
Defects go green: using defects in
nanomaterials for renewable
energy and environmental
sustainability

Addis S. Fuhr*, Bobby G. Sumpter and Panchapakesan Ganesh

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States

Induction of point defects in nanomaterials can bestow upon them entirely new
physics or augment their pre-existing physical properties, thereby expanding their
potential use in green energy technology. Predicting structure-property
relationships for defects a priori is challenging, and developing methods for
precise control of defect type, density, or structural distribution during
synthesis is an even more formidable task. Hence, tuning the defect structure
to tailor nanomaterials for enhanced device performance remains an
underutilized tool in materials design. We review here the state of
nanomaterial design through the lens of computational prediction of defect
properties for green energy technology, and synthesis methods to control
defect formation for optimal performance. We illustrate the efficacy of defect-
focused approaches for refining nanomaterial physics by describing several
specific applications where these techniques hold potential. Most notably, we
focus on quantum dots for reabsorption-free solar windows and net-zero
emission buildings, oxide cathodes for high energy density lithium-ion
batteries and electric vehicles, and transition metal dichalcogenides for
electrocatalytic green hydrogen production and carbon-free fuels.
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1 Introduction

The industrial revolution—largely propelled by burning hydrocarbon-containing
materials to provide electricity, heating, and power engines (e.g., in motor vehicles)—
facilitated over 200 years of sustained human development (Chu and Majumdar, 2012).
However, an unfortunate byproduct of burning fossil fuels are large-scale greenhouse gas
emissions, which contribute to climate change and ecological deterioration (Chu and
Majumdar, 2012; Alstone et al., 2015; Clark et al., 2016; Hallegatte et al., 2016;
Schleussner et al., 2016). To ameliorate environmental damage associated with climate
change, public policy endeavors must focus on curbing greenhouse gas emissions, while also
supporting sustained global development through the expansion of access to inexpensive and
reliable energy. Technological innovation will therefore play a pivotal role in achieving a
sustainable future. Nanomaterials in particular are poised to contribute to the development
of renewable energy production and storage (Chen et al., 2012).

Point defects are single or multiple atom disruptions in the long-range periodicity of
crystallographic materials. These atomic impurities often form in nanomaterials,
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dramatically alter their physical properties (e.g., induce magnetism
or metal-insulator transitions) (Lopez-Bezanilla et al., 2015a; Lopez-
Bezanilla et al., 2015b; Ganesh et al., 2020; Bennett et al., 2022), and
offer a potentially rewarding route for tuning their functionality for
enhanced device performance in a broad array of applications.
However, predicting the relationship between crystal growth
conditions, defect formation, and their corresponding physics is
challenging, and has served as a bottleneck to the commercialization
of many ubiquitous technologies such as InxGa1-xN heterostructure
blue light-emitting diodes (LEDs) (Nakamura, 1998). Hence, defect
engineering represents an encouraging, but underexplored
paradigm to tailor nanostructures for a diverse array of green
technology such as solar energy (Giustino and Snaith, 2016) or
batteries (Zhao et al., 2020).

Defect engineering efforts will require innovations that link
theoretical predictions of defect properties with experimental
methods for controlling defect formation in nanomaterials. First
principles calculation methods such as density functional theory
(DFT) have become a powerful tool in predicting defect physical
properties, and guiding experimental efforts to detect and control
defect formation during synthesis or post-processing (Freysoldt
et al., 2014; Dreyer et al., 2018). Recent advances in scanning
transmission electron microscopy (STEM) enable direct
measurement and quantification of defects in nanomaterials
(Ziatdinov et al., 2017; Madsen et al., 2018; Zhao et al., 2018;
Maksov et al., 2019; Ziatdinov et al., 2019; Lee et al., 2020; Guo
et al., 2021; Trentino et al., 2021; Yang et al., 2021; Lee et al., 2022;
Wu et al., 2022). These ab initio and experimental approaches can be
combined with other supplemental experimental techniques such as
spectroscopy and scanning tunneling microscopy (STM) to directly
resolve nanomaterial defect physics (Ziatdinov et al., 2019). In this
context, we review computational and experimental approaches for
elucidating defect synthesis-structure-property relationships with
the specific aim of unleashing the full potential of defects for green
technology. Additionally, we delve into several examples of green
technologies where defect engineering has shown promise. These
systems of interest include optical defects in quantum dots for
Stokes-shift engineered luminescent solar concentrators and net
zero-energy buildings, cation-disordered oxides for lithium-ion
battery cathodes with improved energy storage capabilities, and
defects in transition metal dichalcogenide electrocatalysts for green
hydrogen production.

2 Defect formation in nanomaterials:
theory and chemistry

2.1 Types of defects

Crystallographic materials exhibit periodicity wherein atoms are
arranged in a consistent repeating pattern. The term point defect is
generally used to indicate a single or few atom “break” in periodicity
such as a missing or misplaced native lattice atom (intrinsic defect), or
a foreign atom not normally present in the lattice (extrinsic defect,
Figure 1) (Tuller and Bishop, 2011; Freysoldt et al., 2014; Dreyer et al.,
2018; Fuhr et al., 2023). Intrinsic defects are generally classified as
either vacancies (missing anion or cation), anti-site defects (atomic
species in the lattice swap positions such as a cation occupying a lattice
site expected to be an anion), or interstitials (cation or anion occupies
an interstitial space in the lattice). Extrinsic defects can occupy
substitutional or interstitial lattice sites as dopants, or form as
adatoms on the surface. The specific lattice site and charge of
point defects are commonly described using Kroger-Vink notation
(Kröger et al., 1956). Defect atomic identity is indicated by the first
letter, and for most defect types (intrinsic or extrinsic), the subscript
designates the lattice site where the defect occurs. The exceptions to
this rule are vacancies and interstitials for which “V” is used to
indicate a vacancy and the subscript “i” is used to indicate interstitial.
The superscript indicates the electronic charge at the defect lattice
point: “x” signifies no charge, “/” denotes a negative charge, and “•”
represents a positive charge. For example, a sulfur anion vacancy with
a +2 charge in MoS2 would be denoted as VS

•• (a sulfur atom is
missing from a sulfur lattice site leaving a +2 charge, Figure 1A), a
sulfur interstitial in MoS2 with a −2 charge would be indicated as Si

//

(Figure 1B) and a O2− dopant on a Te2− site in WTe2 (net charge of 0)
as OTe

x (Figure 1C) (Kröger et al., 1956).
Kroger-Vink theory—in its original conception—describes

defect formation under thermodynamic equilibrium by charge-
compensated formal reaction pathways. If we consider a simple
binary ionic material (MA where M is a 2+ metal cation and A is a
chalcogen or oxygen 2− anion), these reaction pathways could
include Schottky defects (VA

•• + VM
//), Frenkel pairs (VA

•• +
Mi

//, or VM
•• + Mi

//), antisite defect pairs (MA
•••• + AM

////), or
non-stoichiometric defects wherein a charged defect is compensated
by the oxidation or reduction of another atom (e.g., VA

•• + 2MM
/).

Regions of lattice disorder, (Cen et al., 2023), distortion (Ding et al.,

FIGURE 1
(A–C) DFT generated STEM digital twins for defects in monolayer TMDs. Reproduced with permission from Fuhr et al. (2023).
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2018), or non-stoichiometry (Fuhr et al., 2020a) are not always well
described by Kroger-Vink reaction pathways, but the notation is still
commonly used. Using the notation we described earlier for ionic
material MA, metal or anion deficient synthesis conditions could
yield M1-xA or MA1-x structures with ordered metal vacancies. For
this illustrative example the material would not have defects in the
traditional sense. Yet, the Kroger-Vink metal vacancy notation is
still often used (e.g., as observed with iron sulfides, ceria, or
strontium titanate) (Zhuang et al., 2014; Li et al., 2017a; Luo
et al., 2021).

2.2 Predicting defect stability

Despite its clarity, consistent bookkeeping of all charge-
compensating Kroger-Vink reactions is unrealistic for
nanomaterials at-scale (Freysoldt et al., 2014). This problem is
even further exacerbated in off-equilibrium processes such as ion
implantation. However, the creation of defects alters local chemical
bonding (e.g., breaking bonds to form vacancies) in nanomaterials
and generally invokes an enthalpic energy penalty. Density functional
theory (DFT) or similar electronic structure approaches can therefore
be used to calculate formation enthalpies and predict the type and
relative concentrations of defects (Freysoldt et al., 2014; Dreyer et al.,
2018). This approach assumes a grand canonical material system
wherein individual defects interact with an electron reservoir
(described by the Fermi level), and their energy can be calculated
as a function of the energy of the electron reservoir and relative
concentration of each atomic species. The DFT route can shed light
onto the likelihood of various defects to form under thermal
equilibrium conditions, their relative concentration, local geometry,
and corresponding structure-property relationships.

The usual approach for calculating defect formation energy via
DFT or related methods is to separately optimize the geometry of a
pristine supercell or surface, and compare its energy to the same
structure with defect “X” at charge state “q” using Eq. 1:

Ef Xq[ ] � Etot X
q[ ] − Etot pristine[ ] −∑

i
niμi + qEF + Ecorr (1)

where Etot[X
q] is the total energy of a supercell or surface with the

specified defect in charge state q, Etot[pristine] is the total energy of
the defect-free supercell or surface, μi represents the chemical
potential for atomic species i either added (positive ni where n
notes the number of atoms added by exchange from a chemical
reservoir) or subtracted (negative ni where n notes the number of
atoms removed by exchange to a chemical reservoir). The Fermi-
level (EF) describes the energy of the electron reservoir that
exchanges electrons with the lattice resulting in a positive or
negative charge (q) for electrons removed or gained by the
material, respectively. EF is conventionally described in relation
to the valence-band (VB) where EF = 0 reflects a Fermi-level
exactly at the valence band maximum, and the upper bound for
EF is the conduction band (CB) of the material. A correction term
Ecorr is often added to account for the finite-size of the supercells and
k-point meshes on elastic or electrostatic interactions and are
described in greater detail elsewhere (Makov and Payne, 1995;
Lany and Zunger, 2008; Freysoldt et al., 2009; Komsa et al., 2012;
Freysoldt et al., 2014; Dreyer et al., 2018).

The low concentration of defects in materials requires that DFT
approaches use large supercells (e.g., 50–200 atoms). Computational
expense for DFT based approaches scale with size and the number of
electrons in the material, which makes predicting defect stability and
structure-property relationships challenging. For example, it is well-
known that pureDFT functionals such as the PerdewBurke Ernzerhof
(PBE) do not accurately predict semiconductor band gaps (Le Bahers
et al., 2014). One route to improve the accuracy of DFT is to include
some degree of Hartree Fock direct exchange using a hybrid
functional (e.g., HSE06), but this comes at significantly greater
computational expense. Hence, predicting optical transitions for
defects is much more complicated than for defect-free materials
due to the simultaneous requirement of computationally expensive
functionals and large supercells. In addition, DFT treatment of
surfaces (with or without defects) is often required to predict
structure-property relationships at the nanoscale, and similarly
scales poorly with hybrid functional or other beyond pure DFT
methods. While we do not focus here on specific electronic
structure approaches for dealing with large supercells, these are
important considerations for predicting defect formation and
corresponding physics and are reviewed elsewhere (Makkar and
Ghosh, 2021; Broberg et al., 2023).

DFT-calculated formation enthalpy is typically determined at
0 K, and the usually positive value is often interpreted to indicate that
entropy and temperature are needed to overcome the enthalpic energy
barrier—resulting in a negative Gibbs free energy and enabling defects
to spontaneously form. Among the various types of entropy,
configurational and vibrational are the most frequently discussed.
In the context of understanding defects, configurational entropy
pertains to atomic rearrangements resulting from local disruptions
of periodicity, while vibrational entropy encompasses modified
phonon interactions and changes in chemical bonding.
Configurational entropy can be calculated by combining cluster
expansion approaches with Monte Carlo, while packages such as
Phonopy can be used to determine vibrational entropy using either
the Hessian matrix from density functional perturbation theory
(DFPT) calculations or the finite displacement method (Freysoldt
et al., 2014; Sutton and Levchenko, 2020; Kaczkowski et al., 2021).
These additional contributions are typically ignored in most studies
due to the high computational cost of performing both enthalpic and
entropic calculations. DFT-calculated formation enthalpy is generally
considered sufficient to predict structure-property relationships and
general trends in the type and relative concentration of defects that
will form in nanomaterials under different oxidizing/reductive
environments and relative precursor concentration (e.g., metal
deficient synthesis vs. chalcogen deficient synthesis). However,
interest in high-throughput DFT and beyond 0 K approaches is
growing, and are essential to predict more precise relationships
between synthesis conditions and defect creation (Balachandran
et al., 2017; Choudhary et al., 2023; Mosquera-Lois et al., 2023).

2.3 Synthesis and control of defect
formation

The theoretical principles underpinning defect formation
predictions have several general implications for nanomaterial
synthesis. The type and concentration of defects that form in
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nanomaterials is strongly influenced by the relative concentration of
each atomic species during synthesis or post-processing, as well as
whether the experiments are conducted in a more reductive (high
EF) or oxidative (low EF) environment (Liu et al., 2014a; Du et al.,
2021). The set of defects with the lowest formation energies under
the specific experimental conditions will prevail. For instance,
ignoring kinetic considerations, cation-poor and oxidative growth
conditions could favor the creation of negatively charged metal
vacancies. Furthermore, the repercussions of local geometric and
electrostatic distortions vary by chemical bonding motif. Although
the first principles assessment of chemical bonding in the material is
not flawless, it remains instructive. For example, closed packed
structures less frequently exhibit Frenkel defects due to the
additional energy required to squeeze an interstitial ion into the
lattice (geometric penalty). On the other hand, materials with
metallic or covalent bonds tend to form antisite defects or partial
cation disorder due to the lower electrostatic penalty compared to
ionically bonded materials (YOO and TULLER, 1987; Tuller and
Bishop, 2010; Tuller and Bishop, 2011; Hu et al., 2017).

As discussed earlier, the formation enthalpy of defects is
generally positive (unfavorable). Entropic stabilization or external
energy is therefore required to overcome the enthalpic penalty to

create defects in most materials. These observations are suggestive
that growth/post-processing temperature—or the inclusion of
external energy sources such as plasmas or light—can be used to
control defect formation. Hence, most defect engineering strategies
revolve aroundmanaging the relative concentrations of each species,
establishing an oxidative or reductive environment, and/or
controlling external energy factors such as temperature during
nanomaterial synthesis or post-processing. For extrinsic defects
such as dopants, solubility (maximum concentration attainable
by a dopant) and diffusivity (rate at which atomic species
spreads across the material at a finite temperature) also need to
be taken in consideration (Freysoldt et al., 2014).

The predominant method for managing defect distribution in-
situ during nanomaterial synthesis typically entails regulating
temperature and atomic species concentration. The synthesis of
VO-rich SnO2-x nanosheets, achieved through a hot-injection
reaction between SnSe nanosheets and organic residue, serves as
an illustrative method for creating anion vacancies via temperature
control (Zhong et al., 2019). Multinary nanomaterials—such as
CuxIn2-xSeyS2-y (CISeS) nanocrystals—frequently have their defect
distribution tuned by adjusting precursor ratios. In this case, Cu-
deficient nanocrystals tend to form VCu

/ whereas CuIn
// are more

FIGURE 2
Schematic depiction of CVD vs. CVT process for creating defects in TMDs (A–C), light and plasma induced defects in graphene oxide (D), and
electron beam induced defects on TMDs (E). Figures reproducedwith permission fromDeng et al. (2021) for (A–C), Kondratowicz et al. (2018) for (D), and
Wu et al. (2022) for (E).
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commonly observed in near-stoichiometric or Cu-rich nanocrystals
(Ueng and Hwang, 1989; Ueng and Hwang, 1990; Kim et al., 2012;
Jara et al., 2016; Fuhr et al., 2017; Yun et al., 2018; Houck et al., 2019;
Fuhr et al., 2020a; Fuhr et al., 2020b; Du et al., 2020; Frick et al., 2020;
Liang et al., 2023). Adjusting synthesis temperature and precursor
ratios has been shown to enhance the density of vacancies during
chemical vapor deposition (CVD) or chemical vapor transport
(CVT) synthesis of transition metal dichalcogenides (TMDs,
Figure 2) (Enyashin et al., 2013; Lin et al., 2016; Li et al., 2017b;
Liang et al., 2021). CVD synthesis occurs at a lower temperature
than CVT, and uses more volatile precursors and shorter growth
times (Shi et al., 2015). The density of sulfur vacancies can be
controlled by the sulfur rate (rate at which sulfur-containing
compounds are introduced to the reaction environment)
(Gutiérrez et al., 2013; Peimyoo et al., 2013; van der Zande et al.,
2013). Both CVD and CVT have also been used to dope
nanostructures (Chen et al., 2013; Dumcenco et al., 2013; Zhang
et al., 2014a; Feng et al., 2014; Suh et al., 2014; Tongay et al., 2014; Li
et al., 2015; Gao et al., 2016; Lin et al., 2016; Deng et al., 2021; Liang
et al., 2021). However, the high temperature and long growth times
generally leads to greater control of the spatial distribution and
density of defects with CVT, which has been demonstrated with
MoxW1-xSy, MoxW1-xSySe2-y, and MoSxSe2-x monolayers. Enhanced
control of dopant distribution has also been observed in colloidal
quantum dots by using hot-injection and diffusion methods to dope
Mn in CdSe, ZnSe, and PbSe quantum dots (Mikulec et al., 2000;
Norris et al., 2001; Ji et al., 2003; Jian et al., 2003; Vlaskin et al., 2013;
Rice et al., 2016; Singh et al., 2019). The high energy of interstitial
defects typically precludes their formation in QDs, and dopants are
usually assumed to be substitutional unlike nanostructured oxides
where both substitutional and interstitial defects are well-known to
form (Norris et al., 2001; Robertson et al., 2011; Zhang et al., 2014b).

Despite the major advances, controlling the density and
distribution of defects in nanomaterials in-situ remains difficult
and post-processing methods are often required. Post-synthesis
annealing and altering the cooling rate after calcination have
been used to create antisite defects and cation site disorder in
LiNixMn2-xO4 and LiNi0.45Mn1.45Cr0.1O4 phases (Liu et al., 2012;
Zheng et al., 2012; Liu et al., 2014b). High-temperature annealing of
oxide films in an oxygen deficient environment has been well
established to induce oxygen loss and create VO even in inert
environments (Kell et al., 2022). This effect can be further
enhanced by inclusion of a reductant such as hydrogen
(Merdrignac et al., 1992; Jeong et al., 2003; Chen et al., 2011; Shi
et al., 2014; Bonu et al., 2015; Chen et al., 2015; Xiong et al., 2018;
Kim et al., 2020; Xiong et al., 2022). Thermal annealing in a pre-
determined atmosphere has been extended to non-oxide systems to
control the distribution of other anion vacancies such as VN in C3N4

(Niu et al., 2014), or chalcogenide vacancies in MoTe2, VSe2, or
PdSe2 (Zhu et al., 2017; Chen et al., 2019; Chua et al., 2020; Zhang
et al., 2020). Similar to in-situ methods, control of the heating rate
and duration is central to controlling defect density and distribution.
This approach can also be extended to nanomaterial doping as
exemplified by PdSe2 wherein the use of an oxidative ozone
environment was used to generate oxygen dopants (Liang et al.,
2020a). High temperature annealing is not always required to create
an oxidative or reductive environment, and solution phase routes
can be advantageous for large-scale manufacturing due to their

lower energy input requirements, decreased use of harmful
chemicals, and overall improved safety. NaBH4 is a frequently
employed solution-phase reducing agent capable of extracting
lattice oxygen atoms in materials (e.g., K4Nb6O17 ultrathin
nanosheets or TiO2 nanoparticles) to create VO (Bi et al., 2014;
Fang et al., 2014; Mao et al., 2014). Chemical reduction with NaBH4

can create VO in ZnO nanorods or SnO2 nanoparticles at
temperatures as low as 30°C–190°C, which is far lower than that
required for vacuum annealing (500°C–800°C) (Ansari et al., 2013;
Lv et al., 2013; Bonu et al., 2014; Wang et al., 2015a; Wang et al.,
2018a; Sahu et al., 2019; Zeng et al., 2020; Xiong et al., 2022). Similar
success in controlling the density of VO has been demonstrated
using other solution-phase reductants, including ethylene glycol or
glycerol for oxygen vacancy formation in BiOCl or Bi2WO6 (Jiang
et al., 2013; Ye et al., 2015; Chen et al., 2023).

Temperature and oxidative/reductive environments are not the
only post-growth methods capable of generating ample external
energy to surmount enthalpic barriers for defect generation. Bi-O
bonds in BiOCl nanosheets are long and have a low bond energy,
which can be broken with UV photons to create surface oxygen
vacancies (Ye et al., 2011; Ye et al., 2012; Jiang et al., 2013; Wu et al.,
2018). Photons can also employed to convert chalcogen vacancies
to oxygen dopants, as demonstrated in the case of WSe2 (Lu et al.,
2015). Ion-beam bombardment is a common route for
substitutional dopant creation—such as Sb-implantation of
SnO2 nanowires (Zhu et al., 2005; Kim et al., 2020). Perhaps
counterintuitively, they can also be used to expel lattice atoms
and cause atomic rearrangement on the surface without any
substitutional doping, as demonstrated with the creation of Oi

//

and Sni
•••• in SnO2 nanostructures by high-energy (45–75 MeV)

bombardment of Ni+ and He2+ ions, or vacancy formation in
MoSe2 monolayers via He+ ion beam nanoforging (Jeong et al.,
2003; Rani et al., 2008; Shi et al., 2014; Iberi et al., 2016; Kwon et al.,
2016). Electron beams can create electrons with sufficient kinetic
energy to cause knock-on effects. This phenomena can be
understood as high-energy electrons from the electron beam
transferring enough energy to dislodge atoms from the
nanomaterial and create atomic defects (Lingerfelt et al., 2019;
Lingerfelt et al., 2020; Lingerfelt et al., 2021). This effect has been
demonstrated with nanomaterials such as graphene and TMDs
(e.g., MoTe2, MoS2, WS2, and WSE2) (Algara-Siller et al., 2013;
Komsa et al., 2013; Zan et al., 2013; Ziatdinov et al., 2017; Wang
et al., 2018b; Elibol et al., 2018; Moody et al., 2018; Nguyen et al.,
2018; Maksov et al., 2019; Dyck et al., 2020; Roccapriore et al.,
2022). The latter case is particularly well-known due to the high
mobility of chalcogen atoms and their relative ease of diffusion out
of the structure due to beam-matter interactions. However, these
effects are not limited to carbon or chalcogen materials and have
been demonstrated in oxides as well (Egdell et al., 1987; Belloni,
2006; Komuro and Matsumoto, 2011). Plasma etching is also a
powerful method to create anion vacancies in TMDs, and
chalcogen vacancy creation has been demonstrated using Ar
plasmas in MoS2, WSe2, PdSe2, and PtSe2 (Wu et al., 2017;
Oyedele et al., 2019; Shawkat et al., 2020; Tsai et al., 2022).
Exposure to plasmas can create vacancies in these and other
structures, and the defect type and concentration can be
controlled by adjusting the plasma gas type (Kondratowicz
et al., 2018), irradiation time, or intensity (e.g., generating
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O-Mo bonds using oxygen plasma) (Islam et al., 2014; Kang et al.,
2014; Nan et al., 2014).

3 Energy harvesting: luminescent solar
concentrators and net-zero emission
buildings

The juxtaposition of global urbanization and the need to lower
greenhouse gas emissions require net zero emission buildings
wherein annual power consumption is fully counterbalanced by
on-site renewable generated energy. Installing conventional
photovoltaic (PV) units on a large scale is challenging within
dense urban layouts. Energy demands for large buildings
frequently exceed those of individual housing units, and PV cells
are constrained to rooftop space that is inadequate to meet energy
demands (Meinardi et al., 2017). To address these issues, interest has
grown in using luminescent solar concentrators (LSCs) as potential
building-integrated semi-transparent PV windows (Debije and
Verbunt, 2012; Meinardi et al., 2017; Papakonstantinou et al.,
2021). LSCs are constructed by doping or coating a glassy or
polymeric waveguide with chromophores (Figure 3A) (Debije
and Verbunt, 2012; Meinardi et al., 2017). The chromophores
absorb broadband solar radiation and re-emit at a specific

wavelength, which is guided by internal reflection within the
waveguide to the edges or window frame where it is converted
into electricity by PV cells (Yablonovitch, 1980; Currie et al., 2008;
Sark et al., 2008; Banal et al., 2014). The specific wavelength of re-
emission varies by the chromophore material, but near-infrared
emission is generally targeted because it is semi-transparent,
aesthetically pleasing, and more likely to attain public acceptance
(Saifullah et al., 2016).

An ideal LSC chromophore should hold three major optical
properties: a large absorption cross-section for capturing sunlight, a
high emission efficiency (defined by quantum yield, or
Φ � Nphotons emitted

Nphotons absorbed
) particularly in the near-infrared region, and a

large Stokes shift (Klimov et al., 2016; Gungor et al., 2022).
While this review centers on chromophore materials design,
other device aspects are important to consider and are discussed
elsewhere (Yablonovitch, 1980; Currie et al., 2008; Sark et al., 2008;
Banal et al., 2014; Saifullah et al., 2016). Regarding the first two
properties, exemplary chromophores should absorb sunlight in both
the visible and near-infrared (near-IR) spectral ranges, and re-emit
at near 100% quantum yield (QY) allowing for collection by the PV
edges. The emitted photons would preferably fall within the near-IR
range to achieve both a semi-transparent aesthetic, and also to boost
device performance by matching the peak external quantum
efficiency (EQE) of the PV device (Figure 3B) (Sark et al., 2008;

FIGURE 3
(A) Schematic depiction of LSCs, and their potential usage as building-integrated photovoltaic units. Reproduced with permission from Meinardi
et al. (2017). (B) CISeS absorption and emission spectra (red and black lines) compared with the solar spectrum (grey shading) and Si solar cell peak EQE
(green line). Reproduced with permission from Meinardi et al. (2015).
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Meinardi et al., 2015). The chromophore should also have a large
Stokes shift, or exhibit peak emission markedly red-shifted from the
absorption onset energy. The large Stokes shift is crucial to mitigate
reabsorption losses, which are caused by substantial spectral overlap
between absorption and emission. Reabsorption losses scale with
device dimensions, and chromophores with small Stokes shifts will
have poor performance if manufactured at conventional window
sizes (Klimov et al., 2016; Gungor et al., 2022).

Several dyes such as 4-dicyanomethyl-6-dimethylaminostiryl-
4H-pyran (DCM), CRS040 Yellow, or Lumogen Red have been
explored as potential chromophores for LSCs (Batchelder et al.,
1979; Sark et al., 2008; Desmet et al., 2012). Though well-studied,
molecular dyes struggle to combine all three LSC chromophore
optical requirements in the same material: strong broadband optical
absorption, high QY, and large Stokes shift with near-IR emission.
Quantum dots (QDs) have been proposed as alternative
chromophores because of their well-known size-tunable
broadband absorption, and the ability to achieve high QY in the
near-IR spectral ranges (Pietryga et al., 2016). However, most
conventional QDs such as CdSe have a small Stokes shift (tens of
meV), which make them unsuitable for LSCs due to prominent
reabsorption losses (Pietryga et al., 2016). Several routes have been
explored to induce large Stokes shifts in QDs without losing their
other potential advantages as LSC chromophores. Most of these
approaches involve either doping the QDs with substitutional
defects, or designing multinary QD alloys (e.g., ternary or
quaternary) that typically form intrinsic defects.

Binary QDs (e.g., CdSe) can be doped directly during crystal
growth, or via cation exchange (Mikulec et al., 2000; Norris et al.,
2001; Ji et al., 2003; Jian et al., 2003; Meulenberg et al., 2004;
Stouwdam and Janssen, 2009; Corrado et al., 2010; Gul et al.,
2011; Srivastava et al., 2011; Viswanatha et al., 2011; Vlaskin
et al., 2013; Rice et al., 2016; Pinchetti et al., 2018; Singh et al.,
2019; Najafi et al., 2021). In the first case, QDs are grown by a
conventional strategy such as hot injection wherein precursors are
injected into a solvent at high temperature to induce rapid
nucleation and growth for size control. During the conventional
synthesis route, a dopant is introduced and kinetically competes
with host cations during crystal growth. A challenge with this route
is that impurity atom binding is unfavorable due to physical
attribute mismatching (e.g., differences in charge or ionicity).
Cation exchange, on the other hand, involves first synthesizing
the QD with conventional methods, and then immersing them in
a cation exchange solution with potential dopants. An advantage of
such an approach is that the anion sublattice is retained, and crystal
composition can be altered without dramatic changes in QD size or
shape. This physical process is governed by rapid diffusion driven by
the differences in the chemical potential of the QD and impurity
solution. While cation exchange often provides for better
compositional control than kinetic doping, cation combinations
are more limited.

Substitutional transition metal impurities induce red-shifted
emission without significantly altering the absorption onset,
concurrently increasing the Stokes shift to mitigate reabsorption
losses in LSCs. Substitutional Mn2+ dopants are the most extensively
studied in II-VI QDs—emitting photons via an internal 4T1 → 6A1

d-d transition following excitation by energy transfer from the QD
host. The energy of photon emission is fixed at approximately

~590 nm or 2.1 eV (Figure 4A) (Norris et al., 2001; Erwin et al.,
2005; Beaulac et al., 2009), while QD absorption is tunable by
nanocrystal size. The absorption onset can therefore be shifted to
bluer spectral energies until there is virtually zero overlap between
absorption and emission, which results in reabsorption-free LSCs
(Erickson et al., 2014). However, the fixed wavelength resulting from
the internal emission process for Mn2+ dopants yields two key
drawbacks. Solar absorption is confined to a narrow spectral
region due to the potential of reabsorption when the QD band
gap is smaller than 2.2 eV (~560 nm). Furthermore, the emission
exhibits a pronounced yellow-orange hue instead of the preferred
semi-transparent shading (Pietryga et al., 2016).

The emission mechanism for Ag+ and Cu2+ dopants is markedly
different from Mn2+ dopants. Radiative recombination occurs via
relaxation of a conduction band (CB) electron from the QD host and
a hole localized at the dopant energy level (Figures 4B, C) (Lingerfelt
et al., 2019, Lingerfelt et al., 2020, Lingerfelt et al., 2021, Wang et al.,
2018a, Elibol et al., 2018, Komsa et al., 2013, Algara-Siller et al., 2013,
Roccapriore et al., 2022). While the emission transition for both Ag+

and Cu+ dopants appears to be similar, the hole localization process
differs for each structure due to their distinct electron
configurations. Cu2+ dopants have a 3d9 electron configuration,
which results in a pre-existing hole in its ground state that can

FIGURE 4
Absorption and emission spectra for Mn-doped QDs (A), and a
comparison between Cu-doped and undoped QDs in (B,C).
Reproduced with permission from Erickson et al. (2014) for (A) and
Viswanatha et al. (2011) for (B,C). For Mn-doped QDs the
absorption and emission mechanism is depicted schematically in an
additional panel to the right of (A), and for Cu-dopedQDs it is depicted
in the inset of (C).
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directly recombine with the excited-state CB electron from the host
QD (Viswanatha et al., 2011; Knowles et al., 2015; Nelson and
Gamelin, 2018; Fuhr et al., 2019; Hughes et al., 2019; Harchol et al.,
2022). On the other hand, Ag+ has a 3d10 electron configuration,
which must capture a photogenerated hole from the VB (Pinchetti
et al., 2018; Najafi et al., 2021). For both cases, the emission
wavelength is consequently governed by the energy difference
between the hole localized at the Ag+ or Cu2+ dopant and the CB
electron. The Stokes shift is determined by the energy difference
between the hole localized at the dopant site and the valence band
(VB). The CB electron energy is size-tunable, which allows for larger
QDs with redder absorption and near-IR emission to be synthesized
without dramatically increasing reabsorption.

The band gap for copper and silver doped QDs is still somewhat
large, which limits spectral absorption coverage for LSCs and has
driven research interest in CuxIn2-xSe2-ySy (CISeS) QDs. CISeS QDs
have size tunable absorption all the way to the near-IR range, a large
Stokes shift (300–500 meV), a near colorless emission wavelength
that well-matches the peak EQE of the LSC PV cells (Figure 3B), and
have recently achieved greater than 95% QY (Ueng and Hwang,
1989; Ueng and Hwang, 1990; Kim et al., 2012; Knowles et al., 2015;
Jara et al., 2016; Fuhr et al., 2017; Xia et al., 2017; Bergren et al., 2018;
Nelson and Gamelin, 2018; Yun et al., 2018; Houck et al., 2019;
Hughes et al., 2019; Makarov et al., 2019; Fuhr et al., 2020a; Fuhr
et al., 2020b; Du et al., 2020; Frick et al., 2020; Velarde et al., 2020;
Hinterding et al., 2021; Xia et al., 2021; Harchol et al., 2022; Liang
et al., 2023). The origin of CISeS Stokes shifted emission has
commonly been ascribed to defects, but with several other
proposed mechanisms depending on the type of defect that

forms, and the band-edge transition itself (described later in the
review). It has been suggested that near-stoichiometric (and
especially Cu-rich) CISeS QDs have antisite (CuIn

//) defects, and
that Cu-deficient QDs have VCu

/ charge compensated by oxidation
of a lattice Cu+ atom to Cu2+ (CuCu

•) (Fuhr et al., 2020a; Fuhr et al.,
2020b). Considering that CuIn

// defects are in the +1 oxidation state
(3d10 configuration) and Cu2+ defects in the 3d9 configuration, hole
localization is thought to occur via a similar process as Ag+ dopants
for CuIn

// (near-stoichiometric or Cu-rich QDs) and Cu2+ dopants
for CuCu

• (Cu-deficient QDs).
Both defects involve recombination from a delocalized CB

electron, sharing many of the same advantages as Ag+ and Cu2+-
doped structures. However, precise control of synthesis conditions
becomes crucial due to variations in emission channels between each
defect type. Specifically, the hole localization process for CuIn

//

defects involves intragap absorption, which is absent for CuCu
•

defects (Figure 5). A potential conclusion from this observation
would be that the sharper absorption edge for Cu-deficient
structures arising from the removal of CuIn

// defects should lead
to superior LSC performance via reduced spectral overlap between
absorption and emission, and correspondingly improved
reabsorption losses. This prediction is partially correct, but
misses quantum yield considerations. Moderately Cu-deficient
structures exhibit sharper absorption, reduced spectral overlap,
and even higher QY due to deactivation of hole trapping
pathways (Jara et al., 2016; Fuhr et al., 2020a; Fuhr et al., 2020b).
However, if QDs become too Cu-deficient eventually other defects
(e.g., InCu

••) can form in larger densities and reduce QY via electron
trapping (Jara et al., 2016; Fuhr et al., 2020a; Fuhr et al., 2020b).
These findings are suggestive that the defect chemistry of CISeS QDs
is highly sensitive to synthesis conditions, and that likely the
complex distribution of defects and LSC performance will
strongly vary with other experimental parameters such as
temperature or pH.

The precise emission mechanism is still under debate for CISeS
QDs, and other models that do not require defects such as the self-
trapped exciton or inverted band-edge hole model have been
discussed (Knowles et al., 2015; Shabaev et al., 2015; Nagamine
et al., 2018; Nelson and Gamelin, 2018; Hughes et al., 2019; Anand
et al., 2020; Harchol et al., 2022). For the purposes of this general
review on defects in nanomaterials we do not attempt to determine
the model that most accurately depicts the exact CISeS emission
mechanism. We instead focus on two key points: 1) many of these
proposed models are not mutually exclusive, and 2) defects likely
affect the emission process, LSC performance, and their formation is
sensitive to chemical processing conditions. The predicted Stokes
shift for the band-edge hole inversion model is expected to be
smaller than the defect-induced emission, and are difficult to resolve
experimentally due to partial overlap with strong Cu-defect
emission unless defect-free QDs can be synthesized (Batchelder
et al., 1979, Desmet et al., 2012, Meinardi et al., 2015). The self-
trapped exciton model involves the same hole localization and
excited-state reorganization mechanism described for antisite
defects and Ag+ dopants, but is argued to instead occur via band-
edge states to cause the large Stokes shift without the need for defects
(Batchelder et al., 1979, Desmet et al., 2012, Meinardi et al., 2015).

These distinctions may prove valuable in future LSC efforts,
particularly in resolving routes to reduce spectral linewidths to

FIGURE 5
Antisite defects in CIS QDs have been predicted to form in near-
stoichiometric structures (left panel) and copper vacancies charge
compensated by lattice copper oxidation in Cu-deficient structures
(right panel). CIS has two absorption pathways if antisite defects
are present (hυx and hυCu,α for band-edge absorption and Cu1+

absorption, respectively). CIS with VCu + CuCu
•
only exhibit the hυx

pathway. Antisite defects undergo excited state reorganization, which
further red-shifts emission due to the CuIn

// → CuIn
/ Jahn-Teller

distorted photoconversion process (similar to the singlet-triplet
splitting model). “Near-stoichiometric” CIS therefore has absorption/
emission dominated by the antisite defect pathway (similar to Ag+-
doped QDs), and Cu-deficient CIS by the VCu induced CuCu

•
pathway

(similar to Cu2+-doped QDs). Reproduced with permission from Fuhr
et al. (2020a).
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further diminish reabsorpiton losses. However, it is important to
note that regardless of the precise emission mechanism, defects
likely strongly impact spectral properties for CISeS QDs and are
important to control for LSC performance. There is extensive
evidence that the spectral properties of CISeS QDs are highly
sensitive to chemical processing in ways that binary QDs are not.
Single particle spectroscopy studies have shown radiative lifetimes
and photoluminescence (PL) linewidths that can vary by several
hundreds of ns or several hundreds of meV, respectively (Zang et al.,
2017; Hinterding et al., 2021; Xia et al., 2021). Ensemble absorption
and emission spectroscopy has resolved both two channel
absorption and two channel emssion (Jara et al., 2016; Fuhr
et al., 2020a; Fuhr et al., 2020b; Xia et al., 2021), and the
magneto-optical charateristics vary significantly across studies
with different QD batches. (Rice et al., 2014; Knowles et al.,
2015; Fuhr et al., 2020a; Anand et al., 2020; Fuhr et al., 2020b).
These large variations are atypical for QDs, and defect-free
structures are atypical for covalently bonded multinary
structures—especially those with large variations in stoichiometry
(Alvarez-Garcia et al., 2000; Hahn et al., 2001; Paier et al., 2009; Ye
et al., 2019; Vijay et al., 2021; Han et al., 2022; Quadir et al., 2022).
Given these characteristics and the well-known tendency to form
defects in the bulk CISeS phase (Ueng and Hwang, 1989; Ueng and
Hwang, 1990; Alvarez-Garcia et al., 2000; Hahn et al., 2001), it is
highly likely that defects are impacting the spectral properties in
some way, and that regardless of the precise emission mechanism
understanding synthesis-defect formation relationships for CISeS
QDs could improve LSC performance.

4 Energy storage: batteries and electric
vehicles

Fossil fuel powered vehicles are a major contributor to CO2

emissions and climate change. As such, electric vehicles (EVs) have
attracted widespread interest, and their proliferation persists. In this
context, lithium-ion batteries (LIBs) power a diverse array of
consumer electronics that have become indispensable to modern-
society, and their integration into commercial EVs has enabled an
alternative to the combustion engine. In conjunction with a greener
grid (e.g., utilizing recent innovations in solar and wind technology)
EVs powered by LIBs will be critical in lowering CO2 emissions and
reducing the deleterious impacts of climate change (Chu and
Majumdar, 2012; Clark et al., 2016). A typical LIB has a solid-
state anode and cathode separated by a liquid or gel electrolyte that
shuttles ions between the two electrodes during charging and
discharging (Manthiram, 2020). For EVs, ideal electrode
materials should yield a high energy density, superior rate
capability, and long cycle life for consumer
acceptability—allowing for extended driving ranges, fast charging,
and low maintenance costs.

The achievable energy density of an electrode material is
proportional to its capacitance and voltage. Capacitance
represents the amount of charge each electrode material can
store, and the voltage represents the energy difference between
the anode and cathode redox potentials. Hence, an optimal
anode would exhibit stable, redox-inactive lower energy levels
and a high lying energy band—relative to vacuum or the

standard Hydrogen electrode—where redox reactions occur. The
opposite is true for the cathode, which should have its highest redox
active energy band at the lowest feasible energy (within the
limitations of electrolyte stability). Stanley Whittingham
demonstrated the first rechargeable LIB at Exxon Corporation
using a TiS2 cathode, which could not be commercialized due to
the safety hazards of using Li metal as an anode, and the limited
energy density arising from the 2.5 V discharge voltage
(Whittingham, 1976). Oxide p-bands lie at lower energies than
sulfides (2p vs. 3p electrons), and allow the access of lower lying
redox energy states such as the Co3+/4+ redox couple in LiCoO2

(Goodenough, 1971; Mizushima et al., 1981). Oxide cathodes,
specifically LiCoO2, extended the voltage range of LIBs to 4V
and allowed for the usage of graphite as an anode material by
incorporating Li into its as-synthesized lattice structure. These
advancements improved the energy density and safety of LIBs,
were central to the eventual commercial success of LIBs, and
awarded the Nobel prize in chemistry.

The success of LiCoO2 in commercializing LIBs is laudable, but
many challenges persist. LiCoO2 has a layered cathode structure
with a cubic close-packed oxide sublattice and Li+ and Co3+ ions
ordered on alternate (111) planes (Mizushima et al., 1981). The good
cation ordering stems from the significant size difference between
Li+ and Co3+ and aids electronic and ionic conduction. Li+ ionic
conduction occurs via low energy barrier face-sharing tetrahedral
voids between octahedra (o-t-o pathway). Shared octahedra along
the cobalt plane enable Co-Co interactions for enhanced electronic
conductivity. Specifically, Co3+ is oxidized to low-spin Co4+ during
LIB charging, leading to the inclusion of holes in the cobalt t2g

6–x

band, and causing Li1-xCoO2 to become metallic during charging
(Nishizawa and Yamamura, 1998; Chebiam et al., 2001a). However,
the overlap between the top of the O2−:2p and Co3+/4+ bands leads to
the release of oxygen if charged more than 50% (Chebiam et al.,
2001b; Venkatraman et al., 2003). This limits the practical capacity
(~140 mA h g−1), and in conjunction with the high cost of cobalt has
driven the search for new rock salt LiMO2 (where M = a transition
metal) alloys.

Cation-ordered LiMO2 structures crystallize in several common
motifs such as the γ-LiFeO2 (tetragonal structure where Li

+ and Fe3+

ions are well-ordered on octahedral sites, Figure 6A), low-
temperature spinel-like LiCoO2 structure (all Li+ ions are ordered
on the 16c octahedral sites, Figure 6B), or α-NaFeO2 (Li and M are
ordered along alternating (111) planes, Figure 6C). Cation-
disordered structures can also form, as exemplified by α-LiFeO2

for which Li and M are randomly distributed (Figure 6D). Li+ ions
are located on octahedral Oh sites in both ordered and disordered
structures, but cation disorder prevents the earlier described o-t-o
Li-migration mechanism (Figure 6E) (Sebastian and
Gopalakrishnan, 2003; Manthiram, 2020; Wang et al., 2022a)
Specifically, the randomness of cation distribution on the
octahedral sites means that the intermediate tetrahedral site in
the o-t-o diffusion mechanism could now be connected to either
Li or M octahedra. The electrostatic interactions between the four
cations of the face-sharing octahedra and the size of the tetrahedral
diffusion site (Td) determine the barrier to diffusion. If surrounded
only by Li cations (0-TM channel, Figure 6F), Li+ ions will have
smaller required distances to diffuse through, combined with weaker
electrostatic repulsion due to the low valency of lithium. This
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pathway therefore exhibits facile lithium migration. However, if one
or more of the cations are transition metals (1-TM or 2-TM
channels, Figures 6G, H) the increase in both migration distances
and electrostatic repulsion will lead to a higher energy barrier, which
reduces Li+ conductivity by disabling the formation of a percolation
network for long-distance diffusion (Wang et al., 2022a; Zhang et al.,
2023). Inability to efficiently transport Li+ through the o-t-o pathway
initially led to little interest in cation disordered rock salt structures.

Monte Carlo simulations have since shown that 0-TM
percolation networks can be created if excess lithium (e.g., 10%)
in Li1+xM1-xO2 is incorporated into the structure (Lee et al., 2014),
giving high conductivity as well as capacity, which has led to
renewed interest in these materials (Dixit et al., 2014; Chen et al.,
2021a; Szymanski et al., 2022; Patil et al., 2023; Szymanski et al.,
2023). Equivalently, when partial Li-occupancies are present, high
Li-ion conductivity is expected (Dathar et al., 2017). Lithium-excess
cation disordered rock salt structures can be synthesized in any of
the structure-types described earlier: γ-LiFeO2, layered, spinel-like
LiCoO2, and the layered α-NaFeO2 structure-type. Several of these
structures have demonstrated capacities beyond currently
commercialized LIB cathode materials (Lee et al., 2014; Urban
et al., 2014; Wang et al., 2022a; Zhang et al., 2023). Disordered
structures that use nickel or manganese for the redox transition
metal are the most well-studied. Many nickel alloy (e.g., with Ti, Nb,
or Mo) cathodes have been synthesized with high average voltage
and tilt slope (Pralong et al., 2012; Lee et al., 2015; Lee et al., 2017a;
Källquist et al., 2019; Ouyang et al., 2020). If charged up to 4.6 V,
overlap between eg orbitals in Ni with hybridized Li-O-Li orbitals
prevents the complete oxidation/reduction of Ni due to competition
with O oxidation (Pralong et al., 2012; Lee et al., 2015; Lee et al.,

2017a; Källquist et al., 2019; Ouyang et al., 2020; Zhang et al., 2023).
While there are challenges related to the corresponding release of
CO2 and O2 during the cycling process (surface densification), these
materials have exhibited capacities greater than 220 mAh/g (Lee
et al., 2015; Yu et al., 2019; Wang et al., 2022a). Manganese
structures are also well studied, and Li4Mn2O5 has been shown
to exhibit discharge capacities as high as 287 mAh/g (Pralong et al.,
2012). Alloying with other metals such as Ti or Nb in
Li1.2Mn0.4Ti0.4O4 or Li1.3Nb0.3Mn0.4

3+O2 can further increase the
discharge capacity to 300 mAh/g (Yabuuchi et al., 2016a; Lee et al.,
2017a). However, irreversible O redox reactions contribute to a large
initial discharge capacity, which eventually fades and limits cycle life
(Wang et al., 2015b; Lun et al., 2019). Iron and vanadium systems
such as Li-Ti-Fe-O and Li-Nb-V-O also show promise. For example,
LIBs with discharge capacities equal to or greater than 200 mAh/g
have been demonstrated with Li1.2Ti0.4Fe0.4O2 and
Li1.25Nb0.25V0.5O2 (Yabuuchi et al., 2016b; Nakajima and
Yabuuchi, 2017; Wandt et al., 2018; Wang et al., 2019).

Rock salts are not the only class of disordered cathode materials
with the potential to improve LIB performance. Spinel LiMn2O4

structures have a cubic-closed pack oxygen sublattice where ordered
structures consist of Mn3+ and Mn4+ ions occupying octahedral
centers (16d) and Li+ tetrahedral (8a) sites (Thackeray et al., 1983;
Manthiram, 2020). LiMn2O4 has a three-dimensional Li+ diffusion
pathway that enables fast Li conduction; Li+ ions migrate between 8a
tetrahedral sites via transitioning through low migration barrier
empty 16c octahedral sites. Dissimilar to the Li1-xCoO2 metallic
transition during the charge-discharge process, LiMn2O4 remains a
small polaron semiconductor. Regardless, Mn-Mn interactions from
mixed valence t2g and eg states inMn3+/4+ facilitates electron hopping

FIGURE 6
(A–D) Types of rock salt cathode structures. The cation ordered structures are shown in (A–C), and an example of cation disorder is shown in (D).
Reproducedwith permission fromZhang et al. (2023). (E,F)Diffusionmodels for ordered (E) structures versus disordered structures (F–H). The disordered
0-TM channel (transition metal-free) is shown in (F), while the channels with higher barriers due to transition metals are shown in (G) and (H), for
1 transition metal and 2 transition metals, respectively. Reproduced with permission from Lee et al. (2014).
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and yields good electronic conductivity and high operating voltages
(Gul et al., 2011). Jahn-Teller distortions in Mn3+:t2g

3eg
1 contributes

to a cubic to tetragonal phase transition, which presents a challenge
for LIB performance because of the large volume change induced by
the 2Mn3+ → Mn2+ + Mn4+ disproportionation reaction
(Manthiram, 2020). This leads to dissolution of Mn in the
electrolyte and poor cycle life. One route to somewhat
circumvent this issue is to alloy LiMn2O4 with Ni to form cation
disordered LiMn1.5Ni0.5O4 (LMNO). The Ni dopants partially
occupy Mn sites, reduce the Mn3+ site prevalence, and contribute
to a high 4.7 V Ni2+/Ni4+ redox couple (Kan et al., 2017; Liang et al.,
2020b; Cen et al., 2023).

LMNO can be synthesized with or without site disorder
depending on the temperature (e.g., post synthesis calcination in
air above 700°C leads to the formation of the disordered phase and
temperatures at or below 700°C the ordered phase, Figure 7) (Kim
et al., 2004). Mn atoms are in the +4 oxidation state in the ordered
(P4332) phase with Ni and Mn located on the 4b and 12d Wyckoff
sites, respectively (Kunduraci and Amatucci, 2006; Lee et al., 2017b;
Liu et al., 2017). If synthesized at higher temperatures (e.g., greater
than 700°C) LMNO forms in the Fd 3 m space group. The partial
reduction of Mn4+ to Mn3+ occurs alongside oxygen vacancy
formation, Mn/Ni site disorder, and varied additional impurity
phases (e.g., LixNi1-xO) (Chebiam et al., 2001a; Venkatraman
et al., 2003; Kunduraci and Amatucci, 2006; Shin et al., 2012;
Casas-Cabanas et al., 2016; Aktekin et al., 2019; Haruna et al.,
2021; Cen et al., 2023). The partial reduction of Mn4+ to Mn3+ in
the cation disordered phase increases the electronic conductivity
(>2.5 orders of magnitude) relative to the ordered phase (Kunduraci
and Amatucci, 2006). Charging/discharging disordered LMNO as a
LIB cathode results in a two-phase reaction when x in
LixNi0.5Mn1.5O4 is below 0.5 (between Li0.5Ni0.5Mn1.5O4 and
Ni0.25Mn0.74O4), and a solid-solution reaction when x is between
0.5 and 1 due to the Ni2+/3+ redox couples (Liang et al., 2020b). The
solid-solution reaction involves size changes in the parental lattice
during charging/discharging, or insertion/extraction of lithium. On
the other hand, the two-phase reaction involves interconversion and
destruction of the parent cathode structure, which limits lithiation
and delithiation kinetics. Notably, the two-phase reaction occurs
across the entire x charging range for the ordered LMNO phase
(between LiNi0.5Mn1.5O4/Li0.5Ni0.5Mn1.5O4 and Li0.5Ni0.5Mn1.5O4/
Ni0.5Mn1.5O4), leads to poorer electrochemical stability, reduced rate

capability, and lower cycling stability than the disordered structure
(Ariyoshi et al., 2004; Liang et al., 2020c).

Doping LMNO with other metals can further improve the
cycling stability and rate capability. Sodium dopants have been
shown to enhance cation disorder, decrease particle size, and
improve charge transfer by providing extra pathways for electron
hopping (Wang et al., 2014). The 5% Na-doped LMNO structure
achieved superior rate performance arising from the reduced voltage
polarization. Al can be incorporated into LMNO as either
substitutional dopants at the Ni/Mn sites via a
thermopolymerization method, or in empty surface 16c
octahedral sites using atomic layer deposition (ALD), and can
prevent transition metal dissolution (Zhong et al., 2011; Piao
et al., 2018). This process improves the rate capability and
cycling stability by mitigating electrolyte/electrode side-reactions
and enabling fast Li+ diffusion. The concentration of Mn3+ can be
increased with iron dopants, which enhances electronic
conductivity, reduces voltage polarization, and correspondingly
improves cycling performance and rate capability (Liu and
Manthiram, 2009). Cr-doped LMNO structures (e.g.,
LiNi0.45Cr0.1Mn1.45O4) have also exhibited improved electronic/
ionic conductivity with a wide voltage plateau, and cycle-stable
structure (Wang et al., 2018c).

5 Energy conversion: electrocatalytic
green hydrogen production

Hydrogen has a high energy density (142 MJ/kg), is abundant,
and can potentially be used as a clean CO2 emission-free fuel
(Dincer, 2012; Abdin et al., 2020). However, despite these
potential advantages over conventional greenhouse gas emitting
fuels, H2 is not readily available in its free form in nature. The
predominant industrial routes for hydrogen production rely on
thermochemical fossil fuel-related processes such as steam-
methane or hydrocarbon reforming, pyrolysis, or coal gasification
(Nikolaidis and Poullikkas, 2017; Abdin et al., 2020; Megía et al.,
2021). Each of these industrial-scale processes emit greenhouse
gases, which has motivated interest in “green hydrogen”
production wherein hydrogen is produced via carbon neutral
routes. Water electrolysis offers a potentially viable route to
produce hydrogen without carbon emissions (Lu et al., 2021; Tan

FIGURE 7
Comparing cation ordered and disordered LMNO structures based on their Wyckoff positions. Reproduced with permission from Cen et al. (2023).
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et al., 2023). Catalyst design represents a pertinent challenge for
water electrolysis at industrial scales though. To date, the catalysts
with the best performance utilize rare metals such as platinum,
palladium, iridium, or rhodium (Chen et al., 2021b). These rare
earth metals catalysts are known to be commercially expensive and
to have negative mining impacts that limit their utility for
economically viable and environmentally sustainable hydrogen
production at-scale (Glaister and Mudd, 2010; Lu et al., 2021;
Tan et al., 2023).

MX2 phases (where M is a transition metal and X is an oxygen or
chalcogenide) are of great interest for many electronic and optical
applications (Manzeli et al., 2017). Transition metal dichalcogenides
(TMDs) are the most well-studied branch of these materials, and
several phases such as MoS2 and WS2 are under consideration for
replacing platinum group metals catalysts for the hydrogen
evolution reaction (HER) (Hinnemann et al., 2005). These two
dimensional structures are similar to graphene except that
instead of stacked carbon layers separated by weak van der
Waals forces (graphite) the bulk structure has stacked metal
chalcogen or oxide layers, which similarly can be exfoliated as
either a few-layer stacked structure, or as monolayers (Chhowalla
et al., 2013). The basal plane of defect-free 2D TMDs is
unfortunately catalytically inert, which impedes their
electrocatalytic HER performance (Xu et al., 2015). The basal
planes can be activated by either inducing defect formation or
altering the TMD phase. The latter of these two approaches is
often difficult (Kibs et al., 2012; Kong et al., 2013; Voiry et al., 2013;
Jiao et al., 2018; Wei et al., 2019; Li et al., 2021; Tan et al., 2023).
Using MoS2 as an example, the 2H phase is a semiconductor and
therefore has a lower electron mobility than the metallic 1T
phase—yielding reduced HER performance. While converting the
2H phase to 1T could potentially improve charge transfer kinetics, it
also involves harsh chemicals and produces only a metastable phase
that eventually converts back to the thermodynamically more stable
2H phase (Lukowski et al., 2013). Routes for exposing more
catalytically active edge sites on the 2H MoS2 phase can improve
performance, but these do not alter the electronic conductivity
significantly.

Alternatively, controlling the density and distribution of
defects in TMDs can increase the density of active sites, while
simultaneously improving electron mobility by altering the
electronic structure. This route is particularly viable with
TMDs, which as discussed in the “Synthesis and Control of
Defect Formation” section are well-known to form defects in-
situ and have many post-processing routes to further control
their distribution and density. The Sabatier principle guides HER
catalysis design, and states that heterogeneous catalysts that have
intermediate binding strengths with reaction intermediates will
yield the best performance. Specifically, a catalyst that binds too
strongly with the reaction products will not allow for product
dissociation, and the active sites of the catalyst will be
permanently blocked. On the other hand, a catalyst that binds
too weakly to the reactants will not be able to weaken chemical
bonds and lower the reaction barrier to improve product yield or
selectivity. The most common tool used to illustrate this
Goldilocks principle is the volcano plot, which for HER
describes ΔGH* (binding strength) versus j (exchange current
density, Figure 8) (Parsons, 1958).

Among the many defect engineering techniques outlined earlier,
the management of vacancy formation in TMDs through a
combination of in-situ and ex-situ approaches are the most well-
developed, and consequently, the most widely employed for
enhancement of ΔGH* in TMD-catalyzed HER. First principles
calculations have shown that there is an inverse relationship
between vacancy formation energy and ΔGH* (Lee et al., 2018;
Wang et al., 2022b). Localized electronic states resulting from
vacancy creation interact with hydrogen electronic states during
chemical bonding to reduce the energy cost of bond-breaking from
vacancy formation. This process results in stronger hydrogen
adsorption for vacancies with larger formation energies. Smaller
HOMO-LUMO gaps (highest occupied molecular orbital and lowest
unoccupied molecular orbital, respectively), which may encompass
localized defect states in addition to band-edges, are also favored. To

FIGURE 8
(A–C) Volcano plots comparing hydrogen adsorption free
energies to Pt for defect-free TMDs (a, depicted by a vacancy-free
representative structure in the figure inset), low density anion vacancy
concentration (6.25%, b, depicted by a representative structure
with a single vacancy), and higher density anion vacancy
concentration (25%, c, depicted by a representative structure with four
vacancies). Reproduced with permission from Lee et al. (2018).
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illustrate the desirability of a small HOMO-LUMO gap, let’s
consider group 5 transition metals. As previously described, the
hybridization process requires the transfer of two electrons from the
HOMO to the bonding state, which necessitates “left-over” electrons
occupy the LUMO (Figure 9). This process helps explain the
superior performance of ZrSe2, ZrTe2, and TiTe2, which have
ΔGH* closer to Pt than other TMDs in the volcano plot in
Figure 9. An inherent challenge in establishing defect
relationships with TMDs lies in the fact that the identical defect
types (e.g., vacancies) can elicit distinct effects within the same class
of TMDs in different phases. One such example is VS2 wherein
vacancies improve hydrogen adsorption in the 2H phase, but
hamper performance in the 1T phase (Zhang et al., 2017). While
the general relationships explored so far between vacancy formation
and HER performance are informative, each TMD system still
requires careful examination.

HER performance enhancement via vacancy creation is sensitive
to the concentration of defects, and the relationship between
vacancy density and performance varies by specific TMD system
(Lee et al., 2018). Ab initio computational screening studies have
categorized the effects of vacancy density on TMD HER
performance into four types. Type-I TMDs exhibit low ΔGH*

without vacancies. As the vacancy concentration increases the
HER performance will improve until it eventually approaches Pt
HER performance (e.g., MoS2,WSe2, or ReSe2). Hence, type-I TMDs

are initially poor choices for HER catalysts but can be dramatically
improved by increasing the vacancy concentration. Type-II TMDs
(e.g., MoSe2 and MoTe2) have an intermediate ΔGH*, or moderately
positive ΔΔGH* (defined as ΔGH* relative to Pt) without vacancies.
As the vacancy formation is induced in these structures, there is an
initial improvement from their already relatively strong HER
performance (eventually matching Pt). However, if the vacancy
concentration becomes too large ΔΔGH* will become negative
and there will be a performance drop. Type-III TMDs (e.g.,
ZrSe2 and ZrTe2) exhibit similar properties as type-II, but with
ΔGH* already near that of Pt, which indicates that while similar
trends hold as described for type-II, the tolerance for including more
vacancies is much smaller. The ΔGH* for type-I through type-III can
therefore be thought of as: TMDs where large vacancy
concentrations (type-I), intermediate vacancy concentrations
(type-II), and small vacancy concentrations (type-III) are
desirable. Type-IV TMDs differ from the other three by
exhibiting the opposite ΔGH* relationship. For these TMD
structures, ΔGH* is already larger than Pt, and vacancies will
yield a HER performance reduction.

An alternative scheme of modifying TMDs for optimal HER
performance is via edge-engineering (Peng et al., 2016; Cui et al.,
2017; Hu et al., 2019). As described earlier, the basal plane of non-
defective TMDs are catalytically inert. However, stacking 2D TMDs
along the edges can increase the exposure of catalytically active

FIGURE 9
Schematic depiction of TMD/hydrogen band diagrams where (A–C) represents defect-free TMDs with group 4, 5, and 6–10 transition metals, and
(D–F) represents the same structures with anion vacancies. Reproduced with permission from Lee et al. (2018).
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edges, and lead to a larger effective surface-area of very active
catalytic sites. Recently it was demonstrated using first principles
calculations that different types of non-stoichiometric edges in
MoSe2, many of whom have been recently synthesized under a
scanning transmission electron microscope (STEM) (Sang et al.,
2018), can have near optimal HER activity over conventional
stoichiometric edges. They found a strong linear correlation
between Bader charges on H and the Gibbs free energy of
hydrogen adsorption (ΔG*H) at these edges, providing a design
principle for discovering better HER catalytic edges. HER activity
was found to be not only influenced by the formation of H–Se/Mo
chemical bonds as previously thought, but also by geometric
reconstructions and charge redistribution. The same group
subsequently discovered via high-throughput computational
screening about nine thermodynamically stable multi-functional
edges in MoS2, many showing optimal HER performance (Hu
et al., 2020). STEM was subsequently used as an atomic drill bit
for targeted synthesis of specific edge-patterns in 2D TMDs.
(Boebinger et al., 2023). Nevertheless, a scalable approach to
engineer edges in 2D materials is still lacking, but has significant
potential in achieving high HER in TMDs with earth-abundant
elements and without involving any critical materials.

These classifications explain many experimental trends, but as
observed through other defect systems, a priori prediction of
structure-property relationships for defects is complex and difficult.
DFT studies on MoS2 electrocatalysts indicate that high
concentrations of sulfur vacancies preferentially agglomerate
instead of randomly dispersing throughout the lattice, which
partially negates its classification as a type-I defect system (Zhou
et al., 2021). However, experimental studies have shown improved
performance at high vacancy concentrations because of the unusual
interplay between sulfur vacancy formation and exposure of under-
coordinated Mo atoms, which become synergistically active as
catalytic sites (Li et al., 2019). This is just one of many
demonstrations that vacancy formation in TMDs should not only
be considered in isolation to other effects in the atomic or electronic
structure. Excess vacancy formation can damage the structural
integrity of TMDs such as inducing cracks or holes, and the
existence of dangling bonds can adsorb other non-hydrogen
species (particularly in air) (He et al., 2018; Yang et al., 2019). At
low concentrations the co-creation of other defects (e.g., Frenkel pairs)
can improve performance by providing additional adsorption sites, or
possibly even alternative adsorption mechanisms such as in MoS2
where the preferred hydrogen adsorption site shifts to a region
between the vacancy and interstitial in the Frenkel pair (Xu et al.,
2022). This process improved the performance even relative to Pt-
dopedMoS2. It is also well-known that defect creation semiconductors
leads to localized intragap states, which can contribute to improved
electrical conductivity and enhance hydrogen adsorption, but in ways
that will wildly vary by which defects form (Li et al., 2016).

6 Challenges and future prospects

Understanding defect formationmechanisms and elucidating their
structure-property relationships in nanomaterials is a highly prospective
route to commercialize new green energy device architectures, or
improve existing ones. A key challenge to address for the future of

defect engineering is the development of better integrated theory-
experiment workflows wherein the physical properties of a specific
defect can be predicted a priori to experiment and the synthesis (or post-
synthesis) methods to control the type, concentration, and distribution
of defects are known. While partial implementation of such workflows
are feasible today, unlocking their full potential requires significant
advances in theory and experimental methods. DFT methods for
predicting synthesis-structure-property relationships are ever-
improving, but the time-scale for calculations is often only
marginally faster than running experiments. Avenues for defective
material design are continually expanding with the advent of beyond
0 K computational chemistry methods for predicting defect phase
stability and advanced electronic structure calculation methods
compatible with large supercells for predicting electronic and optical
properties of defects. However, each of these routes is computationally
expensive and are generally used to explain experimental results
posteriori. This problem is further exacerbated if excited-state
modeling is considered for gaining mechanistic understanding of QD
optical emission processes for optimizing LSCs, or electrochemical-
interface modeling is required to improve cation disordered oxides for
LIB cathodes or TMDs as catalysts for HER. Hence, further advances in
high-throughput calculation methods are required for electronic
structure calculations and computational chemistry to be effectively
integrated in theory-experiment workflows.

From an experimental perspective, determining synthesis
conditions for controlling defect formation in nanomaterials has
traditionally relied on an Edisonian trial-and-error methodology. This
approach entails selection of initial synthesis conditions,measurement of
basic material structure without accounting for defects (e.g., XRD for
crystal structure and/or mass spectroscopy for composition),
measurement of nanomaterial physical properties (e.g., emission
energy), and potentially device performance. The influence of defects
on these properties is oftentimes only considered if anomalous
characteristics arise. Synthesis methods are then iteratively adjusted
to enhance, modify, or eliminate these characteristics. True
experimental control of defect chemistry will likely only be achieved
if routes for measuring defect structure are regularly integrated in the
initial measurement of structure, and the direct impact of synthesis
conditions and post-processing on defect distribution are consistently
considered. Further advances in in-situ and operando microscopy and
spectroscopy techniques, aimed at achieving atomic-level control over
defect formation during synthesis (in-situ) or observing their effects on
device performance (operando), is equally crucial.

An additional but related challenge is that state-of-the-art
techniques for measuring defect structure, such as STEM are also
used to create defects. This challenge is particularly pronounced in
materials such as TMDs where it is well-known that STEM serves a
dual purpose—evaluating the defect distribution in as-synthesized
flakes and using the electron beam directly to create defects.
Regardless, the prospects for such workflows has been
significantly heightened by a recent surge of computational
power improving the efficiency of first principles calculations, the
synthesis methods outlined here, and advances in material imaging
capabilities. The integration of these ever-evolving methods for
modeling, synthesis, and imaging into workflows is likely key for
defect engineering to reach its full potential. The resulting
improvements in nanomaterial design could enable the
development of Stokes shift engineered QDs for building
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integrated photovoltaic units, high-voltage lithium-ion batteries
utilizing cation disordered oxides in electric vehicles, and TMD
electrocatalysts for green hydrogen production. If the described
technologies are then integrated into contemporary cities, a
future marked by net-zero emission buildings, fossil fuel-free
transportation, and carbon neutral hydrogen production would
mark a major step forward in achieving a sustainable future.
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