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In order to further improve the efficiency of energy utilization, Integrated Energy
Systems (IES) connect various energy systems closer, which has become an
important energy utilization mode in the process of energy transition. Because
the complex and variable multiple load is an important part of the new power
system, the load forecasting is of great significance for the planning, operation,
control, and dispatching of the new power system. In order to timely track the
latest research progress of the load forecasting method and grasp the current
research hotspot and the direction of load forecasting, this paper reviews the
relevant research content of the forecasting methods. Firstly, a brief overview of
Integrated Energy Systems and load forecasting is provided. Secondly, traditional
forecasting methods based on statistical analysis and intelligent forecasting
methods based on machine learning are discussed in two directions to analyze
the advantages, disadvantages, and applicability of different methods. Then, the
results of Integrated Energy Systemssmultiple load forecasting for the past 5 years
are compiled and analyzed. Finally, the Integrated Energy Systems load forecasting
is summarized and looked forward.
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1 Introduction

1.1 Motivation and background

Energy is the basis for human survival and development and the lifeblood of the national
economy. How to ensure the sustainable supply of energy for human society while reducing
environmental pollution in the process of energy use is a common concern in the world today. The
further consumption of non-renewable energy leads to serious energy crisis and environmental
pollution, which forces us to break the original mode of separate planning, separate design,
separate construction and independent operation of each energy source and ultimately to achieve
the construction and development of IES. In otherwords, the development and construction of IES
is an inevitable choice to solve the energy crisis, improve environmental pollution, achieve optimal
energy efficiency, and promote the use of renewable energy on a large scale.

The IES takes the electric power system as the core and realizes cooperative management
and complementary mutual assistance among various energy systems through its many types
of energy conversion equipment and energy storage equipment (Li et al., 2021; Zhu et al.,
2021). The synergistic operation of multiple energy systems results in a strong coupling of
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multiple loads, which makes multiple load forecasting more
complex and allows a greater amount of internal information to
be mined than traditional single load forecasting. Therefore, it is of
great practical significance to explore the load forecasting under the
coupling conditions of multiple loads of integrated energy systems.
In this context, it is crucial to keep track of the latest research
progress of load forecasting methods and grasp the current research
hotspots and directions of load forecasting for the development and
construction of integrated energy systems.

1.2 Research methodology

The methodology of this paper takes four important steps: step
1, choosing electronic databases; step 2, setting the query
formulations and search scope; step 3, conducting preliminary
search; step 4, performing manual filter.

In Step 1, it was decided to use four publicly available databases -
Springer Link, Elsevier, IEEE Xplore, and MDPI. These databases
cover a large number and variety of journals, and more influential
factors are considered in the citation index, making these databases
include a wider range of disciplines, more comprehensive and
objective content, and higher authority in relevant research fields.
Therefore, it would be more authoritative to screen the literature
from these databases for research that fits the topic of study.

In Step 2, the query formulations and search scope are set in
these databases. The query formulations consist of key words, logical
operators, and search instructions. The keywords were set to load
forecasting in the field of integrated energy systems, multi-energy
systems, energy internet or multi-energy co-generation systems. The
following query formulations were entered to search for relevant
literature matching the research topic in the time frame from
January 2019 to March 2023:

l) (“Integrated energy system” OR “multi-energy system” OR
“energy internet” OR “energy coupling system”) AND (“load

forecasting” OR “multiple load forecasting”) AND (“machine
learning” OR “deep learning” OR “intelligent learning algorithm”).

2) (“integrated energy system” OR “multi-energy system” OR
“energy internet” OR “energy coupling system”) AND (“load
forecasting” OR “multiple load forecasting”) AND (“statistical
analysis” OR “regression analysis” OR “time series”).

In step 3, the preliminary search result data obtained after step
2 is shown in Figure 1. Figure 1 presents the number of published
papers concerning multiple load forecasting for IES from January
2019 to March 2023. Among them, there are 1827 compliant papers
in Springer Link database, 2637 compliant papers in Elsevier
database, 1788 compliant papers in IEEE Xplore database, and
2257 compliant papers in MDPI database. Despite the fact that
2023 is not over yet (the research was conducted until 31 March
2023), it is easy to see a growing trend in the number of papers
published in the years 2019–2022. This confirms that the topic of
multiple load forecasting for IES is current. The increasing trend in
the annual publications indicates that multiple load forecasting for
IES is a developing field of study and has received a lot of attention
from scholars.

In Step 4, the papers from the initial search are manually filtered.
Considering the lack of artificial intelligence when searching the
literature using these databases, the mismatched papers need to be
removed. The search results were carefully screened, analyzed and
filtered to ensure that the core contents of the literature were
consistent with the topic of integrated energy system load
forecasting. The preliminary filtered literature was browsed in full
to ensure that the papers focused on load forecasting. A total of
61 papers were finally selected. A generalized analysis of these
61 selected articles shows that load forecasting methods can be
divided into two categories: traditional forecasting methods and
intelligent forecasting methods. Among them, there are 15 papers
related to traditional forecasting methods and 46 papers related to
intelligent forecasting methods. The specific screening process is
shown in Figure 2.

FIGURE 1
Graphic representation of preliminary search results in four electronic databases.
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1.3 Paper structure

The rest of the paper is structured as follows. Section
2 provides a brief overview of integrated energy systems and
load forecasting. Section 3 discusses the commonly used
forecasting methods in two directions: traditional forecasting

methods based on statistical analysis and intelligent forecasting
methods based on machine learning, and analyzes the
advantages, disadvantages, and applicability of different
methods. Section 4 summarizes and analyzes the results of
IES multivariate load forecasting in the past 5 years. Finally,
Section 5 concludes the paper with a summary and outlook on

FIGURE 2
Manual filtering process and results.

FIGURE 3
Diagram of paper structure.
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IES load forecasting. The structure of this paper is shown in
Figure 3.

2 Integrated energy system load
forecasting

2.1 Structure and types of IES

2.1.1 Coupling structure of IES
IES is based on energy input, conversion, storage and output

to achieve the coupling and complementarity of different energy
sources, promote the full consumption of renewable energy and
flexible conversion between supply and demand of multiple
energy sources, so as to meet the demand of multiple loads
and improve the efficiency of energy utilization. The IES is a
multi stream integrated system, which breaks the traditional
compartmentalized state of multiple energy streams such as
cold, heat, electricity, and gas. Figure 4 shows the structure of
the IES, in which the multi energy coupling characteristics are
shown visually.

Multiple energy flows in the system operate in concert through
energy conversion devices. These include electricity to gas, electricity
to heat, electricity to cold, and combined cooling heating and power
(CCHP). A CCHP system typically include Waste Heat Boiler,
Absorption Refrigerator and Gas Turbine. The gas uses the gas
grid to supply natural gas combustion to generate electricity to the
power grid, while the combustion produces flue gas to provide heat
to the system through a waste heat boiler and cold energy to the
system through an absorption refrigerator.

2.1.2 Different types of IES
Multiple types of I applications, i.e., classification of integrated

energy systems. This chapter discusses the categorization for
different application scenarios and application subjects,
subdividing the integrated energy system into industrial park
integrated energy system, agricultural integrated energy system
and urban integrated energy system. These categorized integrated
energy system multi-energy coupling structures are designed to
combine specific application subjects on the basic structure.
Integrated energy systems containing renewable energy
generation and hydrogen storage are also mentioned in the
classification discussion.

Integrated energy systems for industrial parks are the most
common type of application. Industrial parks are dominated by
industrial loads, and the forms of terminal energy use are mainly
electricity, heat, gas and cold, etc. The characteristics of energy loads
are complex, the requirements for reliability and stability of energy
supply are harsh, the operation and scheduling of transmission and
distribution systems are complicated, and there is a strong demand
for clean, highly efficient, reliable, and economical integrated energy
supply services.

The agricultural integrated energy system focuses on gas supply
and synergizes renewable energy sources such as solar, wind and
geothermal energy to meet the energy needs of the three farmers
(farmers, rural areas and agriculture). Farmers’ energy use includes
residents’ daily life and travel, rural energy use includes medical care,
catering and commerce, and agricultural energy use includes
cultivation and harvesting. Comprehensive energy systems for
agriculture can realize local energy use and local utilization and
alleviate the crisis of industrial and urban energy use.

FIGURE 4
Schematic diagram of integrated energy system structure.
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Unlike the integrated energy system for industrial parks, the
urban integrated energy system is closer to the lives of residents with
limited energy resources, and focuses more on energy saving and
environmental protection (Ke et al., 2022a). The system takes solar
energy, distributed wind power, natural gas, and external grid as
energy sources, and utilizes internal coupling elements, such as gas
turbines, gas boilers, heat pumps, etc., to connect cold, hot, and
electrical multi-energy streams as a whole to ensure the load demand
of urban residents in their daily lives. The load demand of the
residents is usually the cold load for air conditioning, the heat load
for heating, the gas load for kitchen and other electrical loads to
maintain the normal life of the residents.

At this stage, integrated energy systems that include renewable
energy generation (Ke et al., 2022b; Xu et al., 2020a) and hydrogen
storage (Xu et al., 2020b) are widely used. For example, the wind-
photovoltaic-hydrogen storage integrated energy system (Ke et al.,
2023) consists of five parts: an electric power subsystem, a hydrogen
storage subsystem, a thermal energy subsystem, a cryogenic
subsystem and a natural gas subsystem, where large-scale wind
and solar power generation is incorporated into the electric power
subsystem, and unabated power is converted into hydrogen energy
for storage by using electrolysis cells. The stored hydrogen can be
rationalized and used whenever needed regardless of time, location
and grid capacity.

2.2 Multiple load forecasting of IES

As the basis for optimal design, operation scheduling and energy
management of IES, multiple load forecasting plays an important
role. Adopting accurate forecasting methods can make the operation
of IES more stable and reliable (Talaat et al., 2020). Short-term
multiple load forecasting follows roughly the same steps as short-
term load forecasting for power systems. In general, the input and
output vectors are first determined based on the characteristic
analysis and the actual demand, and then a suitable forecasting
model is established for multiple load forecasting. The general steps
are shown in Figure 5. In recent years, the traditional statistical

analysis-based forecasting method has a more mature theoretical
system, mainly using regression analysis (Wu et al., 2022; Feng et al.,
2022; Nano et al., 2019) and time series (Ervural et al., 2016; Yu et al.,
2019; Wu et al., 2020; Guefano et al., 2020). Their models are simple
to calculate and easy to implement, but in the face of complex
nonlinear load data, the forecasting effect is unstable and the
forecasting accuracy cannot meet the research demand.

2.3 Performance evaluation metrics of the
load forecasting results

In order to cope with complex nonlinear load data and coupling
relationships, intelligent prediction methods based on machine
learning are widely used in integrated energy system load
forecasting. Due to the wide variety of equipment involved in the
system, diverse energy coupling relationships, and complex internal
structure, feature selection for multivariate load forecasting is
crucial, and it is also a research difficulty in the field of
multivariate load forecasting at this stage. Some researchers
consider the comprehensiveness of the influencing factors and try
to exploit all the factors as input features as much as possible, but
this will lead to some irrelevant factors being input into the
prediction model, which will affect the accuracy of the
prediction; some researchers analyze the correlation of the
influencing factors in order to select the most relevant factors as
the input features, e.g., the correlation analysis is used to select the
input features, but the actual relationship between the multiple loads
and the influencing factors is not completely linear. However, the
actual multivariate load and the influencing factors are not
completely linear, and the application of correlation coefficient
has strict condition constraints, and the correlation degree
between the factors and the load obtained by correlation analysis
may be biased, which affects the final prediction accuracy.

Highly accurate load forecasting is of great importance to the
planning and operation of IES. However, there must also be errors
between the forecast results and the actual values that cannot be
completely eliminated. We can analyze the errors in depth through a

FIGURE 5
IES multiple load forecasting steps.

Frontiers in Energy Research frontiersin.org05

Liu et al. 10.3389/fenrg.2023.1296800

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1296800


series of scientific methods, which can help us have a clearer
perception of the forecast results and model performance. The
most used metrics and their calculation formulas are discussed in
Table 1. In these formulas, y is the actual value, ŷ is the forecasting
value, �y is the mean value of all of the data and n is the number of
forecasting samples. Usually, the performance evaluation metrics of
forecasting (Rafi et al., 2021) contains Mean Square Error (MSE),
Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE) and R-squared (R2). The
smaller the value of MAE, RMSE and MAPE, the smaller the error,
the more accurate the forecasting result and the better the
performance. R2 takes a range between 0 and 1, and the closer
the value is to 1, the better the fitting effect, and the closer the
forecast result is to the true value.

MSE and RMSE are squared operations on the difference value,
so the larger error value will have a greater impact on the fit, which
helps to capture the prediction error of the model more sensitive.
Because the squared difference of outliers will be magnified, these
two performance evaluation indicators are greatly affected by the
outliers. When using them for model evaluation, it is necessary to
pay attention to the treatment of outliers and the robustness of the
model.

MAE and MAPE have little influence on outliers and are not
affected by the positive or negative direction, but do not consider the
square of the difference, so it does not magnify the square of the
difference value. These two performance evaluation indicators
reflect the absolute size of the prediction error rather than the
square size of the error relative to MSE and RMSE.

Higher R2 values indicate that the model can fit the data well and
its predictive value can explain the variability of the dependent
variable. However, R2 can only measure the goodness of fit of the
model to the dependent variable, and cannot judge whether the
model is overfit or suitable for application in other data sets.
Therefore, when using R2 values, other indicators and domain
knowledge should be combined for comprehensive evaluation.

3 Load forecasting method

Current load forecasting methods can be divided into traditional
forecasting methods based on statistical analysis and intelligent
forecasting methods based on machine learning. This chapter
briefly introduces the forecasting methods such as Regression
Analysis, Artificial Neural Network (ANN), Support Vector
Machine (SVM), Convolutional Neural Network (CNN), and

Recurrent Neural Network (RNN). It also summarizes and
outlines the advantages, disadvantages and applicability of each
forecasting method in order to provide reference for future load
forecasting.

3.1 Traditional forecasting method based on
the statistical analysis

3.1.1 Regression analysis
The regression analysis method builds a regression equation to

predict the future trend of the dependent variable based on the
analysis of the dependent and independent variables. The model is
simple to construct and faster to predict. However, regression
analysis requires high historical data, its structural form is too
simple, and for more complex problems, it tends to ignore the
intrinsic regularity of load changes and has low forecasting accuracy.
To solve the problems of slow forecasting speed and low forecasting
accuracy of regression analysis model (Wu et al., 2022), proposed an
improved regression model based on small batch stochastic gradient
descent. Experimental results show that the improved algorithm has
significantly improved the forecasting speed than the traditional
algorithm. In order to better load forecasting with the help of
massive data (Feng et al., 2022), proposed a load forecasting
method based on a combination of clustering and iterative
logistic regression by taking data analysis as the entry point and
choosing logistic regression method as the basic model (Nano et al.,
2019). used “calendar” as an important influencing factor as an entry
point and used multiple linear regression for load forecasting on
different dates to test the feasibility and applicability of load
forecasting on Indian calendar with two data sets.

In short, the regression analysis model has a simple principle
and structural form and cannot describe the relationship between
multiple influences on the fac-tors and load forecasts in detail.
Therefore, it is a suitable basis model for addressing short- and
medium-term load forecasting problems with large historical
data sets.

3.1.2 Time series
3.1.2.1 Univariate time series forecasting

A univariate time series is a series with a single time-dependent
variable. The commonly used analytical methods are autoregressive
(AR) (Ren et al., 2022), Moving Average (MA) (Hu et al., 2013),
Autoregressive Moving Average ARMA (Ervural et al., 2016) and
Autoregressive Integrated Moving Average (ARIMA) (Yu et al.,
2019; Wu et al., 2020). The advantages, disadvantages and
applicability of the four analytical methods are shown in Table 2.
Among them, the ARMA model constructed by combining the
structural advantages of AR andMA is more accurate and flexible in
fitting the data in univariate time series forecasting scenarios
(Ervural et al., 2016). constructed a combined forecasting model
to improve the accuracy of natural gas load with the help of ARMA
model in combination with genetic algorithm (GA). Validated
against actual data from a residential and commercial area, the
combined GA-ARMA model forecasting results deviated less from
the actual data and provided more accurate and effective forecasting.

The three methods, AR, MA and ARMA, are suitable for
forecasting smooth time series. And ARIMA model has good

TABLE 1 Model performance evaluation metrics.

Metric Formula

Mean Square Error (MSE) 1
n∑ (y − ŷ)2

Root Mean Squared Error (RMSE)
�
1
n

√ ∑ (y − ŷ)2

Mean Absolute Error (MAE) 1
n∑ |y − ŷ|

Mean Absolute Percentage Error (MAPE) 1
n∑ |y−ŷy |

R-squared (R2) 1 − ∑(y−ŷ)2∑(y−�y)2
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ability to handle smooth series or unsteady series and has become a
widely used time series forecasting model for most of the scenario
forecasting. The ARIMA model attempts to extract the time series
patterns hidden behind the data by means of autocorrelation and
differencing of the data, which are then used to predict future data
(Yu et al., 2019). Integrated ARIMA model and ANN model to deal
with the strong dynamic of electricity load data by integrating
seasonal and cyclical characteristics of power load data (Nano
et al., 2019). optimized the parameters of ARIMA model with the
help of Cuckoo Search (CS) algorithm cuckoo search algorithm to
forecast based on the actual electricity load data and proved that
ARIMA model showed relatively high accuracy and effectiveness in
forecasting short-term electricity load.

3.1.2.2 Multivariate time series forecasting
Multivariate time series have two or more variables that change

over time. Each variable is affected not only by its own historical data
but also by other variables. Commonly used analytical methods are
Vector Autoregressive (VAR) (Jeong et al., 2021) and Vector
Autoregressive Moving Average (VARMA) (Razghandi et al.,
2021). The VAR model is a generalization of the univariate
autoregressive model to a vector autoregressive model consisting
of multivariate time series variables. It is used to predict time series
vectors or multiple parallel time series (Guefano et al., 2020).
combined Grey Model and VAR to construct GM-VAR
forecasting model. The MAPE value of the GM-VAR forecasting
model was 1.628%, which was validated by the real data set, and
achieved a good forecasting result. The higher-order model of the
vector autoregressive model, VARMA, incorporates the moving
average, which makes the model have stronger time series
modeling ability and can also smooth out the noise in the time
series data.

The time series method establishes a mathematical model
describing the change of load over time based on historical load
data, then builds a load forecast expression based on the model, and
finally forecasts the future load. This method only considers the time
variable, requires less data, and has a fast prediction speed, but the
model theory is complex, the smoothing degree of the original data is
required to be taught, and other uncertainty influencing factors are
not considered, which makes the final prediction accuracy error is
larger.

The advantages and disadvantages and the scope of application
of traditional prediction methods based on statistical analysis are
shown in Table 3. The theoretical system is relatively mature and has

the advantages of simple calculation and easy implementation.
However, when dealing with large-scale data of diversity,
complexity and nonlinearity, the prediction effect is unstable, and
the prediction accuracy cannot meet the research needs. Therefore,
scholars have shifted their research direction to intelligent
prediction methods based on machine learning.

3.2 Intelligent forecastingmethods based on
machine learning

In recent years, the amount of multivariate load has increased
significantly, and the number of factors affecting multivariate load is
increasing, and the difficulty of load forecasting has also increased.
This makes the limitations of traditional load forecasting methods
based on statistical analysis significant. In order to consider
multivariate loads and multiple influencing factors in forecasting,
machine learning-based load forecasting methods have shown better
forecasting performance in the field of load forecasting and are
therefore widely used.

Machine learning is divided into three main categories:
supervised learning, unsupervised learning, and reinforcement
learning. In supervised learning, we can have an accurate
knowledge of the class of the object of study and the model can
predict the output based on prior experience. It mainly addresses
two types of problems, regression and classification, and commonly
used methods include Linear Regression (Dhaval and Dhshpande,
2020), Logistic Regression (Alquthami et al., 2022), SVM
(Emhamed and Jyoti, 2021), and ANN (Xu and Wang, 2022). In
unsupervised learning, we can analyze the commonalities and
differences between the studied objects. It mainly addresses two
types of problems, clustering and association, and commonly used
methods include K-means (Xiao et al., 2022) and Principal
Component Analysis (Veeramsetty et al., 2022). And
reinforcement learning (Park et al., 2020) is different from the
first two. It does not require any data to be given in advance, but
obtains learning information and updates model parameters by
receiving feedback from the environment on the actions. It is used
to describe and solve the problem of learning strategies by an
intelligent body during its interaction with the environment in
order to reach reward maximization or achieve a specific goal. In
this paper, it is important to introduce SVM, ANN, CNN, RNN and
Ensemble Learning (EL) related models. The algorithms are
summarized in Table 4.

TABLE 2 Summary of univariate time series load forecasting methods.

Classification Advantages Disadvantages Applicability

AR less information required; fast calculation
speed

high requirement for the smoothness of
the original time series

Short and medium-term load forecasting with large amounts of
historical data; broadly smoothed data; autocorrelated; highly

influenced by own historical factors

MA eliminate the effects of cyclical and
random fluctuations in the time series

large amount of historical data required can be uncorrelated; short-term and ultra-short-term load
forecasting with large amounts of historical data

ARMA solve the problem of random noise
variations

cannot deal with non-stationary time
series

for non-stationary time series, especially those with both short-
term and long-term correlation

ARIMA simple modeling cannot handle non-linear relationships processing of smooth and non-white noise time series for load
forecasting
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3.2.1 Support Vector Machine
SVM was first used mainly for data classification and has been

widely used to deal with load forecasting problems due to its good
nonlinear data handling capabilities. Emhamed et al. [21] used SVM
to predict the electric load. With the help of real data the MAPE of
SVM is minimum compared to other forecasting models. It is
proved that SVM has become a reliable and useful forecasting
model. SVM converges fast and does not have the problem of
number of network layers and local optimal solutions, but the
difficulty in determining hyperparameters leads to its poor
forecasting results. Therefore, optimization of SVM
hyperparameters with optimization algorithms is a key research
direction (Dai et al., 2022). proposed a hybrid model incorporating
feature selection and parameter optimization to improve SVM (Li
et al., 2022). designed an improved sparrow search algorithm to
solve the hyperparameter selection problem of SVM models
(Zulfiqar et al., 2022). carefully tuned the three parameters of
SVM using Multivariate Empirical Modal Decomposition
(MEMD) and Adaptive Differential Evolution (ADE) algorithms
(Zhao et al., 2022). optimized the combination of SVM
hyperparameters by maximizing the fitness function based on
particle swarm optimization algorithm. The optimized and
improved SVM model outperformed other comparative methods
with the lowest MAE, RMSE, MAPE and the highest R2, improving
the accuracy and stability of forecasting, as verified by the respective
test sets.

The SVM can be extended from classification problems to
regression problems to obtain Support Vector Regression (SVR).
The SVR model solves forecasting and regression problems by
seeking the optimal hyperplane, which can be well suited for
high-dimensional computations and reduces generalization
errors (Tan et al., 2020; Liu et al., 2022) combined
Multivariate Phase Space Reconstruction (MPSR) and SVR.
The two complement each other and the predicted values of
hot and cold electrical loads derived from this model have
minimal errors with the true values, which strongly
demonstrates the effectiveness of the SVR forecasting model
(Valente and Maldonado, 2020). proposed a kernel penalized
SVR algorithm for automatic lag selection and nonlinear
regression. The improved SVR algorithm has significant
advantages over time series methods and state-of-the-art
automated model selection methods in terms of forecasting
performance and correct identification of relevant lags and
seasonal patterns.

3.2.2 Artificial Neural Network
ANN is a mathematical model based on the basic principles of

neural networks in biology, which simulates the processing

mechanism of the nervous system of the human brain for
complex information. It has good nonlinear feature learning
ability and generalization ability (Yu et al., 2019). The model has
the function of associative memory, high accuracy of classification,
strong distributed parallel processing capability, and strong
robustness and fault tolerance for data sets containing a large
amount of noisy data. However, ANN also has many drawbacks,
such as the large number of parameters required for neural
networks, the difficulty of tuning parameters, and the need for
extensive data pre-processing work for non-numerical data (Chen
and Wang, 2022). applied a multi-objective grasshopper
optimization algorithm to optimize the parameter settings of
ANN (Xu and Wang, 2022). built a dynamic ANN model based
on a simple ANN by applying meta-learning and continuous
adaptive ideas. The simulation results show that the optimized
ANN model has high accuracy and robustness. However, the
deviation of the predicted value from the actual value is also an
important indicator to judge the effectiveness of the model.
Therefore, to address the deviation forecasting problem (Khwaja
et al., 2020),combined integrated learning with ANNs to construct
bagged-boosted ANNs models, and (Oreshkin et al., 2021) used the
pinball-mape loss function to control the forecasting deviation and
achieve a model with lower forecasting error lower and smaller
variance and bias.

3.2.3 Deep learning
Under the background of continuous upgrading of

computational tools and large-scale increase in the amount of
training data, the application of deep learning methods in the
field of load forecasting has been widely emphasized. Deep
learning models show strong performance in load forecasting by
extending the implicit layers or superimposing some specific
structures to improve the nonlinear fitting ability. The widely
used algorithms are CNN and RNN.

3.2.3.1 Convolutional Neural Network
CNN are used to extract features from things with certain

models, and later classify, identify, predict or decide on that
thing based on the features, etc. Its structure is highly scalable,
and the deep model using multiple layers has a stronger expressive
power and can handle more complex classification problems (Aouad
et al., 2021; Huang et al., 2022a). However, manual adjustment of
parameters is required, model training requires a large sample size,
and its physical meaning is unclear. Therefore, research scholars
have adopted the “CNN+" approach and combined it with other
algorithms to build a combinatorial forecasting model to solve the
problems of CNN (Aouad et al., 2021). proposed a CNN-Seq2Seq
model with an attention mechanism (Walser and Sauer, 2021).

TABLE 3 Summary of univariate time series load forecasting methods.

Classification Advantages Disadvantages Applicability

VAR rich structure to capture more
data features

large number of model parameters;
large sample size

capturing linear relationships between multiple variables in a time series;
load forecasting by analyzing the influence relationship between different

variables

VARMA strong modeling capabilities complex structure Multivariate time series suitable for removing trend and seasonal
components

rich parameterization process large number of operations
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TABLE 4 Summary of intelligent forecasting methods based on machine learning.

Classification Advantages Disadvantages Applicability

SVM overcome dimensional catastrophe and nonlinear
differentiability

difficult to implement for large-scale training samples; unsatisfactory for solving
multi-category inter problems

short-term load forecasting for small samples

ANN high parallel distribution processing capability; high fault
tolerance for noise

the need for a large number of initial parameters; long training time load forecasting by analyzing large amounts of data and multiple influencing
factors

CNN automatic feature extraction; stress-free for high-
dimensional data processing

nomemory function; need to manually adjust parameters; need a large number of
samples

extract coupled interaction features from large amounts of data for load
forecasting

RNN BiRNN access to historical and future information at a point in the
sequence

unable to process while receiving sequences handle the problem that the preceding sequence elements cannot sense the
output of the following sequence

LSTM solve the long-term dependency problem and gradient
disappearance problem

complex model structure; time-consuming training; difficult parameter selection short and long term load forecasting by processing and predicting interval and
delayed events in time series

GRU effective suppression of gradient disappearance or
explosion

Non-parallel computation flexible and versatile load forecasting; ability to memorize for a long period of
time

DL Good feature extraction ability; can effectively avoid
discrete spatialization

many hyperparameters; difficult to adjust the parameters; complex model
structure; long training time

Solve load forecasting for complex energy systems

EL good learning ability complex training process solve load forecasting with complex impact factors

high forecasting

accuracy
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proposed a combinatorial model by combining the advantages of
two basic models, decision trees and CNN (Wu et al., 2022). used a
K-shape clustering method to divide users with the same electricity
consumption habits and characteristics, which provided a better
choice of user clusters for forecasting, and then applied CNN to
capture the features, making CNN has better performance in load
forecasting. It is experimentally demonstrated that the new
combined model has significantly reduced the values of several
performance evaluation indexes such as MAE, RMSE and MAPE
compared to the related forecasting models, which improves the
overall quality of forecasting.

3.2.3.2 Recurrent Neural Network
RNN is an extension of traditional feedforward neural network.

It can handle variable length sequences and effectively solve the
gradient vanishing and explosion problems. RNN are roughly
divided into two broad categories: derived RNN and
combined RNN.

The first class is derived RNN, which modifies the internal
structure of RNN. For example, Gate Recurrent Unit (GRU) to solve
the long-term dependency relationship problem, Long Short-Term
Memory Neural Network (LSTM) to solve the gradient
disappearance or gradient explosion problem, and Bi-directional
Recurrent Neural Network (BiRNN) to solve the bi-directional
information acquisition problem.

1) Long Short-Term Memory Neural Network

(Ouyang et al., 2023) used LSTM forecasting algorithm for
electric cooling load forecasting (Wu et al., 2023). developed a
load forecasting model based on LSTM neural network for
industrial enterprises. It was proved by example that LSTM
performs well in load forecasting. However, the LSTM itself has a
complex structure and has a significant drawback that it has more
parameters and is not easy to adjust the parameters than a normal
neural network. To address this problem (Hu et al., 2022), applied
the Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) and the Improved Grasshopper
Optimization Algorithm (IGOA) were applied to the parameter
optimization of LSTM to obtain a load forecasting model with
optimal parameters. With the help of test set validation, the
optimized LSTM ranks highest in forecasting performance and
has higher forecasting accuracy when performing load forecasting
compared to related models (He et al., 2019). used variational mode
decomposition (VMD) method to optimize LSTM based on
Bayesian optimization algorithm (BOA). The proposed
forecasting method is applicable to time series data of various
types of loads. Using data from four-quarters of a certain year in
Hubei Province, China for simulation, the results show that the
forecasting model can better fit the actual load curve and has high
forecasting accuracy.

The problem of “long-term dependence” is common in RNN
training, resulting in gradient disappearance or gradient explosion,
which is effectively solved by LSTM (Sun et al., 2022). used LSTM
model for load forecasting and optimized the model with parameter
values. After the test set validation, the load forecasting curve
derived with the help of LSTM model is more consistent with
the actual load curve and has good forecasting performance.

Although the LSTM can solve the long-term dependence
problem, there is still the problem of not capturing the short-
term interdependence when the time series is too long. To solve
this problem (Ren et al., 2022), used an autoregressive algorithm that
combines LSTM and CNN to extract spatio-temporal features in
multiple time dimensions. The combined CNN-LSTM model was
compared with ARIMA and LSTM forecasting models, and the
forecasting accuracy was improved by 2.169% and 17.887%,
respectively, proving that the model has higher forecasting
accuracy in the short-term load forecasting performance of
electricity, heat and cooling.

In recent years, to further load the forecasting accuracy, research
scholars have proposed many variants of LSTM to obtain shorter
training time and better forecasting results. For example (Pei et al.,
2020), changed the characteristics of the original gates of the LSTM
and the transmission method of the units to perform multi-step
forecasting (Zheng et al., 2021). improved the LSTM infrastructure
in order to solve the nonlinear relationship between multiple loads
and the influencing factors in IES, and proposed the Deep
Bidirectional Long and Short-Term Memory (DBiLSTM). This
model learns historical load data simultaneously in both forward
and backward directions to mine more useful information
(Deepanraj et al., 2022). construct an Attention-based
Bidirectional Long and Short-Term Memory (ABiLSTM) (Wang
et al., 2021). construct a multitask learning model based on ResNet-
LSTMand attention mechanism. With the help of MAE, MAPE,
RMSE, R2 and other indicators to evaluate the electric cooling and
heating gas load forecasting results, it can be concluded that the
variant model has better forecasting performance and higher
forecasting accuracy than the base model, and will still play an
important role in the field of load forecasting in the future.

2) Gate Recurrent Unit

RNN is difficult to capture dependencies with large time step
distances in time series in practice. The GRU is proposed to capture
this layer of dependencies better. Compared with the LSTM, the
GRU has fewer parameters and is faster to train and run. However,
GRU cannot consider the state at future time, so the forecasting
accuracy cannot be further improved. To solve this problem, (Xuan
et al., 2021). Improved the traditional one-way GRU into a
Bidirectional Gated Recurrent Unit (BiGRU) to capture valid
information from the past and the future. Compared with a
single CNN and GRU forecasting model, the hybrid CNN-
BiGRU model has smaller values for two evaluation metrics,
MAPE and RMSE, which respond to the degree of deviation of
the predicted value from the true one. To make GRU play a greater
role in load forecasting (Wang et al., 2021), incorporated quantum-
weighted neurons into the GRU to construct a Quantum-Weighted
GRU (QWGRU) with stronger information processing and
optimization capabilities and higher forecasting accuracy than the
traditional GRU.

The second category is combinatorial RNN. It combines simple
RNN with other algorithms or forecasting models. The combined
models have complementary advantages, which results in better
model results and is a very effective means.

(Li et al., 2022) proposed a combined CNN-GRU forecasting
model based on IES small sample data by combining the advantages
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of coupled feature extraction of CNN and time series processing of
GRU. The combined model extracts coupling and correlation
features from the input data better than other models, further
optimizing the model performance. Using this model, the
forecasting accuracy of hot and cold electrical loads is improved.
In terms of the performance metric MAPE, the CNN-GRU model
improved the forecasting accuracy by at least 1% compared to the
single model and other combined models. Du et al. (Du et al., 2020)
combined three-dimensional CNN (3D CNN) and GRU to extract
valuable data from three dimensions, depth, width, and height, to
capture the temporal attributes with features. The features are then
mapped to future predictive loadings using nonlinear regression
with memory. Finally, the forecasting error evaluation index values
of MAE and RMSE are 2.14% and 2.76%, respectively, as verified by
the test set, and the combined forecasting scheme achieves good
accuracy and stability.

3.2.3.3 Deep learning combination model
Deep learning models can mine the features of load datasets at a

deeper level and improve the forecasting accuracy. However,
problems such as complex model framework and difficult
parameter selection need to be solved. Selecting models with
complementary strengths for combination is a very effective
solution.

It is known from the above introduction that LSTM can
accurately capture the pattern information of time series, and
CNN can extract valuable features from time series. Therefore,
research scholars integrate the advantages of both the long time
series processing potential of LSTM and the feature extraction
capability of CNN to construct forecasting models as a way to
improve the speed and accuracy of load forecasting. Ren et al. (Ren
et al., 2021) proposed a hybrid CNN-LSTM. The convolutional layer
of CNN is used to capture the features of power load data and LSTM
unique cellular structures are used for power load forecasting. Zhang
et al. (Zhang, 2022) extracted data features by CNN to construct
feature vectors, and then input the feature vectors into the Simulated
Annealing Particle Swarm Optimization (SAPSO) modified LSTM
by simulated annealing particle swarm optimization algorithm for
training. Shang et al. (Shang et al., 2021) proposed amultivariate and
multistep hybrid model based on CNN and LSTM by considering
historical load data and influencing factors such as weather, date and
economy, namely, MMCNN-LSTM. After experimental
demonstration and comparative analysis, the combined model
containing CNN-LSTM has the best performance in error
performance index, with high accuracy and good practicality and
stability.

3.2.4 Ensemble Learning
Ensemble Learning (EL) belongs to the algorithmic model of

machine learning. It is different from the principle of combinatorial
model building. Instead of combining individual sub-models
complementarily, it accomplishes the task by building multiple
learners. Firstly, it generates a set of base learners and then
combines these base learners according to certain rules to
improve the generalization ability of the model, which has good
results and is widely used in various fields (Xu andWang, 2022; Yao
et al., 2022). The commonly used EL algorithms are Bagging,
Boosting, Stacking and Blending.

Bagging is one of the first EL algorithms. It is simple in structure
but superior in performance. Bagging takes several weak machine
learning models and aggregates their forecasting to produce the best
forecasting. Bagging greatly reduces errors due to random volatility
of training data, thus avoiding overfitting and improving forecasting
accuracy and stability (Cai et al., 2022; Qiu et al., 2017) used the
Bagging algorithm to sampling to construct a sample set, and used
historical load data and influencing factors such as weather
conditions as input data to construct a combined kernel function
vector machine forecasting model for short-term load forecasting,
which effectively reduced the forecasting error and improved the
forecasting accuracy.

Boosting is similar to Bagging. It also obtains multiple base
learners by repeated sampling, and then finally a strong learner is
obtained. However, unlike the Bagging, Boosting is weight-based
learner integration where the sample weights are continuously
updated (Khwaja et al., 2020). combined bagging and boosting to
train ANN to construct a combined bagged-boosted ANN
forecasting model. This combined model contains several ANN
models trained in parallel and the forecasting load results from these
models are averaged to obtain the final forecasting load, which
effectively reduces the forecasting error and improves the
forecasting accuracy.

Stacking integrates multiple primary learners. It combines the
advantages of different learners to make the forecasting model with
strong generalization capability. Further, meta-learner is used to
optimize the output results of primary learners to improve the
overall forecasting accuracy (Gao et al., 2022; Chen andWang, 2021)
developed an IES electric load forecasting model considering load
synergy based on Stacking Ensemble Learning, combining Back
Propagation network, SVR, Random Forest and Gradient
Augmented Decision Tree. It was experimentally verified that the
synergistic forecasting model has lower MAE and MAPE metrics
and higher forecasting accuracy (Shi et al., 2023). proposed a load
forecasting method based on multiple differentiated models under
Ensemble Learning architecture. The validity of the model was
verified by using Swiss load data to calculate multiple model
forecasting error metric values.

The Blending fusion algorithm consists of two forecasting
parts, the base learner and the meta-learner. The data is divided
into two parts: training data and test data. The training data is
subdivided, and after the division, part of the training data is
used to train the base model and part is used as a new feature to
train the meta-model after model forecasting. The test data is
similarly predicted by the base model to form the new test data.
The Blending model can take advantage of the differences in the
forecasting principles of each model to achieve the
complementary advantages of each model (Xu and Wang,
2022). selected weak machine learning models such as KNN,
GRU, SVR, etc. to embed the EL model of Bagging as the base
learner of the Blending fusion model to enhance the stability of
the model. Finally, the model is validated with New England
electricity load data. The proposed model has the lowest
forecasting error and the best stability and generalization
ability of the forecasting model compared with other related
models.

To summarize, machine learning-based forecasting models have
been widely used for short-term load forecasting. However, some
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models ignore the importance of feature mining, parameter fine-
tuning, and forecast stability. Therefore, intelligent forecasting
methods based on machine learning are still in the process of
optimization and upgrading.

4 Current status of multiple load
forecasting research

Through the literature collation and analysis in the past 5 years,
the difficulties of load forecasting in IES are mainly reflected in two
aspects: complex influencing factors and difficulties in solving the
forecasting model. Since IES comprehensively covers energy forms
such as electricity, gas, heat and cold, it will be influenced by
numerous factors, such as time, weather and economy. Ignoring
these influencing factors will greatly reduce the accuracy of
forecasting. The complexity and diversity of the influencing
factors also lead to a significant increase in the difficulty of
solving IES load forecasting models.

Some researchers consider the comprehensiveness of the
influencing factors and try to exploit all the factors as input
features as much as possible, but this will lead to some irrelevant
factors being input into the prediction model, which will affect the
accuracy of the prediction; some researchers analyze the correlation
of the influencing factors in order to select the most relevant factors
as the input features, e.g., the correlation analysis is used to select the
input features, but the actual relationship between the multiple loads
and the influencing factors is not completely linear. However, the
actual multivariate load and the influencing factors are not
completely linear, and the application of correlation coefficient
has strict condition constraints, and the correlation degree
between the factors and the load obtained by correlation analysis
may be biased, which affects the final prediction accuracy.

4.1 Multiple load forecasting of the
influencing factors

Therefore, research scholars explore the coupling relationship
between loads and loads and loads and influencing factors in the
integrated energy system, and construct a combined forecasting
model with multi-model fusion to improve the efficiency and
accuracy of multivariate load forecasting.

In contrast to a single energy system, the different types of
energy in IES are coupled to each other through energy conversion
equipment. Therefore, different types of loads are coupled with each
other. It is necessary to consider the coupling relationship between
different types of loads when making integrated energy load
forecasting.

Ren et al. (Ren et al., 2022) analyzed the nonlinear relationships
among cold, heat, and electricity loads and the relationships between
loads and influencing factors such as temperature and holidays
based on Copula theory, and screened the input factors for load
forecasting based on the degree of influence (Li et al., 2022). used
Pearson correlation coefficients to quantify the coupling
relationships among loads and the temperature and humidity,
wind speed, and solar intensity, etc. and the correlation
information between historical loads. The most correlated

influences were selected as input variables for the model,
reducing the redundancy of influences (Niu et al., 2022). used
Pearson correlation coefficients to analyze the correlation
between cold, heat, and electrical loads and external factors (e.g.,
new energy power, temperature, and humidity) (Liu et al., 2022).
qualitatively analyzed the coupling characteristics between IES cold,
heat, and electrical loads and used Pearson correlation coefficients
the coupling characteristics. And Pearson correlation coefficient is
used to quantitatively describe the correlation between multiple
loads (Zhang, 2022). introduced a multi-task learning method to
extract the coupling relationship between IES temperature,
humidity, wind speed and multiple energy sources (Wang et al.,
2020). constructed a coupling feature matrix to represent the multi-
energy coupling characteristics. It breaks the independence between
different forms of energy, effectively reflects the cross-influence
between cooling, heating and electrical loads, and achieves a
comprehensive multi-energy analysis of IES. Huang et al. (Huang
et al., 2022) used feature clustering to analyze the influence of
different environmental factors on the electric cooling, heating
and air load forecasting results, and then used the K-means
clustering algorithm to establish feature clustering models of
various energy loads to obtain IES load forecasting results. In the
subsequent experimental validation, it is known that the load
forecasting error of the model considering the coupling
relationship between loads is the smallest, which confirms the
necessity of coupling analysis.

In summary, there are four categories of possible input variables
for the IES multivariate load forecasting model.

1) weather factors: temperature, humidity, wind speed, and
barometric pressure.

2) Temporal factors: weekdays, holidays.
3) Economic factors: GDP per capita, electricity price, electricity,

new energy, carbon trading price, hydrogen price.
4) Technical conditions: historical load data such as cold, heat,

electricity, gas, and hydrogen (Ke et al., 2023).

Analyzing the load historical data and influencing factors,
considering the coupling relationship between load and other
factors in the system, makes the multivariate load forecasting
with high forecasting efficiency and accuracy. It can better guide
the optimal design and energy management of IES, thus ensuring
that IES can operate economically, safely and reliably.

4.2 Combined forecasting methods for
multiple load

The complexity and diversity of influencing factors lead to a
significant increase in the difficulty of solving IES load forecasting
models. The selection of models with complementary strengths for
combination construction is a hot topic in current load forecasting
research.

Different multivariate load prediction models differ greatly in
terms of sample processing, feature selection, model parameter
optimization, etc., which makes it difficult to have a complete
prediction model that can be applied to all data analysis
domains, i.e., each model has its own advantages and applicable
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scenarios. Meanwhile, real data often contain many uncertainties,
such as noise, random interference, distortion, missing values, etc.,
which all have a great impact on the performance of prediction
models. At this time, different types of models can be combined to
play their respective advantages, avoiding the shortcomings of each
model to achieve the purpose of improving the prediction
performance. The common form of the combined prediction
model is the weighted average of the individual prediction
models, so the focus of the combined prediction model is on the
determination of the weighting coefficients. If the weighting
coefficients of the individual prediction models are assigned
reasonably, the prediction accuracy of the whole combined
prediction model will be improved accordingly.

From the literature review results, it can be found that CNN
combined with LSTM for correlated multivariate load forecasting is
widely used (Qi et al., 2020). constructed a CNN-LSTM combined
model to extract the coupling features between electric, cooling and
thermal loads using CNN and input the coupling features into
LSTM for load forecasting. The experimental results show that the
combined CNN- LSTM model has higher forecasting accuracy than
the wavelet neural network model, CNN model and LSTM model
(Ren et al., 2022). effectively combined the linear statistical
capability of AR with the ability of CNN and LSTM to extract
features to build a multidimensional feature fusion AR-CNN-LSTM
multi-load forecasting model. This model can extract coupled and
periodic features implied in IES load data from multiple time
dimensions (Wang et al., 2020). proposed a CNN-BiLSTM-based
load forecasting method to fully exploit the temporal and spatial
correlation of data and improve the forecasting accuracy (Yao et al.,
2022). constructed Attention-CNN based on the attention
mechanism -DBILSTM for short-term load forecasting method.
With the help of real IES data for forecasting, the proposed
model reduces the average forecasting error by about 2%, which
effectively improves the forecasting accuracy.

In addition, multi-task learning (Guo et al., 2022) has also
received much attention in model design because it can
effectively extract features (Zhang, 2022). constructed a CNN-
Seq2Seq model with the help of a multi-task learning approach
to extract the complex coupling relationships between different
energies of IES, taking into account the coupling relationships of
temperature, humidity, wind speed and multiple energy sources.
The training set validation yielded that the cold, heat and
electricity load forecasting results were closer to the real
values (Huan et al., 2020). proposed a load forecasting
method based on deep learning and multi-task learning. The
forecasting curves of electricity, hot and gas loads were validated
by the actual data set loads, and the MAPE values of the
proposed model for electricity, hot and gas were lower than
those of the comparison model. It proved that the proposed
forecasting model has excellent performance in terms of
computational efficiency and forecasting accuracy (Wang
et al., 2022). used a multi-task model to establish a joint
electric-heat-cool load forecasting model considering the
strong and complex coupling characteristics among multi-
energy loads. The average variation value of MAPE obtained
from the experiment was 0.0356%, and the forecasting error was
extremely small (Zhang et al., 2020). proposed a deep multitask
learning method for electricity, hot and gas loads forecasting

based on deep belief networks and multitask regression layers,
with the help of which the model can effectively analyze the
complex coupling relationships between several input
information types, resulting in an improvement in the
forecasting accuracy of all three loads by The forecasting
accuracy is significantly improved by about 2%.

5 Conclusion and future research
trends

5.1 Review summary

Nowadays, demand is changing dramatically and the total
demand for energy continues to grow. IES has achieved rapid
development and widespread application in the field of energy to
meet the different energy needs, while ensuring as much efficiency
and efficiency as possible in energy supply. Complex and
interdependent loads require accurate and effective load forecasts
to provide data support for subsequent system planning. In this
context, the paper examines many references to track the latest
research progress of load forecasting methods and to understand
current research points and load forecasting directions. The results
of the IES multi-load forecast research over the past 5 years have
been compiled and screened, and detailed comparisons and analyses
are carried out to provide intuitive and practical references for
subsequent multi-variable load forecast research.

1) Introduction of integrated energy systems’ coupling structures
and energy conversion equipment, analysis of the coupling
relations between energy conversion pathways, transmission
characteristics, and multiple energy sources such as heat and
cold, and studies of the intrinsic connections between multiple
loads and related factors such as climate (such as temperature
and humidity, solar radiation intensity, wind speed, rainfall),
economy (such as GDP, energy prices), and date. The intrinsic
link has shown that IES can successfully achieve optimal
planning and synergistic use between different energy systems
and maximize the benefits of IES while increasing the proportion
of renewable energy.

2) Traditional statistically-based forecasting methods (such as
regression analysis, one-variable time series, and multivariable
time series) are introduced, and three aspects are studied in
comparison to commonly used forecasting methods: advantages,
disadvantages, and applicability. Today, integrated energy
systems collect large amounts of data with decentralization,
diversity, complexity and real-time characteristics. Therefore,
traditional statistical analysis prediction methods require a high
requirement for sample sizes, dimensions, depths and data
quality, and in future research, input data sets must be
improved to obtain more accurate forecast results.

3) Intelligent forecasting methods based on machine learning, such
as SVM, ANN, DL, EL and combinatorial prediction, are
introduced, and relevant derivative models, such as GRU,
LSTM and DbiLSTM, are further explored on the basis of
simple models. By studying the intelligent forecasting
methods, it can be concluded that, firstly, the forecasting
effect of the combined model is significantly better than that
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brought by a single model in the case of large amount of data and
many influencing factors. Second, with the powerful feature
learning ability and fault tolerance of deep learning, applying
it to traditional machine learning algorithms, such as SVM and
genetic algorithm, can effectively handle the massive data and
complex calculations in load prediction and improve the
precision of multivariate load prediction. However, the
training process is more complex and time consuming, and
hyperparameter optimization is difficult, which requires in-
depth research in related fields in the future. Third, deep
learning algorithms based on an integrated learning
framework can effectively extract the advantages of each base
model, discard the shortcomings of deep learning algorithms in
model training, weight setting, hyperparameter optimization,
etc., and then use metamodels for classification and achieve
excellent forecasting results.

5.2 Future research trends

At present, IES multiple load forecasting is still a relatively
cutting-edge topic, and the related theoretical system is not yet
perfect. It is believed that in the near future, a more complete system
and more accurate forecasting methods will appear. In this paper,
only some of the IES multiple load forecasting methods are
summarized, and the methods not covered still need to be
studied in depth. Regarding the future research directions, based
on the literature study in this paper, the following points are
proposed:

First, there are many factors affecting IES multiple load, and only
some current mainstream and highly relevant influencing factors are
selected for discussion in this paper. However, the influencing factors
always increase with the development of IES, such as geographic
conditions like topography and landscape, demand response, user
characteristics, and major social events also affect the accuracy of
multiple load forecasting to some extent, which should continue to
be explored in depth in the subsequent research.

Second, as the structure of new power systems becomes more and
more complex, data-driven methods that are more adapted to the
development of IES should be applied, and the future development
trend is more focused on deep learning, integrated learning,
reinforcement learning, migration learning, and new machine learning
such asmeta-learning and fuzzy reasoning. Among them, Deep Learning
algorithms are the most widely used among many data-driven methods,
and the three areas of hyperparameter optimization, parameter training
tuning and performance evaluation of its prediction models are the focus
of future scholars’ research. Processing with heuristic algorithms, such as
particle swarm optimization algorithm, ant colony optimization and
simulated annealing method, canmake the load forecasting based on DL
algorithms more effective.

Third, the goal of combinatorial predictive modeling is to take
advantage of the strengths of themodels involved, integrate the strengths
of different models through an effective combination approach, and
overcome the shortcomings of each of the models, so that the
combinatorial predictive model can better mine the useful
information present in the data. At the present stage, the combined
prediction model is based on the weight assignment method, which
assigns different weights according to the performance of individual

models. The method is easy to be realistic and has strong adaptability to
the data, and the prediction performance is relatively stable, but the
weights of individual models are often assigned based on experience or
simple calculations, which is not very scientific. In the future, more
attention should be paid to the combination method based on model
structure and parameter selection. Because the hyperparameters
determine the solution rate and accuracy of the model, this
combination method is to optimize the prediction model to improve
the performance of the model, and it is also one of the key research
directions in the field of multivariate load forecasting in the future.

Fourth, after the new energy sources, such as wind power and
photovoltaic, and the new loads, such as energy storage, electric
vehicles and virtual power plants, are connected to the grid on a large
scale, the integrated energy system presents highly complex volatility
and uncertainty, and the large amount of multiple heterogeneous
data increases the difficulty of data analysis. In this context, with the
help of the deterministic forecasting methods discussed in this
paper, the forecasting results are subject to ineradicable errors,
and the multiple loads are difficult to be accurately forecasted.
Therefore, the future research direction may be more inclined to
probabilistic forecasting. Probabilistic forecasting differs from
deterministic forecasting methods in that the output result is not
a definite value, but the probability distribution, quantile, and
forecasting interval of the forecasting object as the output form.
Meanwhile, machine learning algorithms such as neural networks
and deep learning have powerful nonlinear mapping capabilities,
which can significantly improve the reliability of probabilistic
forecasting when combined with probabilistic forecasting
methods, and should be widely applied in subsequent research.
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