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Abstract 

DSDP/ODP porewater profiles in organic carbon-bearing (< 5% org. C) sediments 

commonly show decreases in Ca2+ concentrations and increases in alkalinity over depths where 

sulphate is being removed by microbial reduction. These Ca2+ depletion profiles represent the 

combined effect of diffusion, advection and reaction (addition by ion exchange and removal by 

precipitation mainly as CaCO3 and/or dolomite). A diagenetic model has been used to estimate the 

rate constant (k) for Ca2+ removal by precipitation during sulphate depletion over depths of 15-150 

m, assuming first order kinetics. The rate constants for Ca2+ removal range from 10-14 to 10-11s-1 in 

19 DSDP/ODP sediments, which span a range of bottom water temperatures (0-10oC), lithologies 

(calcareous to clastic) and sedimentation rates (0.001-0.4 cm yr-1). Values of k correlate with 

sedimentation rate (ω) such that log k  =  1.16 log ω  -  10.3, indicating that faster rates of Ca2+ 

removal occur at higher sedimentation rates where there are also higher degrees of saturation with 

respect to CaCO3 and dolomite. Depth-integrated masses of Ca2+ removed (<100 µmol cm-2) 

during sulphate depletion over these depth ranges are equivalent to a dispersed phase of 

approximately 1.5 wt.% CaCO3 or 3 wt.% dolomite in a compacted sediment. The complete 

occlusion of sediment porosity observed in concretions with isotopic signatures suggesting 

carbonate sourced from sulphate reduction therefore requires more time (a depositional hiatus), 
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more rapid sulphate reduction (possibly by anaerobic methane oxidation) and/or the continued 

transport of isotopically light carbonate to the concretion site after sulphate reduction has ceased.  

 

Keywords:  Carbonate cementation, Concretions, Sulphate reduction. 
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1. Introduction 

 Carbonate concretions occurring in ancient marine sediments from continental shelf, slope 

and deep basinal environments commonly have light carbon isotope compositions, which are 

invariably interpreted to indicate that  the carbonate has been derived from the microbial 

mineralisation of organic matter (Mozley and Burns, 1993). Various lines of evidence (the 

deformation of host sediment laminae around concretions, the presence of uncrushed fossil 

material and septarian fissures) indicate that cementation must have been able to resist the effects 

of compaction, and thus must have been at least initiated at shallow burial depths (Raiswell and 

Fisher, 2000). These three lines of evidence are consistent with the porewater chemistry of modern 

sediments (Canfield and Raiswell, 1991), which are generally over-saturated with respect to 

CaCO3 and dolomitic phases at shallow depths where organic carbon is undergoing microbial 

decay. 

 Organic carbon undergoes microbial decay to dissolved carbonate species (ΣCO2) via a 

sequence of processes that utilise dissolved oxygen, nitrate, iron and manganese oxides and 

sulphate as electron acceptors (e.g. Froelich et al., 1979; Thamdrup and Canfield, 1996). These 

decay processes are usually limited by the decline in availability (or reactivity) of electron 

acceptors with increasing depth, after which microbial activity produces methane mainly by CO2 

reduction. Methane may diffuse upwards to become an important source of organic matter for 

sulphate reduction (Devol, 1983; Iverson and Jorgensen, 1985; Boetius et al., 2000) by anaerobic 

methane oxidation (AMO).  

Most organic carbon decay occurs by iron reduction and sulphate reduction (Canfield, et 

al., 1993; Thamdrup, 2000) and the ΣCO2 reflects the isotopic composition of the organic matter 

and is thus isotopically light. Consistent with this, Mozley and Burns (1993) observed that the δ13C 

compositions (all values with respect to PDB) of calcite (–22 to +3 o/oo) and dolomite (–20 o/oo to 

+25 o/oo) concretions typically have minimum values as expected for carbonate derived from 

organic matter (–22 to -28 o/oo). The range to significantly heavier isotopic values may arise from 

the addition of carbonate derived from overlying seawater, skeletal material or from 

methanogenesis by CO2 reduction (which produces isotopically light methane and leaves residual 

ΣCO2 that is isotopically heavy; Claypool and Kaplan, 1974). Mozley and Burns (1993) proposed 

that calcite concretions formed in sediments in which the rates of sulphate reduction were 

relatively low (poorly reactive organic matter), and which thus maintained active sulphate 

reduction to relatively large burial depths. Conversely, dolomite concretions were favoured when 
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more rapid sulphate reduction (more reactive organic matter) produces thinner zones of sulphate 

reduction. In the latter circumstances sufficient labile organic matter may exist to allow more 

extensive methanogenesis, which can be initiated nearer the sediment surface and maintained over 

greater depths. Such conditions were argued to increase the likelihood that concretionary growth 

would produce very positive δ13C values. 

Mozley and Burns (1993) clearly envisaged that concretionary growth is initiated in the  

zones of sulphate reduction. Stoichiometric closed system models of sulphate reduction show that 

porewaters become oversaturated with respect to carbonates, and thus provide support for this 

conclusion. Ben Yaakov (1973) showed that the effects of sulphate reduction 

2 CH2O  +  SO4 
2-   ------->  2 HCO3

-  +  H2S 

depend on whether the H2S accumulates in the porewaters or is removed by precipitation as iron 

sulphide. Both cases produced porewaters that were oversaturated with CaCO3, but the 

precipitation of sulphide increased pH and produced greater oversaturation. More detailed studies 

considering the combined effects of oxic respiration, denitrification and sulphate reduction in both 

closed (Canfield and Raiswell,1991) and open system models (Boudreau and Canfield, 1993) 

confirm that significant oversaturation with respect to CaCO3 arises whether sulphide accumulates 

or precipitates (except for small increments of sulphate removal, see below). 

Several decades of porewater studies in modern sediments have however failed to show 

carbonate cementation occurring during sulphate reduction (as distinct from AMO; see below) on a 

scale sufficient to form concretions analogous to those found in ancient sediments. Porewaters, 

although often over-saturated with respect to CaCO3, appear to be kinetically inhibited from 

precipitation by the presence of phosphate, magnesium, sulphate and organic matter (Walter, 1986; 

Morse and Mackenzie, 1990). The precipitation of dolomite also appears to be kinetically inhibited 

by the presence of sulphate (for an alternative view see Morrow and Ricketts, 1986), but is 

progressively favoured by high Mg/Ca ratios and high concentrations of alkalinity (Baker and 

Kastner, 1985; Compton, 1988).  

 Collectively these studies suggest the production of no more than a diffuse volume of 

concretionary cement whilst sulphate is being depleted by microbial reduction, but that this cement 

provides a porous framework which is sufficient to resist compaction. Thus the rates of cement 

preciptitation are likely to be too slow to produce visual or measurable evidence of cementation in 

modern sediments. However many DSDP/ODP modern sediments (Fig. 1) do contain porewater 

profiles showing Ca2+ depletion over considerable (decimetre-scale) burial depths, indicating rates 
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of Ca2+ -removal (by the sum of different precipitation processes, see below) are able to equal or 

exceed rates of transport supply from overlying seawater by diffusion and advection.  

Depletion of Ca2+ in these DSDP/ODP sediments mainly represents the combined effect of 

transport by diffusion and advection, plus removal by precipitation both as authigenic carbonate 

(CaCO3, dolomite) and phosphate minerals. Modelling precipitation rates based on Ca2+ depletion 

is simpler than modelling changes in ΣCO2 which would also require estimates of the rates of 

ΣCO2 addition by microbial decay. Middelburg (1990) has derived two diffusion-advection-

reaction diagenetic models based on Berner (1980) to describe Ca2+depletion profiles in the 

sediments at Kau Bay, Indonesia. The diagenetic equations derived for these profiles allow the rate 

constant for Ca2+ removal to be estimated. It is the purpose of this paper to use one of these 

diagenetic models to estimate the rate constants for (and rates of) Ca2+ removal during sulphate 

depeletion from a range of DSDP/ODP sediments with different lithological and sedimentological 

characteristics. These rates of Ca2+ removal are then used to provide order of magnitude estimates 

of the extent of carbonate cementation that can occur when sulphate reduction takes place over 

relatively large burial depths. Finally, the implications for concretion growth are explored. In 

particular, the reasons are discussed as to why concretions directly analogous to those within the 

ancient geological record are not found in modern sediments. 

  

2. Approach 

 Many DSDP/ODP sediments have near-surface porewater data showing continued losses of 

Ca2+ with depth accompanied by increases in alkalinity (and other dissolved products of microbial 

decay) and decreases in sulphate concentrations. Figure 1 shows two such profiles from sites 533 

(Blake Outer Ridge) and 931 (Amazon Fan), which have comparable lithologies and porosities but 

different sedimentation rates (see Table 1). We have selected 19 DSDP/ODP sites (Table 1) that 

meet the following criteria; 

(1) All are fine-grained sediments containing low to moderate concentrations of organic carbon (< 

5 wt. %) along with variable proportions of clastic and biogenic (calcareous, siliceous) 

components. 

(2) Sulphate decreases slowly with depth (over 15-150m) and concentrations are greater than 

approximately 1 mM over the studied depths, except at sites 798, 819, 821, 911, 931, 939B, 

939C, 942 and 944 (where sulphate concentrations fall to 0.1 mM for more than half the depth 
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studied). Methane is present at low concentrations over these depths but there is no evidence of 

AMO. 

(3) The depth profiles show a ‘concave down’ decrease in Ca2+, and an increase in alkalinity. 

These ‘concave-down’ Ca2+ depletion profiles indicate the progressive removal of Ca2+ 

through the depths over which sulphate is being reduced and result from the net effects of Ca2+ 

addition mainly by diffusion from overlying seawater and by advection, and Ca2+ removal by 

precipitation. The site descriptions either infer carbonate precipitation from these profiles or, 

occasionally, there is visual evidence of carbonate precipitation. 

(4) Porewater values of pH, Ca2+ and alkalinity are available that allow calculation of the 

Saturation Index (SI) as Log (Ion Activity Product/Ksp) with respect to CaCO3 and 

CaMg(CO3)2. The SI data are useful only for comparitive purposes (Gieskes, 1974) as pressure 

release during core retrieval causes CO2 degassing and hence produces a pH increase that may 

induce carbonate precipitation (Morse, 1983) and hence alter the in situ SI values. 

(5) No quantitatively significant breaks in sedimentation have been recorded over that part of the 

section under consideration, and the average sedimentation rate is known. 

(6) The bottom water temperature, and the porosity of the sediments over the chosen interval, are 

both known.  

Criteria (1) and (2) together ensure that the sediments are undergoing sulphate reduction, that rates 

of sulphate depletion (and therefore reduction) are slow, and that AMO does not exert a significant 

influence over the studied depths. Criteria (3) provides an indication that carbonate precipitation is 

occurring, which criteria (4) may support by calculation of the SI values. Criteria (5) and (6) 

provide the necessary data to allow calculation of Ca2+ removal rates from a diagenetic equation 

that considers supply by diffusion, advection and ion exchange and removal by precipitation.  

 The general diagenetic equation for a dissolved component in porewater can be written 

(Berner, 1980; Boudreau, 1996) as; 

  Ds d
2C    - ω (1 + K) dC    -  k (C – Ceq)    =   0    (1) 

     dx2                        dx 
 

where Ds (cm2 s-1) is the diffusion coefficient corrected for tortuosity effects (approximated from 

porosity data, see below), C is the concentration of Ca2+ (mmol cm-3), Ceq is the steady state 

concentration of Ca2+ (mmol cm-3), ω is the sedimentation rate (cm s-1), K is the linear adsorption 

constant and k (s-1) is the rate constant for Ca2+ removal. The model assumes that steady state 

diagenesis occurs and that the Ca2+ profiles reflect the effects of diffusion, advection and reaction. 
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The reactions that affect Ca2+ are assumed to be additions by rapid equilibrium ion exchange plus 

removal by precipitation of authigenic minerals (see below). It is also assumed that no Ca2+ is 

supplied by the dissolution of carbonates in the surrounding sediments (see below). 

Our DSDP/ODP sediments typically contain hundreds of µM (and up to a maximum of 6 

mM) ammonium generated through the decomposition of nitrogen-bearing organic matter (Berner, 

1980). Ammonium has a strong affinity for ion exchange sites and has been observed to readily 

displace Ca2+, Mg2+ and K+ from clays in DSDP/ODP sediments (e.g. Gieskes, 1983). The effects 

of ion exchange are incorporated into the diagenetic equation by a simple linear isotherm, using a 

value of 1.6 for the dimensionless adsorption constant (Berner, 1980). This approach only provides 

an order of magnitude estimate of the effects of ion exchange. Rate constants for Ca2+ removal 

derived for our DSDP/ODP sites in the presence of ion exchange effects are only about 20-40% 

lower than in their absence (which is comparable to the uncertainty in our estimates, see below). 

 The diagenetic model assumes linear first order kinetics for Ca2+ removal although 

experimental studies of calcite precipitation in seawater (Mucci and Morse, 1983; Burton and 

Walter, 1987; Mucci et al., 1989; Zhong and Morse, 1993) show that the precipitation kinetics 

follow a rate law of the form;  

   Rate  =   k (Ω -1)n     (2) 

where k is the rate constant, n is the reaction order and Ω is the Saturation Index (defined as Ion 

Activity Product/Ksp). Burton and Walter (1987) have shown that values of n for aragonite and 

calcite can vary from 0.4 (at 5oC) to approx 2.4 (at 37oC). There are rather fewer studies of 

dolomite but a similar rate law (with n = 2.2 at 25oC) has been found by Arvidson and Mackenzie 

(1999). Morse and Arvidson (2002) have demonstrated the inadequacy of first order kinetic 

models that ignore the complexities of near-equilibrium carbonate mineral reaction kinetics. The 

models used here are not intended to challenge this view, but the precipitation kinetics of the 

DSDP/ODP sediments studied here are likely to be much more complex (and to have different 

reaction orders) than the experimental systems which utilise relatively simple compositions at 

laboratory temperatures (compared to the bottom temperatures in Table 1). The kinetic behaviour 

of the DSDP/ODP porewaters may also be modified by a variety of factors. Firstly, Ca2+ removal 

into the DSDP/ODP sediments may occur by precipitation into a mixture of poorly-characterised, 

impure phases such as aragonite, calcite, high Mg calcite, dolomite and carbonate fluorapatite 

(CFA). Secondly, Ca2+ removal is strongly influenced by the presence of inhibitors (see earlier). 

Berner and Morse (1974) and Mucci (1986) have shown that phosphate is an extremely strong 
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inhibitor of carbonate precipitation kinetics at µM levels (as are found in these DSDP/ODP 

porewaters), as also is organic matter (Berner, 1975). The precipitation kinetics of dolomite and 

CaCO3 are not sufficiently well-known under such diagenetic conditions to justify using complex 

kinetic expressions, and thus we argue that a first order model is able to provide an order of 

magnitude approximation to the kinetics of Ca2+ removal in our the DSDP/ODP sediments over 

the small variations of SI in our cores (Table 2). Luff and Wallmann (2003) have also used a first 

order model for the diagenetic precipitation of carbonates formed by AMO, for similar reasons. 

 The upper boundary conditions for equation (1) are specified by setting the concentration 

of Ca2+ as equal to the bottom water concentration (Co); 

  x = 0  and C = Co  

and the lower boundary condition is given by 

  x → ∞ and C → Ceq

With these boundary conditions Berner (1980) and Boudreau (1996) state that the solution of 

equation (1) is; 

             

 C - Ceq = (Co - Ceq) exp   ω (1 + K) –  {ω2 (1 + K)2 + 4kDs}
0.5      x  (3) 

              2Ds
 

The infinite dilution diffusion coefficient (Do) for Ca2+ is derived from Boudreau (1996) as Do 

(cm2 s-1) =  (3.6  +  0.179 ToC) 10-6. The corrections for tortuosity are derived from Ullman and 

Aller (1982) who give Ds = Do/ϕ F, where ϕ is the porosity and the Formation Factor F is 

approximated as 1/ϕm and m = 2.5 to 3.0 for muddy sediments. Simplifying thus approximately 

produces; 

    Ds = Doϕ1.7      (4) 

 

3. Results 

 Table 2 summarises the chemical characteristics of each site. No bottom water data were 

available at sites 819A and 944D and an average seawater Ca2+ concentration (10.5 mM) was 

therefore used. Equation (3) was solved by fitting an exponential curve to the depth profiles of 

Ca2+. A trial and error approach was adopted to identify the maximum depth from the surface over 

which the best fit was achieved. Most sites had best fit correlation coefficients that were significant 

at the 0.1% level or less, but five sites had correlation coefficients with about 1% significance 
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levels (565, 722A, 908A, 911A and 939B). These were retained to improve the range in physical 

and chemical characteristics of the sample suite. The exponential term in equation (3) was then set 

to equal the exponential term in the best fit equation and solved for k. Values of k are listed in 

Table 2.  

Uncertainties have been estimated on the Ca2+ concentrations, ϕ, Ds and ω as follows. 

Gieskes (1974) estimates the precision on the Ca2+analyses as 0.2%. We assume negligible 

uncertainties on the depth measurements and no porosity changes with depth. Our sites show 

trends of decreasing porosity with depth, but these are erratic and the depth ranges used are 

relatively small (mostly < 50m). The assumption of no porosity changes allows the use of constant 

average values for K and Ds, which introduce negligible uncertainties compared to those resulting 

from other assumptions (Berner, 1980). The coefficient of variation of the mean porosity is 

generally around 10% and this figure has been utilised as a precision on ϕ and carried through 

equation (3) to produce a mean uncertainty on Ds of approximately 17%. Berner (1980) gives two 

values for K (1.4 and 1.8) and we have therefore used 1.6±0.1 to estimate the uncertainty from K 

in equation (2). Inspection of the DSDP/ODP literature gives little information on uncertainties in 

ω but different estimates of ω are available for a few sites and these suggest an uncertainty of 

approximately ±20% may be reasonable. The calculated values (and their uncertainties) for the rate 

constant (k) are given in Table 2. 

The Saturation Indices (SI) for calcite and dolomite have been derived using SOLMINEQ 

(Kharaka and Barnes, 1973) for the intervals over which k has been estimated. The SI values have 

been derived at the observed bottom water temperatures, using a laboratory measurement 

temperature of 25oC. In most cases there is sufficient major element data to allow a reasonable 

estimate of SI which takes full account of ionic strength and ion pairing effects. However in a few 

cases Na and Cl have not been measured and average values for seawater have then been used. 

Charge balance errors never exceed 5% and are frequently lower. The range of SI values over each 

depth interval are also given in Table 2 and considerable down core variation can clearly occur. 

The influence of sampling artefacts (see above) only allow the SI data to be used qualitatively to 

compare site behaviour. 

 

4. Discussion 

4.1 Porewater profiles and authigenic mineralogy 
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The sites used in this study cover a range of lithologies, porosities, bottom water temperatures and 

sedimentation rates (Table 1). Some of these sites show visual evidence of carbonate precipitation, 

usually as calcite and/or dolomite, occasionally accompanied by an apatitic phase. It is 

unfortunately impossible to apportion Ca2+ removal rates between these three minerals. Our sites 

were chosen to contain relatively thick zones of sulphate reduction (e.g. compare with Berner, 

1980) which has been argued to favour calcite precipitation (see aove and Mozley and Burns, 

1993). However the Ca2+depletion in these DSDP/ODP sediments is commonly accompanied by 

magnesium concentrations that decrease with depth (but rarely fall below 30 mM), consistent with 

dolomite precipitation. Unfortunately Mg profiles are also affected by several other processes, 

including removal into silicates to replace Fe used for pyrite formation (e.g. Drever, 1974), and by 

ion exchange both replacing Ca2+ (Russell, 1970) and being replaced by NH4
+ produced by organic 

matter decay (see above). It is difficult to estimate the relative contributions of these different 

processes, and thus Mg depletions cannot be used to estimate rates of dolomite formation. A 

further complication is that dolomite compositions can vary from near stoichiometric (Middelburg 

et al., 1990) to a calcium-rich protodolomite (Compton, 1988). 

Authigenic dolomite does however form in organic carbon-bearing sediments such as those 

discussed here (Baker and Burns, 1985; Compton, 1988; Middelburg et al., 1990) where the 

kinetic barriers to precipitation are diminished. The formation of these ‘organogenic’ dolomites is 

assisted by the process of sulphate reduction, which adds alkalinity (thus enhancing the degree of 

dolomite oversaturation; Hardie, 1987), and removes sulphate (which is believed to inhibit 

dolomite precipitation; Baker and Kastner, 1985; Compton, 1988). It is argued that even minor 

concentrations of sulphate strongly inhibit dolomite precipitation (Baker and Kastner, 1985; 

Compton, 1988). Sulphate is not completely depleted from most of our DSDP/ODP cores (see 

criteria 2), but at least some of our sediments contain authigenic dolomite. 

The profiles of Ca2+ depletion are also likely to be influenced by the formation of CFA. 

The phosphorus released from organic matter mineralisation and the dissolution of Fe 

oxyhydroxides produces porewaters that are oversaturated with respect to CFA, although 

precipitation is slow (Van Cappellen and Berner, 1991; Ruttenburg and Berner, 1993). 

Concentrations of porewater phosphate in modern sediments (and in our DSDP/ODP profiles) 

never reach beyond mM levels and, consistent with this, estimated rates of P accumulation are 

extremely slow (for example ~0.003 wt % at FOAM; Ruttenburg and Berner. 1993). These 

observations suggest that CFA precipitation is unlikely to produce a significant influence on our 
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Ca2+ depletion profiles, except possibly at the slowest sedimentation rates. However some 

sediments show visual accumulation of apatitic phases, possibly representing re-working of 

authigenic phases (Ruttenburg and Berner, 1993). Phosphate concentrations are also controlled by 

a variety of processes including additions by organic matter decay and exchange on to clays and, 

as before, the existence of these competing reactions prevents the porewater chemistry from 

providing any simple constraint on the rates of CFA precipitation. Clearly our Ca2+ removal rates 

cannot be confidently attributed to carbonate precipitation alone, and instead represent only the 

maximum possible rates of carbonate precipitation (by CaCO3 or dolomite), assuming no Ca2+ is 

supplied by carbonate dissolution in the surrounding sediments (see below). 

 

4.2 Rate constants: magnitude and dependence on ω and SI . 

Rate constants for Ca2+ removal during sulphate reduction vary from 1.2 x 10-14 to 3 x 10-11 

s-1 for the DSDP/ODP sediments (Table 2) but cannot be compared with published values, which 

are usually derived experimentally from rate laws such as equation (2) in which k has units of mass 

area-1 time-1. Values in these units have been reported for calcite precipitation from seawater by 

Mucci and Morse (1983), Mucci (1986), Burton and Walter (1987) and Zhong and Muci (1993), 

but comparisons would require sensible estimates of the surface area of the precipitating phases in 

these DSDP/ODP sediments which are impossible. 

 However the rate constants for Ca2+ removal in the DSDP/ODP sediments can be compared 

to the Kau Bay data of Middelburg (1990), who estimated rate constants for Ca2+ removal for three 

cores which ranged from 1.6 x 10-9 (core K3) to 1.6 x 10-10 s-1 (cores K4 and K11). These 

estimates used a rather more complex diagenetic model than the one used here and our model 

using the Middelburg (1990) data produces 7 x 10-10 s-1 for K3 and 1 x 10-10 s-1 for K4. Both these 

rate constants are within a factor of 2 of those estimated by Middelburg (1990) and are also 

comparable to the k values found in the DSDP/ODP sediments, since there is a significant 

temperature difference between the Kau Bay bottom waters (30oC) and the DSDP/ODP bottom 

waters (0-10oC; see Table 1). The comparable magnitudes of the rate constants for Ca2+ removal in 

the DSDP/ODP sediments and the Kau Bay cores, together with the well-documented occurrence 

of dolomite in the Kau Bay sediments (Middelburg et al., 1990) are consistent with dolomite 

precipitation as the principal mechanism of Ca2+ removal in the DSDP/ODP sediments, as has 

been suggested elsewhere (Compton, 1988).  
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The values for the rate constants, saturation indices and sedimentation rates are all closely 

related. Our DSDP/ODP data give a good correlation between log k and log ω (Fig. 2) such that; 

  log k  =  1.16 log ω  -  10.3 

and the correlation coefficient r = 0.85 is significant at the <0.1 % level. This suggests that faster 

rates of Ca2+ removal occur at the highest sedimentation rates, where the most labile organic 

matter is buried and the highest rates of sulphate reduction occur (see Toth and Lerman, 1977; 

Boudreau, 1996). Consistent with this, Fig. 3 shows that the maximum SI values of calcite and 

dolomite (see Table 2) both follow a fairly smooth curvilinear trend of increasing SI with 

increasing sedimentation rate.  

The data in Fig. 3 tend to level off at high SI values because increases in k (the rate 

constant for Ca2+ removal) tend to produce increasing rates of precipitation, and thus decrease 

calcium and carbonate ion activities in the porewaters (hence decreasing SIcal and SIdol). However 

increases in k are also associated with faster rates of alkalinity generation (see above), which tend 

to produce increases in the carbonate ion activity (which may be modified by pH changes). 

Ultimately these two opposing effects on the SI values balance out when rates of calcium removal 

by precipitation are matched by the combined effects of increasing carbonate ion activity through 

sulphate reduction and decreasing carbonate ion activity by precipitation. The existence of these 

opposing effects means that higher rate constants will not necessarily produce commensurate 

increases in SIcal and SIdol.  

 

4.3 Masses of carbonate precipitated during sulphate reduction. 

The diagenetic model assumes that the rate of Ca2+ removal (R) by precipitation is given by 

the first order relationship: 

R  =  dC    =    - k (C – Ceq).      (5) 
            dt 

Hence the integrated rate of Ca2+ removal can be calculated as: 

   Σ R =    1  ∫ R dx. 
     ω 
 

So     Σ R  =   - k  ∫ (C – Ceq) dx      (6) 
         ω 
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and this equation can now be integrated with respect to x after substituting for (C – Ceq) from 

equation (3), and expressing concentrations in mmol cm-3 of sediment plus pore fluid. Thus; 

    Σ R =   - ϕ k (Co - Ceq) ∫ exp. (Bx) dx   (7) 
                    ω                           
 
 
where B  =  ω (1 + K) –  {ω2 (1 + K)2 + 4kDs}

0.5  .        
    2Ds

 
Integrating equation (7) produces; 
 

Σ R     =    - ϕ k (Co - Ceq) exp. (Bx)               
                    ω B 

 x= ∞ 

 x = 0 

 
 

However when integrating from 0 to ∞, the term B is small (10-3 to 10-4; see Table 2) and negative, 

so that at large depths (> 104 cm) the exponential term tends to zero. Similarly at x = 0, exp. (Bx)  

= 1 and the maximum value of ΣR (mol cm-2) integrated over the studied depths is given by; 

   ΣR    =    - ϕ k (Co - Ceq).     (8) 
      ω B           
       

The depth-integrated masses of Ca2+ calculated from equation (8) are reported in Table 2 using the 

appropriate value of Co for each site (within 10% of mean seawater Ca2+ at 0.0105 mmol cm-3) and 

assuming Ceq = 0. The term ΣR represents the maximum mass of Ca2+ that can be precipitated 

during sulphate reduction in these DSDP/ODP cores. The maximum masses show only small 

variations and are typically <100 µmol Ca2+ cm-2. The removal of Ca2+ as calcite produces a 

smaller volume of calcite cement than dolomite (1:1.58) and the maximum mass of Ca2+ removed 

would only represent a dispersed phase of about 1.5 wt.% of calcite or 3 wt.% dolomite in these 

sediments (after complete removal of remaining porosity by compaction). Consistent with 

observations of modern sediments, the models predict that only small concentrations of carbonate 

cement can precipitate during sulphate reduction, even over comparitively large burial depths. 

Complete occlusion of host sediment porosity clearly requires substantially larger masses 

of carbonate cement. Consider a 1 cm3 of sediment that has 0.7 cm3 of pore space available to 

achieve complete cementation (ϕ = 0.7). For CaCO3 (density of 2.7 g cm-3) and CaMg(CO3)2 

(density 2.9 g cm-3) complete cementation requires approximately 0.019 mol of CaCO3 or 0.01 mol 

of CaMg(CO3)2, which is roughly 500-1000x larger than the amounts estimated in Table 2. 
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Viewed in this context, the models of Ca2+ removal used here are consistent with Raiswell and 

Fisher (2000), who proposed that early cementation during sulphate reduction could only be 

sufficient to produce a framework which could resist compaction. However below we examine 

other factors that may produce increased cementation above the steady state model values derived 

here.  

 

4.3.1 More rapid rates of sulphate reduction. 

The DSDP/ODP sediments studied here are possibly atypical in that rates of sulphate 

reduction (and hence rates of Ca2+ removal) may be slower than in ancient concretion-bearing 

sediments. In general, the rate constants for organic matter decay by sulphate reduction (kORG) vary 

with sedimentation rate. For example, Tromp et al. (1995) have up-dated the Toth and Lerman 

(1977) data to show that; 

 log kORG  =  1.94 log ω  +  0.057. 

Thus more rapid rates of cementation may be possible in sediments with greater concentrations of 

more labile organic matter which produce faster rates of sulphate reduction. However the 

integrated rates of Ca2+ removal vary by much less than one order of magnitude (Table 2) despite 

large variations in sedimentation rate (nearly 3 orders of magnitude; see Table 1). This is because 

the variations in k/ω and B occur in opposite directions over the studied depth ranges. Equation (8) 

shows the relationship between the depth- integrated masses of Ca2+ removed (∑R) and k, ω, ϕ 

and B, and recall that Co and ϕ are assumed constant and that B is small and negative (see Table 

2). Thus ∑R is large when (-k/ωB) is large and positive. However  log k covaries with log ω (Fig. 

2), such that k/ω increases only slowly for ω <1cm/yr (over the studied depth ranges) and produces 

only small increases in ∑R. Conversely B (the negative exponent) also increases slowly (but 

erratically) with ω (see Tables 1 and 2), which causes ∑R to decrease. Hence the effects of k/ω and 

B to a significant degree cancel each other out for ω <1cm/yr. The estimates of ∑R in Table 2 are 

generally higher at faster sedimentation rates but some exceptions exist where porosities are 

relatively low, or where sites show deviations from the overall trends. Larger increases in ∑R may 

occur where ω >1cm/yr (since k/ω then increases rapidly with ω), but we have no data on the 

behaviour of B to justify extrapolation to these sedimentation rates. However we note that 

concretionary cementation is commonly associated with slowly deposited, organic C-rich 

sediments (eg Fisher and Wignall, 2001) rather than with rapidly-deposited sediments. 
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The DSDP/ODP sediments studied here are all deposited under oxygenated bottom waters 

whereas sediments beneath anoxic bottom waters generally show faster rates of sulphate reduction 

(and thus alkalinity generation), and possibly therefore also faster increases in ∑R with ω. 

However it is doubtful whether bottom water oxygenation could exert a critical control on 

concretionary growth for two reasons. Firstly, carbonate concretions are commonly found in 

depositional environments ranging from fully oxygenated and bioturbated (e.g. Savrda and Bottjer, 

1988) to oxygen-deficient/euxinic (e.g. Raiswell, 1976). Secondly, rate constants for the semi-

euxinic Kau Bay sediments follow the same general trend with respect to log ω as do the 

DSDP/ODP sediments (see above). Additional data for the rate constants of Ca2+ removal from 

sediments deposited under anoxic bottom waters are needed to ascertain whether higher rates of 

Ca2+ removal can occur under euxinic conditions, but the limited data here do not suggest that 

bottom water oxygenation levels exert a significant influence. 

Rates of sulphate reduction at depth (after most labile organic matter has been mineralized) 

can however stimulated by AMO (Devol and Ahmed, 1981; Devol, 1983; Iverson and Jorgensen, 

1985) which has been identified as a likely source of concretionary carbonate (Raiswell, 1987; 

1988a). In this context it is noteworthy that carbonate cementation has been well-documented in 

ODP cores from the Blake Outer Ridge at Sites 994, 995, 996 and 997 (Naehr et al., 2000; 

Rodriguez et al., 2000). At sites 994, 995 and 997, Rodriguez et al. (2000) found that sulphate 

reduction occurred in an upper zone (0 to 20 m) through which the porewater gradients indicate 

either active calcite dissolution plus reprecipitation or simple diffusion between seawater and a 

lower zone of AMO. Calcite (10-45 wt.%) and dolomite (1-8 wt.%) in this zone have isotopic 

compositions that indicate a mainly biogenic origin but small concentrations of authigenic 

carbonate may occur at below detection levels. The 20 m depth defines a biogeochemical interface 

where methane, building up in the sediments below, diffuses up to be consumed by AMO  

CH4  +  SO4
2-   ------>  HCO3

-  +  HS-  +  H2O 

along with sulphate diffusing downwards. Over the 20-100 m depth interval authigenic dolomite 

predominates over calcite and occurs as discrete microcrystalline nodules (< 6 cm diameter) which 

contain concentrations of 2-40 wt. % dolomite. The δ13C values of calcite are slightly negative 

(minimum of -7 o/oo) as also is dolomite (-3 to -14 o/oo). At site 996, Naehr et al. (2000) also found 

extensive cementation but the predominant mineralogy was aragonite (23-63 wt. %) with δ13C 

values of –30 to -48 o/oo). Luff and Wallmann (2003) have modelled the rates of carbonate 

precipitation by AMO at the Cascadia Margin. Aragonate and calcite are the main authigenic 
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phases and precipitate at a rate of 120 µmol cm-2 yr-1, sufficient to form a 1 m thick layer in 

approximately 20000 years.  

These studies are consistent with the present work in demonstrating that sulphate reduction 

(as distinct from AMO) can only produce limited amounts of carbonate cement but AMO can 

clearly be an important source of carbonate cement. There are however significant difficulties in 

explaining the absence of very light δ13C values (<30 o/oo) in most concretions (Mozley and Burns, 

1993), although such values are common in carbonates formed by AMO. A consideration of the 

isotopic signals that can result from AMO is beyond the scope of the present work but has been 

dealt with by Claypool and Threlkeld (1983) and Raiswell (1987). 

4.3.2 Additional Ca2+ sources during sulphate reduction 

 The diagenetic model used here has assumed that all Ca2+ is supplied by diffusion from 

seawater. In this section we explore whether internal sources of Ca2+ could contribute to the 

formation of additional cement during sulphate reduction. The DSDP/ODP sediments are all over-

saturated with respect to both calcite and dolomite (see Table 2), which would seem to preclude 

the supply of additional Ca2+ from the dissolution of biogenic calcareous debris during sulphate 

reduction. However diagenetic models (Canfield and Raiswell, 1991; Boudreau and Canfield, 

1993) predict that calcite and aragonite can become under-saturated if sulphide acumulates in the 

porewaters during the early stages of sulphate reduction (removal of up to 5-7 mM SO4
2- ). Such 

under-saturation must be confined to micro-environments (since the bulk SI values in the 

DSDP/ODP sediments indicate over-saturation), which would suggest that carbonate dissolution 

could only have a limited impact during sulphate reduction (the dissolution of biogenic carbonate 

may however be a significant source during subsequent burial).  

Biogenic carbonate is not the only source of Ca2+. Dissolution of fish debris is thought to 

be an important source of solutes for apatite precipitation (e.g. van Cappellen and Berner, 1988) 

and could also be a potential source of Ca2+ for carbonate cementation. It is worth noting that TEM 

studies have revealed that amorphous Fe-oxides can contain up 6% Ca2+(Buffle et al., 1989). Iron 

oxides of this type would be expected to undergo reduction following sedimentation and therefore 

could potentially provide and additional source of Ca2+ for concretion growth.  

4.3.3 Non steady state diagenetic effects 

The estimates of ∑R, and their variations with sedimentation rate, are not apparently 

adequate to provide more than low concentrations of cement when sulphate reduction occurs over 

considerable burial depths. Higher concentrations may be possible in non-steady state depositional 
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environments, where a pause in deposition allows the continued supply of sulphate and calcium 

from seawater, enabling precipitation to be maintained over a shallow depth interval (where SI 

values are appropriately high) for sufficient lengths of time to produce greater masses of cement. 

The effects of a pause in deposition were also suggested by Middelburg et al. (1990) to account for 

the dolomitic concretionary layers observed in the Kau Bay sediments. The Ca2+ content of the K4 

core has a fairly uniform background level of 5 wt.%, with values of 15-20 wt.% occurring in the 

concretionary layer (Middelburg, 1990). The diagenetic model presented here indicates that steady 

state cementation would produce about 2 wt.% Ca2+. It is unclear how much of the background  

Ca2+ is dolomitic cement but agreement for the steady state is close enough to the observed values 

to support the suggestion of Middelburg et al (1990) that there must be an important role for non-

steady state diagenesis at the concretionary horizon. Numerous authors have suggested that the 

development of concretionary horizons is controlled by a pause in deposition. For example the 

calcitic concretions within Westphalian black shales of northern England (e.g. Curtis et al., 1986) 

may owe their origin to extremely slow rates of sedimentation (~0.001 cm yr-1) in waters with a 

high primary productivity (Fisher and Wignall, 2001). Larger masses of cement would clearly 

result during a pause in deposition which allows additional time for increased supply by diffusion 

and advection. 

The steady state diagenetic models used here predict the extent of cementation from 

sulphate reduction that produces dispersed carbonate. However concretionary growth represents 

localised cementation, which could result by transport of Ca2+ removed from a large sediment 

volume and concentrated at a single site. The concentration of cement from a volume 500-1000 

times larger than the volume of a spherical concretion requires that the radius of a spherical supply 

zone is 8-10x larger than the radius of the concretion. Thus a concretion of radius 20 cm would 

need to be 1.5-2 m away from the spherical supply zone of an adjacent concretion. These 

separations are significantly larger than those observed for Jet Rock (Upper Jurassic, UK) 

concretions (Raiswell and White, 1978; Raiswell, 1988b) which have a mean radius of 18 cm, and 

a mean nearest neighbour distance of 47 cm (suggesting a mean spherical supply zone of 24 cm 

radius). These data indicate an approximate 2.4:1 volume ratio of source sediment to concretion, 

which would allow the steady state cement concentrations to produce approximately 3.5 wt.% 

calcite or 7 wt. % dolomite by the concentration of cement at the concretion site. Higher volume 

ratios of source sediment to concretion could occur as burial depth increases, and the potential 

source sediment volume is extended vertically. 
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The steady state diagenetic models indicate that concretionary growth occurs in two stages; 

a first stage involves the transport-controlled precipitation of cement over shallow burial depths 

(driven by sulphate reduction), and a second stage involves slow growth possibly over substantial 

burial depths (Middelburg et al., 1990; Raiswell and Fisher, 2000). The first stage produces only 

small masses of cement but creates a framework which preserves local porosity and which is 

infilled over greater depths during the second stage.  

A second stage of prolonged growth would indicate that a concretion should incorporate 

isotopic and chemical properties from several different depth-related processes in their cement 

compositions. This may include the continued addition of cement derived from the alkalinity 

generated during sulphate reduction, even though suphate reduction has ceased (or is only 

occurring very slowly). Raiswell and Fisher (2000) argue that precisely this type of cementation 

(therein termed ‘pervasive’) is required to produce the typical isotopic and mineralogical variations 

found in concretionary cements. Raiswell et al. (2002) have shown that the earliest septarian 

cements inside Carboniferous concretions have δ13C = -28.7 %o and δ18O = -1.6 %o, which 

represent one end-member (derived from sulphate reduction) of a linear trend towards the last 

septarian cements (δ13C = -6.9 %o and δ18O = -14.6 %o). By contrast the concretion cement (δ13C 

= -10 to -12 %o and δ18O = -5.6 to 5.7 %o) has an isotopic composition which suggests an origin 

after the earliest septaria. However the concretion cement cannot have completely post-dated the 

septaria, and must thus reflect some mixture of both the early and late septarian end-member 

cements. 

 

Conclusions 

First order rate constants for Ca2+ removal during sulphate reduction can be estimated from 

porewater profiles showing decreasing concentrations of Ca2+ over depths of 15-150 m in 

DSDP/ODP sediments. In these sediments, rate constants vary from 10-14 to 10-11 s-1 and are 

related to sedimentation rate such that log k  =  1.16 log ω -  10.3, indicating that faster rates of 

Ca2+ removal occur at the highest sedimentation rates. Faster sedimentation rates also produce 

higher degrees of saturation with respect to both calcite and dolomite, up to sedimentation rates of 

approximately 0.1 cm yr-1.  

Regardless of these relationships, the integrated masses of Ca2+ removed during sulphate 

reduction over these depths are always less than 100 µmol cm-2 and are sufficient to produce less 

than 1.5 wt% calcite or 3 wt. % dolomite in the compacted sediment. These concentrations are 
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inadequate to explain the occurrence of carbonate concretions with isotopically light δ13C 

compositions (indicating that carbonate was mainly derived from sulphate reduction). The growth 

of such concretions must therefore require some combination of:- 

(i) Diagenetic conditions that produce faster rates of sulphate reduction. 

(ii)  More time for the formation of carbonate cement during sulphate reduction, for 

example as a result of a depositional hiatus. 

(iii)  An alternative source of Ca2+ (such as dissolution of skeletal material) and a 

mechanism by which isotopically light carbonate (similar to that derived by 

sulphate reduction) can be supplied during deeper burial. 
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Figure 1. Chemical properties of porewaters at site 533 and 931  Filled circles are concentrations 

of Ca2+ and open circles are alkalinity, Crosses (X) are SI values for calcite and pluses (+) are SI 

values for dolomite. 
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Figure 2. Variation in log Rate Constant (k) with log Sedimentation Rate (ω) for DSDP/ODP 

sediments (Table 1) 
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Table 1 Physical Characteristics of the Sample Sites 

 

Site 

 

Water 

Depth 

(m) 

 

Locality 

 

Lithology 

Bottom 

Water 

Temp 

(oC) 

Sed. 

Rate 

(cm  

 yr-1)

478 1899 Guaymas Basin Diatomaceous muds, silty turbidites 3.4 0.1 

481 1998 Guaymas Basin Diatomaceous muds, muddy sands 3.6 0.1 

533 3191 Blake Outer Ridge Burrowed nannofossil silty marls and clays 2.4 0.0083 

565 3099 Middle America 

Trench 

Uniform, massive, mud and mudstone 2.0 0.0165 

572A 3893 Central Equatorial 

Pacific 

Siliceous  nannofossil chalks, oozes 2.5 0.0013 

721A 1945 W. Arabian Sea Nannofossil chalks and oozes 1.8 0.0048 

722A 2028 W. Arabian Sea Foraminifera-bearing chalks and oozes 2.5 0.0036 

763A 1368 Central Exmouth 

Plateau 

Nannofossil ooze with foraminifera 4.0 0.002 

798B 900 Oki Ridge, Sea of 

Japan 

Diatomaceous clays and silts 2.0 0.012 

819A  577 Great Barrier Reef Clay and carbonate-rich pteropod ooze 10.0 0.011 

821A 213 Great Barrier Reef Calcareous silts and clays 10.0 0.01 

823A 1639 W. Queensland 

Trough 

Nannofossil ooze with micrite. 4.0 0.011 

908A 1285 Hovgaard Ridge, 

Boreas Basin 

Clayey and silty mud -0.5 0.006 

911A 902 Yermak Plateau, 

Greenland Sea 

Bioturbated silty clay and clayey silt -0.3 0.009 

931B 3475 SE. margin, 

Amazon Fan 

Bioturbated nannofossil and foraminifera 

clay 

2.4 0.036 

939B 2792 E. flank, Amazon Burrowed foraminifera-nannofossil clay 2.8 0.40 
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Channel 

939C 2791 E. flank, Amazon 

Channel 

Burrowed foraminfera-nannofossil clay 2.8 0.40 

942A 3348 W. edge, Amazon 

Fan 

Bioturbated nannofossil foraminifera clay 2.6 0.044 

944D 3709 Middle Amazon 

Fan 

Bioturbated nannofossil foraminifera clay 2.4 0.03 
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Table 2. Model boundaries and parameters. 
 
 
Site 

 

Poros

-ity 

Upper 

Depth 

(cm) 

Lower 

Depth 

(cm) 

Exponent 

(B) 

r Rate Constant 

(k in s-1) 

 ∑R 

(µmol 

cm-2) 

Range 

SIcal

Range  

SI dol

478 0.83 0 4800 5.8 x 10-5 0.91 5±25 x 10-12 23±115 0.96-1.4 3.8-4.6 

481 0.88 0 1580 7.1 x 10-4 0.98 8±4 x 10-12 31±17 1.1-1.2 4.5-4.7 

533 0.58 0 1888 9.0 x 10-4 0.99 1.9±0.5 x 10-12 45±16 0.42-0.97 2.8-4.5 

565 0.69 0  4640 2.8 x 10-4 0.88 5±2 x 10-13 25±12 0.68-1.2 3.2-4.5 

572D 0.78 0 950 8.0 x 10-5 0.97 2.5±0.7 x 10-14 63±24 0.15-0.27 2.1-2.3 

721A 0.63 0 5405 5.5 x 10-5 0.99 2±1 x 10-14 22±12 0.18-0.76 2.3-3.4 

722A 0.65 0 5415 8.8 x 10-5 0.91 4±1 x 10-14 25±9 0.29-0.71 2.5-3.3 

763A 0.70 290 4880 4.5 x 10-5 0.99 1.2±0.4 x 10-14 32±12 0.12-0.41 1.9-2.6 

798B 0.72 0  1285 5.2 x 10-4 0.96 1.1±0.3 x 10-12 43±16 0.66-1.2 3.1-4.4 

819A 0.58 0 2545 4.3 x 10-4 0.97 8±2x 10-13 28±10 0.17-0.25 2.3-2.6 

821A 0.55 0 14480 9.3 x 10-5 0.96 10±6 x 10-14 17±11 0.46-1.2 1.9-4.1 

823A 0.66 0 3225 3.7 x 10-4 0.96 6±2 x 10-13 37±14 0.14-0.32 2.1-2.6 

908A 0.46 445 8880 4.9 x 10-5 0.94 3±4 x 10-14 14±19 0.37-0.93 2.6-3.8 

911A 0.48 0 6295 2.0 x 10-4 0.93 2±1 x 10-13 14±8 0.69-0.84 3.0-3.9 

931B 0.66 20 1838 4.6 x 10-4 0.96 2±1 x 10-12 25±14 0.41-1.6 2.8-5.0 

939B 0.62 145 3045 2.6 x 10-4 0.98 2±11 x 10-11 20±12 0.84-1.4 3.7-4.6 

939C 0.64 20 1650 4.3 x 10-4 0.98 3±13 x 10-11 20±87 0.50-1.3 2.7-4.5 

942A 0.67 145 3525 2.0 x 10-4 0.99 8±8 x 10-13 20±21  0.84-1.1 3.4-4.1 

944D   0.69 0 950 9.2 x 10-4 0.99 4±1 x 10-12 34±12 0.54-1.3 3.1-4.5 

 

The depth-integrated masses of Ca2+ removed (∑R) are expressed relative to volumes of porewater 

plus sediment. 
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