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Introduction: Mapping tree species is an important activity that provides the 
information necessary for sustainable forest management. Remote sensing is a 
effective tool that offers data at different spatial and spectral resolutions over large 
areas. Free and open acces Sentinel satellite imagery and Google Earth Engine, which 
is a powerful cloud computing platform, can be used together to map tree species.

Methods: In this study we mapped tree species at a local scale using recent 
Sentinel-1 (S-1) and Sentinel-2 (S-2) time-series imagery, various vegetation indices 
(Normalized Difference Vegetation Index - NDVI, Enhanced Vegetation Index - 
EVI, Green Leaf Index - GLI, and Green Normalized Difference Vegetation Index 
- GNDVI) and topographic features (elevation, aspect and slope). Five sets of data 
were used, in different combinations, together with the Random Forest classifier 
in order to determine seven tree species (spruce, beech, larch, fir, pine, mixed, and 
other broadleaves [BLs]) in the studied area.

Results and discussion: Dataset 1 was a combination of S-2 images (bands 2, 3, 
4, 5, 6, 7, 8, 8a, 11 and 12), for which an overall accuracy of 76.74% was obtained. 
Dataset 2 comprised S-2 images and vegetation indices, leading to an overall 
accuracy of 78.24%. Dataset 3 included S-2 images and topographic features, 
which lead to an overall accuracy of 89.51%. Dataset 4 included S-2 images, 
vegetation indices, and topographic features, that have determined an overall 
accuracy of 89.36%. Dataset 5 was composed of S-2 images, S-1 images (VV 
and VH polarization), vegetation indices, and topographic features that lead to an 
overall accuracy of 89.68%. Among the five sets of data, Dataset 3 produced the 
most significant increase in accuracy, of 12.77%, compared to Dataset 1. Including 
the vegetation indices with the S-2 images (Dataset 2) gave an accuracy increase 
of only 1.50%. By combining the S-1 and S-2 images, vegetation indices and 
topographic features (Dataset 5) there was an accuracy increase of only 0.17%, 
compared with the S-2 images plus topographic features combination (Dataset 
3). However, the input brought by the S-1 images was apparent in the increase in 
classification accuracy for the mixed and other BL species that were mostly found 
in hilly locations. Our findings confirm the potential of S-2 images, used together 
with other variables, for classifying tree species at the local scale.
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1. Introduction

Mapping forest species is crucial for sustainable forest 
management, biodiversity assessment, monitoring, and forest 
ecosystem conservation and protection (Vihervaara et  al., 2017; 
Hościło and Lewandowska, 2019). Knowing the forest at a tree species 
of species groups level, as well as their distribution, plays an important 
role in maintaining an ecological balance (Wang et  al., 2018). 
Identifying tree species precisely is necessary in forest management 
planning, in applying silvicultural treatments, in forest certification 
and other forest applications (Persson et al., 2018). Furthermore, tree 
species information is necessary for the operational and tactical 
planning of forest resources (Persson et  al., 2018). Obtaining 
information regarding tree species is important for both forest districts 
and at a national level, for knowing the surface occupied by tree 
species as well as their distribution. Precise and up-to-date information 
regarding the health and type of the forest, the spatial distribution, 
area, composition, and extension can be  obtained from satellite 
images. Using remote sensing and its methods requires less time and 
ensures a larger studied area as well as access to inaccessible areas 
(Fassnacht et al., 2016; Sedliak et al., 2017; Grabska et al., 2019).

Previous studies on mapping forest species have used multispectral 
images, especially those from the Landsat satellite program (Schmitt 
and Ruppert, 1996; Mickelson et al., 1998). The main limitation of these 
images is their intermediate spatial resolution, which poses a challenge 
when using satellite images like Landsat in areas with mixed forests due 
to the occurrence of mixed pixels (Griffiths et al., 2014; Madonsela et al., 
2017; Grabska et  al., 2019). Generally speaking, images with 
intermediate and low spatial resolution have generally been used for 
mapping different forests over large areas, without realizing classification 
at the tree species level (Townshend et al., 2012; Immitzer et al., 2016). 
In addition to the limitation posed by intermediate spatial resolution, 
the relatively low temporal resolution (16 days) can also constrain their 
use in vegetation mapping. The issues are more significant when the 
period of interest falls within a rainy season, during which clouds 
reduce the image quality (Xie et al., 2008).

The Sentinel-2 (S-2) satellite is equipped with a MultiSpectral 
Instrument (MSI) for capturing images (processed during the 
Copernicus mission), which significantly improves forest mapping 
because data is acquired across 12 bands, three (Bands 5–7) being 
red-edge bands used especially for obtaining information concerning 
vegetation, such as chlorophyll content. Furthermore, with its five-day 
temporal resolution, S-2A, together with its twin satellite, S-2B, it 
acquires dense time-series imagery (Grabska et al., 2019).

The use of S-2 satellite images for mapping tree species has been the 
focus of several studies, some realized at the local scale or on single-
forest estates. In one such, Immitzer et al. (2016) classified four species 
of resinous tree and two broadleaves (BLs) in Bavarian forests, obtaining 
an overall accuracy of 66%. They have used S-2 images (single image for 
forest and single image for cropland) with a spatial resolution of 10 m 
and 20 m, with the last ones resampled at 10 m, and RF algorithms for 
classification. In another study on a Bavarian forest, Wessel et al. (2018) 
distinguished beech from oak trees using a hierarchical classification 

approach and multitemporal S-2 images. The authors used two machine-
learning algorithms – support vector machines (SVMs) and random 
forest (RF) – finding only small differences between these, but with the 
SVMs performing slightly better than the RF. They have evaluated 54 
different setups and obtained the best overall accuracy (91%) by using 
the SVM algorithm applied to bands 8, 2, and 3 belonging to the May 
image. An user’s accuracy of 94% and a producer’s accuracy of 79% was 
obtained for beech, while the oak trees user’s accuracy and producer’s 
accuracy was of 100%. Persson et al. (2018) used all the bands from the 
four multitemporal S-2 imagery in different combinations, achieving an 
overall accuracy of 88.2% in discriminating five species (Scots pine, 
spruce, larch, birch, and pedunculate oak). The study was performed on 
a mature forest in Central Sweden; the RF method was used for the 
classification. The user’s accuracies were: 95.6% for birch, 85.2% for 
larch, 97.3% for pedunculate oak, 70.9% for Scots pine and 90.8% for 
spruce. Karasiak et al. (2017) used multitemporal S-2 images to classify 
14 tree species in southwestern France through three classification 
algorithms (SVMs, RF, and Gradient Boosted Trees [GBT]), revealing 
that black pine and douglas fir were the most-confused species, while 
aspen and red oak were the best predicted. Even though the classification 
performance was improved, moving from 4-bands dataset to 10-bands 
dataset, the tree species hierarchy for their identification has remained 
the same. As such, based on the F1-score in the case of 10-bands dataset, 
black pine had an F1-score of 0.81 and 0.74 for douglas fir; aspen and 
red oak had a F1-score equal to 0.99, as cypress. All other species had the 
following F1-scores: 0.98 (silver birch, oak, European ash), 0.97 
(eucalyptus), 0.95 (black locust), 0.90 (willow), 0.98 (Corsican pine and 
maritime pine), and 0.91 (silver fir). The overall accuracy of the 
classification was between 91.02 and 97.40%, depending on the dataset 
and algorithm considered. Stoffels et al. (2015) classified five species 
(beech, sessile and pedunculate oak, spruce, duglas fir, and Scots pine) 
using SPOT-4 and SPOT-5 multitemporal satellite images, together with 
multitemporal RapidEye and airborne LiDAR data, obtaining an overall 
accuracy of 83.5%. The maximum likelihood classification based on 
locally optimized training data was used for identifying tree species. The 
results obtained by the authors show an user’s accuracy of 79.5% for 
beech, 84.0% for sessile and pedunculate oak, 91.6% for spruce, 76.6% 
for douglas fir, and 85.9% for Scots pine.

On the other hand, radar sensors provide a continuous data 
stream with a lower signal-to-noise ratio (SNR), as well as terrain- and 
observation-geometry-related artifacts (Lechner et al., 2022). The two 
S-1 satellites (S-1A and S-1B) capture microwave imagery with higher 
spatial resolution and high temporal resolution. Radar data is freely 
available, and their independence from weather conditions and 
daytime usage makes them frequently employed in assessing forest 
attributes worldwide (Waser et al., 2021).

Some conducted studies have shown that S-1 images are suitable 
for differentiating between deciduous and coniferous trees (Dostálová 
et al., 2021; Waser et al., 2021). Based on multitemporal S-1 data, Udali 
et al. (2021) conducted a classification of forest types and forest tree 
species in a test area in southern Sweden and achieved overall 
accuracies of 94 and 66%, respectively. Rüetschi et al. (2017), in a test 
size in Switzerland, obtained an overall accuracy of 86% in classifying 
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forest types and 72% in distinguishing between three species 
(European beech - Fagus sylvatica, oak - Quercus robur and Quercus 
petraea, and Norway spruce - Picea abies).

In a small number of other studies, forest compositions have been 
determined over large areas at regional and national scales (Hościło 
and Lewandowska, 2019). Forest mapping using remote-sensing 
methods over large mountainous areas has also been limited. In these 
cases, the digital elevation model (DEM) can be used because it can 
enhance the overall accuracy of the species classification. Adding the 
DEM variable in the classification leads to good results for regions 
where vegetation distribution follows topographic data. Dorren et al. 
(2003) showed that, by applying topographic corrections and using 
the DEM method, or other characteristics derived from this in 
combination with spectral data, can increase the overall classification 
accuracy for steep mountain terrains in Austria (ranging from 600 to 
3,000 m a.s.l.). In another study, undertaken on a large regional scale 
in south-central China by Liu et al. (2018), four tree species and mixed 
forest types were mapped from both flat and mountainous areas (up 
to 850 m a.s.l.). The authors obtained the highest accuracy (82.8%) by 
combining Landsat-8, S-2, and a Shuttle Radar Topography Mission 
(SRTM) DEM. Furthermore, the authors showed that the overall 
accuracy was increased by 15.2% by combining satellite images with 
terrain features, compared with using a single image.

The combination of S-1 and S-2 imagery with topographic data has 
opened up new opportunities for the classification of forested landscape. 
Waser et  al. (2021) used S-1 and S-2 imagery in combination with 
topographic data for classifying dominant leaf types, employing both RF 
and deep learning (UNET) algorithms, resulting in significantly higher 
accuracies (kappa coefficient around 0.95). Their research also 
highlighted that the combined use of S-1, S-2, and topographic 
predictors effectively mitigate issues related to terrain topography and 
shadow, surpassing the performance of using S-1 and DEM or S-2 and 
DEM data separately. Liu et al. (2023) employed a combination of S-1, 
S-2, and topographic data for mapping tree species diversity in temperate 
montane forests, and found that this combination yielded the highest 
accuracy (species richness: R2 = 0.562, RMSE = 1.502; Shannon-Wiener 
diversity: R2 = 0.628, RMSE = 0.231). The combination of S-1, S-2, and 
topographic data was also identified by Xie et al. (2021) as providing the 
highest overall accuracy (77.5%) in classifying six dominant tree species 
(Pinus tabulaeformis, Quercus mongolia, Betula spp., Populus spp., Larix 
spp., and Armeniaca sibirica) and one residual class.

Hyperspectral imagery contains more information about vegetation 
and can be used for more accurate mapping of tree species. The essential 
condition is that the tree species exhibit significant differences in 
spectral reflectance measured across multiple spectral bands (Farreira 
et al., 2016; Hycza et al., 2018). The capability to succesfully classify tree 
species using such data has been demonstrated in equatorial forests, 
where classifications of seven tree species achieved accuracies ranging 
from 80 to 100% (Clark et al., 2005; Peerbhay et al., 2013). Additionally, 
hyperspectral data has been used in tropical and subtropical regions, 
where tree species classifications achieved accuracies of over 90% (Dian 
et al., 2014; Ballanti et al., 2016). Tree species classifications have also 
been conducted in temperate regions, with accuracies ranging from 74 
to 93% (Dian et al., 2014; Dmitriev, 2014; Richter et al., 2016).

The main purpose of this study was to map local-scale tree species 
located on mountainous terrain with a heterogeneous landscape, using 
S-1 and S-2 dense-image series, vegetation indices (VIs), and 
topographic features. The analysis were realised at a local scale, taking 

into account the size of forest management units and the size of patches 
located inside the villages. The specific objectives of the study were: (i) 
to investigate the performance of time-series S-1 and S-2 images, VIs, 
and topographic features (DEM, aspect, and slope) combined into five 
datasets for mapping tree species and analyzing the variable importance 
used in the classification; (ii) identifying seven tree species (spruce, 
beech, larch, fir, pine, mixed species, and other BLs) based on the best 
combination of data in order to achieve the highest classification 
accuracy; and (iii) analyzing the importance of tree species identification 
on satellite images in the context of global change. We compiled five 
datasets with different variable combinations in order to achieve our 
research objectives and provide more-detailed information on the 
results. Google Earth Engine (GEE) cloud computing and a RF 
machine-learning algorithm were directed at achieving these objectives.

2. Materials and methods

2.1. Study area

The studied area covered 8,519 ha of the Prahovei Valley 
(Romania), located in the southern part of the Bucegi Mountains 
(Figure 1). This included forests located in hilly and mountainous 
areas. The minimum altitude was 530 m, and the maximum altitude 
reached 1,340 m a.s.l. in the northwestern part of the studied area. The 
average slope was approximately 26°, although slopes with a higher 
inclination (over 30°) were also present. The most common ones were 
steep slopes (77%), followed by less steep slopes (18%). The average 
annual temperature was +6.8°C, while the average annual 
precipitation was approximately 770 mm.

Of the entire surface of the studied area, 34.54% was forest, managed 
by the National Forest Administration, 43.33% was private compact or 
dispersed forests, and 22.13% was built-up surfaces (buildings, roads, 
parking lots, etc.), pasture, and hay. The woodlands were dominated by 
common beech (Fagus sylvatica), Norway spruce (Picea abies), silver fir 
(Abies alba), European larch (Larix decidua), Scots pine (Pinus 
sylvestris), and black pine (Pinus nigra), which represented about 89% 
of the total forest species. The other tree species were sessile oak 
(Quercus petraea), European hornbeam (Carpinus betulus), grey alder 
(Alnus incana), black alder (Alnus glutinosa), silver birch (Betula 
pendula), sycamore maple (Acer pseudoplatanus), European ash 
(Fraxinus excelsior), aspen (Populus tremula), and willow (Salix caprea).

The proportions of these forest tree species in the overall species 
composition differed in various parts of the studied area. The main 
species (beech, spruce, fir, pine, and larch) were generally present in 
compact stands, but were also found, rarely, in built-up areas. Parts of 
the stands were pure, while others were mixed, composed of two to 
three main species. The basal area threshold for distinguishing between 
pure and mixed stands is 80%; if the basal area exceeds this percentage 
for a single tree species, then the stand is considered pure, and if it falls 
below this percentage, the stand is considered mixed. In certain stands, 
the main species were accompanied, in a small percentage (10–20%), 
by sycamore maple, ash, sessile oak, and hornbeam. In the southern 
and middle part of the studied area, built-up areas were present at low 
altitudes, alternating with pastures and meadows. These areas contained 
groups of tree species or fruit trees grouped together or growing in rows 
and along the edges of private properties that were not included in any 
forest management plans. Here and there in the built-up area, the 
vegetation occurred as shrubs or was in a different stage of development.
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2.2. Data and data preprocessing

We employed the JavaScript API within the GEE code editor to 
analyze the data. GEE is a cloud computing platform launched by 
Google in 2010. It enables users to conduct geospatial analysis and is 
the most popular platform for processing large geospatial datasets. It 
includes various built-in algorithms, such as those for classification, 
allowing for global-scale data analysis and facilitating the 
development of custom algorithms by researchers. The Earth Engine 
Data Catalog contains a diverse range of standard Earth science raster 
datasets that are freely accessible. Additionally, users have the option 
to upload their own raster or vector data for private use or sharing in 
scripts. In this study, we used the preprocessed archives of S-1, S-2, 
and DEM data available on GEE. These preprocessed datasets had 
already been corrected for atmospheric and topographic effects, 
which significantly streamlined the data acquisition and 
preprocessing task, saving us valuable time and effort.

2.2.1. Sentinel-1 imagery
We used 224 S-1 images, gathered in 2021 and 2022. These were 

ground range detected (GRD) (Level-1) interferometric wide (IW) 

swath-mode acquisitions that had already been preprocessed, using 
multi-looking and projection, to the ground range using an Earth 
ellipsoid model (Copernicus, 2014; Table 1). The spatial resolution of 
this dataset was measured at 10 m. The S-1 GRD data was processed 
by thermal noise removal, and radiation and terrain correction, and 
the 10-m dual bands, VV and VH, of the IW swath mode was selected 
for further processing to match the resolution of S-2. Because S-1 data 
were collected from both ascending and descending passes, the VV 
and VH data were co-registered.

The S-1 images in VV and HV polarization were divided into 
three temporal intervals for 2021 and 2022. Each temporal interval 
was specific, from a phenological perspective, to a certain season: 
April 1 – May 31 (start of the growing season), June 1 – August 31 
(peak growing season), and September 1 – November 15 (end of the 
growing season). In this way, we obtained 12 stock layers (median) 
that were then compiled individually (Table 1).

2.2.2. Sentinel-2 imagery
We used a set of multispectral data, composed of 15 S-2 surface 

reflectance images with no cloud cover, acquired in 2021 and 2022 
between April 10 and November 26, distributed irregularly over the 

FIGURE 1

Location of the study area.
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study periods. The images were downloaded free from Copernicus Data 
Hub (Table 2). Because tree species analysis depends on phenology, 
we selected images that had recorded forests in different phenological 
phases (Hościło and Lewandowska, 2019). In this regard, for both years, 
we used images acquired at the beginning of spring (when BL species 
begin to green-up), in the summer (when photosynthetic activity is 
high), and in the fall (when the leaves begin to color steadily and 
differently for each tree species). In this way, we chose to include three 
seasons in the analysis because the signatures exposed in the 15 images 
during the vegetation season could offer a unique spectral model that 
could not be obtained by any single image. Unfortunately, we did not 
find any suitable images for early autumn (September).

The downloaded images were orthorectified and atmospherically 
and topographically corrected at Level-2A (spectral reflectance). For this 
study, we  omitted three bands–coastal (0.43–0.45 μm), water vapor 
(0.93–0.95 μm), and cirrus bands (1.36–1.39 μm)–because of their 
sensitivity to atmospheric interference (Stych et al., 2019; Fundisi et al., 
2022). The other 10 bands used were red, green, blue, near infrared 
(NIR), vegetation red edge (VRE), and shortwave infrared (SWIR). They 
covered a wavelength of 0.41–2.28 μm. The spatial resolution of the S-2 
images was 10 m (blue, green, red, and NIR) and 20 m (VRE bands, 
narrow NIR, SWIR bands). The S-2 bands with the 20-m spatial 
resolution were resampled to 10 m using the nearest-neighbor resampling 
method. The resampling was carried out in order to have the same spatial 
resolution. The images are in WGS84 projection, Zone 35 N.

2.2.3. Digital elevation model
The topographic variables were derived from the SRTM DEM, 

which is a free product obtained from interferometric radar. The 

SRTM provided a near-global DEM between 60°N and 56°S latitude 
and was realized based on data collected from 11 days in February 
2000 by a specially modified radar system onboard the Space Shuttle 
Endeavour. The SRTM DEM is available globally at 1 arcsecond at 
about a 30-m spatial resolution. The SRTM DEM was cut on the 
studied contour and resampled to 10 m (S-2 resolution) using the 
bilinear resampling method. Based on the SRTM DEM we obtained 
two topographic variables – slope and aspect – that, together with the 
elevation, were added to the data stock without any adjustment. In the 
GEE, the scaling was executed automatically, and all the bands used 
in different combinations were overlaid correctly.

2.2.4. Vegetation indices
The high spectral resolution of the S-2 images allowed us to obtain 

different features connected to the green cover. Based on the literature 
review, we selected four VIs – the Normalized Difference Vegetation 
Index (NDVI), Enhanced Vegetation Index (EVI), Green Leaf Index 
(GLI), and Green Normalized Difference Vegetation Index (GNDVI; 
Table 3). The NDVI is an indicator of the greenness of the vegetation. 
High values indicate a rich and healthy vegetation. The EVI was 
developed because it is more sensitive to changes in areas with high 
biomass (Bhatnagar et al., 2021). The GLI is intended to measure the 
quantity of greenery, with positive values representing green leaves 
and stems. The GNDVI is a modified NDVI, capable of detecting 
variations in chlorophyll concentration by replacing the red band with 
the green band (Gitelson et al., 1996).

They were selected to offer a comprehensive understanding of 
various facets of vegetation as these indices offer diverse viewpoints 
on vegetation health, density, and chlorophyll concentration, 

TABLE 1 Main characteristics of S-1 imagery used in study and the temporal intervals for calculating seasonal composites in 2021 and 2022.

Collection and 
Instrument mode

Stock acronim 
used in study

Period of images 
acquisition

Orbit properties 
pass

Polarisation Number of 
images

COPERNICUS/S1_GRD 

Interferometric Wide

VV1_2021 April 1 – May 31 Ascending VV 20

VH1_2021 Descending VH 20

VV1_2022 Ascending VV 10

VH1_2022 Descending VH 10

VV2_2021 June 1 – August 31 Ascending VV 30

VH2_2021 Descending VH 30

VV2_2022 Ascending VV 15

VH2_2022 Descending VH 15

VV3_2021 September 1 – November 

15

Ascending VV 24

VH3_2021 Descending VH 24

VV3_2022 Ascending VV 13

VH3_2022 Descending VH 13

Total 224

TABLE 2 Description of the S-2 images used in study.

Collection Date acquired
Relative orbit 
number

Tile 
number

COPERNICUS/S2_SR
2021

April 10, May 10, July 29, August 8, August 23, Octomber 27, November 11, 

November 21, November 26 50 T35TLL

2022 April 5, April 15, May 20, June 29, Octomber 17, November 1
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inclusively vegetation phenology. By integrating these indices as input 
variables for classification, the goal was to capture a comprehensive 
view of vegetation characteristics for the purpose of identifying 
tree species.

2.2.5. Boundaries and stand polygons
All the images and topographic features used were clipped on the 

contour of two production units from within the Sinaia Forest District 
– Forest Management Unit (FMU) I Comarnic and FMU II Posada. 
The exact geolocations of the boundaries are stored in a GIS database 
and were provided by the “Marin Drăcea” National Institute for 
Research and Development in Forestry (NIRDF). These boundaries 
and stand polygons were converted from Stereografic 1970, the official 
projection of Romania, in WGS84 projection, Zone 35 N (Greșiță, 
2011; Greșiță, 2013). The boundaries of the 2 units (shapefile format) 
were merged in QGIS and imported into the GEE via Google fusion 
tables. The obtained contour was used in clipping images and 
topographic features on the studied area. In addition, all stand 
polygons were imported in QGIS and the GEE.

2.3. Classification approach and reference 
data

2.3.1. Random forest
The classification process was divided into two levels of forest 

detail: (i) mapping forest covers; and (ii) classifying tree species. The 
RF classifier was used for both levels.

The RF is a machine-learning algorithm that uses multiple self-
learning decision trees to parameterize models (Hościło and 
Lewandowska, 2019). In this algorithm, several decision trees are built 
based on a random subsample of the data used. Each decision tree is 
produced independently, with no cut, while each node is divided using 
a defined number of characteristics (Mtry) that were selected 
randomly (Belgiu and Drăguț, 2016). By increasing the forest to a 
defined level of usage by using the number of trees (Ntree), the 
algorithm creates trees that have a higher variance level and a low bias 
(Breiman, 2001). The final classification decision is taken by obtaining 
an arithmetical average of the attribution probabilities calculated by 
all the trees produced (Belgiu and Drăguț, 2016).

The RF classification was carried out using the GEE – a powerful 
cloud computing platform. The parameterization of the model was 
performed on 500 single trees in the forest, with the minimum 

number of samples in a node set to one. Setting Ntree at the 500 level 
was realized in accordance with the specialist literature, which 
explains that the errors stabilize before this number of trees are 
classified (Lawrence et al., 2006). In addition, this value is set as a 
default value in the R package for RFs (Belgiu and Drăguț, 2016). Mtry 
parameter was tested from 1 to 9 using a single interval and null value 
(default in GEE) which means no limits. The last value was considered 
the best because the overall accuracy was high.

After performing the classification using the RF algorithm, the 
importance of the variables was estimated through GEE by computing 
the normalized and raw variable importance. For each classification 
result, we calculated the importance of the variables.

2.3.2. Forest mask
At the first level, we performed a forest mask by extracting forest 

areas from all the S-2 images acquired in 2021 and 2022 (Table 2) 
using the RF classifier. In the non-forested class, we included built-up 
surfaces (buildings, roads, parking lots, etc.), non-wooded vegetation, 
agricultural lands (pasture, hay, arable), and water. A ‘No Data’ value 
was assigned to all pixels not covered by the forest polygons or outside 
the forested areas mask. The ‘No Data’ pixels were not used for tree 
species identification. Thus, only pixels with forest and inside the 
forested areas mask were used.

2.3.3. Tree species classification
At the second level, we used different subsets that included various 

combinations of the two satellite systems, S-1 and S-2, topographic 
features, and VIs (Table 4). In this stage, we obtained a tree species 
separation inside the forest mask. All datasets from the second level 
were classified using the same samples. Figure 2 presents the flowchart 
of the different classification scenarios.

For this study, we focused on five main stand tree species that 
collectively represented more than 89% of the total forest of FMU 
I Comarnic and FMU II Posada–that is, spruce, beech, larch, fir, and 
pine. Together with these main species, we also identified two groups 
of species–mixed and other BLs. The mixed species class included 
both resinous and BL species (including fruit trees) located in urban 
areas and on private properties, spread on meadows and pastures that 
were not included in forest management plans. The way in which these 
patches were grouped was intimate, with the species not being 
separated based on their components. The other BL species class 
included species such as oak, maple, sycamore maple, silver birch, 
European ash, aspen, and willow that were present in small 

TABLE 3 Vegetation indices used in the study.

Vegetation Indices Formula Application from S-2

NDVI B B
B B
8 4

8 4

−
+

Map vegetation in a complex and mixed vegetation cover (Mohammadpour et al., 2022)

Vegetation mapping (Dobrinić et al., 2021)

Mapping forest cover and forest types (Waśniewski et al., 2020)

EVI B B
B B B

8 4

8 4 26 7 5 1
2 5

−
+ ×( ) − ×( ) +

×
.

.
Vegetation mapping (Dobrinić et al., 2021)

GLI 2

2

3 2 4

3 2 4

×( ) − −
×( ) + +

B B B
B B B

Crop classification (Sonobe et al., 2018)

GNDVI B B
B B
8 3

8 3

−
+

Map vegetation in a complex and mixed vegetation cover (Mohammadpour et al., 2022)

Tree species classification (Lechner et al., 2022)

B2, B3, B4, and B8 are the correspondence S-2 bands.
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percentages in both the stands and the urban area. They were localized 
via groups of species. The other BL species were included in forest 
management plans but located outside those.

2.3.4. Reference data

2.3.4.1. For forest mask
Reference data for generating the forest mask were sourced from 

multiple references, including forest management plan maps, 
orthophotoplans provided by the National Agency for Cadastre and 
Land Registration, as well as Google Earth images. Sample selection 
employed a stratified random sampling approach, where strata were 
defined by thematic classes. These samples were evenly distributed 
across the entire study area. For the training and validation datasets, 
samples were visually chosen from both forested and non-forested 
polygons, resulting in a total of 193 samples – comprising 84 forested 
and 109 non-forested areas. These training and validation samples 
accounted for 7.49% of the forested area and 4.49% of the non-forested 
area. The average polygon size for forested area was 5.90 ha, while for 
non-forested areas, it was 0.78 ha. The smaller size on non-forested 
areas, compared to forested areas, was primarily due to 
landscape fragmentation.

2.3.4.2. For tree species classification
All training and validation data regarding stand compositions 

were automatically drawn from the official forestry database of the 
state forest administration received from the “Marin Drăcea”National 
Institute for Research and Development in Forestry. This offered 
detailed information on species composition, stand characteristics 
(e.g., stand structure, stand density, age, height, medium diameter, and 
volume), site characteristics (e.g., soil, geology, slope, and orientation), 
as well as many other types of information (Tereşneu et al., 2016). 
Forest management plans are updated every 10 years, but major 
changes, such as stand cutting, plantations and windthrows are 
recorded annually (Tudoran, 2013). In this way, all the changes that 
affect stands are recorded in forest management plans at the moment 
when they are produced. As such, the database is updated and contains 
all the changes suffered by each stand. The minimum recorded unit is 
the forest unit, created as a homogenous surface from a silvicultural 
perspective: to be comprised of a single ecosystem unit or stational 
unit; the same consistency or differences smaller than 0.2 (on a scale 

from 0 to 1); the same composition, with difference that do not exceed 
20% (on a scale from 0 to 100) for the main species; the average age 
should not differ more than 20 years; the same type of structure (same 
age, relatively same age, relativ plurien, plurien); a single productivity 
category. These criteria were taken into account in the forest inventory 
in order to demarcate homogeneous stands. Each management unit is 
demarcated by a polyline that has known coordinates and by marking 
trees with paint (Tereșneu, 2019; Tudoran and Zotta, 2020). In this 
study, the stand polygons ranged in size from 0.20 to 44.34 ha (average 
5.89 ha) for FMU I  Comarnic and from 0.11 to 31.81 ha (average 
7.67 ha) for FMU II Posada (Forest Research and Management 
Institute, 2013a,b).

FMU consists of more forest units. FMU I Comarnic consists of 
355 forest units, while FMU II Posada has 111 forest units, all included 
in the updated database (Forest Research and Management Institute, 
2013a). Besides these forest units, approximately 60 forest units 
belonging to forest owners were also analyzed FMU I Comarnic has a 
surface of 2091.60 ha (state forest), completed by 907.7 ha (private 
forests that were retroceded). FMU II Posada has 850.9 ha, completed 
by retroceded forests (Forest Research and Management Institute, 
2013b). The limits of the 2 units are materialized on the field by paint 
and are represented by natural details (peaks, valleys, waters) or 
artificial details (roads, railroads etc.). Forest clusters are found inside 
FMU, on different sizes located within cities.

A forest stand may include, in some cases, five or six different tree 
species, although the average is usually two, three or four main tree 
species in a mixture. The tree species composition share in a forest 
stand is recorded in the forest management plan during the forest 
inventory. For the present study, we  used this share for each 
management unit. For species with a small share, they were considered 
together, leading to a distinct class classification (for example, other 
BL species and mixed species).

Training and validation samples were performed by screen 
digitization. Each sample was from inside a management unit, with a 
priority placed on stands with a pure species composition (e.g., with 
a species share of 100%). Where stands were not pure (i.e., where the 
share was not 100%), we followed those stands in which the respective 
species had the largest share.

For tree species that are widespread across the entire analyzed area 
(such as beech, spruce, and mixed species), the reference sample were 
evenly distributed throughout the study area. However, for tree species 

TABLE 4 Scenarios evaluated using different combinations of S-1, S-2, VIs, and DEM.

Nr. crt. Subsets (acronim) Features Description

1 Dataset 1 10 S-2 bands: 2, 3, 4, 5, 6, 7, 8, 8a, 11, and 12

2 Dataset 2 14 S-2 bands: 2, 3, 4, 5, 6, 7, 8, 8a, 11, and 12

VIs: NDVI, EVI, GLI, and GNDVI

3 Dataset 3 13 S-2 bands: 2, 3, 4, 5, 6, 7, 8, 8a, 11, and 12

DEM: elevation, slope, and aspect

4 Dataset 4 17 S-2 bands: 2, 3, 4, 5, 6, 7, 8, 8a, 11, and 12

DEM: elevation, slope, and aspect

VIs: NDVI, EVI, GLI, and GNDVI

5 Dataset 5 241 S-2 bands: 2, 3, 4, 5, 6, 7, 8, 8a, 11, and 12

DEM: elevation, slope, and aspect

VIs: NDVI, EVI, GLI, and GNDVI

S-1 GRD: 224 images with VV and VH polarization
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with a more limited distribution (including larch, fir, pine, and other 
BL species), the reference sample were selectively collected in the 
specific areas where these tree species are known to occur. In all cases, 
the selection of reference samples was carried out using a stratified 
random sampling approach. Table 5 provides detailed information 
regarding the number of polygons, total area covered, and average 
polygon size for reference data. Notably, the mixed species class 
exhibited the smallest average polygon size due to the close proximity 
of these tree species and their relatively smaller total area. Conversely, 
the beech class displayed the largest average polygon size, as it typically 

forms compact stands that extend over a larger geographic area. The 
choice of remote sensing data used for generating the dataset varied 
depending on the specific combination (Table 4).

In order to validate the data, we used ortophotoplans present in 
the database from the National Agency for Cadastre and Land 
Registration, as well as Google Earth images.

2.3.5. Accuracy assessment
The reference samples were randomly divided–80% were used 

for training and 20% for accuracy assessment purposes. 

FIGURE 2

Flowchart of the research.
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We selected 14,525 pixels for the forest/non-forest map, of which 
11,621 pixels were for training and 2,904 for validation. The total 
number of pixels was 6,971 for the tree species classification, of 
which 5,577 were for training and 1,395 for validation. To ensure 
that the tree species proportions are maintained in both datasets, 
namely the training and validation data, the facilities provided by 
GEE were used.

An accuracy assessment was performed based on a confusion 
matrix from which we  calculated the overall accuracy indices, in 
addition to a producer’s accuracy, user’s accuracy, Kappa statistic, and 
F1 score. Overall accuracy is expressed in percentages and represents 
the relation between the correctly classified pixels and the total of 
pixels used for verification. Producer’s accuracy is calculated by 
dividing the number of correctly classified pixels for a given class by 
the total number of pixels that belong to that class in the reference 
dataset. User’s accuracy is calculated by dividing the number of 
correctly classified pixels for a given class by the total number of pixels 
that were classified as that class on the map. The Kappa statistic 
evaluates how well the classification performs in comparison with the 
random attribution of values. The F1 score is the harmonic mean of 
precision and recall.

Establishing samples for accuracy assessment was realized 
through stratified proportional random sampling. Through this 
method, the total number of pixels was distributed in each class, in 
report with the surface of the tree species from the analyzed surface. 
The strata were represented by the tree species present in the classified 
images. Within each strata, validation data were sampled using a 
random method. The sampling units were individual pixels. The 
accuracy assessment was carried out individually for each 
classification result.

3. Results

3.1. Forest classification

The result of the forest/non-forest classification derived from all 
the multitemporal S-2 images using the RF approach showed a high 
level of agreement with the forest status on the ground. The overall 
accuracy of the forest/non-forest map was 99.48%, with a Kappa 
coefficient of 98.01%. The producer’s accuracy for the forest was 99.71, 
and 98.20% for the non-forest. The user’s accuracy for the forest was 

99.67, and 98.42% for the non-forest (Table 6). Because we obtained a 
high accuracy, we used the output of the RF classification derived from 
combination with the S-2 images to calculate the forest area for the 
study area and the forest mask. Under these conditions, the surface 
covered by forest was 6,634 ha, representing 77.87% of the studied 
surface. Of this forest surface, 2,942 ha (44.35%) were managed by the 
state, while 3,692 ha (55.65%) represented private property.

3.2. Tree species classification

The results regarding the overall accuracy of the tree species 
classification, based on the five sets of data, are presented in Figure 3. 
A very close overall accuracy was obtained for three of these 
combinations (Datasets 3–5). The best result was obtained for Dataset 
5, with an overall accuracy of 89.68%, followed by Dataset 3, with 
89.51%, and Dataset 4, with 89.36% (Figure 3A). The lowest result was 
obtained by Dataset 1, which included only S-2 satellite images, and 
had an overall accuracy of 76.74%.

Evaluation of the classification performance for Dataset 5 among 
the individual tree species showed good results for spruce (93.82%), 
larch (93.44%), and fir (92.96%). These three species corresponded 
quite well to the forest stands. For spruce, 16 pixels were confused with 
beech, while for larch, 7 pixels were confused with beech, for fir, 15 
pixels were confused with beech and 11 pixels with spruce (Table 7). 
Slightly weaker results were obtained for mixed species (86.96%) and 
other BL species (87.06%). For mixed species, 9 pixels were classified 
as beech and 33 pixels for other BL species.

The results obtained after calculating the F1 score for each tree 
species show that they are close for the 3–5 Dataset. Spruce is best 
discriminated in Dataset 3, with an F1 score equal to 0.96, while beech 
is best discriminated in all three data sets, with an F1 score of 0.93 
(Figure 3B). As for larch, the best discrimination is in Dataset 4, as 
well as in the other four datasets, while F1 varies from 0.83 (Dataset 
1) to 0.89 (Dataset 4). Fir is identified better in Dataset 5, with an F1 
score of 0.89. Mixed species (F1 = 0.70) and other BL species 
(F1 = 0.73) are the two group of species with the less confidence 
(Figure 3B).

Based on the evaluation of the overall accuracy of the classification, 
we created the final map with tree species from the best combination–
Dataset 5 (Figure 4).

3.3. Variable importance

The importance of the variables used in the classification of the 
tree species is presented in Figure 5. These were prioritized based on 
importance level. The DEM contributed the most toward classifying 

TABLE 5 Characteristics of reference samples.

Tree species
Number of 
polygons

Area (ha)
Average 

polygon size 
(ha)

Spruce 79 71.83 0.91

Beech 94 121.32 1.29

Larch 38 13.15 0.35

Fir 45 20.60 0.46

Pine 42 18.08 0.43

Mixed species 48 10.89 0.23

Other BL species 51 22.98 0.45

Total 397 278.85 0.70

TABLE 6 Error matrix for forest and non-forest classification.

Classification data

Reference data Classes Forest Non-forest Total (number 

of pixels)

Forest 2,453 7 2,460

Non-forest 8 436 444

Total (number of pixels) 2,461 443 2,904
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the datasets (Datasets 3–5). Together with elevation, aspect and slope 
proved to be the most important variables. They also determined an 
evident increase in the overall accuracy. With regard to the S-2 
spectral bands, B12 and B11 (SWIR) were the most important 
contributors in separating the tree species in all the datasets. Band 8 
(NIR) obtained the lowest scores in the tree datasets. The inclusion of 
VIs in three of the datasets, combined with the S-2 bands, DEM, and 
S-1 bands, did not produce a high rate when compared with DEM, 
aspect, and slope. The GLI and EVI indices made the highest 
contribution of all the VIs, while the NDVI contributed the least. Even 
though we used many S-1 images, their contribution to classifying the 
tree species was minimal.

4. Discussion

4.1. Dataset performance and variable 
importance

We mapped tree species using different combinations of dense S-1 
and S-2 time-series images, VIs derived from optical S-2 bands, and 
topographic features derived from a DEM. The S-1 and S-2 images 
were taken in two growing seasons (2021 and 2022), allowing us to 
obtain detailed information about the spectral-temporal patterns of 
the studied species. This study was performed on an area with a 
heterogeneous distribution of vegetation, including both dense forests 

on massifs and tree species grouped in patches of different sizes that 
alternated with built-up areas, pasture, and hay.

Combining the 15 S-2 images taken from the two vegetation 
seasons led to an overall accuracy of 76.74%. In this combination, 
SWIR bands (B11 and B12) had the highest importance, while B8 and 
B7 had the lowest (Figure 5A). The low importance of Bands B8 and 
B7 can be explained by the fact that many of the S-2 images were 
acquired during spring and autumn, not during summer, when the 
photosynthetic activity is strong and the reflectance in NIR is also 
high. However, the sun’s elevation angle is low during early spring and 
late autumn–an effect that could lead to a decrease in the classification’s 
accuracy (Hościło and Lewandowska, 2019).

The results regarding the overall accuracy of the tree species 
classification, based on the five sets of data, are presented in Figure 3. 
A very close overall accuracy was obtained for three of these 
combinations (Datasets 3–5). The best result was obtained for Dataset 
5, with an overall accuracy of 89.68%, followed by Dataset 3, with 
89.51%, and Dataset 4, with 89.36%. The weakest result was obtained 
by Dataset 1, which included only S-2 satellite images, and had an 
overall accuracy of 76.74%.

By including the VIs in the classification, together with the S-2 
images (Dataset 2), the overall accuracy reached 78.24%, increasing 
by only 1.5%. This result is similar to that of Mohammadpour et al. 
(2022), who mentioned that a slight accuracy increase was obtained 
by combining four VIs with S-2 images, compared with only using 
spectral bands. Another study (Spracklen and Spracklen, 2019) 

FIGURE 3

Overall accuracies and Kappa statistics for the five datasets used in tree species identification (A) and F1 score (B).

TABLE 7 Confusion matrixs for RF classification of seven tree species inside of forest mask using dataset 5.

Classification data

Reference 

data

Classes Spruce Beech Larch Fir Pine Mixed species Other BL species Total (number of pixels)

Spruce 334 16 1 2 0 0 0 353

Beech 2 602 2 1 3 1 0 611

Larch 0 7 57 0 0 0 1 65

Fir 11 15 1 65 0 0 1 93

Pine 4 6 0 0 79 0 1 90

Mixed species 0 9 0 0 1 40 8 58

Other BL species 5 33 0 2 6 5 74 125

Total (number of pixels) 356 688 61 70 89 46 85 1,395

The bold value on the main diagonal represents the pixels correctly classified in each class.
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showed that adding six VIs to identifying European old-growth forests 
led to a worse performance from using them in combinations instead 
of the S-2 bands, resulting in the overall accuracy being reduced by 
0.3%. On examining the relative importance of the variables, we can 
see that, in this case as well, Bands B11 and B12 were in first place, 
followed by the GLI and EVI. The GNDVI and NDVI contributed the 
least among all the indices. The low importance of the NDVI in 
classifying tree species has also been signaled by other studies 
(Pouteau et al., 2018; Silveira et al., 2018).

Choosing VIs in emphasising the vegetation phenology is 
important. EVI and GLI proved to be the most suitable in identifying 
phenological changes as they are more strongly correlated with the 
crown’s foliage. The high separability on which it is based derives from 
spectral bands with blue, green and near infrared reflectance. EVI 
emphasises better the phenology, compared with NDVI in surfaces 
with both dense and sparse vegetation (Tian et al., 2021). Furthermore, 
Bolton et  al. (2020) have shown the high two-band EVI (EVI2) 
capacity in emphasising the phenology of ecosystems with a strong 

FIGURE 4

Tree species identification maps generated using RF classification for: (A) Dataset 1; (B) Dataset 2; (C) Dataset 3; (D) Dataset 4; (E) Dataset 5.
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seasonality, namely deciduous trees species, and less for those with 
evergreen species. The share brought by VIs in identifying resinous 
species was marginal because the crown is green all year long. NDVI-
derived phenology is uncertain for surfaces covered with resinous 
trees where the seasonal amplitudes are small (Tian et al., 2021).

An important leap in overall accuracy came from adding 
topographic features to the S-2 images (Dataset 3), when 89.51% was 
obtained. The results obtained in this study are in line with those from 

other studies. Hościło and Lewandowska (2019) classified eight tree 
species with an accuracy of 75.6% using only S-2 data. By adding a 
DEM, slope, and aspect, an accuracy of 81.7% was reached by 
classifying all species together, with 89.5% achieved for a stratified 
classification. In Liu et al. (2018), the importance of slope derived 
from a DEM was demonstrated in the classification of four common 
species and four mixed forests located in China. The importance of a 
DEM in classifying species and obtaining high accuracy has also been 

FIGURE 5

The variable importance for tree species classification: (A) Dataset 1 (S-2 images); (B) Dataset 2 (S-2 images and VIs); (C) Dataset 3 (S-2 images and 
topographic features); (D) Dataset 4 (S-2 images, VIs and topographic features); (E) Dataset 5 (S-2 images, VIs, topographic features, and S-1 images). 
The colors are as follows: orange – spectral bands of S-2 images; green – VIs; magenta – topographic features; blue – layer stacks of S-1 images 
(according Table 1).
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reported in other studies (Waśniewski et al., 2020; Dobrinić et al., 
2021). In the present study, we proved that the DEM contributed the 
most, followed by aspect and slope (Figure 5C). This means that the 
presence of species in the studied area was highly dependent 
on elevation.

The S-1 images, VIs, and topographic features combination 
(Dataset 4) decreased the accuracy by 0.15%, compared with the S-2 
plus topographic features combination (Dataset 3). These results are 
similar to those from other studies that showed that adding the NDVI 
led to a decrease in accuracy of 8% (Mohammadpour et al., 2022). 
Other studies have shown that adding the NDVI to a combination of 
S-2 images and a DEM leads to a decrease in accuracy of 3% 
(Waśniewski et al., 2020). In the present case, the decrease in overall 
accuracy can be associated with a decrease in user accuracy for spruce, 
beech, larch, and other BL species (Figure 3).

In the S-1, S-2, VIs, and topographic features combination 
(Dataset 5), we obtained an overall accuracy of 89.69%. Compared 
with the overall accuracy resulting from combining S-2 images with 
topographic features (Dataset 2), the overall accuracy increased by 
only 0.17%, and by 0.32% compared with the S-2, VIs, and topographic 
features combination (Dataset 4). By analyzing the contributions of 
the variables, we can see that the importance of the S-1 images was 
minimal, even though their number was high when compared with 
the other variables (Figure 5E).

The results obtained from this study are very close to the ones 
obtained by Lechner et al. (2022), where, by adding 250 S-1 images for 
14 S-2 images taken from a vegetation season, the accuracy was only 
0.5%. Liu et  al. (2018) demonstrated that adding backscattering 
features from VV images of S-1 to the combination of S-2, DEM, and 
Landsat 8 provided only a modest 2.65% improvement in classifying 
forest types, compared to the same combination without S-1. 
Furthermore, the additional of VV and HV features from S-1 to the 
combination with S-2, DEM, and Landsat 8 actually resulted in a 
1.32% decrease in accuracy when compared to using the combination 
of S-2, DEM, and Landsat 8 alone. This indicates that VV polarization 
images are more effective in discriminating forest types than VH 
polarization data. Additionally, the fusion of S-2 with S-1 yielded only 
a marginal 1.5% increase in overall accuracy for forest mapping 
(Hirschmugl et al., 2018). In another study, it was found that using S-1 
images in combination with S-2 images to distinguish between 
plantations and natural forests led to a slight decrease in accuracy, 
from 92.5% achieved using S-2 alone to 92.3% for S-1 and S-2 
combination (Spracklen and Spracklen, 2021). Therefore, integrating 
S-1 data with S-2 did not significantly enhance accuracy and, in some 
cases, even resulted in a slight reduction of 0.2%. Consequently, the 
addition of S-1 images only marginally improves accuracy or may 
potentially lead to a decrease in accuracy.

Achieving only a marginal increase in accuracy through the 
combination of S-1 with S-2 images can be  attributed to several 
factors. For instance, S-1 images capture data that reflect surface 
properties such as its structure and roughness. Lechner et al. (2022) 
found that within the conifer group, when separated using S-1 images, 
achieving satisfactory accuracy may be related to the more pronounced 
roughness of conifer crowns compared to those of deciduous trees. 
Furthermore, in comparison to the multispectral data of S-2 images, 
S-1 data do not provide so much detailed information about the 
biometric and spectral characteristics of vegetation. Additionally, S-1 
images can be  influenced by factors such as soil moisture and 

vegetation density, which can lead to variations in captured signals 
and more complex data interpretation. In the study conducted by Xi 
et al. (2023), it is shown that the contribution of S-1 images to forest 
diversity estimation was found to be rather limited, possibly due to the 
relatively short frequency of the C-band, making it less sensitive to 
characterizing dense forest canopies. Moreover, C-band radar waves 
are strongly attenuated by tree canopies, causing intensities to 
be similar for plant types with subtle structural differences (Ienco 
et al., 2019; Slagter et al., 2020). Furthermore, physiologically similar 
tree species cannot be differentiated using S-1 data (Heckel et al., 
2020). In such cases, the spectral response of tree species recorded in 
S-2 images is more valuable in distinguishing between them, with less 
contribution from S-1 images.

4.2. Tree species identification

The forest of the study area was divided into seven classes. 
Sampling data was collected by visually interpreting images and 
ortophotoplans, and by comparing these with Google Earth images. 
The sampling size was approximately 3.4% for training and 0.8% for 
testing from the total surface (Table 8). Dividing them in training 
(80%) and validation (20%) samples was made randomly, according 
to the code written in GEE. According to the specialty literature, the 
sample size was indicated to be between 0.2 and 3.0% of the total data 
(Blatchford et al., 2021). Therefore, the samples were sufficient for 
training classifiers and were relatively uniformly spread across the 
entire studied area.

For Dataset 1, by using only the S-2 multitemporal images, the 
tree species that had low user accuracy values were fir (61.54%), pine 
(60.00%), mixed species (62.50%), and other BL species (52.38%). By 
using only the S-2 images, Immitzer et al. (2016) obtained the same 
user accuracy for pine, while spruce reached a user’s accuracy of 77%, 
fir 71%, and larch 64%. The discrimination capacity for these species 
substantially increased after adding elevation, slope, and aspect as 
variables to the S-2 images (Dataset 3). By adding topographic 
features, the most substantial increases in accuracy for the tree species 
were (Figure 6) 26.30% (fir), 22.29% (pine), 11.31 (mixed species), and 
33.70% (other BL species). Smaller accuracy increases were observed 
for other tree species–spruce (11.54%), beech (9.86%), and larch 
(12.00%).

TABLE 8 The size of training and validation samples for each of the tree 
species.

Tree species
Size of 
training 

samples (ha)

Size of 
validation 

samples (ha)

Total size 
(training and 

validation) (ha)

Spruce 57.46 14.37 71.83

Beech 97.06 24.26 121.32

Larch 10.52 2.63 13.15

Fir 16.48 4.12 20.6

Pine 14.46 3.62 18.08

Mixed species 8.71 2.18 10.89

Other BL species 18.38 4.60 22.98

Total 223.07 55.78 278.85
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However, using an increasing number of variables in the 
classification did not necessarily lead to greater accuracy for all tree 
species (Figure 6). This was particularly notable for spruce, larch, and 
other BL species when, by adding VIs in combination with S-2 images 
and topographic features (Dataset 3), the user accuracy decreased by 
3.14, 0.19, and 1.70%, respectively (Figure 6).

Looking globally, the overall accuracy increase from 76.74% 
(Dataset 1) to 89.68% (Dataset 5) was resulted from increasing the 
discrimination capacity for fir, pine, mixed species, and other BL 
species. The user accuracy increases were 31.32% (fir), 28.76% (pine), 
24.42% (mixed species), and 34.68% (other BL species). As has already 
been shown, these increases were not linear (Figure 6). In the case of 
spruce, by adding new bands to the classification, apart from the S-2 
bands, the increase in user accuracy was 9.18%, with 9.56% for beech, 
and 11.5% for larch – considerably lower than for the other species. For 
example, the accuracy increase was 9.53% for spruce, 5.3% for beech, 
and 4.59% for larch. Important increases were recorded for fir (28.65%), 
pine (41.63%), mixed species (31.32%), and other BL species (28.64%).

At the conifer/BL level, the results showed that coniferous species 
were classified better than BLs. In terms of the separation of coniferous 
tree species, the best user’s accuracy was obtained for spruce (93.82%), 
larch (93.44%), fir (92.96%), and pine (88.86%). Stoffels et al. (2015) 
obtained a user’s accuracy of 91.6% for spruce, which is close to the 
value from the present study. Hościło and Lewandowska (2019) 
applied the stratified approach to the S-2 multitemporal images and 
topographic features, obtaining separation accuracy of 85% for spruce, 
84.1% for pine, and almost 80% for larch and fir. Lower accuracy was 
obtained by Immitzer et al. (2012) for spruce (80.4%), pine (85.1%), 
larch (70.4%), and fir (82.3%) using very high spatial resolution 
8-band Worldview-2 satellite data. In the case of the BLs, the highest 

user’s accuracy was obtained by beech (87.50%), followed by other BL 
species, with a user’s accuracy of 87.06%, and mixed species, with 
86.96%. Immitzer et al. (2016), using S-2 images, recorded a user’s 
accuracy of 73.8% for beech and 51.4% for BL species. Hościło and 
Lewandowska (2019) used S-2 images and topographic features, 
achieving a beech user’s accuracy of 92.3%.

According to the classification for which the highest overall accuracy 
was obtained (Dataset 5), the most widespread species in the study area 
were beech (56.21%), mixed species (13.30%), and spruce (10.27%). The 
order of decrease in the occupied surface was BLs (9.15%), fir (5.47%), 
pine (3.36%), and larch (2.24%; Figure 7). The obtained surfaces could 
not be verified because we lacked forest evidence from outside the forest 
management plan and for the private areas.

Mapping tree species using multitemporal data S-2 are generally 
based on leaf seasonality, and the main phenophases such as budburst, 
leaf unfolding, autumn colouring, and abscission. In the case of 
deciduous trees, seasonal variations in the efficiency of the 
photosynthetic activity are strongly emphasised during autumn, 
through the senescence process which is strongly connected with leaf 
colouring. The importance of the six S-2 images from autumn 
(October and November), when the leaf colouring process appeared, 
is crucial in separating tree species, especially deciduous trees. 
However, the very similar spectral signatures for beech, hornbeam, 
sessile oak, grey alder, sycamore maple, and European ash have led to 
a lower accuracy of mixed species and other BL species. This 
phenomenon was also emphasised by other studies (Hill et al., 2010; 
Pasquarella et  al., 2018; Grabska et  al., 2019). Furthermore, the 
phenological differences were difficult to capture for species 
characterised by very close phenological phases (for example, between 
beech and hornbeam). This situation was also reported by other 

FIGURE 6

Class level accuracy assessment (producer’s accuracy – PA and user’s accuracy - UA) for all tree species and datasets mapped by RF classification.
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studies (Schieber et al., 2009). The five images used in the study and 
acquired during spring (April and May), are depicting tree species 
phenology through different moments of leaf green colouring. The 
species located at lower altitudes have greened faster than the ones 
located at higher altitudes. Both cases depend on the temperature. For 
example, beech foliation depended on temperatures from March, at 
lower altitudes and on April temperatures as the altitude increases.

The photosynthetic activity of resinous species is rather hard to 
quantify based on satellite images, but seasonal changes can 
be quantified in the visible spectra (Gamon et al., 2016). Generally 
speaking, the spectral behaviour of spruce and fir is similar, but differs 
significantly from pine, indicating a difference between the phenology 
of pines and other resinous species. Larch, the only resinous species 
from the present study, has shown a spectral signature closed to 
deciduous trees that increased during autumn in the visible and SWIR 
bands. All the other resinous did not have obvious phenological 
phases, but needle appearance during spring can be an indicator of 
growth start that can be seen on spring images.

The classification errors could have different causes. Using 
samples based on data from forest management plans could be one of 
them. Even though stand composition is established through forest 
inventory, disparities can occur. The small training dataset could also 
be the reason for some of the confusion in classifying the tree species. 
To some degree, this failed to provide a coherent spectral reflectance. 
This was the case for species such as larch and pine that were present 
in small percentages (10–20%) in the composition of some stands. 
Another cause could be the inclusion of pixels that represented other 
species in the samples. This was found to be the case for beech and 
hornbeam mixtures, oak, sycamore maple, ash, aspen, silver birch, 
grey alder, and black alder. These were disseminated in the stands and, 
because of their similar spectral behaviors, confusions appeared where 
the accuracy was lower for mixed and other BL species. Furthermore, 
obtaining samples for the same species in stands of different ages likely 
led to selecting some different spectral signatures. For example, beech 
had a very high intensity signature in some samples and a dark 
signature in others, leading to its classification as resinous.

4.3. Importance of tree species 
identification

Global change and tree species identification are interconnected 
topics that play a crucial role in understanding and addressing the 
challenges facing our planet’s forests. Tree forest identification through 
satellite imagery and remote sensing techniques allows for continuous 
monitoring of forest an global scale. It is essential for monitoring 
changes in forest cover, understending the distribution of tree species, 
and assessing the health and resilience of forests. Global change 
factors, such as rising temperatures, altered precipitation patterns, and 
increase frequency of extreme weather events, influence the growth, 
reproduction, and survial of tree species. Consequently, certain trees 
my encounter difficulties in adapting to this conditions, leading to 
shifts in forest composition and distribution. All the forests in the 
analyzed area are categorized as forests with special protection 
functions. Understanding the composition and distribution of tree 
species in such an area is crucial for ensuring the forest’s functions as 
designated in the forest management plan.

In the context of global change, tree species identification is crucial 
for identifying areas that have undergone deforestation or degradation. 
By knowing the original species composition, efforts to restore this 
forests can focus on reintroducing the right tree species and promoting 
ecosystem resilience. In the studied area, these forests are categorized 
within the forest management plan as tree stands situated on rocky 
outcrops, scree slope, lands with deep erosion, or on terrain with a slope 
exceeding 35 degrees. In this way, strategies for planting and regenerating 
forests can be developed in accordance with the requirements of the 
species (Abrudan, 2006), thus preventing the negative effects of planting 
in unsuitable areas, such as fungal and insect attacks.

Different tree species have varying abilities to sequester carbon 
dioxide from the atmosphere, making tree species identification 
crucial for estimating carbon stocks in forests. In this sense, forests 
play a critical role in mitigating climate change by acting as carbon 
sinks, capturing and storing significant amounts of carbon (Goetz 
et  al., 2009). Additionally, in the case of urban forests and rapid 

FIGURE 7

The areas occupied by tree species according to of the RF classification for the five datasets.
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urbanization, it is essential to investigate the role of these forests in 
maintaining air quality, biodiversity, and the quality of life in cites, and 
to develop policies for managing these changing ecosystems. This 
applies to the forests in the lower and middle parts of the studied area, 
encompassing 257.9 ha, which are designated in the forest 
management plan as forests with recreational and social significance.

Tree species identification is vital for conservation efforts. By 
knowing the tree species present in a forest, conservationists can develop 
targeted strategies to protect and restore specific habitats, especially 
those of threatened or endemic species. Certainly, within the studied 
area, 442.09 ha of FMU II Posada are encompassed by the Natura 2000 
site ROSCI0013 Bucegi. The encountered Romanian habitat types 
consist of Southeastern Carpathian forests featuring spruce, beech, and 
fir with Pulmonaria rubra, as well as Southeastern Carpathian beech 
forests with Symphytum cordatum, both of which require conservation 
efforts. Furthermore, an additional 285.85 ha of forest serve as buffer 
zones for the reserves within the Bucegi Natural Park. Additionally, 
94.73 ha of forests are designated as reserves for seed production and the 
preservation of the forest gene pool. It also aids in planning sustainable 
forest management practices that consider the needs of different species. 
By understanding changes in tree species distribution, forest managers 
and policymakers can adapt their strategies to address emerging 
challenges posed by global change. In the analyzed area, several essential 
activities are required to support natural regeneration, maintain an 
optimal mix of tree species, control invasive tree species, and manage 
mature forest to preserve a high level of biodiversity.

Additionally, identifying tree species on satellite images helps to 
identity fire-prone areas and monitor illegal logging activities. By 
monitoring tree species, strategies for fire risk management and effective 
firefighting can be  developed (Jaiswal et  al., 2002). Moreover, by 
identifying tree species through remote sensing data, the impact of 
human activities on forests, such as excessive logging, agricultural 
expansion, and urban development, can be  analysed. In this way, 
appropriate measures for protection and ecological restoration can 
be taken. The analysed area also serves as a tourist destination, featuring 
human settlements in its central region. This necessitates vigilant 
monitoring of human activities within the forested areas and 
urban development.

Overall, tree species identification using satellite images is an 
essential tool for understending the impact of global change on forests 
and developing effective strategies for conservation, adaptation, and 
sustainable management. It helps us to make informed decisions to 
protect and preserve our valuable forest ecosystems in the face of 
ongoing environmental challenges.

5. Conclusion

In this study, the performance of S-1 and S-2 images, VIs, and 
topographic features in various combinations were investigated as 
tools for tree species mapping. Seven tree species–four coniferous and 
three deciduous–located in a complex mountain area characterized by 
compact forests and forests fragmented by private property, were 
classified using the RF algorithm. The accuracy of the classification 
was compared for five different combinations (datasets) of input 
variables. This showed the importance of phenology, together with 
topographic features (elevation, aspect, and slope), in improving the 
performance of the RF classifier in the classification of tree species. 

Using topographic features also guaranteed that a sample belonged to 
a particular tree species based on its precise altitudinal distribution.

Because phenology varies with species, it is important to select S-2 
images that represent the phenological cycle of the studied tree species 
when mapping tree species. Seasonal S-2 composites have advantages 
over monotemporal classifications, but preference should be given to 
a combination of S-2 images and topographic features. Bands B11, 
B12, and B2 contributed the most among the S-2 bands used in this 
study, allowing the capturing of differences among the species during 
the growing season, and analyzing their temporal patterns. The S-2 
satellite has numerous advantages, such as high temporal resolution 
and being able to provide data more frequently than other medium-
resolution sensors.

Combining VIs with the S-2 images did not bring a substantial 
accuracy advantage, but GLI and EVI made the largest contribution. 
By bringing together S-1 images combined with S-2 images, VIs, and 
topographic features, the effect was only marginal, while the accuracy 
was very low. However, the results have indicated that introducing S-1 
images into the classification caused a shift in the contributing 
features. As such, they had a more important role in classifying groups 
of species from BL species and mixed species. This approach has 
allowed us to establish that the lowest accuracy was obtained in the 
hill area, where there was less forest cover and more forest fragmented 
by private property, and around the margins of stands that contained 
different species. The highest accuracy was obtained from compact, 
pure, and homogenous stands from mountain areas, where the degree 
of forest coverage was very high.
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