive Anti-CTLA-4 100 µg Every 3 days for a total of 5 injections Mice (C57Bl/6J)
(Mager et al.,

2020)

Lactobacillus johnsonii Positive Anti-CTLA-4 100 µg Every 3 days for a total of 5 injections Mice (C57Bl/6J)
(Mager et al.,

2020)

Lactobacillus acidophilus Positive Anti-CTLA-4 50 µg
Every other day for a total of 17

injections
Mice (BALB/c) (Zhuo et al., 2019)

Parabacteroides distasonis Positive
Anti-PD-1

Anti-CTLA-4
200 µg Every 3 days for a total of 3 injections Mice (C57Bl/6J)

(Tanoue et al.,
2019)

Parabacteroides gordonii Positive
Anti-PD-1

Anti-CTLA-4
200 µg Every 3 days for a total of 3 injections Mice (C57Bl/6J)

(Tanoue et al.,
2019)

Alistipes senegalensis Positive
Anti-PD-1

Anti-CTLA-4
200 µg Every 3 days for a total of 3 injections Mice (C57Bl/6J)

(Tanoue et al.,
2019)

Parabacteroides johnsonii Positive
Anti-PD-1

Anti-CTLA-4
200 µg Every 3 days for a total of 3 injections Mice (C57Bl/6J)

(Tanoue et al.,
2019)

Paraprevotella xylaniphila Positive
Anti-PD-1

Anti-CTLA-4
200 µg Every 3 days for a total of 3 injections Mice (C57Bl/6J)

(Tanoue et al.,
2019)

Bacteroides dorei Positive
Anti-PD-1

Anti-CTLA-4
200 µg Every 3 days for a total of 3 injections Mice (C57Bl/6J)

(Tanoue et al.,
2019)

Bacteroides uniformis JCM
5828

Positive
Anti-PD-1

Anti-CTLA-4
200 µg Every 3 days for a total of 3 injections Mice (C57Bl/6J)

(Tanoue et al.,
2019)

Eubacterium limosum Positive
Anti-PD-1

Anti-CTLA-4
200 µg Every 3 days for a total of 3 injections Mice (C57Bl/6J)

(Tanoue et al.,
2019)

(Continued)
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damage, but can also activate the immune system, which can be

observed by the induction of the abscopal effect and immunogenic

cell death (ICD) (Golden and Apetoh, 2015; Brix et al., 2017; Wang

et al., 2018). The abscopal effect, which is defined as tumor

responses at sites distant from the irradiated site, was first

observed by Dr. R. H. Mole in 1953 (Mole, 1953). However,

abscopal effects after radiotherapy are rarely observed in the clinic

because it is hard to induce an immune response in non-irradiated

metastases that are characterized by a specific microenvironment
Frontiers in Cellular and Infection Microbiology 14
and because metastases might be antigenically heterogeneous

(Vanpouille-Box et al., 2018). Radiotherapy can induce the

abscopal effect by activation of CD8+ T-cells by antigen-

presenting cells (APCs) that have captured radiation-released

tumor-associated antigens (TAAs) (Baba et al., 2020; Buchwald

et al., 2020). ICD is a type of cell death that promotes a T-cell

mediated immune response against antigens derived from dying

cells (Kroemer et al., 2013). Radiotherapy induces cell death which

generates the release of damage-associated patterns (DAMPs),
TABLE 3 Continued

Bacteria
Effect on

ICB
efficacy

Type of
ICB

Dose ICB frequency
Mice/
human

Reference

Ruminococcaceae bacterium
cv2

Positive
Anti-PD-1

Anti-CTLA-4
200 µg Every 3 days for a total of 3 injections Mice (C57Bl/6J)

(Tanoue et al.,
2019)

Phascolarctobacterium
faecium

Positive
Anti-PD-1

Anti-CTLA-4
200 µg Every 3 days for a total of 3 injections Mice (C57Bl/6J)

(Tanoue et al.,
2019)

Fusobacterium ulcerans Positive
Anti-PD-1

Anti-CTLA-4
200 µg Every 3 days for a total of 3 injections Mice (C57Bl/6J)

(Tanoue et al.,
2019)
FIGURE 4

Comparison of the effect of immunotherapy on the gut microbiome of mice and humans. Each distinct phylum is represented by a separate color,
as are distinct taxonomic classes, orders, families, and genera. Similar observations are connected. Additional information is provided for each
observation, including its occurrence in literature (line, scale maximum is 4), impact on efficacy (increased: red; decreased: green; undefined: grey)
and ICB studied (anti-PD-1: yellow; anti-CTLA-4: purple; anti-PD-1/anti-CTLA-4: teal).
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eventually resulting in ICD (Keam et al., 2020). There are three

major DAMPs that contribute to ICD: calreticulin (CRT), high-

mobility group box-1 (HMGB-1) and adenosine triphosphate

(ATP). CRT can be found on the outer leaflet of dying tumor

cells as an “eat me” signal for APCs, leading to presentation of

TAAs to naïve T-cells which will result in an anti-tumor immune

response (Gameiro et al., 2014). HMGB-1 is released from

irradiated tumor cells into the immune environment where it

stimulates DCs and macrophages to transcribe inflammatory

genes (Wang et al., 2018). ATP is known as a “find me” signal for

DCs and monocytes by binding to their purinergic P2X7 receptors,

leading to the release of cytokines, such as IL-18 and IL-1b
(Perregaux et al., 2000; Ghiringhelli et al., 2009; Aymeric et al.,

2010). Radiotherapy can also induce anti-tumor immunity via the

cGAS-STING pathway. Radiotherapy-induced DNA damage can be

repaired by three central DDR kinases: DNA-dependent protein

kinase (DNA-PK), ataxia telangiectasia-mutated (ATM) and ataxia

telangiectasia & Rad3-related protein (ATR) (Zhang et al., 2022).

These kinases potentiate two main repair mechanisms: non-

homologous end-joining and homology-directed repair (Zhang

et al., 2022). However, cancer cells often make mistakes during

this repair process, which causes genomic instability and cell cycle

checkpoint disruption eventually leading to the formation of DNA-

containing micronuclei in the cytoplasm (Jeggo et al., 2016; Gekara,
Frontiers in Cellular and Infection Microbiology 15
2017). This DNA is then recognized by cyclic GMP-AMP synthase

(cGAS) and is dimerized into a cGAS-DNA complex to catalyze the

formation of cyclic guanosine monophosphate-adenosine

monophosphate (cGAMP). cGAMP interacts with stimulator of

IFN genes (STING) and activates it. STING then recruits tank-

binding kinase-1 (TBK1) and IkB kinase (IKK) to phosphorylate

interferon regulatory factor 3 (IRF3) and NF-kB inhibitor IkBa,
respectively. Afterwards, IRF3 and NF-kB are translocated into the

nucleus to induce the transcription of type I IFN genes and other

inflammatory cytokines like IFN-b (Cai et al., 2014; McLaughlin

et al., 2020; Xu et al., 2021). Type I IFN genes facilitate DC

maturation, increase DC co-stimulatory molecule expression and

enhance DC lymph node migration, which all induces CD8+ T-cell

priming (Zitvogel et al., 2015; Sprooten et al., 2019).

Next to all the immune-activating effects of radiotherapy, it has

also been shown to induce immunosuppression (Zhang et al., 2022).

In this sense, radiotherapy can upregulate the expression of the

immune checkpoint PD-L1, thereby inhibiting T-cell activation

(Deng et al., 2014; Twyman-Saint Victor et al., 2015).

Furthermore, radiotherapy may contribute to resistance

mechanisms by reshaping immune cells in the tumor

microenvironment towards an immunosuppressive phenotype

(Dar et al., 2022). Whereas low-dose radiation can switch tumor-

associated macrophages (TAMs) towards the M1 phenotype (pro-
FIGURE 5

Immune activating and suppressing effects of radiotherapy. Radiotherapy induces DNA damage, which can lead either to DNA repair or to apoptosis.
Faulty repaired DNA stimulates the cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway, leading to the transcription of type I
IFN genes and other inflammatory cytokines. In addition, apoptotic cells release tumor-associated antigens (TAAs) and damage-associated
molecular patterns (DAMPs). All these factors can activate dendritic cells (DCs) and macrophages, which stimulate CD8+ T-cell priming, inducing
immunogenic responses against a secondary tumor. On the other hand, radiotherapy can also act in an immunosuppressive manner. It induces
upregulation of PD-L1 expression on tumor cells, leading to inhibition of CD8+ T-cell activation. Furthermore, radiotherapy can promote
differentiation/attraction of immunosuppressive immune cells.
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inflammatory/anti-tumorigenic), high-dose radiation promotes the

M2 phenotype (anti-inflammatory/pro-tumorigenic) (Klug et al.,

2013; Prakash et al., 2016; Seifert et al., 2016). Radiotherapy also

induces an upregulation of a specific type of immunosuppressive

cells called myeloid-derived suppressor cells (MDSCs) and Tregs in

the tumor microenvironment (Xu et al., 2013; Muroyama et al.,

2017). TGF-b and CCL2 are also upregulated after radiotherapy,

resulting in Treg differentiation and attraction of MDSCs to the

tumor microenvironment, respectively (Vanpouille-Box et al., 2015;

Kalbasi et al., 2017; Dahmani and Delisle, 2018).
5.2 The influence of radio- and
immunotherapy on each other

The abscopal effect of radiotherapy is not commonly observed

but has been shown to be synergistically boosted by

immunotherapy (Ngwa et al., 2018). Multiple preclinical and

some clinical studies have shown an abscopal effect induced by

dual radio- and immunotherapy (Demaria et al., 2005; Dewan et al.,

2009; Yasuda et al., 2011; Deng et al., 2014; Grimaldi et al., 2014;

Golden et al., 2015; Twyman-Saint Victor et al., 2015; Habets et al.,

2016; Hao et al., 2016; Theurich et al., 2016; Young et al., 2016;

Aboudaram et al., 2017; Dovedi et al., 2017; Koller et al., 2017;

Rodriguez-Ruiz et al., 2017; Formenti et al., 2018; Rodrıǵuez-Ruiz

et al., 2018; Roger et al., 2018). However, there is a discrepancy in

observed abscopal effects induced by dual radio- and

immunotherapy between preclinical and clinical studies. It seems

that preclinical studies show more promising results than clinical

studies, which could be because murine models are not fully able to

recapitulate metastatic cancer in patients. Mice are frequently

injected with conventional cell lines, which lack genetic and

environmental heterogeneity, and typically exhibit only minimal

tumor growth (Olson et al., 2018; Arina et al., 2020). More recently,

organoid mouse models of CRC have been established for testing

radiotherapy (Kim et al., 2022; Nicolas et al., 2022b; Nicolas et al.,

2022a). However, these models have yet to be utilized for

immunotherapy testing and microbiome research. Radiotherapy

and immunotherapy have been shown to enhance each other’s

effects. Radiotherapy can enhance immunotherapy efficacy by

reducing tumor burden, changing the tumor microenvironment

and increasing T-cell infiltration into the tumor (Arina et al., 2020).

Furthermore, most patients receiving immunotherapy need

additional interventions to overcome primary or acquired

resistance to immunotherapy (Vanpouille-Box et al., 2018).

Radiotherapy can help to overcome at least some of the

mechanisms by which cancer cells are or become resistant to

immunotherapy. Radiotherapy generates T-cells specific for TAAs

by inducing ICD. It overcomes T-cell exclusion from the tumor by

promoting the release of chemokines that attract effector T-cells. It

improves recognition and killing of cancer cells by CD8+ T-cells by

promoting antigen presentation on MHC class I molecules, thereby

upregulating death receptors and promoting the exposure of NK

cell-activating ligands (Vanpouille-Box et al., 2018). On the other

hand, immunotherapy positively influences radiotherapy by
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boosting radiotherapy-induced immune activation, blocking

immunosuppressive effects of radiotherapy such as PD-L1

upregulation and eliminating microscopic tumors (Arina

et al., 2020).

A couple of clinical trials investigating the effect of dual radio-

and immunotherapy in CRC patients have been performed. These

trials showed little success in shrinking non-irradiated tumors, but

did show that the combination treatment was safe and induced an

anti-tumor immune response (Monjazeb et al., 2021; Parikh et al.,

2021; Segal et al., 2021). Currently, there are even more ongoing

clinical trials investigating the effect of dual radio- and

immunotherapy in CRC patients (NCT02437071, NCT02837263,

NCT04575922, NCT03104439, NCT03101475, NCT02888743).

When MC38-tumor bearing mice were treated with irradiation

(20 Gy) and anti-PD-L1 (four injections of 200 µg spread over 72

hours), the abscopal effect could be observed, leading to a significant

decrease in tumor volume compared to monotherapy (Deng et al.,

2014). In addition, dual radio- and immunotherapy activated CD8+

T-cells, which induced a reduction in MDSCs via TNF-mediated

apoptosis, leading to more efficient tumor regression. Treatment of

CT26-tumor bearing mice with radiotherapy (5 x 2 Gy) and anti-PD-

1 or anti-PD-L1 (10 mg/kg, 3 injections/week for 3 weeks) was

curative in 66% and 80% of mice, respectively (Dovedi et al., 2014).

It was discovered that radiotherapy activates CD8+ T-cells, which

produce IFN-g, eventually leading to an upregulation of PD-L1

expression on tumor cells. Therefore, the efficacy of the

combination treatment can be explained by the fact that

immunotherapy blocks the radiotherapy-induced upregulation of

PD-L1, allowing a better anti-tumor immune response.

Furthermore, when long-term surviving mice (i.e., mice that

completely rejected tumor after combination treatment) were

rechallenged with tumor cells, they were able to reject the tumor

again, indicating that the combination of radio- and immunotherapy

generates protective immunologic memory. Another study by the

same group investigating the effect of dual radio- and immunotherapy

in mice with two tumors, of which only one was irradiated, showed

that dual treatment was able to generate anti-tumor responses and

tumor control in both irradiated and non-irradiated tumors (Dovedi

et al., 2017). It was found that radiotherapy is able to induce polyclonal

T-cell infiltration and expansion at the site of treatment, but not in the

out-of-field tumor due to suppression through the PD-1/PD-L1 axis.

Inhibition of this axis led to a polyclonal T-cell response capable of

mediating out-of-field effects. When different radiation schemes (18 x

2 Gy, 3 x 8 Gy or 1 x 16.4 Gy) were applied on CT26-tumor bearing

mice in combination with anti-PD-L1 treatment, the best tumor

control and survival was observed for the 18 x 2 Gy scheme

(Grapin et al., 2019). This indicates that hyperfractionation appears

to be critical for lymphoid stimulation, while normo-fractionation

seems to be deleterious to lymphoid cells, which are radiosensitive.

It is clear that preclinical studies investigating dual radio- and

immunotherapy for CRC are hopeful, whereas clinical studies are

not yet providing the same hopeful results. Furthermore, there is no

information yet available about the influence of the gut microbiome

for this combined treatment of CRC, making this an interesting

topic to investigate further.
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6 Modulating the gut microbiome
to enhance therapeutic
modalities for CRC

The gut microbiome can be altered in different ways (Rebersek,

2021). First, biotic interventions, such as diet (e.g., protein, fat, fiber

intake) and vitamin intake can change its composition (Singh et al.,

2017; Leeming et al., 2019; Pham et al., 2021). In addition, the gut

microbiome can also be beneficially altered by pro-, pre- and

postbiotics, which are microorganisms, substrates selectively

utilized by host microorganisms, and preparations of inanimate

microorganisms and/or their components, respectively (Hill et al.,

2014; Gibson et al., 2017; Chen et al., 2021; Salminen et al., 2021). A

subset of these pro- and prebiotics are designated as psychobiotics,

which can boost the mental health status through modulation of the

gut microbiome, and as such affect the gut-brain axis (Sarkar et al.,

2016). A significant proportion of cancer patients suffer from

mental health problems, such as anxiety and depression, which

seems to have a negative influence on the gut microbiome (Clapp

et al., 2017; Vucic et al., 2021). In the end, this can result in negative

treatment outcomes, such as a higher incidence of side effects or less

therapy response. Therefore, for these patients, psychobiotics can

help to stimulate SCFA production in the gut, leading to the

production of gut hormones that migrate to the central nervous

system. This cascade induces the release of neurotransmitters, such

as dopamine and serotonin, leading to a general decrease in

inflammation and restoration of the gut barrier. Another way to

modulate the microbiome is by using selective antibiotics that

inhibit detrimental bacteria, increase the abundance of certain

bacteria that promote cancer therapeutic efficacy or reduce

treatment-related side effects by indirectly inhibiting detrimental

bacterial metabolites (Wallace et al., 2010; Bullman et al., 2017;

Zitvogel et al., 2017). Lastly, fecal microbiota transplantation

(FMT), which is the administration of fecal material from a donor

into the intestinal tract of a recipient to alter the host’s gut

microbiome composition, can be used for therapeutic benefit

(Wang et al., 2019). There are multiple methods to deliver FMT,

yet the most optimal delivery route remains unclear (Ramai et al.,

2019). FMT can for instance be delivered via the upper (via

esophagogastroduodenoscopy (EGD), nasogastric, nasojejunal,

nasoduodenal tubes or oral capsules) or lower (colonoscopy,

sigmoidoscopy and enema) GI route (Gulati et al., 2020).

Furthermore, FMT can either be autologous (a-FMT), defined as

transplantation of one’s own fecal material taken during healthy

state, or heterologous (h-FMT), defined as transplantation of fecal

material from a healthy donor to a diseased host (Basson et al.,

2020). FMT has been shown to be an effective treatment for

recurrent Clostridium difficile infection, which led to its approval

by the FDA for this disease (Kelly et al., 2014; Agrawal et al., 2016).

Currently, this is the only indication to use FMT in patients.

However, the potential beneficial role of FMT for other diseases,

such as IBD, functional bowel disorders, metabolic syndrome,

autism and multiple sclerosis, is under investigation in clinical

trials (Cui et al., 2015; Tian et al., 2016; Paramsothy et al., 2017;

Li et al., 2021; Al et al., 2022). Furthermore, FMT has been shown to
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a have a direct beneficial effect on CRC by reducing inflammation

and reducing the abundance of cancer-promoting bacteria (Chen

et al., 2019; Kaźmierczak-Siedlecka et al., 2020). Given the

importance of FMT, its role in radio- and immunotherapy for

CRC is discussed in more detail hereunder.
7 FMT to counteract radiotherapy-
related side effects

Radiation induces dysbiosis and GI side effects, which might be

reverted by FMT. The use of FMT to reduce dysbiosis and GI side

effects has therefore been investigated. A clinical trial investigating

the use of FMT as a treatment for chronic RE after abdominal/pelvic

irradiation has been performed in five female patients with

gynecological cancer (Ding et al., 2020). FMT from healthy

donors (18-24 years) was administered for a maximum of three

times over a maximum of two weeks through nasojejunal

transendoscopic enteral tubing (TET). FMT led to amelioration in

rectal hemorrhage, fecal incontinence, diarrhea and abdominal and

rectal pain in three out of five recruited patients. However, the

efficacy of FMT was not long lasting, indicating that patients may

require repeated cycles of FMT. Another case report of a 59-year-

old woman with chronic RE after pelvic irradiation showed that

FMT from her 18-year-old son improved her chronic RE-related

symptoms (Liu et al., 2022). For radiation proctitis after pelvic

irradiation, a case report of a 45-year-old woman has shown that

four courses of FMT from healthy donors (21 – 24 years)

ameliorated the patient’s hematochezia, abdominal pain and

diarrhea (Zheng et al., 2020). Furthermore, FMT decreased the

abundance of the Firmicutes phylum and increased the abundance

of the Bacteroidetes phylum. In the previously mentioned studies,

FMT was able to increase the diversity of the patient’s microbiome

and shift its composition to one similar of that of the donor (Ding

et al., 2020; Zheng et al., 2020).

In another study, mice received fresh FMT from healthy, age-

matched mice every day for 10 days via oral gavage after radiation

treatment (Cui et al., 2017). They discovered that FMT increased

the survival rate and body weight, improved GI tract function and

epithelial integrity and enhanced angiogenesis without accelerating

tumor growth. FMT was also able to restore the gut microbiome,

since it increased the abundance of Bacteroides, Lactobacillus and

Prevotella, which were decreased after irradiation. Differences

between male and female mice could also be observed, in that

male mice that received FMT had increased expression of genes

involved in the innate and adaptive immune system, whereas female

mice showed increased expression of genes involved in metabolism.

In follow-up studies, it was discovered that the abundance of the

metabolite indole 3-propionic acid (IPA) and the SCFA valeric acid

increased after FMT treatment of irradiated mice (Li et al., 2020;

Xiao et al., 2020). Both metabolites seemed to be able to increase

survival and reduce GI side effects of irradiated mice.

We can conclude that FMT appears to have a beneficial

influence on radiotherapy-induced toxicity in both mice and

humans. FMT seems to restore the gut microbiome after
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irradiation, but more research concerning microbial changes after

FMT is needed to get better insights in potential beneficial

microbes. Moreover, no studies have reported the involvement of

FMT in enhancing radiotherapy efficacy, presenting an intriguing

area for additional research.
8 FMT to increase immunotherapeutic
efficacy

Since the efficacy and toxicity of ICBs is dependent on the

composition of the gut microbiome, both may be improved by

altering the gut microbiome using FMT (Park et al., 2020).

However, currently, there is only some evidence on the beneficial

effect of FMT on immunotherapy efficacy for CRC.

A recent clinical trial investigated the combination of FMT and

anti-PD-1 (NCT04130763) (Peng et al., 2023). In this trial, patients

received FMT capsules from healthy donors with a microbiome

similar to that of anti-PD-1 responders. FMT was first administered

on its own for one week (for three consecutive days), after which

anti-PD-1 was added to the FMT treatment for 6 cycles. It was

discovered that FMT was well tolerated in patients and enhanced

anti-PD-1 efficacy. Furthermore, FMT seemed to increase alpha

diversity and IFN-g+ CD8+ T-cells.

Treatment of CT26-tumor bearing mice with anti-PD-1

treatment (4 x 200 µg) and FMT (4 x (5x109 CFU)) from healthy

human donors led to improved survival and reduced tumor growth

(Huang et al., 2022). These mice had an increased abundance of

Parabacteroides distasonis and a reduced abundance of Clostridium

sp. HGF2, Enterococcus hirae, Dorea sp. 52 and Lactobacillus

murinus. In addition, these mice showed an increased abundance

of certain Bacteroides spp. (B. thetaiotaomicron, B. fragilis, B.

cellulosilyticus, B. salyersiae, B. stercoris, B. uniformis, B.

massiliensis), but a reduced abundance of Bacteroides ovatus.

Some of these bacteria seem to inhibit tumor growth. For

instance, B. thetaiotaomicron induces DCs, maintains intestinal

homeostasis by mediating microbe-host crosstalk and inhibits

CRC carcinogenesis via its metabolite propionate (Durant et al.,

2020; Ryu et al., 2022). B. fragilis induces Tregs to secrete IL-10

through its molecule polysaccharide A (PSA) and activates NKT

cells through the production of alpha-galactose ceramides

(Dasgupta et al., 2014; Oh et al., 2021). B. cellulosilyticus can

activate Tregs to secrete IL-10 via its zwitterionic capsular

polysaccharide (Neff et al., 2016). On the other hand, some

bacteria can promote tumor growth. B. ovatus can influence

immunity by producing IgA and has already been associated with

shorter progression-free survival in melanoma patients receiving

immunotherapy (Peters et al., 2019; Yang et al., 2020). L. murinus

impairs gut metabolic function, thereby contributing to intestinal

dysbiosis (Hayashi et al., 2017). Based on microbiome composition,

it was also shown that mice treated with anti-PD-1 and FMT

showed enriched expression of nucleotides and amino acid

biosynthesis pathways and reduced expression of methionine and

S-adenosyl-L-methionine (SAM) pathways (Huang et al., 2022).

Methionine and SAM are involved in cancer pathogenesis and
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cancer metastasis/recurrence, respectively (Gao et al., 2019;

Sanderson et al., 2019; Zhang et al., 2021). Mice treated with anti-

PD-1 and FMT also showed higher amounts of aspirin, which

inhibits the growth of CRC-associated bacterium F. nucleatum, and

punicic acid, which elicits anti-tumor effects (Mete et al., 2019;

Brennan et al., 2021; Yuan et al., 2021; Huang et al., 2022). In

addition, these mice showed reduced amounts of glycine and serine,

which can inhibit tumor growth in CRC mouse models (Maddocks

et al., 2017; Muthusamy et al., 2020). Finally, kynurenic acid is

reduced in these mice, which seems contradicting since this inhibits

CRC (Walczak et al., 2014). FMT could also be a potential

intervention to reduce immunotherapy-related adverse events.

One of the most common ICB-related side effects is colitis. For

melanoma, presence of the Bacteroidetes phylum in the gut has been

associated with resistance to ICB-induced colitis, whereas the

opposite was observed for the presence of the Firmicutes phylum

(Dubin et al., 2016; Chaput et al., 2017). Pathways involved in

polyamine transport and vitamin B biosynthesis are associated with

an increased risk of colitis (Dubin et al., 2016). Bifidobacterium (B.

bifidum, B. longum, B. lactis and B. breve) was able to reduce ICB-

induced toxicity in a preclinical colitis model (Wang et al., 2018).

Wang et al. were the first to discover that FMT was able to treat

ICB-associated colitis (Wang et al., 2018). The investigators

administered FMT (50 grams) to two patients (patient 1: one

treatment; patient 2: two treatments) via colonoscopy and found

that FMT reconstitutes the gut microbiome and induces the

proportion of Tregs in the colonic mucosa. There are currently

some ongoing clinical trials to investigate the ability of FMT to

reduce immunotherapy-related side effect [NCT04163289 (renal

cell carcinoma (RCC)], NCT03819296 [melanoma/genitourinary

cancer)]. However, no clinical trials involving CRC are currently

being conducted.

It is clear that mouse as well as human studies that investigate

the beneficial role of FMT for ICB efficacy and side effects are

lacking. In humans, FMT seems to enhance antitumor responses

and ICB efficacy. In mice, FMT seems to increase the abundance of

Parabacteroides, which improves ICB efficacy. Strikingly, FMT

increases the abundance of Bacteroides, which is associated with

worse ICB efficacy. Nevertheless, it is clear that more information

from mouse and human studies is needed to advance our

knowledge on the impact of FMT on ICB efficacy and side effects.
9 Conclusion and future perspectives

Overall, the gut microbiome has a significant impact on radio-

and immunotherapy treatment of CRC. Bacteria involved in

radiotoxicity have been identified, but microbiome data from

mice and patients often contrasts, which can partly be explained

by their intrinsic microbiome differences. On the other hand, most

radiotherapy research has only been performed on healthy mice,

thereby overlooking the dysbiotic microbiome composition that is

associated with CRC. Therefore, further research exploring the

microbiome’s role in radiotherapy toxicity should be conducted

on cancer-bearing mice in order to facilitate a more robust
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1298264
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Van Dingenen et al. 10.3389/fcimb.2023.1298264
comparison between humans and mice. Furthermore, since CRC

patients as well as mice exhibit dysbiosis prior to radio- or

immunotherapy that may affect their response to these

treatments, more studies investigating the microbiome

composition pre- and post-treatment are warranted to identify

potential predictive biomarkers for treatment response. It has also

become evident that there is a lack of data on how the microbiome

influences radiotherapy efficacy, immunotherapy toxicity and

combined radio-immunotherapy outcomes. As such, further

investigation in mice and patients will be necessary to identify if

and which bacteria are involved in these processes. Nevertheless, the

administration of microbiota from a healthy donor to a CRC

recipient via FMT has shown to restore the gut microbiome,

thereby reducing radiation-induced toxicity and enhancing

immunotherapy efficacy in mice and patients. Furthermore, FMT

was able to reduce immunotherapy-induced colitis in preclinical

and clinical settings for cancer types other than CRC. More research

in mice and patients will be needed to confirm these findings for

CRC. To conclude, although the available data corroborates that the

gut microbiome and FMT influence radio- and immunotherapy

toxicities and efficacies for CRC, the available information is limited

and often contrasting, warranting more studies on CRC mice and

patients in order to progress our current understanding.
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