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Abstract The commercial cloud offers on-demand computational resources that could be revolutionary
for the seismological community, especially as seismic datasets continue to grow. However, there are few
educational examples for cloud use that target individual seismological researchers. Here, we present a re-
producible earthquake detection and association workflow that runs on Microsoft Azure. The Python-based
workflow runs on continuous time-series data using both template matching and pre-trainedmachine learn-
ing models. We provide tutorials for constructing cloud resources (both storage and computing) through a
desktop portal and deploying the code both locally and remotely on the cloud resources. We apply the cloud-
basedworkflow tooneyear of continuousdata fromamid-ocean ridge todemonstrate the constructionof two
earthquake catalogs, one through template matching and one with a pre-trained machine learning model.
We report on scaling of compute times and costs to show that CPU-only processing is generally inexpensive,
and can be faster and simpler than using GPUs. Overall, we find that the commercial cloud presents a steep
learning curve but is cost-effective. This report is intended as an informative starting point for any researcher
considering migrating their own processing to the commercial cloud.

Glossary for frequently-used terms
Commercial cloud – computational resources that are avail-

able for use remotely throughapay-as-you-go system.
Cloud providers deliver access to these resources,
which are physically maintained in large centers of
computing servers, through the internet. Major cloud
providers include Microsoft Azure, Amazon Web Ser-
vices, and Google Cloud Platform.

CPU – “Central Processing Unit”. This is the part of a com-
puter that interprets instructions toperformcomputa-
tional tasks. The CPU of a computer typically hasmul-
tiple “CPU cores”, which can each perform one task at
a time. In this report, we use the word “CPU” tomean
an individual CPU core, such that one CPU can per-
form one task at a time.

GPU – “Graphics Processing Unit”. This is a specialized com-
puting processor that is designed to handlemany spe-
cific small tasksatonce,moreefficiently thanaCPU. In
machine learning, they are commonly used to greatly
speed up the training and application of neural net-
works, which can be applied to earthquake detection.

Parallelization – the act of splitting up a computational task
into multiple independent steps, and running these
steps on different CPUs or GPUs at the same time, to
greatly decrease the overall timeneeded for computa-
tion.

∗Corresponding author: zkrauss@uw.edu

Virtual machine – a resource provided by the commercial
cloud that mimics the functionality of a typical com-
puter with chosen amounts of CPUs, GPUs, andmem-
ory, but effectively is a barebone operating system
which is isolated from the total resources of a larger
physical server.

Motivation
Major recent advances in seismological research have
been driven by seismic datasets that are dense in both
space and time. These include, to name a few, the dis-
covery of slow earthquakes and tectonic tremor (Obara,
2002; Rogers and Dragert, 2003), constraints on the
propagation of large earthquakes using back projection
(Ishii et al., 2005), and the imaging of shallow Earth
properties through the cross-correlation of the ambi-
ent seismic field (Shapiro et al., 2005). Recognizing
the value of such datasets, community and institutional
seismic networks are rapidly increasing the rate and
volume of public seismic data. Today, the amount of
seismic data available on the IRIS DMC approaches 1
PetaByte, with new technologies able to collect this
amount annually (Lindsey et al., 2017). This growth
has made seismological research a big-data field that
requires methodological advancement and computa-
tional infrastructure to maximize discovery (Quinteros
et al., 2021).
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The realization that tectonic events share fundamen-
tally similar physical processes has led seismologists
to develop supervised techniques to search the data
based on similarity with past events. The technique
of template matching, also referred to as matched fil-
ter, scans continuous data and detects events using a
correlation coefficient with respect to a template (Gib-
bons and Ringdal, 2006; Turin, 1960). Template match-
ing (TM) is robust at detecting new occurrences of pre-
viously seen phenomena and finding events buried in
noise (Ross et al., 2019; Shelly et al., 2007). Open-source
software to implement TM that makes use of the eas-
ily parallelizable nature of the technique is available
(Beaucé et al., 2017; Chamberlain et al., 2017), but com-
putational requirements can still be prohibitive when
the number of templates is large.
In recent years, seismological research has seen a

rapid and massive adoption of statistical and machine
learning algorithms in automating seismological re-
searchworkflows (Mousavi et al., 2020; Perol et al., 2018;
Walter et al., 2021; Yoon et al., 2015; Zhu et al., 2023).
The focus has largely been on developing and testing
workflows on curated earthquake data sets (Michelini
et al., 2021; Mousavi et al., 2019; Münchmeyer et al.,
2022; Ni et al., 2023). Thus far, only several studies
have used machine learning methods to detect new
events in continuous seismic records (Tan et al., 2021;
Scotto di Uccio et al., 2023). This may be in part be-
cause machine-learning models yield inconsistent pre-
dictions (Park et al., 2023); however, a more likely bar-
rier to the adoption of machine learning techniques is
the high entry cost associated with the computational
skills and resources needed to deploy on continuous
data.
With the coincident increase in both dataset sizes and

the computational cost of state-of-the-art earthquake
detection techniques, there is a growing need for seis-
mological workflows to deploy on the cloud (Arrow-
smith et al., 2022). Large seismic datasets arewell suited
for data sharing on cloud object storage, and some in-
stitutions such as the USGS and the Southern Califor-
nia Earthquake Data Center have begun migrating raw
data and data products to cloud storage permanently
(Schovanec et al., 2021; Yu et al., 2021). Despite large
archives being on the cloud for a few years, few stud-
ies have leveraged them (Clements and Denolle, 2023).
Some authors have demonstrated the overall great hori-
zontal scaling performance of cloud computing and de-
veloped workflows that stream data using webservices
(MacCarthy et al., 2020; Zhu et al., 2023), but the deploy-
ment strategies used (e.g., Docker, Dask, Kubernetes)
are difficult for researchers to learn and deploy. Most
of the seismological community faces a steep learning
curve to shifting their functioning local workflows to-
wards cloud computing, limiting its widespread adop-
tion.
This report is distinct from other published seismo-

logical cloud-based workflows (Zhu et al., 2023) in that
we aim to help the average seismological researcher
build their own cloud computing version of their lo-
cal processing algorithms from the ground up. We
demonstrate this through the example of building an

earthquake catalog from continuous data. We first de-
velop a workflow to run locally using parallel process-
ing in Python. The workflow applies the two most-used
contemporary techniques of supervised earthquake de-
tection: template matching and pre-trained models
from machine learning, including earthquake detec-
tion, phase picking, and association. Then, we describe
what is needed to migrate this workflow to the cloud,
including constructing cloud storage, code containers,
and cloud computing pools. We useMicrosoft Azure be-
cause of resources available to us through our home in-
stitution, but we report that the core framework is sim-
ilar to other major cloud providers, provided that re-
searchers adapt for provider-specific storage and com-
pute systems. We describe the workflow in detail and
provide Jupyter notebooks and instructional materials
through a GitHub page (Krauss et al., 2023a). We at-
tempt to follow the guidelines of FAIR4RS (Barker et al.,
2022; Wilkinson et al., 2016), which recommends that
published software and metadata be human and ma-
chine findable, accessible via GitHub, interoperable,
and usable & reusable.
We provide cost and timing context for what users

may expect for typical seismic workflows by document-
ing scaling performance, including a comparison be-
tween strategies that use either CPU or GPU comput-
ing (see Glossary). We also present results of the earth-
quake catalog workflow on the tectonically active En-
deavour segment of the Juan de Fuca mid-ocean ridge,
which act as a proof-of-concept of how templatematch-
ing and machine learning techniques can be used to-
gether construct a detailed earthquake catalog.

Local Workflow
First, we describe how to build the workflow for a lo-
cal implementation: this represents the first-step case
of most individual researchers. We design a work-
flow to have two separate but operationally equivalent
“branches” for the two earthquake detection methods
of interest (Figure 1). The format and file structure of
the input seismic waveform data is the same for both
branches. Both branches produce earthquake detec-
tions in the same output format, QuakeML, anXML rep-
resentation of earthquake metadata widely used by the
seismic community (Schorlemmer et al., 2011).
TM is performed using EQcorrscan, an open-source

Python toolbox for earthquake detection via the cross-
correlation of waveform data with earthquake tem-
plates (Chamberlain et al., 2017). Detection parameters
including filter bands, template lengths, and the type
and magnitude of the detection threshold are specified
in the config file as described in Section 2.1. After TM
detection, redundant events are removed between tem-
plates by identifying events that occur within a given
time threshold of each other (e.g., 1 s), and keeping only
the event with the highest detection value.
For a comparison to machine learning-based earth-

quake detection methods, the other branch uses Seis-
Bench, an open-source flexible Python framework
for deploying seismological machine learning models
(Woollam et al., 2022). Our example workflow uses
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Figure 1 Flowchart of our workflow for performing earthquake detection on seismic waveform data, showing the two
branches, TM and EQT, side by side. Each script’s name, data format, filename extension, and unix commands are described
for transparency and reusability.

EQTransformer (Mousavi et al., 2020) for phase pick-
ing and GaMMA (Zhu et al., 2022) for phase associa-
tion; however, employing a different machine learning
model would be straightforward through the flexibility
of SeisBench. We do not perform model training, but
only model inference: we use the pre-trained EQTrans-
former model provided by SeisBench, which is identi-
cal to the original model weights from Mousavi et al.

(2020), to make P- and S-wave picks on all stations. To
sweep continuously through the data, we use a sliding
window of length 60 s with a step of 30 s and a detec-
tion threshold of 0.1 for both P- and S-waves. We then
performphase association using GaMMA, assuming 7.0
and 4.0 km/s as constant velocity for P- and S-waves,
respectively, and requiring only one station with picks
to form an event. These specifications are made in the
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config file required for the code execution.

Local set-up

We retrieve seismic waveform data from the IRIS DMC
(Trabant et al., 2012) for a given time period using the
ObsPy Python toolbox (Beyreuther et al., 2010). Three-
component waveform data are resampled to a com-
mon sampling rate and stored in day-long chunks for
all channels from a single station in the same way
they are stored natively within the DMC. We organize
these data in a descending folder structure first by net-
work, then year, then day of the year, with individual
MiniSEED files saved for each station. The naming of
these files is important to parallelization later in the
workflow. The data download can be performed using
the /scripts/download_mseeds.py script (Figure 1),
with date limits, network name, station and channel
codes, and theoutput data directory specifiedwithin the
config file (Notebook S1).
The TM branch requires an input of earthquake tem-

plates as an EQcorrscan Tribe object, stored in TAR
format. An example script that constructs these tem-
plates from waveform data, using a starting earth-
quake catalog in QuakeML format, can be found at
/scripts/template_matching/make_templates.py .
Finally, to ensure the portability of the code across

machines, we specify all file paths, detection parame-
ters, and machine characteristics in JSON format in a
config file in the /configs/ folder. Notebook S1 details
the construction of these files. The config files are refer-
enced in the call to the scripts that execute earthquake
detection (Figure 1).

Single-node parallelization

A single computer, or node, typically has several CPU
cores (hereafter referred to simply as CPUs) and is the
smallest level of parallelization. Earthquake detection
can be easily parallelized such that the computation is
performed simultaneously for different time periods on
different CPUs. For the EQT branch, which performs
phase picking on one station at a time, we consider one
day of earthquake detection on one station to constitute
a single job. For the TM branch, which jointly performs
phase picking and association on data from a complete
network of stations, we consider one day of earthquake
detection on all stations to constitute a single job.
When deploying our workflow locally, we organize

the distribution of jobs across available CPUs by first
creating a job list in CSV format (Figure 1). The
job list is a simple table that ties the file path of
MiniSEED data to a CPU number (Figure 1). The
script to create this job list, create_joblist.py , is
different for the TM and EQT branches, and can
be found in the /scripts/template_matching/ and
/scripts/picking/ directories, respectively. The job
list CSV file can be created by running the script from
the command line with additional arguments that spec-
ify howmany CPUs to parallelize jobs across, and a path
to the JSONconfigfilewhich contains date limits and the
path to the waveform data (Figure 1, Notebook S2).

We then distribute the jobs across CPUs in parallel us-
ingOpenMPI (O-MPI), an open-sourcemessage passing
interface (Gabriel et al., 2004). When O-MPI is called
at the start of a Unix-style command, the command is
simultaneously deployed separately to as many CPUs
as specified. In our local workflow, we use O-MPI to
run a distributing script distributed_detection.py
(Figure 1, Notebook S2). As the distributing script runs
on each individual CPU, it reads in the created job list
and filters the job list to include only those assigned
to the current CPU. The distributing script then loops
over the filtered list and completes the job by running
the script in which the actual detection is performed,
detection.py , on the specified data path. This op-
eration is the same for both the template matching
and machine-learning workflows, with the template
matching workflow parallelized over days only and the
machine-learning workflow parallelized over both days
and stations.

The TM branch outputs a catalog of detected
earthquakes with P- and S-wave picks for each
day of detection in QuakeML format. These daily
catalogs can be converted to a summative earth-
quake catalog, also in QuakeML format, using
/scripts/template_matching/combine_catalogs.py ,
which collates and removes duplicate detections be-
tween templates (Notebook S3). The EQT branch
outputs a list of P- and S-wave picks for each day
of detection in Python Pickle format. These picks
can be associated into individual earthquakes using
/scripts/association/associate.py , which pro-
duces an equivalent summative earthquake catalog in
QuakeML format (Notebook S3).

CloudWorkflow

The value of the commercial cloud lies in the ability of
an individual to pay for the use of computational in-
stances of flexible size at any time in a “pay-as-you-go”
structure. However, these virtual machines (VMs) are
effectively a blank computer with a user-specified con-
figuration. The configuration of a VM consists of user-
specified CPU cores, RAM, and local storage. VMs can
be chosen with a range of Operating Systems and envi-
ronments. We recommend choosing a blank environ-
ment and installing only the necessary dependencies.

Using a VM in a way that mimics local workflows re-
quires an ecosystem of cloud resources: a storage con-
tainer that the VM can read from and write to, a pack-
aged software environment with all desired scripts and
their dependencies, and an overarching set of network-
ing permissions that allows all resources to work in tan-
dem (Figure 2). In this section, we describe the con-
struction of an example set of these resources on Mi-
crosoft Azure, point to additional materials that further
detail how to construct them, and describe how to use
the constructed resources to process seismic data in
parallel.
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Figure 2 Map of how cloud resources relate to processes run on the local server and the containerized code.

Resource set-up
Containerizing the code base

In order to transition our local research workflow from
our computer to the cloud, we first need to encapsulate
all dependencies needed for the scripts to successfully
execute. Containers are a standard way to define amin-
imal reproducible computing environment, such that
you can guarantee your analysis will run on any other
computer. There are various software systems to define
and build containers. Docker is a widely-used system of
software tools to create, store and execute code as con-
tainers. The container image is defined by a Dockerfile,
which specifies the operating system software depen-
dencies and command to execute. Images are typically
stored on a server that can be accessed over the inter-
net so that any computer can “pull” the image and start
the container that executes your code. This allows for
a high degree of parallelism because there can be thou-
sands of containers each executing on different cloud-
hosted virtual machines.
Because our code is hosted in a GitHub reposi-

tory named “seismicloud” (https://github.com/Denolle-Lab/
seismicloud, Krauss et al., 2023a), we use GitHub Actions
continuous integration to build the container. Every
time the repository is updated, the script docker.yml re-
builds a container image based on the Dockerfile in the
repository. Specifically, the container image installs all
Python dependencies (ObsPy, EqCorrscan, etc.) in a ba-
sic Linux operating system and copies the current ver-
sion of the seismicloud codebase, including all scripts
and data files. The container image is stored on the
publicly-accessible GitHub Container registry. Any ma-
chine can create a container of the seismicloud work-
flow by accessing the URL and corresponding GitHub
commit (e.g. docker run ghcr.io/denolle-lab/
seismicloud:latest).

Initiating an Azure cloud account

Creating a user account on Azure is free, but a form of
payment, or “subscription”, must be tied to the account
in order to create resources. For NSF-funded projects
with provisions for cloud computing, this is sometimes
done through a supported service, CloudBank (Norman
et al., 2021). Once a subscription has been set up and
users gain access to the Azure portal, users should be-
gin by creating a budget for their subscription with au-

tomatic alerts for when spending has reached a given
percent of the allocated funding (Tutorial S1). The next
step is to create a “resource group”, which will be used
to tie the cloud resources users create to the subscrip-
tion. Finally, a “virtual network” is created, which is
a set of permissions that allows you to access the cre-
ated resources and also allows those resources to access
each other. Multiple users on the same subscription
whowill be carryingout separateprocessing should cre-
ate their own separate resource groups and virtual net-
works. All of these actions are performed on the Azure
portal, which is accessed through a web browser (Tuto-
rial S1). We note that we built all of our cloud resources
exclusively in the West-US 2 region, which was closest
to our local servers in Seattle, Washington.

Storage container

The commercial cloud also provides opportunities for
data storage that follow pay-as-you-go pricing. Cloud
storage tends to use the model of object storage, which
is designed to sustain high frequency data query. InMi-
crosoft Azure, this is called Azure Blob storage. Blob
storage containers are easily read from and written to
by virtualmachines so long as the storage container and
virtualmachine are under the same virtual network and
necessary permissions are specified (see Tutorial S2).
The cost of the container is dependent on how much
data is actively stored and how frequently data is trans-
ferred into or out of the container. For Azure blob stor-
age at the time of writing, the cost to store 1 TB of data is
approximately $150 USD per month. Given these costs,
typical individual researchers may not want to use Blob
as a backup hard drive, but instead use it as temporary
storage during computation.
For our workflow, we created one Azure Blob storage

container to store raw waveform data and the outputs
of processing, including earthquake catalogs, job lists,
and processing logs. This choice was driven by our de-
sire to centralize storage for parallelized computation.
Tutorial S2 details the creation of the Blob storage con-
tainer through the Azure portal, including the settings
needed to facilitate mounting of the container to vir-
tual machines later in the workflow. To load waveform
data to the Blob storage container, we downloaded it
on our local servers and then copied it to the storage
container using Azure’s command line utility AzCopy
(see Tutorial S2). Waveform data could also be down-
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Figure 3 Example flowchart of how Azure cloud Pool-based Parallelization works for the Template Matching workflow, fol-
lowing the color scheme of Figure 2. The EQTransformer workflow is identical, except that the data paths are specific to both
the day of the year and the seismic station.

loaded fromwebservices and stored directly on the stor-
age container by running the download_waveforms.py
script within the Docker container on a virtual machine
with the Blob storage container mounted.

Pool-based parallelization
A powerful option offered by the commercial cloud is
the ability to deploy tasks to not just one virtual ma-
chine, but pools that can be scaled to include many
virtual machines, all managed from one account. In
Microsoft Azure, this is performed through a resource
called Batch. Batch accountsmanage two separate enti-
ties: (1) Pools, groups of virtual machines (each called a
node when within a Pool), each of which has an identi-
cal size and computing environment, and (2) Jobs, sets
of commands that are passed to nodes within a Pool,
which run with specified settings: inside of a Docker
image, for example. Creating a Pool that runs correctly
with the user’s chosen Docker image and is connected
to the user’s desired Blob storage container is compli-
cated, but once the Pool has been created, its specifica-
tions are saved and you can resize it as needed to run
operations on-demand.
Users begin by creating a Batch account which will

manage both Pools and Jobs through the Azure portal
(see Tutorial S3). A Pool can then be created with a cho-
sen node/virtual machine size, number of nodes, and
region. Tutorial S3 details this process. To ensure that
thenodes canexecute commandswithinourDocker im-
age, the operating system of the Pool must be specified
as Docker compatible. We mount the Blob storage con-
tainer to each node on the Pool through a start-up com-
mand line task. After a Pool has been created, the sta-
tus of the nodes can be monitored from the Azure por-
tal within the Batch account. The Pool can be resized
at any time to contain anywhere from 0 up to the user’s
given quota of nodes, with all nodes created in the same
manner specified when the Pool was created. If quotas,
or limits imposed by Azure on how many CPUs can be
given to one user in a given region, restrict the Pool the
user wants to build, they can be increased through sup-
port requests (Tutorial S3). We note that starting quotas
for a new user are often quite low, e.g. only 4 vCPUs in
a given region.

Once a Pool has been created and the nodes on the
Pool have successfully mounted the Blob storage con-
tainer, we create and send Jobs to the Pool from a lo-
cal server (e.g., a laptop) using Azure Python libraries.
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Notebook S4 details this process. We use the Azure
Python libraries to connect to both theBlob storage con-
tainer and the Batch account using the account names
and keys. We then create an empty Job on the Batch
account that is tied to the already-created Pool. Next,
we decide howmany “Tasks” we need to send to the Job
based on the number of nodes within the pool, N. Tasks
are a single unit of computation, or one command line
sent to one node. If all nodes are in use, the Job will
keep Tasks in a queue until one becomes free. In our
case, we create N Tasks such that the Tasks and nodes
are matched 1:1 and there is no queuing. Each Task
contains two command line operations: (1) creating a
job list in CSV format following Figure 1, and (2) dis-
tributing the jobs across CPUs on the node using O-MPI.
These commands contain an argument that indicates to
the node which index, 1-N, they correspond to. During
the creationof eachTask,we specify that the commands
are run within our Docker image; each node runs a sep-
arate Docker container, such that the first task run on
eachnodeneeds to additionally pull down the container
image.

The scripts called in the command lines are found
in the /batch_scripts/ directory of the Docker im-
age. These Batch-specific scripts are very similar to
the scripts called during local parallelization and are
named in the same way (Figure 1), but are slightly
modified to accommodate two levels of parallelization:
across nodes, and across CPUs on each node (Figure 3).
We avoid the need for inter-node communication by
first creating aCSVjob list that assigns each job to anode
in the Pool rather than an individual CPU, such that each
node creates the exact same job list. After the initial
job list is created, however, each node then filters the
job list following the number, 1-N, of the node, which
is specified in the creation of the Task. The filtered,
shortened job list is then redefined such that each job
on the list is assigned a CPU number instead. The pro-
cess then runs the same way as the single-instance par-
allelization, where the jobs on the job list are distributed
across CPUs on the nodes using O-MPI (Figure 3). The
outputs from all nodes, including job lists, logs, and cat-
alog/pick outputs, are written to themounted Blob stor-
age container (Figure 3). These outputs can be down-
loaded locally also using Azure’s command line utility
AzCopy, as detailed in Tutorial S2.

We choose to use Batch services rather than a work-
load manager such as SLURM (Yoo et al., 2003), as is
typically used in high performance computing (HPC),
for several reasons. To use such a system on the cloud
would require running a persistent machine to han-
dle orchestrations, which would add cost and complex-
ity. With Batch services, orchestration is instead done
by the cloud provider at the time of job submission.
Batch services also tend to be focused on independent
containerized workflows whereas HPC scheduling sys-
tems are designed for non-containerized workflows on
closely networked hardware.

Computational Performance

To understand how compute time and costs scale with
different Pool sizes and types, we ran both the TM and
EQT branches on one year of raw waveform data, ~600
GB in our case. We used data from 2017 for the Ocean
Networks Canada NEPTUNE array (network code NV), a
cabled 4-station ocean bottom seismometer network on
a mid-ocean ridge (Heesemann et al., 2014). These data
are locally available from the IRIS DMC.We performed
limited preprocessing, only resampling all streams to a
common sampling rate of 200 Hz. For the TM branch,
we ran detection with a set of 53 templates chosen as a
representative sample across themonths of 2017 follow-
ing Krauss andWilcock (2022).
We constructed two separate Azure Batch Pools for

the TM and EQT branches following the steps outlined
in Tutorial S3. For the TM Pool, we used a memory-
optimized instance type, the standard_e4_v3 , to ac-
commodate the intensive memory needs of cross-
correlation. We found that we needed a minimum
memory size of 32 GB, which is paired with 4 CPUs in
Azure’s virtual machine options, to avoid memory er-
rors from EQcorrscan. For the EQT Pool, we used a
compute-optimized instance type, the standard_f4s ,
also with 4 CPUs. The price of equivalent type but larger
(more CPUs) virtual machines increases linearly. This
is an advantage of using the cloud: it is the same cost
to run 60 equivalent machines for one minute as it is to
run 1 machine for 60 minutes.
We ran earthquake detection for the entire year of

2017 for both the TM and EQT branches on their cor-
responding Pools with increasing Pool sizes, from 1-64
nodes, or 4-256 CPUs, and documented compute time
and associated costs (Figure 4). The compute times re-
ported in Figure 4 include only the time needed to pull
the image once and then run the tasks described in Fig-
ure 3, and do not include the additional time needed for
waveform download, template construction, Pool start-
up, or pick and catalog post-processing. Pool start-up
times normally do not exceed 10 minutes, though this
varies based on current user traffic in the region. Since
start-up processes are run in parallel across nodes on
thePool, overhead start-up timesdonot tend to increase
with number of CPUs or GPUs. The times shown are the
mean of the compute time of all Tasks sent to the Pool,
which vary slightly due to detections per day and data
gaps. The costs associated with each earthquake detec-
tion run were calculated by multiplying compute time
and number of nodes by Azure’s per-hour pricing of the
corresponding virtual machine type at the time of writ-
ing.
We find that the compute times and costs of both

TM and EQT detection scale similarly with numbers of
CPUs, with TM detection taking on average 38% of the
time needed for EQT detection (Figure 4a). They no-
tably do not scale as one divided by the number of cores
despite our distributedmemory parallelization scheme,
because we do not use inter-node communication. We
do not parallelize across all CPUs in the Pool, but only
across groups of CPUs. So, if one day of detection takes
longer on Node 4 than on Node 5, the next detection
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Figure 4 Scaling relationships between compute time, cost, and number of CPUs used for both the Template Matching and
EQT workflows.

slated for Node 4 cannot be moved to Node 5 even if
Node 5 is idle.
For all Pool sizes tested, we find that the cost of com-

putation is less than $5 USD (Figure 4b). Both the TM
and EQT tests show that the minimum cost is associ-
ated with a Pool size of 4 nodes, or 16 CPUs, with costs
then increasing with increasing Pool size. The cost for
the TM tests are lower than the EQT tests due to lower
compute times; the virtual machine type used for the
TM Pool, standard_e4_v3 , was slightly more expen-
sive than that used for the EQTpool, the standard_f4s ,
at $0.25 USD/hour and $0.19 USD/hour, respectively.
Constructing our workflow to run only with CPUs and

not GPUs was a decision we made to simplify the set-
up of our Pools and to minimize the size of our Docker
container. By not requiring the CUDA libraries for our
Docker container, we reduced the size of the image from
6 GB to 1.4 GB. We also avoided the need for additional
complexity in the parallelization method, such that we
did not need to distribute tasks across both CPUs and
GPUs and manage the communication between them.
However, for methods that use deep learning networks
such as EQT, GPUs are typically employed duringmodel
training to significantly accelerate computation time.
In order to investigate how the speed-up offered by

GPUs compares to the lower cost of CPU-only instances,
we ran three tests of the EQT branch on an available lo-
cal server that had 4A100GPUswith 80GB of RAMeach.
Microsoft Azure has an equivalent virtual machine size,
the NC24ads, NC48ads, and NC96ads, with 24, 48, and
96 vCPUs, and 1, 2, and 4 A100 80 GB GPUs, respectively.
We evenly distributed the jobs among the GPUs. We
recorded the compute time for the 2017 data for three
separate tests running locally, using (1) 24 CPUs and 1
A100 GPU, (2) 48 CPUs and 2 A100 GPUs, and (3) 96 CPUs
and 4 A100 GPUs (Figure 4c). Using the timing informa-
tion and pricing information from Azure, we calculated

the equivalent cost to run on the cloud using the same
computing set-up (Figure 4d). The cost of running on
GPU instances is > 3x that of CPU-only instances, with
the F4s instance (24 vCPUs) costing $1.19/hour in the
West-US 2 region and theNC instance (24 vCPUs) costing
$3.80/hour.
For our use case, we find that the same computa-

tional speed-up from GPUs can be achieved with only
CPUs for a fraction of the cost. For instance, running
the EQT branch on one year of data using 128 CPUs
from the F4s instance had a compute time of 37 min-
utes, while the same test ran using 96 CPUs and 4 A100
GPUs took 38 minutes (Figure 4c). These two tests had
associated costs of $3.93 USD and $9.38 USD, respec-
tively. While the cost of both of these tests is relatively
inexpensive, we point out that the speed-up offered by
GPUs is marginal in comparison to the extra time and
effort needed to address the complications of paralleliz-
ing across GPUs and to increase the size and complex-
ity of the Docker container. It should also be noted that
these results are application dependent: we do not at-
tempt to parallelize the TM branch using GPUs with the
capabilities of the Fast Matched Filter method (Beaucé
et al., 2017) in order to avoid adding CUDA dependen-
cies to the containers.

Example Results
We report results of the TM and EQT detection work-
flows applied to one year of seismic waveform data. We
do not intend for these results to represent a thorough
comparison of the two methods because we did not it-
erate on thresholding parameters for either the TM or
EQT branches of detection. This section instead serves
as a demonstration of the results of our describedwork-
flow.
We apply the TM and EQT detection workflows to

waveform data from 2017 for the NV network, a cabled
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Figure 5 Results of earthquake detection on the NV network for the year of 2017. (a) Histogram of earthquakes detected
using either TM or EQT in comparison to the catalog of Krauss et al. (2023b), with binwidths of 1 week. The plotted TM events
all have absolute cross correlation sums of greater than 3.2, and the plotted EQT events all have at least 6 picks included in
the associated event. (b)Histogramof howmany overall pickswere common to theKrauss et al. (2023b) catalog for either TM
or EQT at a threshold of 0.5 s pick difference, with bin widths of 1 week. Note that the y-axis is shown in log-scale to improve
visual comparison. The data gap in 2017-08 was due to a network outage.

ocean bottom seismometer network that sits within
the hydrothermal vent fields of the Endeavour segment
on the Juan de Fuca ridge (Heesemann et al., 2014).
This area typically experiences at least 10 shallow small
earthquakes (Mw < 2.5) per day and frequent swarms.
Most recorded earthquakes are located within 40 km of
the network. For ground truth comparison of the re-
sults of TM and EQT detection, we use the catalog of
Krauss et al. (2023b), which was created using tradi-
tional STA/LTA methods and has a magnitude of com-
pleteness of Mw ~0.5 for earthquakes within the net-
work.

For theTMdetection, we use a set of 53 templates that
were chosen as representative of the most frequently-
occurring families of earthquakes with high waveform
similarity during 2017 following Krauss and Wilcock
(2022). This is far fewer than the total number of earth-
quakes (> 11,000) in the Krauss et al. (2023b) catalog for
2017 (Figure 5a), such that we do not expect the TM de-

tection to be able to fully reconstruct the entire catalog.
We present the TM detections that have a summed ab-
solute cross correlation across the eight template chan-
nels greater than 3.2 (Figure 5), equivalent to a median
absolute deviation threshold near 8. For EQT detection,
we use the EQT model pretrained on STEAD and re-
quired both P- and S-wave thresholds of 0.1, similar to
(Jiang et al., 2022; Scotto di Uccio et al., 2023). For EQT,
we include earthquakes that contain at least 6 picks af-
ter association through GaMMa (Figure 5).

In contrast to the 11,000 located earthquakes in the
Krauss et al. (2023b) catalog, theTMand EQTworkflows
find 3,543 and 924 earthquakes, respectively (Figure 5a).
Figure 5 compares the total number of picks made by
EQT and TM directly to the Krauss et al. (2023b) cata-
log, separately classifying those that are common to the
catalog (Figure 5b) and those that are “new” picks (Fig-
ure 5c). We classify a TM or EQT pick as common to the
Krauss et al. (2023b) catalog if it has the same station,
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phase, and occurs within 0.5 s of a pick in the Krauss
et al. (2023b) catalog.
Notably, TM and EQT find comparable numbers of

picks that are common to the Krauss et al. (2023b) cat-
alog (Figure 5b), even though TM decisively finds more
earthquakes overall (Figure 5a). The picks found by the
TM method are mostly “new” picks: only 2% of the TM
picks were also in the Krauss et al. (2023b) catalog. This
suggests that the picks found by TM are almost entirely
just smaller or noisier examples of the template events
that went undetected by traditional methods. In con-
trast, 62% of the picks found by the EQT branch are
also in the Krauss et al. (2023b) catalog. Therefore, al-
though EQT finds overall less earthquakes than TM, it
likely captures amore complete representation ofwave-
form diversity in the dataset.
These results support the complementary use of

template matching and pre-trained machine learning
models in constructing earthquake catalogs. Template
matching is typically used as a post-processing step
to expand catalog completeness after an initial cata-
log is constructed with machine learning (Shi et al.,
2022; Zhang et al., 2022; Zhouet al., 2021; Scotto di Uccio
et al., 2023). Our example results, which show that EQT
captures a wider range of waveforms while TM detects
smaller versions of similar waveforms, support the use
of EQT to create a starting catalog and then TM to ex-
pand the EQT catalog.

Discussion
We have documented that running seismic workflows
on commercial cloud providers can be relatively inex-
pensive. In our case, costs are < $5 to process one year
of continuous data for a small network (Figure 4). This
knowledge could significantly expand the ability of the
seismic community to perform research at scale: low-
cost cloud resources offer a valuable alternative to re-
searchers who do not have institutional access to HPC
resources. The pay-as-you-go nature of commercial
cloud resources also means that researchers can exper-
iment with different types and sizes of computing re-
sources before committing to the large start-up costs of
building a local cluster. This can also mean that fewer
machines are plugged in and unused.
However, it is important to reemphasize that working

in the cloud can be difficult and unintuitive. Our func-
tioning cloud resource system was only accomplished
after months of effort and occasional consultation with
data scientists and cloud experts. Much of the workflow
we report here relied on skills developed during aweek-
long “hackathon” with one-on-one help and devoted re-
sources. Our experience suggests that researchers will
need access to cloud expertise through their academic
institutions to realize the true potential of cloud com-
puting, although we hope the documentation provided
here can alleviate some of that need.
Another informative result of our cyberinfrastruc-

ture investigation is that the deployment of pre-trained
machine-learning workflows on CPU-only set-ups can
be as fast as and much easier than a GPU implemen-
tation, for the same or lower cost (Figure 4). We at-

tribute this to the large size of the CUDA package in the
container and the high speed of prediction using these
models on CPU. Traditionally, it is assumed that GPU
are better for machine learning workflows, but we sug-
gest that this statement is more strongly true for train-
ing these models. In contrast, Yu et al. (2023) report
that GPU use for prediction, not training, offers a sig-
nificant speed up in comparison to CPU-only computa-
tion. However, we point out that their timing bench-
marks are made using a production-level implementa-
tion that directly applies pre-trained machine learning
models to discrete non-continuouswaveforms. Alterna-
tively, our method uses SeisBench to pre-process wave-
forms and manage the overlapping of input continuous
data prior to application of themachine learningmodel.
Starting fromcontinuous data is very common formany
research workflows, and in such cases we have shown
that using CPUs can be more cost-effective.
To strengthen the transfer of local workflows to the

cloud beyond what we have demonstrated here, re-
searchers could create storage and compute instances
through code, referred to as “infrastructure as code”,
rather than through desktop portals (e.g., Morris, 2020).
We found that this was not feasible with the current per-
missions settings required with our chosen types of re-
sources, Azure Blob storage and Batch Pools, but we en-
courage researchers intending to set up large cloud sys-
tems that will run long-term to pursue non-portal work-
flows. Alternatively, point-and-click methods through
desktop portals as we have shown here can be an eas-
ily understandable way for beginners to get started
with cloud resources. It would also be possible for re-
searchers to emulate this workflow on other cloud plat-
forms such as Amazon Web Services or Google Cloud
Platform; the codes to interact with the cloud resources
(Azure Blob storage, Azure Batch) would need to be
adapted to the interface specific to the cloud provider,
but no significant changeswould need to bemade to the
code base itself.

Conclusion

Theworkflowwe present provides a basis for individual
researchers to adapt their local seismic processingwork
to the commercial cloud. We have documented how
to containerize code repositories using Docker, how to
construct and access storage in the Azure cloud, and
how to combine these resources to construct and ac-
cess computing resources in the Azure cloud. For re-
searchers unfamiliar with parallelization techniques in
general, we also provide examples for the paralleliza-
tion of seismicworkflows on localmachines. The learn-
ing curve associated with cloud set-up is steep. But, the
results of our scaling tests show that seismic processing
in the cloud is both cheap and fast. Since the low cost
of cloud computing makes large-scale processing more
accessible to the seismic community, the migration of
local workflows to the cloud is a worthy endeavor. We
hope this work can serve as a useful starting point for
other researchers.
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