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CHAPTER 1  INTRODUCTORY OVERVIEW 

 

This chapter presents the background of the thesis. The objective and delimitation are 

defined. A thesis outline is elaborated for better understanding of overall contents of 

this thesis. 

1.1 Background  

 

Measurement is very important in science and engineering field. The science of 

measurement is called metrology. The importance of metrology is unarguable in the 

world we are live in. Metrology is a field of maintaining and increasing the 

measurement accuracy. Metrology plays a crucial part in quality assessment and the 

main pillar for innovation and competitiveness [1]. Ramos and Vasconcelos [1] 

emphasized the metrology as factor of quality, innovation, and competitiveness and its 

importance cannot be neglected in daily lives. The importance of precision for 

productivity and quality can be illustrated by CE Johansson’s gauge blocks. The gauge 

block, also known as Jo Blocks are a system for producing precision lengths. A gauge 

block is a block of metal or ceramic with two opposing faces ground precisely flat and 

parallel. This gauge is used in measuring the tolerance of production and any precision 

devices. Deming [2] shared his thought on variation and Shewhart’s chart. When Walter 

Shewhart created the basic of statistical control chart, Deming realized that the variation 

in manufacturing process is inversely related to quality. Shewhart discovered variation 

is due to the common cause for chance causes and special cause for assignable causes. 

Deming emphasized the knowledge of variation which describes the range and causes of 

variation in quality and the use of statistical sampling in measurements [3]. This is 

stated in his one of the four parts in system of profound knowledge; that are 

appreciation of a system, knowledge of variation, theory of knowledge, and psychology. 

Deming’s knowledge of variation has led to an interest in designing a measurement 

system that is insensitive to variation. In other words - a robust measurement system. 

H. Imai [4] describes the recent situation in metrology, and how to obtain a 

reliable measurement result using the expression of metrological traceability together 

with measurement uncertainty. Mroczka [5] shows the philosophical threads of 

metrology as empirical facts verifying human hypotheses as well as the metrology 

intellectual superstructure. In general system development theory, a number of 

approaches have been suggested for the process of methodology development. 
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Finkelstein [6] presents an early review on the term of methodology as the science of 

methods of design, and as a particular system of methods of design. Design 

methodologies have been developed for a variety of applications and disciplines. Source 

of design methodology may be categorized as design education, specific methodologies, 

systems engineering and sciences, management, creativity and lastly problem solving 

and decision making. This thesis is reflecting on the design for a measurement system 

that lays in the systems of engineering and sciences. The development of measurement 

systems includes the problem solving of current measurement behavior in a system. 

Problem solving defined as a form of activity with a goal to be reached, a gap in the 

route to the goal and set of alternatives [6]. The design methodology provides a useful 

framework for the structuring of the design process, a design concept’s generation and 

for evaluation and decision in design. Yano [7]  emphasize the importance of 

measurement data in design and production. It is crucial to obtain more than one sets of 

data relevant to the design or production process. 

Product development and related process, methodologies and tools are 

extremely important to the success of an organization [8]. Bergman and Klefsjö present 

three stages for product development that are Requirements, Concepts, and 

Improvement. Requirement stage is coming from the needs and expectations from 

customers. Concept stage describes the consideration on large numbers of different 

concepts that can satisfy customers. The requirement and Concept stage are 

corresponding to system design in robust design engineering. System design is the 

conceptualization and synthesis of a product or process to be used. This is where the 

new ideas, knowledge and concepts in science and technology are utilized to determine 

the right combination of materials, parts, processes, and design factors that will satisfy 

functional and economical specifications. Once the concepts have been selected, it 

should be polished and improved to a better level and cost. This stage is called 

improvement stage. The improvement stage corresponding to parameter design and 

tolerance design in robust design engineering. Design of experiments and robust design 

engineering that includes parameter design and tolerance design are important features 

in improvement stage. These systematic methodologies are used to reduce variation 

exist in measurement, thus produce quality product that is insensitive to variation. 
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1.2 Objective 

 

The objective of this study is to contribute to the development of robust measurement 

systems in parameter design. A problem with measurements is that they are not always 

representing their corresponding measurand in a perfect way. Peel strength 

measurement is used for practical experiment to reflect the measurement system in 

parameter design. Industrial experience in implementing robust design technology is 

part of research methodology in developing the measurement system. 

 

1.3 Delimitations 

 

In the literature review of measurement system, there are many field that use different 

measurement systems. This thesis delimits the measurement system in parameter design 

of robust design engineering. The field of interest is focusing the peel strength 

measurement as mechanical engineering context. Thus, the scope of this thesis is 

presented as below. 

 

1.3.1 Scope 

 

The scope of this research is clearly defined to ensure the true decision problem is 

addressed. This research has five scopes in order to materialize the objective: 

 

1. To provide a procedure on optimum conditions selection  

2. To provide a systematic process in handling outliers in the development of 

measurement system 

3. To establish a procedure on how to analyze variability and optimization when 

designing a measurement system 

4. To present the difference in laboratory and industry practice on achieving quality 

experimental design 

5. To establish a mainstream flow in order to achieve high quality experimental design 
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1.4 Thesis Outline  

 

A general system design that covers not only the tool and how to use it to get the desired 

response, but the decision, the choice, the possibilities and its application are discussed 

practically and theoretically through case studies presented in this thesis. In this thesis, 

type of measurement in an experimental design is decided and how to evaluate the 

design parameters to improve the design is discussed. The elements of what to measure, 

how often to measure it, what evaluative measurements to make and how to use them 

for the best effect is emphasized in the results and discussions. Therefore, the 

development of such system is extremely important to discuss in this thesis.  

The thesis in constructed in three parts. Part I includes Chapter 1: Introduction, 

Chapter 2: Theory Background, and Chapter 3: Research Methods. Chapter 1 presents 

the research in measurements system and its importance for productivity, quality, and 

innovativeness. The development methodology is described and its relation with robust 

design engineering is explained. Objective of research is presented. The delimitations of 

the research is described to narrow down the measurement system from macro-level. 

Chapter 2 defines the theories of importance for the research. Definition of 

measurement, measurement uncertainty, measurement system, robust engineering and 

robust measurement system are elaborated. Chapter 3 covers the research methods use 

in this research such as literature review and case studies that include industries and 

practical experiments. 

Part II is further explained on parameter design of measurement systems. Here, 

the results from the research methods is analyzed and discussed. This part includes 

Chapter 4: Literature Review result, Chapter 5: Implementation of Parameter Design in 

Industries, Chapter 6: Parameter Design of a Measurement System, and Chapter 7: 

Critical to Assumptions in Parameter Design. Finally, Part III includes Chapter 8: 

Discussion on Parameter Design of Measurement Systems, Chapter 9: Conclusion of 

the research and Future research. 

Figure 1.1 depicts an overview of this research. General measurement system 

design is the meta-level topic for this thesis. In science and engineering, the 

measurement starts with the existence of measurand. The measurement is surrounded by 

variation, anywhere. Taking the results of measurement is considered as measurement 

process. Then, it is completed with the existence of measurand, operand or physical 

arrangement, measuring task and instrumentation to form a measurement system. 

Further, the tool used to design a measurement system is parameter design or so-called 

robust design engineering. Parameter design is aimed to produce a robust measurement 
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system. This leads us to a general design methodology to locate a robust measurement 

system in measurement design methodology. On top of all, the robust measurement 

system is capable to be used in general application of design. Not only laboratory, but 

practically being practiced in industries such as Fuji Xerox (Company A) and Company 

B mentioned in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 1.1: Overview of general idea of this research 

 

The research is further narrowed for measurement system development in 

mechanical engineering field. Figure 1.2 shows the narrower focus that reflects what 

this thesis is all about. Multiple resources in general product development theories, case 

studies in measurement systems, application in mechanical engineering field, and 

manufacturing are some important key words. Next, the development in measurement 

system using parameter design is focused. Product development is emphasized in three 

stages that are requirements, concepts and improvements [8]. A systematic methodology 

such as parameter design is used. Application of parameter design in industries, case 

studies of parameter design in manufacturing and practical experiment are done at this 

point.  
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Figure 1.2: Research focus 
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CHAPTER 2 THEORY BACKGROUND 

 

The concepts in this thesis are defined. Terms and keywords are indicated and 

elaborated for better understanding of their usage. The theories on measurement, 

uncertainty, measurement system, robust engineering, and robust measurement system 

are presented. 

 

2.1 What is Measurement 

 

There are many current literature found in defining what measurement is. A New 

definition of measurement is made by T.L.J. Ferris [1] after rigorous definition from 

many literature reviews is taken into account. Ferris defined measurement as an 

empirical process, using an instrument, effecting a rigorous and objective mapping of an 

observable into a category in a model of the observable that meaningfully distinguishes 

the manifestation from other possible and distinguishable manifestation. It resembles 

everything for information capturing regardless in any field; science, engineering, 

technology, humanity and such. The theory of measurement has been discussed in many 

literature [2][3][4][5][6][7]. A system to measure result is called measurement system. 

Thus, it is very important on how a measurement system is carried out as it affects the 

result or response of a system. This thesis is to contribute to the development of a 

measurement system using practical experiments supported by the implementation in 

industries as its application. Finkelstein [6]  defines measurement as empirical 

operational procedure which assigns numbers to members of a class of entities and to 

describe them by which is meant that relations between these numbers correspond to 

empirical relations between the entities to which they are assigned. He further defines 

that measurement is the process of assignment of numbers to members of a class of 

attributes or characteristics of objects of the real world in such a way to describe them. 

For instance, measurement is an operation which objectively assigns numbers to quality 

manifestations of objects in such a way to describe manifestations [8]. Finkelstein [9] 

stated that measurement is the process of empirical, objective assignment of numbers to 

the properties of objects and events of the real world in such a way as to describe them. 
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Luca Mari [3] characterizes measurement as an evaluation process able to produce 

objective and inter-subjective information on the measurand. An Italian standard [10] 

explained that measurement is an experimental activity by defining measurement as the 

set of empirical and processing operations performed by means of suitable devices 

interacting with the measured system with the purpose of assigning a value of a quantity 

assumed as parameter of the system. Fenten and Pfleeger [11] define measurement as a 

mapping from the empirical world to the formal, relational world. Consequently, a 

measure is the number or symbol assigned to an entity by this mapping in order to 

characterize an attribute.  

 

2.2 What is Measurement Uncertainty 

 

There are three components of measurement that are the measurand, the measuring 

instrument, and the environment. The result of measurement is often a value with 

numbers expressed with multiple of unit of measurement [12]. These numbers are 

associated two main aspects in measurement that are accuracy and uncertainty. High 

accuracy implies low uncertainty, and vice versa. In this thesis, a little part of the 

practical experiment reflects the uncertainty which depicted by minimizing the variation 

in peel strength. For example, the variation in peel strength is caused by minor deviation 

of peel angle. The deviation of peel angle causes variation in peel strength, thus results 

in uncertainty. International guidelines to assist on uncertainty are described in the 

Guide to the Expression of Uncertainty in Measurement or so-called as the GUM [13]. 

Uncertainty defined by Guide to the expression of Uncertainty in Measurement (GUM) 

is “a parameter, associated with the result of a measurement that characterizes the 

dispersion of the values that could reasonably be attributed to the measurand”. This 

parameter is normally a standard deviation or the width of a confidence interval. 

Giovanni Battista Rossi [14] states two measurement theories that are deterministic 

which describes an ideal measurement process and probabilistic which considering for 

uncertainty. K. Watanabe et al. [15] explained on optimization of paper permeability 

tester to increase the measurement accuracy. Robust design engineering is used to 

optimize the tester to make it more robust against uncertainty. More explanations on 

uncertainty can be found in [16], [17], [18] and [19]. 
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2.3 What is Measurement System 

 

Measurement system is a practice in obtaining data for certain purpose. Measurement 

system in this thesis refers to a process in capturing data for desired response. 

Considerations that need to be taken into account are laid out. Measurement system 

explains from the beginning stage of an experimental design until the application of the 

optimum condition. In many literatures, measurement system only review the way test 

method is carried out without explaining the previous stage before the experimental 

procedure is done [20], [21]. However, apart from test method, some papers discuss on 

the foundation of measurement and its theories. Giovanni [14] explains when 

performing measurements, not only the measurand object need to be considered, but 

also measuring system and the interaction between the two. A general probabilistic 

model was provided for measuring system and measurement process. The flow of 

measurement contains the measurand, data measurement, measured value and finally 

measurement result [22]. This is supported by Luca Mari [4] which found the idea that 

measurement results are assigned to measurands, not determined, because “values” 

belong to the information, not the empirical, world, and the relations between such two 

worlds always maintain some conventional component. By looking at these finding, the 

papers in the measurement journal discussed on the test method used in some case study 

while another pattern is discussing on the measurement concepts and theories. The 

experimental design is the perfect tool used in practical experiment for measurement 

system in parameter design. The gap in the middle between the theory and practical case 

study that connects the test method used for measurement and the development of 

measurement system is the main issue discussed in this thesis.  

 

2.4 What is Robust Engineering 

 

Quality is an essence in Japan. When comparing Japan products, it has no doubt in 

serving highest satisfactory to the user. Why is this happen? What is behind this 

success? How Japan can sustain the excellence of quality ahead from other countries, 

generally. Thus, robust engineering in general has been the backbone of the Japan’s 

product quality performance. The excellency of robust engineering has been practised 
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and applied by other countries of the world globally that make Japan as their role-model. 

Robust engineering is described using robust parameter design in which a system is 

insensitive to variation. M. Arvidsson and I. Gremyr [23] reviewed on robust design 

methodology which contains QE as part of it as systematic efforts to achieve 

insensitivity to noise factors which founded on an awareness of variation and can be 

applied in all stages of product design. B. Bergman and B. Klefsjö [24] stated that all 

products are exposed to different kinds of variation such as variation between customers 

and how they use the product, variation in environment and variation in production 

process or manufacturing. These variation may cause deviation from target values and 

lead to customer dissatisfaction. It is also emphasized that the robust design 

methodology  and a systematic handling of tolerance are important features in 

“improvement” phase [25]. It is emphasized that the earlier the variation is detected, the 

better the product to satisfy the customer needs. L. Ilzarbe et al. [26] explained the 

practical applications of experimental design which has been applied for many years in 

industry to improve quality. M. Tanco et al. [27] described how the experimentation 

carried out by companies  in three european regions. The findings revealed that 

systematic experimental design is far much better that conventional way of doing 

experiment to improve the performance of products or processes. R. Dolah et al. [28] 

presented on how an organization and laboratory works in implementing quality 

engineering. The real process in industy is compared with practical experiment in 

laboratory by taking peel test experimentation in mechanical engineering context. E. 

Viles et al.  [29] emphasized on the importance of planning stage in industrial 

problems, where there are different factors that strongly affect the results of the study.  

Statistical design of experiment provides a proper way of planning an 

experiment in selecting appropriate data. Design of experiments (DOE) such as factorial 

design, response surface methodology (RSM) and Taguchi methods are widely used 

compared to traditional one factor at a time approach. Robust engineering method have 

been widely applied for optimization in peel test [30], [31], [32], [33]. Robust 

engineering method had simplified the classical design of experiment which found too 

complicated to be applied by engineers in application field [34].  
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2.4.1 Robust Engineering Method  

 

Back in early 1920s, Sir R.A. Fisher introduced an experimental design method of 

statistical  technique called Design of Experiments (DOE). Started from crop 

optimization in agricultural experiment, research and development of DOE grew 

significantly in academic environment. Not many industries applied DOE in production 

process. The more the research grew, the more complicated it became and the less it 

reflects the practitioner to apply it. In 1940s, a Japanese engineer; Dr. Genichi Taguchi 

modified and standardized the technique into a more useful way for practitioner. Here is 

the significant moment where DOE techniques become extremely useful and friendlier 

to apply. Transforming  from a sophisticated method to an applicable and easier to 

practice, Dr. Taguchi introduced the simplified DOE to design quality into products 

and is called Robust Engineering that provides the ability to produce high quality, 

low-cost products that fully satisfy customer needs. 

G. Taguchi and Y. Wu [35] introduce his approach using experimental design as 

a two-step optimization: 

Step 1: Reduce functional variability to increase robustness. A design that can maximize 

the signal-to-noise ratio which optimize the process or product function. It is more 

difficult to reduce variability than to adjust the mean to target value. 

Step 2: Adjust sensitivity. Adjust average response to the target value. 

This research is focusing on parameter design, which an investigation is done to identify 

settings that minimize the variation. Different setting may generate different variation in 

product or process performance. In classical parameter design developed by R.A.Fisher 

[36], the experimental design is complex and not easy to use. Main reason of this is 

large number of the experiments need to be carried out when the number of parameters 

increases. For example, a full factorial experimental design for studying four parameters 

at three-levels would have required 81 experimental trials (3
4
). Adding in two-level 

noise factor with two repetitions would make number of observations to 324 (81x2x2), 

an unacceptable number due to experimentation constraints. From the orthogonal arrays 

by Taguchi, a modified L-9 orthogonal array was chosen. Only 36 observations implied 

(9x2x2). A loss function is then calculated from the deviation between experimental 

value and the desired value, or in other words; deviation from the target will create loss 
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to customer. Value of loss function is transformed into a signal-to-noise ratio (SNR), 

which is a metric for robustness. SNR (unit: dB) is defined as in equation (2.1) below: 

SNR,   = power of signal/ power of noise 

             = (sensitivity)
2
/ (variability)

2
 

                  =  
2
/  

2 
   (2.1) 

Inversed SNR is the variance per unit input [37]. As in equation (2.2), loss is 

proportional to the inverse of the SNR. The larger the SNR, the smaller the loss, thus the 

better the quality is. 

 Loss   
2
  1/SNR   (2.2) 

S/N ratio measures variability around the mean. It represents the ratio of sensitivity to 

variability. Therefore, higher S/N ratio is better as robust condition due to minimum 

variability. There are two categories of SNR, that are non-dynamic SNR when there is 

no signal factor, and dynamic SNR when signal factor is exist. Signal factor is a 

controllable variable to actualize the intention.  

Ideally, a system with zero or minimum noise is desired. This means, after 

optimization, the noise level gap must be as smallest as possible to produce an ideal 

function as shown in Figure 2.1. In this study, Y is the output that is peel strength and 

represents a zero-point proportional equation [37] with dynamic SNR. M is the signal 

factor that is specimen width. Beta, , is the measurement sensitivity to different inputs, 

thus the slope must be steep. Thus, the ideal function is Y=M. Three elements of SNR 

are to improve the linearity, sensitivity and variability of a system.    

                               

                                                                               

Figure 2.1: Variability improvement after optimization 
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In 1990’s, there were many debates from the statistician and robust design 

practitioners about Taguchi method [38]. The concerns include the efficiency of Taguchi 

method providing the optimum condition, view of interactions, signal-to-noise ratio, and 

such. Despite many controversies over the statistically based methods advocated by 

Taguchi, there is broad agreement on the value of Taguchi contribution in emphasizing 

variation reduction and attracting industrial interest in it. 

Jerome Sacks and William Welch (National Institute of Statistical Sciences and 

University of Waterloo) 1992 - found that robust engineering method by using 

parameter design is a confusion about interactions. Statistical literature states robust 

engineering approach assumes that interactions are absent and thus, the method is 

unscientific. Supposed a quality characteristic, or response is Y, depends on two control 

factors, X1 and X2, and noise factor, z. thus, Y= X1 + X2 + Z. However, SNR is analyzed 

in robust parameter design and not the response or Y. Process average in SNR is said to 

ignore the interaction between X1 and X2.  

Madhav Phadke (Phadke Associates, Inc.) 1992 － views the presence of 

interaction between control factors is highly undesirable for some reasons; that 

interactions will lead to a big number of experiment and interrupts R&D  productivity. 

Thus, every step in robust design is made to minimize or eliminate between control 

factors interactions be it in the choice of response (quality characteristic), maximizing 

SNR, control factors and their levels. Along with this, some guidelines had been 

established to select response in order to minimize interactions.  

George Box et al. (1988) – If care is not taken during column selection, will 

lead to messy interaction confounding and result to wrong conclusion. Raymond Myers 

and Geoffrey Vining (Virginia Polytechnic Institute and State University and University 

of Florida) argued about the experimental planning techniques in Taguchi method. They 

felt that optimum condition method is a one-shot operation which is lack of proper 

classical experimental planning that include stage of variable screening, region 

movement, design augmentation, fitting model and exploration region using response 

surface method. James Lucas (Du Pont Quality Management and Technology Center) 

stated that all Taguchi method’s design is considered response surface design because it 

includes environmental or noise variables and more screening design. Anne Shoemaker 
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and Kwok Sui (AT&T Bell Laboratories and Georgia Institute of Technology) 

emphasized robust design as a problem in product design and manufacturing-process 

design. The solution method is depending on the application area.  

M.S.Packianather et al. [39] used DOE and Taguchi method to optimize the 

multilayered feed forward neural network. Analysis of variance (ANOVA) is performed 

on the SNR that is called as transformed data, and also to raw data that identified the 

signal factors. It is assumed that signal factors have negligible effect on SNR. Through 

ANOVA, the effect of each variable can be analyzed. 

Jiju Antony [34] summarized a framework on when to use robust engineering 

method and DOE based on nature of problem. Nature of problem is quite general and 

wide definition. But how to fit the nature of problem into the field? At which stage does 

the nature of that problem occur should be decided before the appropriate method is 

selected. This is also a motivation factor in this research. 

Chang Chung Li et al. [40], stated Sprow (1992) mentioned about the 

problem screening in robust parameter design method is more beneficial for R&D and 

product-process development, rather than to fine tuning the variables. Ming-Shi Chen 

et.al [41] integrated Quality Function Deployment (QFD) and robust parameter design 

into development process. Next, the optimization of product development quality is 

done using SNR analysis.  

Kiyoshi Saitoh et al. [42] outlined the important steps on implementing robust  

engineering method in Research and Development (R&D). The paper focused on 

problems and solutions in introducing and promoting robust engineering in corporate 

structure. Several experiments done by Makato Sakanobe et al. [43], Y. Sakai [44], 

and Kouichi Akiyama et al. [45] outlined the QE application case in different stage of 

product and process line in a corporate structure.  

Until today, it is not very clear whether the implementation of robust 

engineering method are comparable or not between practical practice in laboratory and 

industry application. The purpose of this research is to make an attempt to address the 

above issue from the perspective of research and practitioner. The information gathered 

from practical experiment and implementation from industries is analyzed to ensure its 

compatibility.  
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2.4.1.1 Dissimilarity between DOE and Robust Engineering method 

 

The debate between Design of Experiments (DOE) and robust engineering method 

so-called Taguchi Parameter Design (TPD) is well-known and has been discussed in 

many books and magazines. Often this question is raised “what is the best method? 

Should I go for DOE or Taguchi method?” In this thesis, robust engineering method is 

referring to the three components that are system design, parameter design, and 

tolerance design.  

 In DOE, main idea is about full factorial, response surface methods for second 

order model building and analysis of variance (ANOVA). On the other hand, robust 

engineering method often depicted as fractional factorial designs and orthogonal arrays. 

Both method have its own strength and purpose. The difference in technical aspect is 

discussed in this chapter 3. On the other hand, the differences in application due to its 

technical characteristic is discussed in Chapter 4 under application of robust design in 

industry sector. In Nair [38] , a group of practitioner and researches discuss the role of 

DOE and parameter design. Variation reduction, use of noise factors, interactions, 

selection of quality characteristics, signal-to-noise ratios, experimental strategy, 

dynamic systems and applications.  

 TPD prefers using three or more levels of the process or design parameters to 

estimate non-linear effects [34] . However, DOE prefers to investigate the potential 

interaction behaviors. Classical DOE encourages to study the parameters at two-levels 

so that critical process or design parameters can be identified in early phase, followed 

by the use of response surface designs such as central composite design (CCD) or 

Box-Behnken designs for studying non-linear effects. Interaction means 

interdependence. If a factor is independent of each other, the main effect plot will 

remain unchanged no matter which other factor it is with [46]. Interaction effect is when 

a factor behaves differently in the presence of other factors. The trend of influence 

changes when levels of other factors change. In DOE, ANOVA is used to analyze 

interaction effects. The effect of each factor is shown in ANOVA to indicate which 

factor gas significant effect on the response. Interaction between signal and main factors 

are calculated. TPD uses a performance statistic called signal-to-noise ratio (SNR) for 

measuring performance robustness. Signal and true data of measurement is multiplied to 
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derive the variation caused by the linear effect, S beta. SNR contains the power of 

signal derived from the sensitivity of the true mean and power of noise derived from 

variability of variance. The SNR combines both the mean response and response 

variability in single performance thus may not be able to separate out those process 

parameters which the mean performance and response variability separately. Classical 

DOE performs these analyses separately and hence is powerful in achieving this 

objective. However, TPD approach focuses on achieving robustness in functional 

performance of product and process. This is done by carefully examine the outer array 

of the experimental design so-called “noise parameter” for those which cannot be 

controlled or hard to control or expensive to control using standard production 

conditions. TPD has a separate array for control factor and noise factor that produce 

variability that are inner array and outer array respectively. In DOE, blocking and 

randomizing strategies are done.  

The interaction in TPD is distributed evenly in its orthogonal array. Orthogonal 

array is used to explore the design space [47] . An orthogonal array provides a balanced 

set of experimentation runs such that the conclusions are drawn in a balanced fashion. It 

is known that after the experiments had been done completely using the orthogonal 

array in TPD, a confirmation run confirms that no severe interaction among control 

factors to the SNR. Therefore, most likely the robustness will be produced at the 

downstream conditions. An orthogonal array is used for optimization to maximize the 

SNR. The gain or benefit in SNR is estimated and confirmed. This action synergize the 

plan-do-check-action cycle in quality management practice. Strategies of TPD are 

introduced in this thesis and are illustrated in practical case studies using orthogonal 

array L9 and L18.  

 

2.5 What is Robust Measurement System 

 

The purpose of measurement system is to attain an estimate of some quantity of interest 

and the system should be evaluated with respect to the precision of estimates obtained 

[48]. Robust measurement system is to design a measurement system to get a robust 

measurement system by taking variation into consideration. Variation is the main 

keyword for robust engineering. The purpose of robust engineering is explained in the 
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previous section which means to have a system that is in sensitive to variation. Thus, the 

development of robust measurement system is important to obtain this objective. Robust 

measurement system emphasized on variation reduction that contributed by the noise 

factor in a measurement system. The noise factor cannot be eliminated, but the effect 

can be reduced by choosing the proper level for control factors. This is done in 

parameter design which is used to improve the quality without controlling or removing 

the cause of variation and to make the product robust against the noise factors. Bergman 

and Klefsjö [49] states that it is not always possible to completely eliminate the 

influence of noise factor but it might possible to decrease its influence. A transfer 

function of one example of a system using parameter design is shown in equation 2.3: 

Y = f (X1, X2, X3, … Z1, Z2, Z3, ..  )       (2.3) 

with Y = response (quality characteristics) 

X = process parameter/ control factor 

Z = noise factor 

Assume the transfer function with known values of the coefficients bo, b1, b2, b3 : 

Y = bo + b1X1 + b2X2 + b3X3 + bZZ + b2Z X2Z +       (2.4) 

 = unknown, small residual term 

For a robust solution, the influence of the noise factor, Z is decreased by utilizing the  

X2 = - bz / b2Z. It is also possible for X1 and X3 to be chosen in the cheapest possible 

way to ensure the lowest manufacturing cost.  

This research presents multiple strategies of noise measurement. In a 

measurement, Ve represents the correction of error variance which means the variation 

of the data measured in a sample. Ve reflects the variation that affects the accuracy and 

precision of a measurement in a controlled condition. In robust measurement system, Ve 

is calculated with consideration of VN, the variation of compounded noise factor. This 

represents the metric for robustness in robust engineering and is called signal-to-noise 

ratio, . The signal-to-noise ratio is shown in equation 2.5: 

Signal-to-noise ratio,  = 10 log [ (1/(ro . r)) (S - Ve) / VN ]      (2.5) 

where S = variation caused by the linear effect, 

Ve = correction error variance (error variance/degree of freedom [DOF]), 
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VN = compounded noise factor when signal factor is introduced, 

ro = total number of measurements under one signal level, and 

r = effective divider representing a magnitude of input due to level changes of signal 

factor. 

 

The base 10 log of standard deviation is used as a traditional statistical transformation to 

make a normal distribution out of the skewed standard deviation distribution. 

Other approach by means of robust design of measurement systems is 

highlighted by Dasgupta et al. [50] and Arden Miller and C.F.J. Wu [48]. An integrated 

approach for estimation and reduction of measurement variation and its components 

using a single parameter design experiment is developed. Statistical models and 

performance measures are developed for measurement systems. The model for two 

types of variability is proposed. The first type of variability is called short term 

variability that is measurement-to-measurement or repeatability. The second type of 

variability is called ling term variability that is application-to-application or 

reproducibility. Two different analysis strategies- Response Function Modeling and 

Performance measure Modeling- have been discussed. The effectiveness of the 

proposed model is demonstrated with a simulation study and the data from Taguchi’s 

drive-shaft experiment has been used to demonstrate the proposed approach. As stated 

by Miller and Wu [48], provide a rigorous body of theory and methodology. 

Signal-response systems is classified into two broad types that are measurement systems 

and multiple target systems. Two strategies for modeling and analyzing data is presented 

that are performance measure modeling and response function modeling. The proposed 

methodology is illustrated with injection molding experiment. Yano [51] proved the 

signal-response relation as one-to-one correspondence between process parameters and 

product characteristics. The case study shown in Yano [52] explained about anticipate 

the effects of signal factors and data analysis. Suitable experimental design and proper 

data analysis are important other than just simply measuring a product characteristic and 

adjust the production process accordingly. 
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CHAPTER 3 RESEARCH METHODS 

 

This chapter describes on the research methods to obtain the research results. There are 

two categories of methods utilized in this thesis. These are literature review and case 

study. Case study is divided into two sections that are from industrial experience in 

implementing robust design engineering and practical experiments utilizing the robust 

engineering approach done in laboratory. 

 

3.1 Literature Review 

 

3.1.1 First level Literature Review 

 

The literature has been identified through searches in Web of Knowledge in Web of 

Science in three databases; SCI-Expanded, SSCI, and A&HCI. In all three databases, 

searches were made in topic search in advanced search. The searches were conducted in 

April 2013. The no.1 set of topic search is done using TS=((“Parameter 

design”)OR(“Taguchi”)) with result of 5114 hits. Due to parameter design often called 

as Taguchi method, this is the reason why the topic search is done by selecting all 

research papers in parameter design application field. No.2 set of topics search is done 

using TS=((“Measurement system”)OR(“Measuring system”)) with 14569 hits. No.2 

topic search is including all measurement and measuring system in any field. Not 

restricted to only quality engineering field, measurement system is searched for all field 

that includes measuring activity. No.3 search is combining no.1 and no.2 topic search to 

ensure that only measurement and measuring system in parameter design and Taguchi 

Method only is captured. No. 3 search ends up with 15 hits.  

 

In No.4 set, all application using robust design and robust engineering is 

searched because the terms for parameter design are used as well in robust design and 

robust engineering. The set is done using TS=((“Robust design”)OR(“Robust 

Engineering”)) results with 2341 hits. No.5 set is done by combining No.2 and No.4 



27 

 

sets to find the articles in measurement and measuring system only in robust design and 

robust engineering and the result is 8 hits. At the end of search, which is set No.6 ; set 

No.3 is combined with the set No.5 using “OR” command and the result is 19 hits. This 

final 19 hits are used in this literature review of the research. The final number of papers 

identified in the database searches is given in Table 3.1: 

Table 3.1: Summary of literature review`s search 

Set Results Search Item 

# 6 19 # 5 OR # 3 

Databases=SCI-EXPANDED, SSCI, A&HCI Time span=All years 

# 5 8 # 4 AND # 2 

Databases=SCI-EXPANDED, SSCI, A&HCI Time span=All years 

# 4 2341 TS=((“Robust design”)OR(“Robust Engineering”)) 

Databases= SCI-EXPANDED, SSCI, A&HCI Time span=All years 

# 3 15 # 2 AND # 1 

Databases= SCI-EXPANDED, SSCI, A&HCI Time span=All years 

# 2 14569 TS=((“Measurement system”)OR(“Measuring system”)) 

Databases= SCI-EXPANDED, SSCI, A&HCI Time span=All years 

# 1 5114 TS=((“Parameter design”)OR(“Taguchi”)) 

 

The 19 articles are then collected and analyzed each for their contents. 

 

3.1.2 Second level Literature Review 

 

 After the systematic search as explained in previous section, a “snow-ball 

sampling” search is done. Important papers in each paper’s reference is observed and 

analyzed to ensure no important information is missed out. Many papers from 

Measurement journal have been looked into for better understanding in measurement 

and metrology research. Robust measurement system is studied through the application 

of robust engineering method in many applications. 
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3.2 Case Studies 

 

Case study is the body of content on how the research has been carried out to 

fulfill the research objectives. Case studies are classified into two categories that are 

industrial practice of applying the robust engineering method and practical experiment 

to illustrate the development of robust engineering measurement system. 

 

3.2.1 Industrial Practice 

First case study is looking into the procedure of industry in implementing the 

robust engineering method. Two companies are included in this thesis that is Company 

A (Fuji Xerox Co. Ltd.) and Company B. This section provides some findings from 

companies about their application in robust parameter design. The barriers and obstacles 

faced by the engineers are also discussed in this section. A Quality Engineering called as 

QE methodology framework is established at the end of this section to present an 

outline for QE implementation that suits general application and environment. 

 

3.2.2 Practical Experiment 

Second case study is focusing on the practical experiment done in laboratory to 

illustrate the measurement system in robust engineering. The specimen used in the 

practical experiment is flexible packaging film as shown in Figure 3.1: 

 

Figure 3.1: Flexible packaging film Al/CPP 

In order to develop the measurement system, instrumentation standard is considerably 

important. As for now, there is no standard for peel strength apparatus. Thus, the 

specimen is used as the alternative to represent as standard. This is done by 

implementing certain measurement level in specimen width. Three widths are used that 

are 5mm, 10mm and 15mm. The output; peel strength, increases periodically as the 

CPP 

Aluminum 
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width increases. Due to this reason, specimen width is used as signal factor that 

actualize the intention of the output.  

The practical experiment is utilizing the peel test. The T-peel test is done on the 

flexible packaging film as a method for measuring peel strength of an adhesive. Peel 

tests are most commonly used to evaluate the laminated film or bonded adhesives. Thus, 

peel test is preferred when working with multiple film packaging in this study that are 

poly ethylene (PET), polyamide, aluminum, cast poly propylene (CPP), and bonded 

with adhesives. There are four main types of peel tests: 90
o
 peel, 180

o
 peel, T-peel, and 

climbing drum peel. The 90
o
 peel test is suitable for a flexible adhesive material that is 

adhered to a more rigid substrate. The 180
o
 peel test is best used when the flexible 

substrate can be bent back by 180
o
. The T-peel test is best used when both adhesive and 

adherend are similar or flexible. This study assesses packaging film made out of flexible 

material and consisting of several layers of flexible films. Therefore, the T-peel test is 

the most suitable peel test to measure the peel strength of this material.  

The problem of peel angle as a crucial element of peel strength [1][2][3] motivates 

the study to develop a new T-peel test apparatus for flexible film in order to stabilize the 

peel angle and further reduce variation in the measurement data of peel strength. The 

research motivation is initiated from the standardized method’s current inability to 

maintain the peel angle for flexible film; this failure has led to a variation problem when 

it comes to measuring peel strength [1]. Hirai et al. measured the performance of the 

T-peel apparatus for flexible film using the standardized method of JIS K6854-3 and 

ASTM D1876-08 to evaluate the T-peel test jig. The variance found in the standardized 

method is higher than in the T-peel test jig. Hirai et al. concludes that the standardized 

method, although suitable for rigid material, produced a variation problem when testing 

flexible film. According to some scholars [2][3] described the influence of peel angle on 

peel strength during a T-peel test, and thus established the importance of ensuring the 

stability of peel angle during a T-peel test. These literatures have motivated the current 

study on variation reduction in peel strength occurring in the standardized test method. 

The new testing apparatus was developed to solve the variation problem when 

measuring flexible film and then used to develop an optimum condition for flexible film. 

The study evaluated which peel side was more influenced by peel angle in order to 

determine the optimum condition of the T-peel test. Figure 3.2 (a) shows the schematic 
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diagram of the standardized test method and Figure 3.2 (b) shows the bending condition 

of a specimen when the standardized test method is used on flexible film.  

  

(a)                                         (b)                                                             

Figure 3.2(a): Standardized T-peel test method (ASTM and JIS) and (b):Failure of 

flexible film specimen to stabilize the peel angle  

Figure 3.3 shows the difference in specimen design and variations in peel strength 

for the standardized method of ASTM D1876-08 and JIS K6854-3 T-peel test and the 

new testing apparatus. The peel angle of a flexible film is not sustained at 90
o
 with 

standardized method. The new apparatus with different layout of T-shape is constructed 

to obtained sufficient peel angle for T-peel testing thus reducing the variation of peel 

angle during peeling. The new test apparatus reduces variation, and further optimization 

was performed to achieve a smooth and minimal variation in peel strength. The Taguchi 

method of parameter design was used to make the new test apparatus insensitive to 

variation. The optimum condition was determined using the new test apparatus to 

ensure the robustness of the T-peel test. 

                                

   

(a) Test design in standardized method        (b) Test design in new test apparatus 

Figure 3.3: Design changes of the new test apparatus 
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The T-peel test apparatus is described in Figure 3.4. The angle adjuster can be used to 

change the peel angle from 0
o
 to 180

o
. The flexible film specimen is attached to the 

drum. A weight (paper clip) was fixed on the free end of the film to keep the specimen 

in T-shape. The drum rotates according to peel speed as a string is attached at a fixed 

point and tied on the drum’s pulley. Peel speed and peeling distance can be changed 

according to apparatus specifications. A parallel spring is pulled by pulley wire along 

the peeling process. Three spring thicknesses were used for this study: 0.3mm, 0.4mm, 

and 0.5mm. During the peeling process, displacement is triggered by a parallel spring 

caused by peel strength and detected by a laser sensor. This apparatus can obtain a wide 

range of peel strength measurements by changing the spring thickness. Peel strength 

increased proportionally to specimen width as shown in Figure 3.5. This can be 

observed using different spring thicknesses. Higher strength was needed to peel away 

the adherend from the adhesive as specimen width increased. A schematic diagram of 

the apparatus is shown in Figure 3.6. 

 

 

Figure 3.4: T-peel test apparatus (1cm photo:5cm actual) 
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Figure 3.5:  Specimen width effect on peel strength 

 

 

 

Figure 3.6: Schematic diagram of new test apparatus 

 

The specification of test apparatus is shown in Table 3.2. This apparatus has high 

resolution, and thus is able to measure specimens with low peel strength. 

Table 3.2: Specifications of test apparatus 

Parameter Specification 

Peel speed 0 – 800mm/min 

Peel length 0 – 119mm 

Peel angle 0 – 180
o
 

Spring thickness 0.05 – 0.8mm 

Resolution of peel strength 0.003N 
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The principle of how the apparatus works is shown in Figure 3.7. The specimen is 

attached at the bottom of the drum, and a weight (paper clip) is fixed on the free end of 

the film to kep the specimen in T-shape. Peel speed and peeling distance of 60mm are 

keyed-in using Agilent VEE Pro interface. Parallel spring is pulled by pulley wire 

attached with the rotating drum along peeling process. During peeling process and the 

displacement is detected by a laser sensor.  

                   

Figure 3.7: Schematic flow on peel strength measurement by peel test jig 

 

3.2.2.1 First Practical Experiment 

 

The first practical experiment is focusing on the multiple optimum conditions 

derived from the peel strength measurement. Besides, how to determine the best 

optimum condition is discussed. An experimental design is employed using an 
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orthogonal array L9. L9 is used due to minimal experiment run as preliminary study. It 

is done to understand the behavior of the peel strength before implementing L18 in the 

following experiment. There is no interaction found in L9 as the ANOVA table in 

Chapter 6 section 6.1.2 does not show any significant relation between control factors. 

The variation caused by the different peel surfaces of each specimen is investigated to 

observe which peel side gives the best condition for the T-peel test. Three optimum 

conditions for flexible film are discussed: the aluminum peel side condition, the CPP 

peel side condition, and the harmonized condition. Based on the signal-to-noise ratio 

(SNR) used to evaluate the improved condition in a confirmation test, the CPP peel side 

has the highest SNR, followed by the aluminum peel side and then the harmonized 

condition. The SNR for the CPP peel side condition increased by 22% from the 

aluminum peel side condition; thus, it is advised that the CPP peel side condition be 

used. The SNR of the harmonized condition is lower than the CPP and aluminum 

conditions, but it provides a convenient design that can be used without regard for peel 

side.  

 

3.2.2.2 Second Practical Experiment 

 

 The second practical experiment is using L18 to investigate the influence of 

outer array layout and noise parameter strategy. The purpose of this practical 

experiment is to provide the most reliable experimental design by evaluating the 

influence of noise parameter in outer array and reason in deciding on optimum 

condition. Influence of noise factor in outer array for robust parameter design is 

discussed experimentally. Variation reduction in peel strength from multiple noise 

layouts presents possible variety of optimum condition. Optimum condition is affected 

by signal-to-noise ratio (SNR) analysis which relates on measurement data in outer 

array of L18. The finding in this practical experiment is important to ensure the 

reliability of optimum condition. Reliability means how reliable the optimum condition 

is based on SNR result obtained from measurement data. Noise level plays an important 

role in determining the result in outer array as it affects the SNR. Three types of 

possible measurement data layout in outer array are studied, thus three optimum 
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conditions are analyzed from signal-to-noise ratio (SNR). Reliability of three optimum 

conditions is discussed in determining the best condition. Analysis of variance 

(ANOVA) is employed to investigate the influence of noise parameters. Measurement 

data which covered the whole variation range of peel strength is chosen as the best 

measurement method. 

 

3.2.2.3 Third Practical Experiment 

 

 The third practical experiment is robust engineering method using L9 in outlier 

effect on optimum condition. As many researches focused on application of robust 

design engineering in practical case study, very less concerned on the criticality to data 

measurement system in parameter design. This paper will emphasize on the importance 

to critical to assumptions in parameter design. The existence of outliers is often ignored 

and the impact is overlooked, thus endanger the experiment by producing false alarm 

and giving completely wrong parameter setting. The optimum condition from the data 

that contains outliers is compared with the corrected data measurement. The finding 

presents the indication procedure on how to confirm whether the data is reliable or not 

for evaluation. The data are unreliable when two main indicators are detected.  Firstly, 

the measurement data plot detects outlier through linear regression analysis as it does 

not belong on the linear line. Secondly, dB gain difference from reproducibility 

examination of signal-to-noise ratio (SNR) between estimation and confirmation run is 

more than 30% shows that the experiment is a failure. This failure affects the 

experimental design and lead to wrong optimum condition. The practical experiment 

has elucidate the detection of outlier and outlier effect on optimum condition.  
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CHAPTER 4  LITERATURE REVIEW 

 

Literature review is one of the research methods in the thesis. This chapter presents the 

result from literature review that covers the six key words that are measurement systems, 

measuring system, robust design, robust engineering, Taguchi, and parameter design. 

The result is then classified according to their contents. 

 

4.1 View of Variation 

 

How an experiment should be done is explained in Dasgupta et al. [1]. An integrated 

approach for estimation and reduction of measurement variation and its components 

using a single parameter design experiment is developed. Statistical models and 

performance measures are developed for measurement systems. The model for two 

types of variability is proposed. The first type of variability is called short term 

variability that is measurement-to-measurement or repeatability. The second type of 

variability is called ling term variability that is application-to-application or 

reproducibility. Two different analysis strategies that are Response Function Modeling 

and Performance measure Modeling have been discussed. The effectiveness of the 

proposed model is demonstrated with a simulation study and the data from Taguchi’s 

drive-shaft experiment has been used to demonstrate the proposed approach.  

 Bovas Abraham and Mike Brajac [2] have considered two strategies to reduce 

variation induced by a known noise factor that are controlling the variation in the noise 

factor itself and secondly is exploiting the interaction between the noise factor and an 

easily controllable factor. The role of experiments in discovering interactions and in 

particular the use of robust designs to obtain the interaction between control and noise 

factors. Variation reduction in a measurement system is attempted using  a robust 

design from product array and combined array. Taguchi method advocates the use of 

signal-to-noise ratio for analyzing data from a product array.  

 The problem in categorical data is overcome by V. Roshan Joseph and C.F.Jeff 

Wu [3] using categorical response optimization. Categorical data is used quite often in 

industrial experiments because of an expensive and inadequate measurement system for 

obtaining continuous data.  This proposed categorical response optimization 

overcomes the inherent problems associated with categorical data. The basic idea is to 

select a factor that has a known effect on the response and use it to amplify the failure 
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probability so as to maximize the information in the experiment. 

 A two-stage of kinematic calibration study of the measurement system is also 

proposed by Deuk Soo Kang et al. [4]. Constant error parameters are found in the first 

stage and variable error parameters are found in the second stage of kinematic 

calibration. After kinematic calibration the position error is reduced to within 0.5um and 

error reduction rate is ranged from 93.54% to 97.93%. 

 

4.2 Taguchi’s Trade-off, ANOVA and Regression Analysis 

 

Some literatures apply Taguchi method of dynamic response and ANOVA is used to 

study the significance of parameters. Hsun-Heng-Tsai et al. [5] proposed a methodology 

using dynamic response of Taguchi method to investigate the effects of the deposited 

mass upon the resonant frequency output of the surface acoustic wave (SAW) gas sensor. 

The study integrates computer-aided simulation experiments with Taguchi dynamic 

method to generate a robust SAW gas sensor design that reduce the cost and increase the 

biosensor measuring performance. Two statistical analysis methods, namely the analysis 

of mean (ANOM) and the analysis of variance (ANOVA) are utilized to identify the 

control factors which significantly reduce the variability and bring the sensitivity 

towards its target value. 

 Der Ho Wu et al. [6] presented a measurement systems that provide an accurate 

and robust performance over a wide range of input conditions. The study adopted 

Taguchi dynamic response of piezoelectric gas sensor system whose output response is 

linearly to the input signal. It focuses upon the conventional quartz nanobalance (QCN) 

gas sensor. The goal is to increase the sensitivity of the measurement system while 

reducing its variability. The result produced a time and cost efficient finite element 

analysis method to investigate the effects of the deposited mass upon the resonant 

frequency output of the QCN biosensor. Besides Taguchi method, analysis of mean 

(ANOM) and the analysis of variance (ANOVA) are utilized to establish the optimum 

design condition. 

 P. Grob and J. Marosfalvi [7] investigated the pressure generated in the mould 

cavity during polyurethane integral skin foam molding using Taguchi method, ANOVA, 

and regression analysis. The measurement proved that the empirical correlation used in 

the polyurethane foam industry for mould design considerably overestimates the moulds 

ranges of higher average density. A multiple regression analysis was made to give a 

good estimation to the pressure arising in the mould. This equation can be used in the 
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mould design instead of empirical correlation that leads to a better designed mould. 

 Zhisong Tian et al. [8] presented the dynamic characteristics of a scanning 

system which is the core of online measurement systems developed for large hot 

forgings. From a complete force balancing conditions of scanning systems, the 

correlative dynamical parameters are adjusted, the shaking forces to bearings are 

eliminated, and the input torques are reduced and ameliorated. This study uses 

simulations and experiments to verify the effect, and compare the fore-and-aft torques. 

The result proved that dynamical parameter design is significant to improve the 

dynamic characteristics of scanning systems. 

 Keyhwan Kim et al. [9] developed a new measurement system which can 

measure position and orientation of the end-effectors of a six-axis welding robot. The 

developed measurement system consist five digital probes. The measurement values 

from the digital probes are transformed into position and orientation of the end-effectors 

with consideration of measurement system kinematics. Calibration procedure is applied 

to the probe system and accuracy of the system is measured. After the calibration, the 

positional and orientation accuracy are observed. By using the developed measurement 

system, an experimental result for controller gain tuning about a welding robot is 

presented. Taguchi method is used to find the optimal setting and succeeded to suppress 

the fluctuation of the end-effectors. The fluctuation with high frequency can be reduced 

by 54% after gain tuning. 

 

4.3 Taguchi Method without Noise factor, Supply Chain Taguchi Method and  

Expert System 

 

There are still some research papers in the literature review not including the noise 

factor in Taguchi method of experimental design. Liang-Chia Chen et al. [10] presented 

the process characterization and optimization of the nanoparticle fabrication process 

known as the Submerged Arc Spray Nanoparticle Synthesis System (SANSS) by using a 

developed on-line nanoparticle measurement system and Taguchi method. Experiments 

based on Taguchi method were then conducted to investigate the optimum process 

parameters for producing nanoparticles with improved properties, such as particle size 

and uniformity. However, no noise factor involved in the L16 Taguchi experiments and 

repetition of response measurement is done to calculate the signal-to-noise result. 

ANOVA is done to investigate which process parameters significantly affect the process 

response; that is the quality characteristic of the SANSS. Signal-to-noise ratio of 
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smaller-the-better is used to ensure that the averaged primary particle size is reduced. 

TEM pictures confirmed the average primary particle size was considerably reduced 

from 150 to 10nm. 

H.H. Lee et al. [11] used Taguchi method to verify the precision and accuracy of 

the redesigned PEEK coil sensor and electromagnetic induction method. The results 

displayed reproducibility within 0.5 degrees and an accuracy within 2 degrees Celsius. 

The smaller-the-better characteristic was applied here because the difference between 

the ideal function and each voltage characteristic of the experimental coils should be 

small to yield better performance. L18 is used, and two noise parameters were chosen 

that are engine vibration and the temperature of the coil sensor. The Taguchi method has 

minimized the number of experiments in the optimization. The proposed 

electromagnetic induction method has many advantages over other 

piston-temperature-measurement methods. 

Shunsuke Uchida et al. [12] presented on the optimization of crack propagation 

rate measurement system. The main purpose of this study was to determine the effects 

of H2O2 on the corrosive environment and crack propagation rate. In order to determine 

the effects of H2O2 on crack propagation rate, a series of measurements should be 

carried out while changing H2O2 concentration. Pre-liminary tests of crack propagation 

rate measurements under H2O2 showed a small propagation rate for the HWC condition. 

In order to determine such a rate accurately, the crack depth measurement system should 

be improved. For this purpose, Taguchi method was applied and an optimal combination 

of parameters for reliable measurements were proposed based on measured sensitivity, 

measured noise level and calculated geometrical effects. The result has optimized the 

crack propagation measurement system based on a 1/4-inch constant tension specimen 

and potential drop method allowed a crack propagation rate of 10
-8

 mm/s to be 

measured with less than 20% fluctuation. The crack propagation rate under H2O2 was 

less than that under oxygen, even if electrochemical corrosion potential was the same. 

Nevertheless, Taguchi method is also used in supply chain system to understand 

business performance in an electronic component company. A model of measurement 

system for collaborative supply chain partners is described by Chinyao low and Ya 

Hsueh Chen [13]. The study adopted the signal-to-noise ratio of smaller-the-better to 

evaluate the robustness of a specific supply chain behavior to obtain a minimum 

inventory cost. Inventory strategies and how the factor delivery time and lead time of an 

order can improve performance are elaborated. The Taguchi method helps to ensure 

appropriate levels of experimental factors. The use of combination screening, system 

dynamics and the Taguchi method in understanding complex supply chain behavior can 
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be extended to all areas of operation or development management. 

W. McEwan et al. [14] emphasized on the human experts experience which is 

usually heuristic, judgmental, subjective or intuitive in nature. As the optimum 

procedures usually differ from one job to another, the application of Taguchi method 

can be used to identify optimum conditions which are robust against unwanted 

disturbances in the testing environment. Another important element associated with the 

quality of measurement systems is sensitivity, which is the ability to perceive and 

discriminate between two signals or samples to be measured. The study described on 

parameter design to increase the efficiency of non-destructive testing (NDT) by 

providing robust inspection parameters for a knowledge-based expert system and 

enhancing the industrial quality. 

 

 

4.4  Without Taguchi Method  

 

From the literature search of measurement system design of robust design, some papers 

did not implement any of Taguchi method. The robust design defined by C. Huhne et al. 

[15] is not an awareness of variation or deviation from its desired and/or specified level. 

The robust design is the optimal design that is determined by maximizing the buckling 

load of the perfect shell varying the fiber orientations of the UD-plies. Using the new 

deterministic design method the buckling load N1 is maximized and the two optimal 

designs are compared. The new approach is used in a design example which points out 

that the imperfect buckling load has to be maximized to determine the optimal design 

for realistic shells.  

Bieberle et al. [16] presented on a compact high-resolution gamma-ray 

Computed Tomography (CompaCT) measurement system for a multiphase flow studies 

and tomographic imaging of technical objects. Robust design in this paper refers to its 

compact design that makes it suitable for studies on industrial facilities and outdoor 

applications. The design has been given a special care to thermal ruggedness, shock 

resistance, and radiation protection. Compared to other high energy scanners the 

CompaCT system is transportable and can be applied to industrial facilities. 

 Park, T.W and Sohn, HS [17] discussed on six sigma tools for vehicle drift 

system, instead of Taguchi method. Vehicle drift was reduced using statistical six sigma 

tools through four steps: M (measure), A (analyze), I (improve), and C (control). This 

search appeared under measurement system’s literature review. This measurement 
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system capability were analyzed and improved before measurement. Step A analyzed 

critical problems by examining the process capabilities and control chart derived from 

the measured value. Step I analyzed the influence of the main factors on vehicle drift 

using Design of Experiments (DOE) to derive critical to quality (CTQ) that are tire 

conicity and toe angle. Thus, these CTQ will further improve the manufacturing 

processes. The respective toe angle tolerance for the adjustment process was obtained 

using Monte Carlo simulation. Step C verified and controlled the improved results 

through hypothesis testing and Monte Carlo simulation. 

 Another research paper by Kotarski, Mateusz and Smulko, Janusz [18] 

explained on measurement system in gas sensor by using Taguchi Gas Sensor (TGS) 

available on the market and the prototype monosized nanoparticle gas sensors. This 

research did not use Taguchi method for product’s robustness, but included in the search 

due to Taguchi keyword and measurement system. The study presents two solutions of 

noise systems that can be used for noise measurements in TGS and the prototype gas 

sensor. The prototype gas sensor is proved to have much greater DC resistance than the 

sensors currently on market. 

 

4.5 Recent research on Measurement System 

 

Newer material in measurement research is done in order to become aware of 

measurement system’s conceptualization. T.L.J Ferris [19] proposed a new definition of 

measurement as an empirical process, using an instrument, effecting a rigorous and 

objective mapping of an observable into a category in a model of the observable that 

meaningfully distinguishes the manifestation from other possible and distinguishable 

manifestations. A.J. Fiok et al. [20] defined measurement as an experiment of parameter 

identification of mathematical model of the object to be measured. This thesis includes 

the empirical measurement system to obtain values of parameters by means of the 

application of instruments. Luca Mari [21] stated that a single conceptual framework is 

a significant target for measurement system design, towards a generalized concept of 

measurement. By concerning on this issue, this thesis is initialized to ensure a general 

concept of measurement can be achieved. Finkelstein [22] discussed on three concepts 

of measurement that are wide, strong and weak defined measurement. Measurement in 

wide sense is defined as a process of empirical, objective assignment of symbols to 

attribute of objects and events of the real world. Strongly defined measurement is 

measurement that conforms to the physical sciences. Weakly defined measurement is 
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measurement in the wide sense, but which is not strongly defined. Later after 6 years, in 

2009, Finkelstein [23] examined the fundamental problems of widely defined 

measurement. Particular problems of measurand concept formation, validity, 

verifiability and theories for the measurand are considered. H. Imai [24] describes 

current situation in measurement science and how to obtain a reliable measurement 

result using the expression of metrological traceability and uncertainty. Variations of 

measured data are necessary to be considered in a process of measurement. 

Measurement uncertainty is also defined as non-negative parameter characterizing the 

dispersion of the quantity values being attributed to a measurand, based on the 

information used. In measurement standards, not only physics, but other fields of 

science are introduced effectively such as global climate change and forensic science.  

Giovanni [25] discussed on some concepts and terms in measurement from 

different disciplines of science. The role in scientific theories are investigated and key 

terms such as measure value, measuring system, measurement value, and measurement 

model are discussed. Deterministic theory describes the ideal measurement process and 

probabilistic theory describes the uncertainty. Luca Mari [26] emphasized on the 

important role of measurement in the foundation of science. Mroczka [27] presented the 

philosophical threads of metrology as a set of theoretical and empirical facts verifying 

human hypotheses and metrology intellectual superstructure. Metrology discovers new 

measurement problems and unknown cognitive problems. Metrology means hypotheses 

from physical and mathematical models, until they are verified experimentally. There 

are traditional branches of metrology such as standards and patterns, measurement 

methods, measurement data processing for error-tracing. New section of metrology 

includes stochastic surveying, image recognition, technique of measurement systems 

and others.  

 

4.6 Conclusion from Literature Review 

 

The papers found in the literature reviews come from measurement system in parameter 

design of Taguchi method and robust design and engineering.  The nature of robust 

design is to create insensitivity to noise factors rather than to try to eliminate or control 

them. Robustness and robust design in the literature have different reflection based on 

specific research. Mainly, robust design is produced by using Taguchi parameter design. 

However, some literatures found that robustness is built by optimizing the design 

creation in certain product or process without applying Taguchi parameter design. The 
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measurement system presented in the literature presents the uncertainty of the results. 

Thus, the uncertainties have to be handled systematically in the product development 

process. 

The literatures have been divided into four categories. In Group 1, research is 

focused by using statistics, variation reduction, combined array, repeatability and 

reproducibility, DOE and measurement calibration. Robust design is elaborated in 

statistic point of view and derivation of mathematics formulae. In Group 2, robustness is 

elaborated in quality engineering method by using signal-to-noise ratio, trade-off 

optimization, ANOVA, Taguchi method, regression analysis, dynamic response and 

noise factors. These papers are found to really utilizing the parameter design in Taguchi 

method. In Group 3, Taguchi method is presented in achieving product and process’s 

robustness. However, very less concerned on noise factor in experimental design. Most 

of the papers are using static response of smaller-the-best, nominal-the-best, and 

bigger-the-best response. In addition, Taguchi method is applied in an expert system 

with combination of simulation program and also in business management by injecting 

supply chain Taguchi method. In Group 4, the papers are not using Taguchi method at 

all. The robustness is achieved using numerical simulations by probabilistic methods. 

Since the manufacturing process causes an imperfection pattern; defined as deviations 

from perfect shape and loading distributions, hence this probabilistic approach which 

revised to deterministic approach is presented derived from phenomenological test date 

which means of robustness in this case. Another paper explained a compact and robust 

design in terms of thermal ruggedness, shock resistance and radiation protection without 

optimization done by Taguchi parameter design.  

 Group 5 presents the recent research in measurement system. Majority of the 

papers are found in Journal of Measurement as the name implies about the measurement. 

There are two papers [28][29] that discuss on hard turning and flank wear optimization 

that did not discussed on the theory of measurement. The papers are more on the 

application and empirical perspective of robust design. Generally, Journal of 

Measurement discussed on the theory and mathematics behind the measurement result. 

Yano [30] is considered as a prominent researcher in metrology. However, none of the 

literature review papers citing his name. Yano book is really significant for practical 

metrology that transfer the knowledge of measurement science and metrology into 

application. The book emphasized on the quality engineering method that consists of 

system design, parameter design and tolerance design. Finding from these literatures is 

the opportunity to bridge the gap between the foundation or theory of measurement 

system with practical perspective from Yano. This thesis is hoping to embed the 
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parameter design into the measurement journal. The journal is always been portrayed as 

the science of reference for the society. Parameter design is very much well-known for 

practical application and important for any optimization. Thus, it is very important to 

include the parameter design as part of the measurement system, not only on theory but 

also practically. In addition, Urbanski [31] stated that it is impossible to develop a 

theory of measurement independent from the physical nature of the measured object. In 

this thesis, different aspects of measurements are presented through several practical 

experiments and industry practice. Thus, a measurement system is developed using 

independent measurement from different nature of measured object. Thus, this is the 

research gap that this thesis intends to fulfill. Measurement and the instrumentation is 

the key to enable the technology of science and other practical activity [32]. It reflects a 

very wide variety of equipment and techniques for diversity of application. In order to 

make an effective measurement system, a systematically framework of general concepts 

and principle need to be developed. Finkelstein [23] emphasized that measurement 

science should address the whole range of applications of measurement and to provide a 

universal framework of concepts and principles to address all applications of 

measurement.  

Therefore, a systematic measurement system is developed which results in 

robust product and process by using parameter design. General theory of a complete 

measurement system development is important to standardize the measurement system 

in parameter design. A mainstream flow is aimed in this research to get high quality 

experimental design in order to obtain quality result or optimum condition in a 

measurement system.  
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CHAPTER 5   IMPLEMENTATION OF PARAMETER            

DESIGN IN INDUSTRIES 

 

This chapter explains on the implementation of robust design engineering in industries. 

In addition with practitioner’s application of robust design engineering in industrial 

fields, perhaps it provides an eagle view on measurement system in parameter design by 

considering the practical experiment and its application in industries. 

 

5.1 Motivation Factor of Injecting the Implementation of Industry into 

Measurement System of Parameter Design 

 

Until today, it is not very clear on how to implement robust engineering method which 

consists of parameter design method and Design of Experiments (DOE), apart from 

other quality tools such as TQM, QFD and so forth. The purpose of this chapter is to 

make an attempt to address the above issue from the perspective of research and 

practitioner. The data collected from research case study and information are gathered 

from industries to match between laboratory work and application fields. Robust design 

engineering method is analyzed from industry’s experience of its implementation. The 

implementation information is gathered from practitioners who use robust engineering 

method to sustain the product and process quality. The finding in this chapter 

emphasizes not only on technical aspect of experimental design, but also when and how 

the methodology fit into the appropriate application. Thus, the finding helps to visualize 

the measurement system of parameter design into the implementation stage. 

 

5.2 Introduction of Parameter Design in Industries 

 

Engineers mainly and practitioner engaged in variety of activities such as developing 

new products, improving previous designs and maintaining, controlling and improving 

ongoing manufacturing process and others. Experiments need to be carried out with 

those activities for variation reduction by using statistics regardless of their background. 

As discussed in earlier section, Design of Experiments (DOE) and Quality Engineering 

of robust design engineering (Taguchi Method) have been used as a methodology for 
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systematically applying statistics to experimentation. Martin Tanco et al. [1], provide an 

extensive review of the barriers faced by engineers when applying DOE. 16 barriers are 

identified and categorized into three different groups that are business barriers, 

educational barriers, and technical barriers. Resistance to change, low commitment from 

upper level management, insufficient resources, and absence of teamwork skills and 

negative image of statistics are the business barriers that hindered the usage of statistical 

method in industrial experimentation. Educational barriers include the publication do 

not reach engineers, poor statistical background, DOE is not taught to engineers at 

universities or badly taught and poor statistical consultancy. Finally, the technical 

barriers outlined the limited software aid, difficult statistical jargon, lack of 

methodologies in user guidelines, negative experience, absence of theoretical 

developments to solve real industrial problems and complexity of experimental design. 

It is concluded that in order to successfully implement DOE, the barriers need to be 

encountered. Martin Tanco et al. [2] found that the complexity in DOE is proved by 

only 23% of companies in three European regions namely Baden-Wurttemberg region, 

The Basque country, and the rest of Spain. On the other hand, 75% of companies apply 

one-factor-at-a-time strategy.  

DOE grew significantly in academic research. The more it grew, the more 

complicated it became. A Japanese engineer, Dr. Genichi Taguchi simplified technique 

making it practical to be applied for the practitioner. By designing quality into products, 

a quality engineering method (robust design engineering) has been used widely not only 

in Japan, but throughout the world. Debates and criticism are widely spread and 

discussed about robust design engineering specifically Taguchi Method. However, the 

main contribution of Taguchi method in reducing variation in product characteristics is 

undeniably. Antony [3] stated that although DOE provides a quick and cost-effective 

method to understand and optimize products and processes, not many industries carry 

out experimentation with a pre-established statistical methodology.  

Chang Chung Li et al. [4] highlighted that there is communication gap between 

statisticians and engineers. The conventional thought of professional attitudes with 

regard to the functions of a manufactured product is the engineers make it work and the 

statistician understand why it works. Taguchi pointed out that the task of an engineer is 

not only to make it work, but to understand the ideal function and its loss to society. 

Therefore, the Taguchi method of experimental design provides a way of thinking that 

emphasizes a philosophy of freely using the methods of DOE to solve engineering 

problems. The purpose does not on lay on finding response, but to reduce deviations 

from ideal functions. In quality improvement in a company, statisticians must not just 
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consult after the engineers have done their work. Statisticians and engineers must work 

hand in hand with engineers from the beginning, and to do this the statisticians must 

acknowledge and become familiar with engineering issues. In order to reduce the 

communication gap, not only must engineers become more familiar with statistics, but 

the education of statisticians for industry must change. Quality problem is not only an 

engineering issue, but also a statistical issue. Engineers should seek engineering 

importance and statistical significance. Engineers must learn and gain the technical 

know-why and operational know-how. Finally, engineers need to strengthen the prior 

engineering analytical capability and posterior statistical analysis skill. Jiju Antony [5] 

summarized an example of Taguchi method of experimental design for the development 

of a new ignition coil for an automotive vehicle. An experimental design using Taguchi 

method with 16-trial experiment to study 14 design parameters with one interaction is 

presented. Each steps of the new product development is explained specifically from 

selection of quality characteristic, design parameters, levels, interaction, appropriate 

orthogonal array and execution of the experiments. 

This section provides some findings from companies about their application in 

robust parameter design. The barriers and obstacles faced by the engineers are also 

discussed in this section. In addition, the comparison between robust design engineering 

implementation in laboratory and company is also explained. A robust design 

engineering methodology framework is established at the end of this section to present 

an outline for robust design engineering implementation that suits general application 

and environment. 

 

5.3 Findings from the Observation in Company A (Fuji Xerox Co. Ltd.) and  

Company B 

 

As many research focused on robustness methodology, this chapter discussed on how to 

implement these methodology concept from the management perspective. The 

experience of Fuji Xerox and Company B in implementing robust design engineering is 

presented. The practical data of a laboratory experiment is discussed in order to relate 

between the measurement result and requirement in industry. The robust design 

engineering implementation is explained on the strategies used in tackling organization 

problems. Robust design engineering methodology between the practical case and 

company’s case study is compared. Finally, through the robust design engineering 

implementation in organization and method applied in experimental design, a 

framework is proposed for robust design engineering methodology. Robust design 
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engineering implementation is presented from two sources, from a company and 

practical experiment.  

 

5.3.1 Introduction of Robust Design Engineering Implementation 

 

Robust design engineering has been used in Fuji Xerox and Company B to minimize 

product development cost, reduce time-to-market and improving the quality of product 

and process. Fuji Xerox and Company B found that major quality problems are coming 

from technological development and designs before the production phase. Company B 

has the same industry as Company A (Fuji Xerox). Company B is an established 

company that has implements robust design engineering for many years. It is common 

in Company B to address Taguchi method as Quality Engineering or robust design 

engineering. Many robust design engineering books have been published by the 

employee of Company B. In Fuji Xerox, robust design engineering has been used in two 

categories that are in management strategy and as engineering tool. Company B 

categorized the production or manufacturing problem into two cases; firstly – the 

production started without any problem; and secondly – the problem starts to occur after 

one to two years and need trouble shooting process. This is identified as the case 

without robust design engineering implementation in designing a product. The 

implementations in laboratory and in Fuji Xerox for management strategy and 

production tool are compared to establish a methodology framework for robust design 

engineering.  

 

5.3.2 Implementation Methodology 

 

The methodology is categorized into two categories that are management strategy and 

production strategy. Management strategy is related to the organization method in 

tackling the obstacles and in cultivating the interest to sustain robust design engineering 

practice among the practitioner. Production strategy is focusing on how the practitioners 

of robust design engineering apply the tools for improving the product quality. 

 

5.3.2.1 Management Strategy 

 

In management strategy, Fuji Xerox outlined the eight key factor for success induced 

from the cause and effect diagram. Firstly, support and interest in robust design 

engineering involvement from the top management members, and secondly; the 
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activities for promoting robust design engineering will not show any progress although 

with a great effort by an eager promoter and engineers. Thirdly, continuous promotion 

activities and followed by continuous training to engineers who are in need to be trained 

is more effective in activating the activity than training many engineers at once. As the 

top management support is crucial, engineer portrays the training as the manager’s 

willingness to implement robust design engineering and the discontinuance of training 

is interpreted as loss of interest. Structural guidance to engineers by promoters is also 

important as leaving the usage up to engineers will result inactive robust engineering. 

Promotion committee has been established under top management`s leading, so called a 

top-down approach. One of the functions of robust design engineering promotion 

system is establishing internal seminar (robust design engineering). The objective is to 

train engineers’ ability on robust design engineering application and train the future 

trainer to avoid the stagnation of robust design engineering promotion on components 

supplier is done by the procurement department. Fifth factor is themes clarification of 

robust engineering project status. Sixth factor is continuous meeting involved by 

everybody in each management level. Seventh is continuous training from the 

consultant and expert support to ensure a continuous implementation. Lastly, the eighth 

factor is the result review and clarification. This is done through presentation review of 

the robust design engineering project for project or problem status. 

An internal presentation forum is also held annually in June presented by the 

engineers regarding their achievement in robust design engineering and Design of 

Experiments (DOE) applications. Robust design engineering is also incorporated in 

existent product development process and new concept of process innovation. The 

concept explained on applying robust design engineering at the earliest stage consisting 

of optimization and confirmation evaluation, followed by building the first prototype. In 

consequences, occurrence of quality problem is minimized before building the 

prototype. The new concept is vice versa from the conventional product development 

process which prototype is built first then followed by improving the quality of the next 

prototype. It is obviously described the concept of robust engineering which robustness 

is confirmed before any design is finalized. Research and Development center play a 

key role to provide matured technologies and new technologies corresponding to 

business environment changes. Utilization of computer simulation has speeds up the 

development process and reduces the prototypes cost. 

Company B has many branches in Japan. Example used in this part is namely 

Branch1 and Branch 2. Different approach is done for robust design engineering 

implementation. In Branch 1, robust design engineering applied in Material Supply 
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Development and Production and is using top-down approach and has ideal function of 

each small part. Top-down approach is emphasizing the usage of robust design 

engineering and DOE tools. Top-down means the implementation of robust design 

engineering itself. The theme is developed by manager or upper level management and 

engineer has to adapt the theme using robust design engineering and DOE. They learn 

parameter design process through robust design engineering experiments. This approach 

is then followed by technician and operator. In Branch 2, robust design engineering is 

applied in Technical and Mechanical Development by using bottom-up approach. The 

meaning of bottom-up is engineers learn on how to achieve development’s target. 

Engineers need to select the best match of robust design engineering techniques and 

arrange it for the success of the development. The application skill of robust design 

engineering is learned in bottom-up approach. In bottom-up, robust design engineering 

means as development efficiency equipment. Figure 5.1 summarized Top-Down and 

Bottom-Up approach respectively: 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

Figure 5.1: A) Top-Down Approach and B) Bottom-Up Approach by Company B 

 

Tolerance design and Quality Loss Function (QLF) are found hard to deploy in 

Company B. Many simulations have been used such as CAE. One new approach 

currently on study is the parameter study enhanced by T-Method. T-Method is one of 

robust design engineering tools apart from robust parameter design. Unlike regression, 
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example, when a continuous response includes two-types of “abnormality” (good 

abnormality and bad abnormality), the performance is predicted with many variables. 

Thus, the critical variable can be identified. 

 

5.3.2.2 Production Strategy 

 

Annual robust design engineering forum is emphasizing on engineering tool that are 

robust design engineering and DOE. Fuji Xerox has differentiated the usage of robust 

design engineering tool based on process and purpose. DOE is utilized at the research 

stage to fix the themes of product and process and further verify the feasibility of the 

research. Taguchi method is used extensively to find the design parameters that result in 

the product or process robustness. It is an immensely useful tool for product 

development to establish the technology. Three main steps in technology development 

are preparing a strategy by setting the objective, selecting technology in the first 

development step and robust design in the second development step. Criterion in 

research and technology development process is defined. Objective of research is to find 

for “Blue Bird”[6], which means to create breakthrough technologies valuable to 

customers. In addition, Fuji Xerox uses DOE is when problem occurs. The purpose of 

DOE in troubleshooting the problem is to find the factors that change the mean value of 

characteristics. The difference between DOE and robust design engineering is critical to 

understand ensuring the suitability of the tool based on purpose. Company B divides the 

application into two production tools that are solving problem and optimization by 

changing the parameters. Design of Experiments (DOE) is used to solve problems 

occurred during production of a product or processes. If the problem is not due to 

variation, then DOE is useful to be used. On the other hand, robust design engineering 

is used when optimizing the performance of a product to increase its quality by 

changing the parameters using signal-to-noise ratio (SNR). In some cases, Company B 

has used both DOE and robust design engineering at a time. Robust design engineering 

and DOE are used most in product development phase which includes design phase and 

system selection phase that takes approximately 3 years. When entering online system, 

robust design engineering and DOE are not being used. 

 In management perspective, human skill to apply robust design engineering 

and DOE is developed tremendously in Company B which takes 5 years. Education in 

human resource is very important in product development stage and functionality 

development. Their engineers mostly have no background of robust design engineering 

and DOE. Therefore, Company B allocates the first hiring year to educate and train 
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them on parameter design using MS Excel template, robust design, data analysis using 

robust design engineering book written by one of Company B employee, and DOE that 

includes ANOVA, one-way layout and two-way layout. The MS Excel template is 

consists of many orthogonal arrays such as L8, L9, L12, L18, L36, and such. In one 

year, there are ten times same training prepared by Human Resource division for 

engineers. In Figure 5.2, a methodology flow of robust design engineering is made after 

analyzing the implementation in Fuji Xerox and Company B to explain some tools used 

in an organization at each production process. Notice that DOE and Taguchi method 

have been placed separately. Other tools which are useful in each process or stage is 

also highlighted. 

 

5.4 Findings from the Practical Experiment in Laboratory 

 

Practical experiment using robust design engineering method is analyzed to compare its 

similarity with the measurement system in robust design engineering for industry. An 

optimization of T-peel test using Taguchi method is done to propose the feasibility of 

robust design engineering in practical experimentation. Standardized test method of 

T-peel test in measuring peel strength is established by JIS K6854 [7] and ASTM D1876 

[8]. The limitation of the standardized method is the test only fit for rigid materials and 

not capable to apply on flexible film. Big variation in peel strength measurement due to 

specimen failure to hold the T-shape during peeling is a significant problem when 

standardized method is used on flexible film. This problem statement has motivated the 

researcher to come up with a system that can satisfy the industry requirement, which in 

this case is flexible packaging film. Thus, a new testing apparatus had been established 

to overcome this problem for flexible film. The case study is discussed on T-peel test 

optimization of flexible packaging film using the new apparatus. The objective is to 

obtain the minimum variation of peel strength. The goal of research and the technology 

used to deliver the goal have been integrated by applying robust design engineering. 

Three main steps mentioned in the Fuji Xerox’s strategy of implementing robust design 

engineering are followed [2], that are objective setting (to satisfy the testing capability), 

technology selection (new apparatus for flexible film instead of using established 

method) to enable the functionality and finally robust design (optimization of T-peel test 

for minimum variation in flexible film). The study was carried out to identify factor’s 

level that would minimize the variation in peel strength.  
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Figure 5.2: Robust design engineering implementation framework in an organization 

 

 

5.4.1 Experiment Methodology 

 

A dynamic ideal function was identified in this study, based on various range of 
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specimen width. Y is the output energy that is peel strength. M is the input of signal 

factor that is various size of specimen width since it is desirable to have robustness 

within each width. Beta, , is the measurement sensitivity to different inputs; thus the 

slope must be steep. Therefore, the dynamic ideal function is Y=M. P-diagram in 

Figure 4.3 is constructed to give a whole picture on the parameters studied. The function 

of Al-CPP T-peel test is to measure peel strength. Thus, the response or output of T-peel 

test is peel strength, which measured in Newton (N). The input of T-peel test is known 

as signal factor. In the ideal function, the energy transformation occurs for three 

different specimen width that are 5mm, 10mm, and 15mm. Signal factor, in this study, is 

specimen width is a controllable variable to actualize the intention (variation in peel 

strength) to achieve robust condition regardless of various width condition [9]. 

In P-diagram, robustness is optimized by evaluating the control factors and their 

levels. Noise factor condition is varied accordingly to minimize variation that influences 

the response. Signal-to-Noise ratio (SNR) with dynamic response (equation 5.1) is used 

in this study due to the signal factor existence. A dynamic signal-to-noise ratio (SNR) 

has been used in this study, where the specimen width of 5mm, 10mm and 15mm as the 

signal factor is used to measure the peel strength linearity.  

S/N ratio,  = 10 log (1/r) [ (S - Ve) / VN ]          (5.1) 

where S  = variation caused by the linear effect 

Ve and VN = error variance (error variance/DOF) 

r = total number of measurements under signal 

(r is also the effective divisor due to level changes of signal factor) 

*DOF is degree of freedom 

 

Then, noise strategy is done to investigate the noise factor that can reduce the 

variation in peel strength measurement. Noise factor is uncontrolled factor during 

normal production or use, but are controlled during the experiment. Noise factors are 

likely to produce variability in the response. For noise factor (outer array), historical 

data has proven that the peel angle would vary during exchanging the peel angle setting 

and during peeling process. Peel angle deviation will affect the peel strength; thus peel 

angle is considered as sources of variability. As shown in Figure 4.4, noise in peel angle 

is defined as deterioration in + 2
o
 due to angle deviation during peeling caused by 

natural movement of the specimen. Maximum and minimum value of peel strength at 

+2
o
 and -2

o
 angle are taken for result. Thus, there are two noise levels that are N1 and 

N2 under each signal factor level. The intended condition is N1 has higher peel strength 

than N2 (N1 > N2). N1 consists of peel angle with deviation+2
o 

and maximum peel 

strength is taken as a result. On the other hand, N2 level consists of peel angle deviation 
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-2
o
 and minimum peel strength is taken as a result in outer array.  

After completing the noise strategy, the selection of control factor is done. The 

objective of this T-peel test is to satisfy the industry requirement of getting the 

minimum variation for flexible film. Thus, select control factors that may affect 

variability in the response, and possibly the mean of the response. The controllable 

factors or inner array are chosen based on testing and design condition which possible 

to affect the variance. The controllable factor selection is also considered based on 

previous experiment result, preliminary test, theory and available knowledge, and 

expert’s opinion. For example, previous experiment result in L9 orthogonal array uses 

tensile weight as noise factor. However, there is no significant trend in the peel strength 

based on 8g and 4g tensile weight. It is concluded tensile weight does not produce 

variability, but likely to affect the response. Thus, tensile weight is one of the control 

factors in L18. Tensile weight used for keeping the specimen in T-shape, peel angle, 

peel speed and peeling curve region are controllable factors considered based on testing 

condition. Parallel spring thickness, module of spur gears and drum diameter are 

considered based on design of apparatus condition. The factor’s level is decided based 

on objective. The level must not be so close to each other that the effect on the response 

is not observable or undetected. Level must also not very far apart that there is a region 

of unknown process behavior. Previous process knowledge is useful to determine the 

level. For example, three levels is chosen to observe the curvature effect on the response. 

Two levels are chosen to determine whether the factor has an effect on the response. 

More than three levels are suitable to observe significant trend or behavior, such as 

sudden rise or drop at certain levels.  

The experimental design space is large, and it needs a strategy to explore. After 

determining the control factors and factor’s level, they are assigned into an orthogonal 

array. An orthogonal array is used for optimization to maximize the signal-to-noise ratio 

[10]. Balance set of experimentation runs is provided by orthogonal array. Design of 

experiments using orthogonal array L18 is utilized with one two-level factor (tensile 

weight) and six three-level factors (peel angle, peel speed, data region, spring thickness, 

module of spur gear and drum diameter) as shown in Table 5.1. In L18, only 108 

observations implied (18 runs x 3 signal level x 2 noise level). 
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Table 5.1: Experimental set up (a) and Orthogonal array (b)  

(a)                                     (b) 

 

5.4.2 Handling the Result of Experiment 

 

There are two main plots obtained from the measurement data of robust design 

engineering method that are SNR response plot and Sensitivity (beta) plot as shown in 

Figure 5.3 and Figure 5.4 respectively.  

 

Figure 5.3: SNR response plot 

4
6
8

10
12

A1 A2 B1 B2 B3 C1 C2 C3 D1 D2 D3 E1 E2 E3 F1 F2 F3 G1 G2 G3

Si
gn

al
-t

o
-N

o
is

e
 r

at
io

 (
d

b
) 

                 4    8    60o  90o 120o  6    9   12   30   50  70  0.3  0.4  0.5   0.5  1.0  2.0   20   30   40 
              Tensile  Peel angle    Peel speed   Data region      Spring        Module of     Drum dia. 
           weight (g)                           (mm/s)            (%)        thickness (mm)  spur  gear      (mm) 
  

 

Unit Level 1 Level 2 Level 3

A : Tensile weight g 4 8

B : Peel angle o 60 90 120

C : Peel speed mm/s 6 9 12

D : Data region % 30 50 70

E : Spring thickness mm 0.3 0.4 0.5

F : Module of spur gear 0.5 1.0 2.0

G : Drum diameter mm 20 30 40

Signal Factor

M : Specimen width mm 5 10 15

Noise Factor Level N1 Level N2

Peel Angle q 2 -2

Peel strength sampling N Maximum Minimum

Control Factor

Levels

+

A B C D E F G N1 N2 N1 N2 N1 N2

1 1 1 1 1 1 1 1

2 1 1 2 2 2 2 2

3 1 1 3 3 3 3 3

4 1 2 1 1 2 2 3

5 1 2 2 2 3 3 1

6 1 2 3 3 1 1 2

7 1 3 1 2 1 3 2

8 1 3 2 3 2 1 3

9 1 3 3 1 3 2 1

10 2 1 1 3 3 2 2

11 2 1 2 1 1 3 3

12 2 1 3 2 2 1 1

13 2 2 1 2 3 1 3

14 2 2 2 3 1 2 1

15 2 2 3 1 2 3 2

16 2 3 1 3 2 3 1

17 2 3 2 1 3 1 2

18 2 3 3 2 1 2 3

5mm 10mm 15mm
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Figure 5.4: Sensitivity (Beta) Plot 

SNR plot is obtained by computing the average SNR at each level of a process 

parameter. It explains the variation effect of each level of a factor. The maximum level 

of SNR value in each factor is taken as the optimum condition implies the minimum 

variation as the signal is bigger than noise. Sensitivity response plot, often called as 

Beta plot shows the sensitivity of response value at each level. It has no relation with 

variation, only focus on sensitiveness of response upon level’s change. A confirmation 

run is done to check the reproducibility of the experiment. SNR in optimum condition is 

compared with worst condition. DB gain for confirmation SNR is differed by 2.86 dB 

than estimated SNR. The dB gain difference is caused by the worst condition as 

confirmation SNR deviates a little bit from the estimated SNR for worst condition. The 

repeatability of worst condition is not quite reasonable compared to optimum condition. 

As this confirmation experiment data is practical and actual, the dissimilarity of SNR in 

the worst condition is suspected due to testing condition and environment. Table 5.2 

summarized the optimum and worst condition and dB gain. Second step in 

two-step-optimization is to adjust the controllable factor to target value. The second step 

is done when certain target is desired. The best factor to adjust is drum diameter (factor 

G) because of high sensitivity, and SNR is roughly even. Thus, the variability in peel 

strength is not influenced by different level of that factor. Factors with even sensitivity 

and uneven SNR as C, D and F are particularly useful to improve variation because the 

value of peel strength has no change. As this experiment data is practical and actual, the 

dB gain dissimilarity between estimated and confirmation result is suspected due to 

variation in experiment handling and environment. 
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Table 5.2: Optimum condition and SNR dB gain  

Type Condition 
Estimated SNR 

(dB) 

Confirmation SNR 

(dB) 

Optimum A1 B1 C3 D1 E2 F2 G3 14.91 14.82 

Worst A2 B2 C1 D3 E1 F3 G2 4.30 7.07 

SNR dB Gain 10.61 7.75 

 

 

5.5 Result and Discussion from Industry and Practical Experiment 

Observation 

 

Robust design engineering implementation in Fuji Xerox is explained from the 

beginning of the implementation. Production tool and methodology of some case 

studies given by Fuji Xerox is analyzed and compared with practical experiment done in 

the laboratory. Figure 5.4 shows the comparison between robust design methodology in 

laboratory case study (Figure 5.4a) and Fuji Xerox case study (Figure 5.4b). Fuji 

Xerox’s flow is started by problem identification that motivates what kind of 

improvement to be done. Based on three case studies, problems can be coming from 

industry requirement, customer dissatisfaction [11], technology obsoleteness [12], cost 

reduction driven, system improvement [13] and such. Sakanobe et al. [11] emphasized 

on the relationship between output (Y) and problem statement to generate signal factor 

that transforms the energy. Optimization is conducted with the ideal function. In 

laboratory, problem is known from available standards and further optimization is done 

for the betterment of the new developed apparatus. Similarly, the output Y (peel 

strength) is related with the known problem (big variation) to generate the ideal function. 

Both flows focused on selection of quality characteristic which describe on the desired 

result. Quality characteristic is defined from the measured value of the objective, which 

referred to response, results or output [14]. Ideal function and P-diagram are identified 

after problem statement is done. Confirmation run in Fuji Xerox is done on trial 

manufacture while case study is done with laboratory scale. In Fuji Xerox, quality is 

monitored after-launch to society upon the in-house quality result is official. 

The methodology flow of robust design engineering is approximately similar 

between laboratory case study and Fuji Xerox. It is proven that robust design 

engineering tool can be applied in any environment, be it industrial application or 

research field. Results from methodology comparison in Figure 5.5a and 5.5 b is used to 
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produce a framework on how to apply robust design engineering method to obtain 

robustness of a product or process. The experience from L18 in selecting control and 

noise level is presented and need to be carefully done. The robust design engineering 

methodology is developed using information from Fuji Xerox and Company B 

measurement data is shown in Figure 5.6 and briefly described as follows:  

Step 1: Enable functionality of the system. Carefully analyze the ideal function that 

transforms the energy into quality characteristic. Construct P-diagram to get a whole 

picture of the system. 

Step 2: Identify the problem by selecting the response based on experiment’s objective. 

The response may be maximized, minimized, or taken to a target value. The mean and 

variance of a response can be studied simultaneously. Construct an ideal function and 

P-diagram. Determine the input (signal factor) and output (response) of the experiment.  

Step 3: Select noise factor and level for outer array. Relate with response objective, for 

example if the objective is to minimize variation of peel strength, make sure the noise 

factor can produce the variation in peel strength and the design space is covered as best 

as it can. Three noise layouts are decided to be done as the possibility of variation is 

satisfactorily covered. 

Step 4: Select control factor and level for inner array. Consideration of factor level must 

in line with objective or intended effect on the response such as curvature, effect 

presence and other behavior or trend. 

Step 5: Construct an orthogonal array based on number of factors and levels. Implement 

an experiment based on Taguchi method. SNR and sensitivity response plot are 

analyzed.  

Step 6: Check on reproducibility. Estimation and confirmation db gain is compared. 

Rule of thumb of less than 3db gain difference is preferable.  

Step 7: Next step is adjustment. It is done if the intention is to move the mean to target. 

If there is no intention to move the mean to certain target, step 1 to 6 is sufficient 

enough. 
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 Figure 5.5 (a):  Laboratory case study         Figure 5.5 (b): Fuji Xerox case study  

 

This chapter had presented an implementation of robust design engineering in an 

organization and robust design engineering application in process or product 

optimization through practical case study. Robust design engineering has proven 

successful and is emphasized during the design stage before manufacturing or 

production to find the design parameters and ensure the product`s robustness. 
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Figure 5.6: Methodology framework for robust design engineering 
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Fuji Xerox hypothesis of Key Factors for Success has helped promoting robust 

design engineering in research, technology development and product development 

activities. Robust design engineering promotion activities accelerate the implementation 

in an organization. Top-down approach is undeniably a driving force for a successful 

robust design engineering implementation. The case study represents on how robust 

design engineering is implemented in one of the product optimization.  

Identifying the experiment’s objective is crucial that affect the selection of noise 

and control factors. General guidelines are described step-by-step from selecting the 

response up to decision making on the optimum dB gain. The engineering tool employs 

the engineering and statistic knowledge to obtain product robustness. A brief framework 

is presented for robust design engineering implementation in organization and 

procedures on robust design engineering methodology. The finding of quality 

engineering implementation in industry and laboratory to create a methodology 

framework is presented in R. Dolah et al. [15]. Continuous research on improving the 

methodology will be done, not only focusing on one type of industry. In robust design 

engineering methodology, planning before implementation is a key element for 

performing a successful experimental design. 
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CHAPTER 6 PARAMETER DESIGN OF A  

MEASUREMENT SYSTEM 

 

This chapter describes the next step of research methodology using practical experiment. 

The measurement system in robust design engineering is further analyzed and its finding 

is used to develop a systematic measurement system. As previous chapter presents about 

the measurement in industries in terms of application, this chapter explains the basic of 

measurement system in terms of foundation of measurement data.  

 

6.1 Practical Experiment using an L9: Selection of Multiple Optimum 

Condition and Optimum Condition Determination 

 

An experimental design is employed using an orthogonal array with four control factors 

consisting of peel angle, peel speed, data region, and spring thickness. The variation 

caused by the different peel surfaces of each specimen is investigated to observe which 

peel side gives the best condition for the T-peel test. Three optimum conditions for 

flexible film are discussed: the aluminum peel side condition, the CPP peel side 

condition, and the harmonized condition. Based on the signal-to-noise ratio (SNR) used 

to evaluate the improved condition in a confirmation test, the CPP peel side has the 

highest SNR, followed by the aluminum peel side and then the harmonized condition. 

The SNR for the CPP peel side condition increased by 22% from the aluminum peel 

side condition; thus, it is advised that the CPP peel side condition be used. The SNR of 

the harmonized condition is lower than the CPP and aluminum conditions, but it 

provides a convenient design that can be used without regard for peel side. 

Multilayer packaging film is produced from a single layer film product glued 

together by several lamination processes or coated with additional polymer layers [1] . 

Lamination acts as a material assembly and functions to fulfill the optimum 

combination. There are many methods to evaluate the lamination strength, including 
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peel, shear, cleavage, and tension tests. Peel tests are most commonly used to evaluate 

the laminated film or bonded adhesives. The T-peel test is best used due to similar and 

flexible measurand. The peel strength of multilayer film is one of its most important 

properties in terms of its practical use as a packaging product. The study evaluates this 

property using the standardized T-peel test method of the American Society for Testing 

and Materials ASTM D 1876-08 [2] and Japanese Industrial Standard JIS K 6854-3 [3] . 

The evaluation of peel strength between interlayer films is performed by measuring the 

force required to peel away two layers. The T-peel test in standardized methods ASTM 

and JIS have been well established for a rigid adherend, but the capabilities of these 

methods are limited when carrying out tests on flexible film, due to the failure of 

flexible film to maintain the T-shape and sustain the peel angle, which leads to wide 

variations in test outcomes [4] . Miyagi and Koike [5] showed that peel angle is 

significant and recognized among the main effect, as calculated in analysis of variance 

in peel strength evaluation using a T-peel test. Choi et al.  [6] described the influence 

of peel angle on peel strength as measured by a T-peel test on the Cr/BPDA-PDA 

interface. The peel strength increased with increased peel angles.  

Peel strength is influenced by peel angle, thus, it is important to ensure the 

stability of the peel angle during a T-peel test. Hence, this study developed a new T-peel 

test apparatus for flexible materials in order to solve the variation and stability problem 

of the peel angle during peel testing. This testing apparatus was used to create an 

experimental design method to optimize peel strength with minimum variation using a 

parameter design method. In this paper, optimization describes the optimum setting of 

controllable factors that results in minimum variation in response. The optimum setting 

is said to have an insensitive characteristic to variation, and is thus robust. Parameter 

design is an engineering methodology in the robust design engineering method. It is a 

robust and effective approach to design quality into products and processes [7] .  

The parameter design method has been widely applied for optimization in peel 

test [5][8]. An attempt was made to estimate the optimum condition for the T-peel 

strength of printing wiring boards using a robust parameter design method [5] . Miyagi 

and Koike analyzed the effect of drum diameter, module of spur gear, peel angle, and 

tension as observed using SNR. The standard deviation of peel strength in the optimum 

condition was reduced from that of the original condition. R. Dolah et al. [9] presented 
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on how parameter design in quality engineering affects global product performance by 

considering peel strength as one of the case study. Unal and Dean [10] described the 

Taguchi approach to design optimization for quality and cost. R. Dolah et al. [11] 

addressed the benefit of the Taguchi method in an organizational context by using real 

industry case studies and practical T-peel adhesion tests in laboratories. The Taguchi 

method is often called quality engineering in Japan; it has proved undeniably useful for 

variation improvement and certainly increases product and process performance. 

Factors or parameters were selected based on previous experience, engineering 

knowledge, and literature reviews. Matsuda et al. [12] evaluated the reliability of the 

T-peel test method for laminated flexible film by controlling for specimen width, peel 

angle, peel speed, and diameter of drum.  

This chapter presents the practical case studies that aimed to satisfy the testing 

capability for Al/CPP flexible packaging film by optimizing the T-peel test in order to 

obtain the minimum variation of peel strength. Thus, the objectives of this paper are to 

present the procedure to optimize the T-peel test using the new testing apparatus and 

determine the optimum conditions for testing flexible film by using the robust 

parameter design method. The benefit of the parameter design method is explained 

through the optimum conditions and harmonization results.  

 

6.1.1 Robust Design Engineering – Parameter Design  

 

The parameter design is applied to optimize the T-peel test using a new apparatus with 

peel strength as the measured quality characteristic. The main function of the testing 

apparatus is to measure peel strength. This apparatus is newly developed to encounter 

the variation problem that occurs when the standardized method is used. As a new 

apparatus, its optimum setting of parameters is unknown. This paper determines the 

optimum condition for peel strength by minimizing variation in flexible film testing. 

Robustness of the apparatus is important, as it will contribute to the improved quality of 

flexible film. Control factors are optimized by taking into account the variation caused 

by variables that cause product functions, also called noise. There are three types of 

noise: outer noise, which is caused by environmental conditions; inner noise, which is 

caused by the deterioration of elements or materials in the product; and between-product 
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noise, which is caused by piece-to-piece variations between products. In this paper, 

control noise is selected from the design condition and testing condition. The design 

conditions are spring thickness and peel angle. The testing conditions are peel speed and 

data region. Noise is considered to be the factor that caused variations in peel strength 

measurement results using the standardized method. By adding noise into the 

experimental design, the testing apparatus will be made robust against variation. 

Deviation in peel angle during the peeling process is noise to peel strength. Therefore, 

the new testing apparatus undergoes parameter design to select the best 

control-factor-level combination, so that the effect of all the noise can be minimized.  

The optimization approach starts with the research motivation to establish a 

procedure on T-peel test optimization followed by a determination of optimum 

conditions. Figure 6.1 shows step-by-step directions of the robust parameter design 

method used in this paper [11]. An experimental confirmation test was performed to 

validate the estimated condition of three optimum conditions. The first step enabled 

functionality of the system. The ideal function was carefully analyzed and the 

P-diagram was constructed. Then, SNR type was chosen based on quality characteristics. 

In this paper, the quality characteristic measured is peel strength [Y]. Dynamic SNR 

was used when signal factor (specimen width) is used. Next, noise factor and its level 

were selected. Outer array design was established with signal factor consideration. 

Control factor and level were selected for inner array design. Finally, a suitable 

orthogonal array was chosen based on noise and control factors. The SNR factorial 

effect plot and sensitivity plot were used in parameter design evaluation. 

Reproducibility of the optimum condition was analyzed through a confirmation test. 

The optimum level was determined and analyzed based on several criteria and 

objectives. 
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Figure 6.1: Flow chart of research methodology [11] 
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6.1.1.1  Ideal Function and P-Diagram 

 

In the parameter design component of the Taguchi method, a system with zero or 

minimum noise is desired. Zero or minimum noise is achieved when the variation gap is 

the smallest possible to produce an ideal function. Peel strength (Y) is the quality 

characteristic or output to be measured. As a signal factor, specimen width (M) is a 

controllable variable used to actualize the peel strength to achieve a robust condition, 

regardless of the various range of specimen widths. Beta () is the measurement of 

sensitivity. The linearity of peel strength is defined as a zero-point proportional equation, 

where the output is zero when the signal is zero [13] . Thus, the ideal function is 

expressed as Y=M, as shown in Figure 2.1, Chapter 2. 

The purpose of parameter design is to evaluate the overall variation caused by 

noise when levels of the control factors are allowed to vary widely. The control factors 

vary according to the experimental design, which takes noise into account to investigate 

overall variation. Noise 1 (N1) and Noise 2 (N2) are noise level introduced in the 

experimental design. The measurement data is the result of the interaction between 

control factors and noise to ensure the robustness of peel strength. Variation in this 

study is contributed by peel angle deviation and tensile weight, as these affect the 

T-shape of the specimen during a peel test. The optimum condition provides a robust 

setting for peel strength, at the y-axis, as the noise does not affect the measurement data 

and peel strength is plotted ideally as a linear function under various ranges of signal 

levels at x-axis. Figure 6.2 shows a P-diagram that summarizes the parameters studied 

in this paper (signal factor [M], quality characteristic [Y], noise factor, and control 

factor). Constructing a P-diagram is an important step in the Taguchi method, and must 

be done before any experiment is carried out. 
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Figure 6.2: P-diagram for T-peel test 

 

6.1.1.2 Signal Factor 

 

Signal factor is a controllable variable that helps to actualize the intention. The 

width of the specimen is a signal factor used as a medium to actualize the intention of 

getting the peel strength result. Three widths are used (5mm, 10mm, and 15mm) to 

measure peel strength linearity. From preliminary studies, the wider the specimen width, 

the greater the peel strength is. Peel strength increase proportionally to specimen width. 

This can be observed solely with different spring thickness. The displacement, d, 

represented by parallel spring had increased as specimen width increased (Figure 6.3). 

 

            

 

Figure 6.3: Displacement, d, by each specimen width 

 

Higher strength needed to peel away the adherend from the adhesive as specimen width 

grow bigger. The strength of these joints between cast propylene, aluminum and 

adhesive in between is related to stress. Stress measures the average strength per unit 

area of a surface (equation 6.1). 

 = F / A  (6.1) 

where  F = strength 

Flexible film 

T-peel test Y = Peel strength M = Specimen width 

Noise factor: 

- Peel angle deviation 2o 

- Tensile weight 

Control factor: 

- Peel angle     -  Data region 

- Peel speed     -  Spring thickness 
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A = cross-sectional area 

 = stress 

Strength is proportional to surface area, thus higher strength needed to peel 15mm 

specimen width film. This is supported by Bikerman, J.J [14] , showed that the peel 

strength is proportional to width of adhesive tape, adhesive thickness and tensile 

strength of the adhesive (equation 6.2). 

F = w ta   (6.2) 

where w = width of tape 

 ta = adhesive thickness 

  = tensile strength of the adhesive 

Due to tensile deformation during peel test, the cast propylene film showed necking. 

Tensile stress lead to expansion (necking), with the volume of the film remain constant. 

The film size or width decreased in cross-sectional area (Poisson effect). The necking 

phenomena caused a linear increase in strength [10] . During necking, the film can no 

longer bear the maximum stress and the strain increased.  As a result, the cast poly 

propylene ended up with plastic deformation as shown in Figure 6.4. Necking occurred 

severely with higher peel rate.  

                                                              

 

Figure 6.4: Necking example in 12mm/s peel speed for specimen width 5mm (top), 

10mm (middle) and 15mm (bottom) 
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Hence, the signal to noise ratio () for dynamic response is used in this study to 

measure various ranges of input to ensure robustness.  

SNR is a metric for robustness and is defined as: 

SNR,  = power of signal/power of noise 

  = (sensitivity)
2
/(variability)

2
 

  =  
2
/  

2
                 (6.3) 

The term  
2 

is the variation in data by noise factor conditions under Noise 1 and Noise 

2. In SNR,  
2
 is the numerator. Therefore, SNR,  , in decibel unit (dB) for dynamic 

response is 

 = 10 log [ (1/(ro . r)) (S - Ve) / VN ]    (6.4) 

where S = variation caused by the linear effect, 

Ve = correction error variance (error variance/degree of freedom [DOF]), 

VN = compounded noise factor when signal factor is introduced, 

ro = total number of measurements under one signal level, and 

r = effective divider representing a magnitude of input due to level changes of signal 

factor.  

Sensitivity, , in decibel unit, is calculated as: 

 = 10 log [(1/(ro . r)) (S - Ve)]         (6.5) 

To maximize robustness one must maximize SNR; thus, the system is insensitive to 

variation. Sensitivity, , is analyzed to adjust the slope, which helps determine the 

desired target of peel strength. 

 

6.1.1.3  Noise Factor Selection 

 

Noise factors are likely to produce variability in response. Two noise factors are 

considered in the study: peel angle deviation △ + 2
o
 and tensile weight w. Peel angle is 

adjusted to three levels: 60
o
, 90

o
, and 120

o
. Peel angle +2

o
 is a noise factor because it is 

possible to have an inaccurate reading if the peel angle is changed by the angle adjuster. 
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In addition, peel angle is deviated about +2
o
 during the peeling process because of 

natural movement, as shown in Figure 6.5. Thus, the noise in peel angle is defined as 

deviation + 2
o
 for each level. Noise 1 is the higher level (N1 = +2

o
 and 8g) and Noise 2 

is the lower level (N2 = -2
o
 and 4g). 

 

 

 

 

 

 

 

 

 

Figure 6.5: Deviation in peel angle during T-peel 

 

6.1.1.4  Control Factor Selection 

 

Based on the literature review, the peel test is the most common test to measure the 

peel strength of adhesion. Thouless [15] stated that peel strength is generally affected by 

geometry, essential properties of film and substrate, and cohesive properties of the 

interface. In this study, four three-level control factors are evaluated: peel angle, peel 

speed, peel strength data region percentage, and spring thickness. The geometrical terms 

include the peel angle (
o
), peel speed (mm/s), and specimen width (mm).  

The standard JIS analysis of peel strength data region is considered to minimize 

variability in data measurement. The unit for peel strength data region is percentage. JIS 

standard is a 30% data region. Three data regions are evaluated in this experiment: 30%, 

50%, and 70%. In the 30% region, the center data is collected at a constant peak of the 

peeling process by discarding 35% right and 35% left of the flat region in a peel 

strength curve. In the 50% data region, 25% data is discarded to right and left, while in 

the 70% data region, 15% right and 15% left data is discarded. Figure 6.6 shows the 

relevance of each data region to the overall data.  
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Spring thickness represents the stiffness occurring when the specimen is being 

peeled. Three spring thicknesses were evaluated: 0.3mm, 0.4mm, and 0.5mm. All 

springs were 70mm in length. 

                        

Figure 6.6: Data region in peel strength curve 

 

6.1.1.5  Orthogonal Array 

 

An orthogonal array is a balanced set of experimentation runs that explore the design 

space with a small number of experiments [16] . L9 orthogonal array was chosen to 

study the effect of the four three-level control factors on peel strength. Of the 

experiments, 54 applied for one orthogonal array (9 x 3 signal level x 2 noise level). 

Table 6.1 summarizes the factors used in L9. Control factor level is denoted as 1 for a 

level 1 setting, 2 for a level 2 setting, and 3 for a level 3 setting. Control factors are 

called inner array and noise factors are called outer array. The plan is referred to as a 

robust parameter design. 

Table 6.1: Factors studied in L9 

                

 

Notice that the peel angle of the T-peel test can be either at the aluminum side or the 
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CPP side. Figure 6.7 shows the schematic diagram of each peel angle layout, defined 

based on surface material. The peel angle of the aluminum side is called aluminum peel 

side (Al/CPP) and the peel angle of the CPP side is called the CPP peel side (CPP/Al). 

 

 

 

 

                                                                                                             

           

                            (a)                      (b)                                                   

Figure 6.7: T-peel test schematic diagram of (a) Aluminum peel side: Peel angle 60
o 
at 

aluminum side and (b) CPP peel side: Peel angle 60
o
 at CPP side 

 

For a clearer example, let’s read the 60
o
 peel angle from the aluminum side. The 60

o
 

aluminum (Al) peel angle provides a 120
o
 CPP peel angle, and vice versa. In the 

orthogonal array, all nine experiment numbers are assigned orthogonally in L9 for each 

parameter level. For example, in experiment number 1, the 60
o
 peel angle at the 

aluminum side is tested at a 6mm/s peel speed, 30% data region, and 0.3mm spring 

thickness. The peel strength is different from when the peel angle is tested from 60
o
 CPP 

peel side, because the peel angle of the aluminum side in the latter situation is 120
o
. 

Thus, the peel side is crucial to evaluate the effect on optimum peel strength. Two sets 

of L9 were therefore performed. The first one used an Al peel side and the other used a 

CPP peel side.  

Each L9 has 53 degrees of freedom with three signals and two noise levels. Two 

L9 were performed to study the effects of the aluminum peel side and CPP peel side on 

peel strength. The feasibility of the testing procedure was then evaluated, and both 

optimum conditions were harmonized into one condition called a harmonized design. 

This was done to determine an optimum condition that can be used by both peel sides. 

This trade-off method is useful when involving the different materials of flexible film. 

 

 

 

Aluminum 

Drum 

CPP 

CPP 

Drum 

Aluminum 
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6.1.2 Experimental Results and Discussions 

6.1.2.1 Signal to Noise Ratio Analysis 

Measurement data for all nine runs were collected under a signal factor that has a 

specimen width of 5mm, 10mm, and 15mm with two noise levels, N1 and N2, in each 

signal. The results of 54 peel strength tests were measured in Newton, N (9 x 2 noise 

level x 3 signal level), obtained on the aluminum peel and CPP peel sides, respectively. 

The optimum condition for flexible film was obtained from the SNR process average. 

Since each peel angle surface has a different effect on the optimum condition, the 

aluminum peel angle surface and CPP peel angle surface results were analyzed 

separately. Table 6.2 shows the measurement results for the aluminum peel side. 

 

Table 6.2: Aluminum peel side result: Peel strength, signal to noise ratio  , and 

sensitivity  

     5mm 10mm 15mm SNR 

 

Sensitivity 

 Run A B C D N1 N2 N1 N2 N1 N2 

1 1 1 1 1 8.70 8.37 16.62 16.78 24.96 24.09 12.40 4.35 

2 1 2 2 2 8.04 8.12 15.28 16.21 23.91 24.52 11.79 4.10 

3 1 3 3 3 8.72 8.09 16.59 16.36 24.49 24.30 15.15 4.28 

4 2 1 2 3 7.79 8.04 15.68 15.86 23.87 24.38 15.97 4.07 

5 2 2 3 1 8.45 8.41 16.49 16.20 24.12 23.99 14.85 4.18 

6 2 3 1 2 8.26 8.18 15.51 15.80 24.43 24.32 13.28 4.13 

7 3 1 3 2 7.59 7.74 14.77 15.15 22.16 22.20 16.76 3.45 

8 3 2 1 3 7.46 7.69 15.03 15.83 22.68 23.58 11.82 3.75 

9 3 3 2 1 8.49 8.27 15.87 16.29 23.76 24.09 14.43 4.11 

 

Table 6.3 shows the measurement result for the CPP peel side result. The peel side 

affects the control factor of peel angle, thus presents different measurement result. 
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Table 6.3: CPP peel side result: Peel strength, signal to noise ratio  , and sensitivity  

     5mm 10mm 15mm SNR 

 

Sensitivity 

 Run A B C D N1 N2 N1 N2 N1 N2 

1 1 1 1 1 8.08 7.98 16.08 15.84 23.34 23.68 17.1 3.96 

2 1 2 2 2 7.45 7.27 14.70 15.02 22.60 22.52 18.83 3.50 

3 1 3 3 3 7.42 7.68 15.12 15.35 22.98 23.07 20.61 3.69 

4 2 1 2 3 6.91 6.96 14.22 14.36 21.43 21.52 19.75 3.09 

5 2 2 3 1 8.43 8.44 16.71 16.49 24.02 23.61 10.67 4.16 

6 2 3 1 2 8.12 8.24 15.70 16.06 23.65 23.97 17.34 4.03 

7 3 1 3 2 7.62 7.42 15.03 14.86 22.81 23.00 17.48 3.61 

8 3 2 1 3 7.43 7.64 15.01 14.99 22.94 23.17 16.60 3.66 

9 3 3 2 1 8.15 8.52 16.76 16.68 23.99 24.21 12.37 4.24 

 

Peel strength (N) result was obtained upon test conditions using the parameter design. 

Thus, for run 1 in Table 3.3, SNR and sensitivity (unit: dB) were calculated by using 

equations (6.4) and (6.5) respectively. 

Total variation: 

ST =  yi
2
                               (6.6) 

= 8.70
2
 + 8.37

2
 + 16.62

2
 + 16.78

2
 + 24.96

2
+ 24.09

2 

    
= 1907.03                    (fT = 6) 

 

Variation of proportional terms: 

S = (M1y1 + M2y2 + …. + Mkyk)
2 

    r1M1
2
 + r2M2

2
 + … + rkMk

2 
            (6.7) 

 

= ((8.70+8.37)5 + (16.62+16.78)10 +(24.96+24.09)15)
2
 

   

2(5
2
+10

2
+15

2
) 

  = 1906.25                  (f = 1) 
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Variation of differences between proportional terms, SNx: 

=  ((8.70x5)+(16.62x10)+(24.96x15))
2
+((8.37x5)+(16.78x10)+(24.09x15))

2
 -1906.25 

                                (5
2
+10

2
+15

2
) 

=  0.24                       (f Nx = 1) 

Error variation: 

Se = ST - S  - SN                           (6.8) 

= 1907.03 – 1906.25 – 0.24 

= 0.543                       (f e = fT - f - f Nx = 4)  

Error variance: 

Ve = Se / f e                           (6.9) 

= 0.543 / 4 = 0.136 

Total error variance: 

VN = (ST - S) / f e’                          (6.10) 

= 0.157         (f e’ = fT – 1 = 5) 

 

Thus, SNR is calculated as: 

 = 10 log [ (1/ (ro . r)) (S - Ve) / VN ] 

= 10 log [ (1/ (2x350))(1906.25 – 0.136) / 0.157 ] 

= 12.40 dB 

Sensitivity: 

 = 10 log [(1/(ro . r)) (S - Ve)] 

= 10 log [ (1/ (2x350))(1906.25 – 0.136)] 

= 4.35 dB 

 

Then, the linear graph for each run is plotted for linear observation between variation 

N1 and N2. Figure 6.8 is the linear graph for aluminum peel angle. The line N1 and N2 

are the noises or variation that is intended to be reduced using robust engineering. The 

smaller the gap, the less variation found in that experimental run. 
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Figure 6.8: Linear graph for aluminum peel side 

Figure 6.9 shows the linear graph for CPP peel side. All the nine graphs showed linear 

relationship as the aluminum side.  
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Figure 6.9: Linear graph for CPP peel side 

The SNR for all nine runs was calculated using the SNR calculation above. The same 

calculation as above was applied for the CPP peel side result. Then, the mean SNR 

process average was calculated to find the effect of each control factor. The effect was 

separated at different levels, because the experimental design is orthogonal. For 

example, using the SNR result in Table 6.5, the calculation shown below will find the 

SNR process average for factor A (peel angle) level 1 and factor B (peel speed) level 1: 

A1 = (12.40 + 11.79 +15.15) / 3 = 13.11 dB 

B1 = (12.40 + 15.97 + 16.76) / 3 = 15.04 dB 

The process average for each factor and level was calculated as in Table 6.4: 

Table 6.4:  SNR average factor effect (dB) for aluminum peel side 

Label Parameter Level 1 Level 2 Level 3 

A Peel angle 13.11 14.70 14.33 

B Peel speed 15.04 12.82 14.29 

C Data region 12.50 14.06 15.58 

D Spring thickness 13.89 13.94 14.31 
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The SNR factorial effect graph for the aluminum peel and CPP peel sides is shown in 

Figure 6.10. The optimum condition was identified at the highest peak of SNR, as this 

indicates the lowest variation caused by noise factors. The worst (comparison) condition 

occurred at the lowest SNR, which identifies the highest amount of variation. 

       

Figure 6.10: SNR factorial effect graph for aluminum peel side and CPP peel side 

 

The result in Figure 6.10 is summarized in Table 6.5. Different optimum conditions 

appeared for different peel sides. For the aluminum peel side, the optimum condition for 

minimum variation of peel strength is a 90
o
 peel angle, 6mm/s peel speed, 70% data 

region, and 0.5mm spring thickness. For the CPP peel side, the optimum condition is a 

60
o
 peel angle, 6mm/s peel speed, 30% data region, and 0.5mm spring thickness. Table 

6.6 reveals that factors B (peel speed) and D (spring thickness) are the same for both 

aluminum and CPP peel sides in the optimum condition. Thus, peel speed and spring 

thickness have no significant different effect on the peel sides. On the other hand, 

factors A and C are different for each peel side; thus, the optimum condition for each 

side cannot be used interchangeably. 

Table 6.5: Optimum and worst condition for aluminum peel side and CPP peel side 

Condition Aluminum peel side CPP peel side 

Optimum condition A2 B1 C3 D3 A1 B1 C1 D3 

Worst condition A1 B2 C1 D1 A3 B2 C3 D1 
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A sensitivity graph, so-called as  graph explains the sensitivity of each factor to 

variation. SNR is the ratio of sensitivity to variability (eq.1). Figure 6.11 shows the 

sensitivity graph for both aluminum and CPP peel sides. The graph shows that factor D 

(spring thickness) is the most sensitive factor. High sensitivity measures an obvious 

change in response value when the factor level is changed. A sensitivity graph is used 

when there is a target in peel strength value; thus, there is not much consideration of 

sensitivity when determining optimum condition in this paper since there is no specific 

target or nominal value of what peel strength should be.  

                

 

Figure 6.11: Sensitivity graph for aluminum peel side and CPP peel side 

A confirmation test was performed to determine the reproducibility of the estimated 

SNR. Tables 6.6 and 6.7 show the dB gain for the aluminum peel and CPP peel sides 

according to the confirmation test. The gain percentage difference shows good 

reproducibility between estimated and confirmation tests for both aluminum and CPP 

peel sides, at 10.62% and 0.83%, respectively. The size of the dB gain or benefit is less 

than 3 dB, and the difference is less than 30%, which means that the experiment using 

the confirmed condition is highly reproducible. 
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Table 6.6: SNR results for aluminum peel side 

 Aluminum peel side 

 Estimated Confirmation 

 Optimum  Worst Optimum Worst 

SNR (dB) 17.49 10.18 16.45 9.92 

SNR gain (dB) 7.31 6.53 

% Gain difference 10.62 

 

Table 6.7: SNR results for CPP peel side 

 CPP peel side 

 Estimated Confirmation 

 Optimum Worst Optimum Worst 

SNR (dB) 22.71 10.24 20.11 7.54 

SNR gain (dB) 12.47 12.57 

% Gain difference 0.83 

 

The optimum condition from the confirmation test of the Al peel side is shown in Figure 

6.12(b), which represents the best SNR, as the gap between N1 and N2 is almost 

non-exist. Figure 6.13 shows an ideal function graph from confirmation run for the CPP 

peel side. The smallest gap between noises is desired, as small gaps indicate less 

variation among noise levels. A confirmation test of SNR for the CPP peel side reveals 

that it is better than the aluminum peel side, based on its higher SNR, which is at 

20.11dB and 16.45 dB, respectively. This study found the optimum condition of each 

peel sides. The optimum condition for each peel side should be used respective to that 

peel side; the two conditions should not be used interchangeably. 
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Figure 6.12: Ideal function graph from confirmation run for aluminum peel side 

(Al/CPP) 

  

Figure 6.13: Ideal function graph from confirmation run for CPP peel side (CPP/Al) 

 

Analysis of variance (ANOVA) is done for aluminum peel side (Al/CPP) and CPP peel 

side (CPP/Al). L9 for aluminum peel side and CPP peel side had shown no significant 

interaction as the percent of contribution between control factors are not significant. 

Table 6.8 and 6.9 shows the ANOVA result for aluminum and CPP respectively. L9 is 

used as the preliminary study due to smaller number of experiment. The purpose is to 

investigate the response behavior before proceeding with L18.  
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Table 6.8: ANOVA for aluminum peel side (Al/CPP) 

Source SS DOF variance,F F ratio % P 

A 7.14  2 3.57  40.76  0.31  

B 1.60  2 0.80  9.13  0.06  

C 0.24  2 0.12  1.37  0.00  

D 3.95  2 1.97  22.56  0.17  

M 2231.82  2 1115.91  12744.35  99.17  

N 0.19  1 0.19  2.13  0.00  

AXM 1.50  4 0.37  4.28  0.05  

BXM 0.24  4 0.06  0.69  0.00  

CXM 0.83  4 0.21  2.37  0.02  

DXM 0.50  4 0.13  1.44  0.01  

MXN 0.29  2 0.15  1.68  0.01  

e 2.10  24 0.087561 1   

total 2250.40  53   0   

Note: M = Signal factor, N = Noise factor 
  

Table 6.9: ANOVA for CPP peel side (Al/CPP) 

Source SS DOF variance,F F ratio % P 

A 0.47  2 0.24  9.65  0.02  

B 5.88  2 2.94  120.51  0.27  

C 2.31  2 1.16  47.39  0.11  

D 14.90  2 7.45  305.44  0.69  

M 2127.40  2 1063.70  43616.19  98.78  

N 0.06  1 0.06  2.66  0.00  

AXM 0.27  4 0.07  2.77  0.01  

BXM 0.38  4 0.09  3.89  0.01  

CXM 0.33  4 0.08  3.40  0.01  

DXM 0.92  4 0.23  9.38  0.04  

MXN 0.01  2 0.01  0.28  0.00  

e 0.59  24 0.02  1.00    

total 2153.52  53   0.00    
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Note: M = Signal factor, N = Noise factor 
  

 

6.1.2.2 Optimum Condition Determination 

 

The SNR analysis reveals that each peel side should apply the optimum condition 

respective to each side to obtain optimum performance. However, by merging the SNR 

factorial effect plot for both peel sides into one graph, a harmonized condition is 

obtained to ensure a condition that suits both sides. The harmonized condition in this 

term refers to the minimum or smallest gap between aluminum and CPP peel angle 

process average. The minimum gap indicates an agreement from both sides of the peel 

angle surface at that particular factor level. The minimum difference reflects an 

approximate point from both peel sides. This method is one of the trade-off methods 

used in parameter design to determine the optimum condition that universally suits the 

design. As shown in Figure 6.14, the harmonized condition is A3, B3, C3, and D1. The 

optimum condition of harmonized condition is the smallest gap between the two SNR 

plots that reflects the agreement of factor’s level. 

 

Figure 6.14: Harmonized condition that suits aluminum peel side and CPP peel side 

 

A confirmation run was performed using A3, B3, C2, and D1; SNR was then calculated. 

As shown in Table 6.10, the result of the SNR (dB) optimum condition was compared to 

the optimum conditions for the aluminum peel side (Al/CPP), the CPP peel side 

(CPP/Al), and the harmonized condition.  
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This study identifies three optimum conditions that can be applied on flexible 

packaging film: the aluminum peel side condition, the CPP peel side condition, and the 

harmonized condition. It is advisable to use the aluminum peel side’s optimum 

condition for the aluminum peel side and the CPP peel side’s optimum condition for the 

CPP peel side. Swapping the aluminum peel side’s condition to the CPP peel side’s 

condition is highly inadvisable; swapping can affect SNR. The harmonized condition 

presents an alternative that indicates the best option to apply to both peel sides. The 

optimum condition for the CPP peel side has the highest SNR; thus, the CPP peel angle 

condition is the most advisable to use. The harmonized condition’s SNR for CPP is 

decreased by 8.22dB from the optimum condition for the CPP peel side (20.11dB – 

11.89dB) and the harmonized condition’s SNR for the aluminum peel side is also 

decreased by 1.35dB from the optimum condition for the aluminum peel side (16.45dB 

– 15.10dB). 

Table 6.10: Three optimum conditions obtained from confirmation run 

 Optimum condition for flexible film 

 

Aluminum peel 

side 
CPP peel side 

Harmonized condition 

 Aluminum 

peel side 
CPP peel side 

Parameter Level A2 B1 C3 D3 A1 B1 C1 D3 A3 B3 C3 D1 

SNR  (dB) 16.45 20.11 15.10 11.89 

% dB gain 

difference 

(reproducibility) 

10.6% 0.83% 12.12% 25.7% 

SNR dB gain 

(optimum – worst) 
6.53 12.57 1.40 8.20 

Improvement times 4.5 times 18 times 1.4 times 6.6 times 

Average peel 

strength (Newton, N) 
14.21 14.17 16.63 17.74 
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However, the convenience of the harmonized condition outweighs the low SNR. The 

harmonized condition provides mistake proofing against setting the wrong peel side. 

Therefore, the usability for the customer is more convenient when using the harmonized 

condition.  

Harmonization is a method that can be used to evaluate different properties or 

merged properties, and is not limited to flexible film. Determining which optimum 

condition to use depends on the test objective. If the objective is focused on maximum 

SNR, then the CPP peel angle is the best to opt.  Theoretically, the optimum condition 

for the CPP peel angle presents the highest SNR and gain. Practically, the harmonized 

condition provides a convenience design that is useful for both sides of the peel angle. 

The peel strength average of the harmonized condition is a bit higher than the other two 

optimum conditions, but this is not a significant effect. Although the confirmation run 

had only six observations (3 signal levels x 2 noise levels), satisfying results were 

obtained so that the harmonized condition may be used in flexible film application and 

research. 

 

6.1.3 Conclusion 

 

This practical experiment presents the performance of T-peel testing on flexible film to 

find the optimum condition for measurement. The new apparatus solved the large 

variation problem that occurs when using the standardized T-peel test method. The 

parameter design step of the Taguchi method was applied to optimize peel strength 

measurements for flexible packaging film. Three optimum conditions are presented; the 

decision for which to use was made according to the condition with the highest SNR. 

The study has thus achieved the following: 

 The experiment describes the operation of the new apparatus created to conduct the 

T-peel test on flexible film. The main difference between this and the standardized 

method is the layout of the specimen. The specimen is set in a T-shape to ensure 

that no deviation occurs in the specimen’s peel angle. This overcomes the variation 

problem caused by use of the standardized method to measure flexible film. 

 The robust parameter design method was used to minimize the variation of T-peel 

strength. The variation problem that occurs when flexible film is measured using 
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the standardized methods of ASTM and JIS is addressed by the new apparatus. 

With a dynamic SNR equation, the maximum SNR provides minimum variation in 

T-peel strength. Peel angle, peel speed, data region, and spring thickness are the 

control factors used to evaluate the new T-peel test apparatus. The noise factors are 

the peel angle deviation and tensile weight. Three levels of signal factor specimen 

width were tested to ensure the linearity of peel strength. The control factors are 

arranged in a nine runs design and noise factor in 2 levels with 3 levels of signal 

factor. Thus, the orthogonal array L9 has 54 experimental data. 

 Peel side was investigated to confirm the best T-peel test condition for flexible film. 

Aluminum peel side and CPP peel side have good reproducibility, as both have a db 

gain of less than 30% difference. Thus, the optimum conditions found for both peel 

sides are reliable. In order to get minimum variation, the aluminum peel side should 

use the optimum condition of the aluminum peel side and the CPP peel side should 

use the optimum condition for the CPP peel side of packaging film, and the 

conditions should not be swapped. 

 The robust parameter design method presented the optimum process parameter 

obtained from SNR analysis to minimize variation and provide process robustness 

against noise. For the aluminum peel angle, the optimum condition that serves 

minimum variation is peel angle 90
o
, peel speed 6mm/s, data region 70%, and 

spring thickness 0.5mm (A2 B1 C3 D3). For the CPP peel angle, the optimum 

condition is peel angle 60
o
, peel speed 6mm/s, data region 30%, and spring 

thickness 0.5mm (A1 B1 C1 D3). It is advised that the optimum condition for the 

CPP peel side (A1 B1 C1 D3) be used for T-peel tests of flexible film, since the 

CPP optimum condition had the highest SNR (20.11dB), highest gain, smallest gain 

difference, and highest improvement times. The number of improvement times is 

calculated from the log transformation: 

SNR,  = 10 log Ve                                      (6.11) 

10
/10

 = number of improvement               (6.12) 

 

This affects the variation in peel strength to be in minimum level. 
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The robust parameter design method in quality engineering benefited T-peel test 

optimization by presenting a harmonized condition. To achieve the same optimum 

condition at any peel angle surface, optimum condition for harmonized design was 

chosen by selecting the level with the smallest gap between the Al and CPP peel angle 

SNR factorial effect plots. The harmonized condition is peel angle 120
o
, peel speed 

12mm/s, data region 70%, and spring thickness 0.3mm (A3 B3 C3 D1). This practical 

experiment has fulfilled the research motivation to satisfy the T-peel test for flexible 

film. Three optimum conditions are presented to optimize the T-peel test by minimizing 

the variation in peel strength measurement. The CPP peel angle condition was chosen as 

the best optimum condition because of its highest SNR. The finding of this practical 

experiment is presented in R. Dolah and Z. Miyagi [17]. 

 

6.2 Practical Experiment using an L18: Influence of Outer Array Layout and 

Noise Parameter Strategy 

 

The purpose of this practical experiment is to provide the most reliable experimental 

design by evaluating the influence of noise parameter in outer array and reason in 

deciding on optimum condition. The measurement process is carefully carried out to 

ensure the reliability of optimum condition retrieved from multiple noise strategy. In 

this practical work, reliability means how reliable the optimum condition retrieved from 

the measurement data to produce SNR result. Noise level plays an important role in 

determining the result in outer array as it affects the SNR. Three types of possible 

measurement data layout in outer array are studied, thus three optimum conditions are 

analyzed from signal-to-noise ratio (SNR). Reliability of three optimum conditions is 

discussed in determining the best condition. Analysis of variance (ANOVA) is 

employed to investigate the influence of noise parameters. Measurement data which 

covered the whole variation range of peel strength is chosen as the best measurement.  

Selection of factors and levels in experimental design plays an important step in 

determining a satisfactory result. Factor that produces variability in the response is 

called noise factor and analyzed in outer array. Thus, it is important to design an 

experiment that capable to capture total data variability. Shin Taguchi in Nair 1992 

panel discussion emphasized that in parameter design, the most important job is to 
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select an effective characteristic to measure a data. The efficiency and effectiveness of 

engineering activities depend greatly on what is measured as data. This paper outlined 

the possibilities of measurement data layout in outer array of L18 and the procedure on 

choosing the best noise layout thus presenting a reliable optimum condition. The 

meaning of reliability in this paper is not focusing on failure rate of a system so-called 

bath-tub curve. Reliability in this paper means the robustness of optimum condition. 

There are many possible noise layout exist in outer array thus producing more than one 

optimum condition calculated from SNR. The decision on choosing the best optimum 

condition is discussed based on consideration of noise parameter criteria, gain 

difference in confirmation test, and noise influence in ANOVA. Different noise 

parameter setting affects the measurement data placed in outer array and serves different 

optimum condition. 

  

6.2.1 Robust Design Engineering Method 

 

6.2.1.1 Ideal Function and P-Diagram 

 

Peel strength linearity is based on zero-point equation, therefore the dynamic ideal 

function is direct ratio Y =  M as shown in Figure 2.1, Chapter 2. P-diagram in Figure 

6.15 shows all the parameters studied in this practical experiment. 

 

 

 

 

 

 

 

 

 

 

Figure 6.15: P-Diagram of T-peel Test 

 

Flexible film 

T-Peel test 

Y = Peel strength M = Specimen 

width 

Noise factor: 

- Peel angle  

deviation 2o 

- Sampling (maximum 

and minimum data) 

Control factor: 

- Tensile weight 

- Peel angle  

- Peel speed 

- Data region 

- Spring thickness 

- Module of spur gear 

- Drum diameter 
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A dynamic ideal function is used, based on wide range of specimen width. The response, 

Y; is peel strength, the output from the measurement process with as small unwanted 

variation as possible. M is the input of signal factor from various range of specimen 

width for peel strength linearity. Beta,, is the measurement sensitivity to different 

inputs, thus the slope must be steep.  

 

6.2.1.2 Signal Factor  

 

Signal factor is a controllable variable to actualize the intention to achieve robust 

condition regardless of various width conditions. Signal-to-Noise ratio (SNR) with 

dynamic response (1) is used in this study to measure different response level. A 

dynamic signal-to-noise ratio (SNR) has been used in this study, where the specimen 

width as the signal factor with 3 levels that are 5mm, 10mm and 15mm is used to 

measure the peel strength linearity.  

Signal-to-noise ratio, : 

 = 10 log ((1/r.ro) (S - Ve) / VN )                          (6.4) 

where S  = variation caused by the linear effect 

Ve = correction error variance (error variance/DOF) 

VN = compounded noise factor when signal factor is introduced 

r = total number of measurements under one signal level 

ro = effective divider representing a magnitude of input due to level changes of signal 

factor 

 

6.2.1.3 Noise Factor  

 

Noise factor is a factor that cause variation in measurement system arranged in outer 

array. Peel angle deviation +2
o 

is chosen as one of the noise factor. Peel angle is 

adjusted to three levels that are 60
o
, 90

o
 and 120

o
. Figure 6.16 shows the specimen 

condition during peel test as the peel angle would deviates in micro range during 

peeling process.  
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Figure 6.16: Deviation in peel angle during T-peel test 

Therefore, noise in peel angle is defined as uncontrollable factor during test with 

deterioration at + 2
o
 for each level. In previous experience, it is observed from 

preliminary study that + 2
o 
is a rough estimation for peeling angle distribution. By using 

that result, it is decided + 2
o
 as the level for the uncontrollable factor.   Another noise 

factor is sampling method. Sampling is taken at maximum, minimum and average point 

of peel strength at constant region in peel curve. Noise factor is put in two conditions, 

N1 and N2. Intentionally, N1 contains higher peel strength than N2. Preliminary run is 

conducted to confirm the peel strength behavior.  Preliminary run in Figure 6.17, is 

assumed as a model of peel angle effect on peel strength.  

                                      

 

Figure 6.17: Peel angle effect on peel strength (specimen:10mm, tensile weight: 4g, peel 

speed: 9mm/s, data region: 30%, spring thickness: 0.3mm, module of spur gear 0.5, 

drum diameter: 37mm) 
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In this experiment, specimen of 10mm, peel speed of 9mm/s and spring 

thickness of 0.3mm are used. The peel strength is obviously decline from 60
o
 to 90

o
 peel 

angle. Deviation of peel angle gives clear value of peel strength, either high peel 

strength or low peel strength. However, the trend from 90
o
 onwards showing a very 

small increment. Deviation of +2
o
 for this region is hardly separated, thus peel strength 

for N1 is not necessarily higher than N2.  As the trend of peel strength is increasing, an 

assumption is made on higher peel strength tends to be affected by higher peel angle. 

The first outer array layout; Type A, explained N1 as +2
o
 peel angle and sampling is 

taken on maximum peel strength, and N2 consists of -2
o
 peel angle and sampling at 

minimum peel strength. For example, for 90
o
 peel angle, measurement data in N1 is 

peel strength obtained using 92
o 
peel angle and maximum point of peel strength in 92

o
 is 

selected. Measurement data in N2 is peel strength obtained using 88
o
 peel angle and 

minimum peel strength in 88
o
 is selected. However, small increment in peel strength is 

observed in Figure 6.16 at some peel angle such as 90
o
 and 120

o
. At this region, +2

o
 

peel strength is not always on high side and -2
o
 is not always on low side. The sampling 

of maximum and minimum should not be classified at fixed deviation. This means, 

sampling of maximum peel angle might be coming from -2
o
 peel angle deviation and 

minimum peel angle might be coming from +2
o
 peel angle deviation due to very small 

incremental in peel strength. The peel strength curve between this peel angle is 

overlapped as shown in Figure 6.18:  

 

 

Figure 6.18: Example of maximum and minimum peel strength sampling (run 15 in L18 

- specimen: 5mm, tensile weight 8g, peel angle 90
o
, peel speed 12mm/s, data region 

30%, spring thickness 0.4mm, module of spur gear 2.0, drum diameter 30mm) 
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As shown in Figure 6.19, maximum peel strength for +2
o 
peel angle is 6.91N, which is 

less than the maximum peel strength for -2
o
 peel angle which is 7.01N. Thus, it is not 

fair to state N1 as +2
o
 with maximum peel strength sampling because -2

o 
has higher peel 

strength.  

 

Figure 6.19: Data measurement for taking range of maximum and minimum point 

(run 15 in L18 - specimen: 5mm, tensile weight 8g, peel angle 90
o
, peel speed 12mm/s, 

data region 30%, spring thickness 0.4mm, module of spur gear 2.0, drum diameter 

30mm) 

 

Table 6.11 explained the phenomena (1,2,3,4) of data measurement that could exist in 

peel strength measurement. The matrix description of each phenomenon is described in 

Table 6.12. Each number includes ‘more than’ and ‘less than’ criteria. Therefore, second 

outer array layout; Type B take the most maximum peel strength regardless of deviation 

peel angle +2
o
 to be filled in N1 and the most minimum peel strength as in N2 in outer 

array. In other words, Type B noise layout is measuring the range of data regardless of 

peel angle. In an experiment, peel strength result is differed from one data to another. A 

typical result can be represented by an average. Thus, in the third outer array; Type C 

takes average of +2
o
 peel angle is considered as N1 measurement and average of -2

o
 

peel angle is considered as N2 measurement. Table 6.13 summarized all the noise 

factors in outer array. These multiple outer array result layouts have provided three 

types of SNR results, thus lead to three optimum conditions for T-peel test. 
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Table 6.11: Phenomena matrix for number 1,2,3, and 4 

Phenomena Criteria Occurrence 

1 (i) +2 
o
 max. PS > -2 

o 
max. PS Most of data 

1 (ii) +2 
o
 max. PS < -2 

o 
max. PS Sometime 

2 (i) +2 
o
 max. PS > -2 

o 
min. PS Always 

2 (ii) +2 
o
 max. PS < -2 

o 
min. PS Never  

3 (i) +2 
o
 min. PS > -2 

o 
max. PS Sometime 

3 (ii) +2 
o
 min. PS < -2 

o 
max. PS Most of data 

4 (i) +2 
o
 min. PS > -2 

o 
min. PS Most of data 

4 (ii) +2 
o
 min. PS < -2 

o 
min. PS Sometime 

 

Table 6.12: Phenomena criteria and occurrence 

Item +2 
o
 maximum peel strength +2 

o
 minimum peel strength 

-2 
o
 maximum peel strength 1 3 

-2 
o
 minimum peel strength 2 4 

 

Table 6.13 Noise factor in outer array 

TYPE N1 N2 

A 
+2 

o
 peel angle with maximum peel 

strength 

-2 
o
 peel angle with maximum 

peel strength 

B Maximum peel strength of 2 
o
 Minimum peel strength of 2 

o
 

C 
+2 

o
 peel angle with average peel 

strength 

+2 
o
 peel angle with average peel 

strength 

 

6.2.1.4 Control Factor  

 

The controllable factors or inner array are chosen based on testing and design condition. 

Tensile weight used for keeping the specimen in T-shape, peel angle, peel speed and 

peeling curve region are controllable factors considered based on testing condition. The 

meaning of data region is the percentage covered at constant peel strength. JIS standard 

is using 30% data region. Three data region are evaluated this experiment, that are 30%, 
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50% and 70%. In Figure 6.5, 30% data region means the remaining data is taken for 

evaluation after discarding 35% right and 35% left of constant region in peel strength 

curve. 25% right and left data is discarded for taking 50% data region, and 15% right 

and 15% left data is discarded for 70% data region. Parallel spring thickness, module of 

spur gears and drum diameter are considered based on design of apparatus condition. 

Spring thickness represents the stiffness occurred when the specimen is being peeled. 

Three spring thickness are evaluated, 0.3mm, 0.4mm, and 0.5mm with 70mm in length. 

Different module of spur gears evaluates the effect of pitch diameter over teeth number 

on peel strength. The three modules are 0.5, 1.0 and 2.0. The size of the drum diameter 

is also evaluated, that are 20mm, 30mm and 40mm.  

 

6.2.1.5 Orthogonal Array Selection 

 

Orthogonal array provides a balanced set of experimentation runs to explore the design 

space with small number of experiments. Design of experiments using orthogonal array 

L18 is used with one two-level factor (tensile weight) and six three-level factors (peel 

angle, peel speed, data region, spring thickness, module of spur gear and drum 

diameter). More controllable factors are involved to observe its influence on peel 

strength using orthogonal array L18. A summary of all parameters used in this paper and 

their levels is shown in Table 6.14:  

Table 6.14: Factors and their levels in L18 

 

 

 

 

 

 

           

 

 

 

Unit Level 1 Level 2 Level 3

A : Tensile weight g 4 8

B : Peel angle o 60 90 120

C : Peel speed mm/s 6 9 12

D : Data region % 30 50 70

E : Spring thickness mm 0.3 0.4 0.5

F : Module of spur gear 0.5 1.0 2.0

G : Drum diameter mm 20 30 40

Signal Factor

M : Specimen width mm 5 10 15

Noise Factor Level N1 Level N2

Peel Angle q 2 -2

Peel strength sampling N Maximum Minimum

Control Factor

Levels

+
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A full factorial experimental design for studying seven parameters would have required 

enormous number of experiment trials (2
1
x3

6
), an unacceptable number due to 

experimentation constraints. In L18 , 108 observations are implied (18 runs x 3 signal 

level x2 noise level) as shown in Table 6.15. For example, in Run 1; experiment is done 

using all control factors at level 1. Three specimen widths are used as signal factor level 

of 5mm, 10mm, and 15mm. Specimen 5mm under N1 means using all control factors at 

level 1 with peel angle 62
o
. Specimen 5mm under N2 means using all control factors at 

level 1 with peel angle 58
o
. The measurement data is written in outer array according to 

condition stated in Table 6.13. Therefore, three orthogonal arrays are produced under 

the same experimental run.  

Table 6.15: Experimental setup 
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6.2.2 Experimental Results and Discussions 

 

6.2.2.1 Signal-to-Noise Ratio Analysis 

 

Peel strength result is taken to calculate SNR,  and sensitivity, . SNR example of 

calculation is shown below by taking the result in Table 6.16 for run 1, using Type A 

outer array layout. Peel strength measurement for Type B and Type C are shown in 

Table 6.17 and 6.18 respectively. 

 

SNR,  = 10 log ((1/r.ro) (S - Ve) / VN )                 (6.4) 

S = 542.82 

=((4.45+4.53)5+(8.51+8.97)10+(13.51+12.94)15)
2
2(5

2
+10

2
+15

2
) 

Ve = Se/fe = ( ST - S  - SNx ) / 4 = 0.0689    fe =4 

ST = 4.45
2
+4.53

2
+8.51

2
+8.97

2
+13.51

2
+12.94

2
  

= 543.12 

SNx  = 0.0180 =((4.45)5+(8.51)10+(13.51)15)
2
+((4.53)5+(8.97)10+(12.94)15)

2
 ) / 

(5
2
+10

2
+15

2
) - S 

VN = Se’ / fe’ = (ST - S) / 5 = 0.05879      fe’ =5 

 

Signal-to-noise ratio; SNR,  : 

= 10 log10(1/2(5
2
+10

2
+15

2
))[(S - Ve) / VN ]       (6.4) 

= 11.20 dB 

 

Sensitivity,  : 

= 10 log (1/r.ro) (S - Ve)                      (6.5) 

= 10log10(1/2(5
2
+10

2
+15

2
))(S - V e) 

= -1.10 dB 
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Table 6.16: Peel strength result for Type A 

 

Table 6.17: Peel strength result for Type B 
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Table 6.18: Peel strength result for Type C 

 

 

SNR response plot for Type A, B, and C outer array layout is shown in Figure 6.20. 

Optimum condition is determined from the highest peak of SNR and maximum SNR 

explained the power of signal is larger than power of noise, which means the variability 

is small. Thus, the condition is influenced by the noise factors.              
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Figure 6.20: SNR response plot for Type A, B, and C 

 

 

 

 

 

 

 

 

Figure 6.20: SNR response plot for Type A, B, and C 

 

Optimum conditions can be summarized as in Table 6.19. Different optimum condition 

appears when different outer array applied in each L18. Factor D and F that are data 

region and module of spur gear have the same optimum level agreed by all three types.  

Table 6.19.  Optimum condition for Type A, B, and C 

Control factor Type A Type B Type C 

Tensile weight A1 A2 A2 

Peel angle B1 B2 B2 

Peel speed C3 C2 C2 

Data region D1 D1 D1 

Spring thickness E2 E1 E2 

Module of spur gear F2 F2 F2 

Drum diameter G3 G3 G1 
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Sensitivity analysis is shown in Figure 6.21. Sensitivity plot explain the importance of 

adjusting the mean to the target by adjusting the level of a control factor. A control 

factor that is suitable to adjust must have maximum effect on sensitivity and minimum 

effect on robustness. In this case, factor G is the best factor to adjust for all the three 

types of outer array layout. Each level of drum diameter is sensitive to peel strength 

value. However, the change between these levels does not affect the process variance 

significantly, as illustrated in SNR response plot. ANOVA is calculated to investigate 

the noise influence to control factors between Type A, B, and C. The basic calculation 

of ANOVA for Type B comprises of: 

Mean square or variance, VB = SB / fB                  (6.13) 

F-ratio, FB = VB / Ve                                            (6.14) 

Pure sum of squares, S’B = Sb – (VB x fB)               (6.15) 

Percent of contribution, PB = S’B / ST                           (6.16) 
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Figure 6.21: Sensitivity plot for Type A, B, and C 

 

      In ANOVA shown in Table 6.20, Type B has the largest noise influence that the 

percent of contribution is 0.41%. ANOVA result for Type A and C is shown in Table 

6.21 and 6.22 respectively. Table 6.23 shows the summary of noise influence. Type A 

has 0.18% and Type C has no influence of noise factors. The noise influence showed 

that Type B demonstrated the variation in data measurement clearly compared to Type A 

and C. No contribution of noise variation is captured in Type C is observed, and little 

noise variation is captured in Type A. 0.41% noise effect in Type B is contributed by the 

range of measurement by taking the maximum and minimum point in sampling of peel 

strength.  
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Table 6.20: ANOVA for Type B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source DOF SS Mean square F-ratio % contribution

A 1 0.54 0.54 7.69 0.01

B 2 4.47 2.23 31.54 0.11

C 2 7.42 3.71 52.41 0.18

D 2 3.58 1.79 25.27 0.09

E 2 38.96 19.48 275.11 0.97

F 2 2.26 1.13 15.96 0.05

G 2 1197.83 598.92 8457.72 29.82

M 2 2546.77 1273.39 17982.39 63.40

N 1 16.59 16.59 234.31 0.41

AXM 2 0.26 0.13 1.82 0.00

BXM 4 0.53 0.13 1.87 0.01

CXM 4 1.68 0.42 5.93 0.03

DXM 4 0.89 0.22 3.16 0.02

EXM 4 5.02 1.26 17.73 0.12

FXM 4 0.17 0.04 0.59 0.00

GXM 4 185.21 46.30 653.86 4.60

MXN 2 0.36 0.18 2.54 0.01

Error 63 4.46 0.07 0.19

Total 107 4017.01 37.54 100.00

  Note: M = signal factor (specimen width)

            N = Noise factor
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Table 6.21: ANOVA for Type A 

 

Table 6.22: ANOVA for Type C 

 

 

 

Source DOF SS Mean square F-ratio % contribution

A 1 0.80 0.80 11.04 0.02

B 2 4.80 2.40 33.10 0.12

C 2 9.19 4.59 63.34 0.23

D 2 3.22 1.61 22.22 0.08

E 2 39.48 19.74 272.14 0.98

F 2 2.26 1.13 15.57 0.05

G 2 1204.77 602.38 8305.32 30.04

M 2 2542.98 1271.49 17530.59 63.40

N 1 7.17 7.17 98.82 0.18

AXM 2 0.28 0.14 1.94 0.00

BXM 4 0.56 0.14 1.95 0.01

CXM 4 1.44 0.36 4.96 0.03

DXM 4 0.85 0.21 2.94 0.01

EXM 4 4.34 1.09 14.97 0.10

FXM 4 0.22 0.05 0.76 0.00

GXM 4 183.32 45.83 631.89 4.56

MXN 2 0.39 0.19 2.68 0.01

Error 63 4.57 0.07 0.19

Total 107 4010.65 37.48 100.00

  Note: M = signal factor (specimen width)

            N = Noise factor

Source DOF SS Mean square F-ratio % contribution

A 1 0.55 0.55 8.80 0.01

B 2 4.80 2.40 38.33 0.12

C 2 7.97 3.99 63.63 0.20

D 2 3.22 1.61 25.70 0.08

E 2 38.71 19.36 308.88 0.97

F 2 2.23 1.11 17.77 0.05

G 2 1196.62 598.31 9547.34 29.94

M 2 2547.42 1273.71 20324.81 63.75

N 1 0.05 0.05 0.81 0.00

AXM 2 0.26 0.13 2.09 0.00

BXM 4 0.64 0.16 2.56 0.01

CXM 4 1.52 0.38 6.06 0.03

DXM 4 0.70 0.18 2.80 0.01

EXM 4 4.69 1.17 18.71 0.11

FXM 4 0.10 0.02 0.39 0.00

GXM 4 182.54 45.63 728.20 4.56

MXN 2 0.08 0.04 0.62 0.00

Error 63 3.95 0.06 0.17

Total 107 3996.07 37.35 100.00

  Note: M = signal factor (specimen width)

            N = Noise factor
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Table 6.23: Summary of noise influence of outer array layout (denoted as N in ANOVA 

table) for Type A, B, and C 

 

 

 

 

 

 

 

The new total variance is calculated to observe the difference in variance coverage by 

each type. The calculation for type B: 

Total variance, VT = SST / DOF = 4017.01 / 107 = 37.54                                

(6.17) 

New total variance, V all = VT *sum of percent of contribution for factor A to Noise 

= 37.54 ( 0.0001 + 0.0011 + 0.0018 + 0.0009 + 0.0097 + 0.0005 + 0.2982 + 0.6340 + 

0.0041) 

V all B = 35.66 

The calculation for type A: 

Total variance, VT =  SST / DOF = 4010.65 / 107 = 37.48 

New total variance, V all = VT *sum of percent of contribution for factor A to Noise 

= 37.48 ( 0.0002 + 0.0012 + 0.0023 + 0.0008 + 0.0098 + 0.0005 + 0.3004 + 0.6340 + 

0.0018) 

V all A = 35.61 

The calculation for type C: 

Total variance, VT =  SST / DOF = 3996.07 / 107 = 37.35 

New total variance, V all = VT *sum of percent of contribution for factor A to Noise 

= 37.35 (0.0001 + 0.0012 + 0.0020 + 0.0008 + 0.0097 + 0.0005 + 0.2994 + 0.6375 + 

0.0000) 

Type Source DOF SS 
Mean 

square 
F-ratio % contribution 

A Noise 1 7.17 7.17 98.82 0.18 

B Noise 1 16.59 16.59 234.31 0.41 

C Noise 1 0.05 0.05 0.81 0.00 
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V all C = 33.98 

The new total variance shows Type B has the highest variation coverage, followed by 

Type A and C. Noise influence captured and variance coverage presented by Type B 

making this type has better outer array for experimental design when reducing variation 

in response. 

 

6.2.2.2 Confirmation run 

 

The final step is to predict and verify the improvement in peel strength variation using 

the optimum level in SNR response plot. Estimated and confirmation SNR between 

optimum and worst condition is calculated as in Table 6.24. The effect of the optimum 

condition is shown by the dB gain size between optimum and worst SNR. A 

confirmation run is done to check the SNR reproducibility of the estimation and 

confirmation experiment. Figure 6.22 shows the worst and optimum plot in 

confirmation run for all the three types; A, B, and C: 

Table 6.24: Experiment result of SNR (dB) for all types of outer array layout 

 

 

 

 

 

 

 

 

Type Condition Estimated Confirmation 

A 

Optimum 14.91 14.82 

Worst 4.30 7.07 

Gain 10.61 7.75 

Gain difference 2.86 

B 

Optimum 11.19 8.31 

Worst 3.09 2.27 

Gain 8.10 6.04 

Gain difference 2.06 

C 

Optimum 19.60 21.00 

Worst 6.50 8.40 

Gain 13.10 12.60 

Gain difference 0.51 
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Figure 6.22: Ideal function plot from confirmation run for Type A, B, and C 

 

For Type A, the optimum S/N ratio is confirmed at 14.82 dB, comparable to estimated 

value that is 14.91 dB. The difference between estimated and confirmed benefit (gain) is 

2.86 dB.  The gain difference is caused by the worst condition, as in confirmation SNR 

deviates a little bit from the estimated SNR in worst condition. The repeatability of 

worst condition is not very good compared to optimum condition.  

Type B is considered the best type because the variation in measurement data is 

considered by range measurement. The gain of type B is not much differed with type A. 

The confirmation gain for Type B is 6.04 dB, which is just 1.71 dB difference from 

confirmation experiment in Type A. The gain difference for Type B is better than Type A 
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with gain difference is 2.06 dB showing that Type B is more reproducible than Type A. 

Type C is considering the average, thus the gap between N1 and N2 does not deviates 

too much. The repeatability is very good, as the gain difference is only 0.51 dB due to 

average calculation.  However, the variability in data measurement for Type C is not 

fully considered because only average value is taken. On the other hand, Type B 

reproducibility is affected by measurement sampling in outer array due to N1 and N2 

gap which considering the most highest peel strength that is maximum peel strength of 

all and the least peel strength that is minimum peel strength. 

All three noise parameters have less than 30% dB gain difference which shows 

good experiment reproducibility [15]. However, that is not the only factor to be 

considered when making decision on optimum condition. The logical reasons of the 

layout whether it covers the whole variation and the noise effect are some 

considerations that should be evaluated. In this study, the data measurement system on 

how the result is arranged in outer layout plays an important role as it relates to 

variability. If the measurement system does not cover the whole variation in a system, 

smaller gain does not mean better variation control.  

In this practical experiment, reliability of optimum condition emphasized on the 

ability of optimum condition to perform under various range of response behavior. 

Three types of noise layout A, B, and C have its own characteristic, thus result three 

different optimum conditions. R. Dolah et al. [18] presented on Type A outer array 

layout. Details on noise strategy of one type are elaborated in this paper before 

recovering the other two types. However, the best optimum condition must be 

determined to ensure its reliability. Response behavior affects the way of determining 

noise factor and level in outer array measurement. Therefore, preliminary experiment 

plays an important role in experimental design before proceeding into implementation. 

Figure 6.23 summarized on evaluation of noise factor in outer array to provide a reliable 

experimental design for an optimum condition. When the noise level is selected, noise 

parameter need to satisfy the response behavior or process trend theoretically and 

practically. That is the main reason why preliminary run is conducted in Figure 6.17. 

Other possible measurement such as average is included to observe the effect of 

selected noise factor’s level. Finally, the noise factor that satisfies the total response 

behavior is chosen as the experimental design that considered robust against variation 
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and the optimum condition is reliable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23: Noise factor evaluation process 
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deviation at any peel angle value) 
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CHAPTER 7 CRITICAL TO ASSUMPTIONS IN 

PARAMETER DESIGN 

 

This chapter emphasizes on the outlier effect on measurement data. The outlier problem 

in measurement system depicts the assumption that the process is not affected by 

irrelevant sources of variation. Outlier causes variation in measurement data, thus it is 

very important to be critical to such assumption. This chapter presents some guidelines 

to elucidate the detection of outlier and outlier effect on optimum condition.  

 

7.1 Introduction 

 

Robust design engineering is an engineering optimization strategy ideally used for the 

development of new technologies in product and process design [1].  One of its 

component focused in this paper is parameter design which defined as a systematic way 

to make a design robust against noise factors which takes place in improvement stage of 

the product development process [2]. However, the methodology of conducting robust 

design usually started with data analysis of sum and mean, deviation, variation and 

variance [3]. None emphasizes on the measurement data before the data can proceed to 

be analyzed.  

Data which being affected by extraneous sources of variation other than 

variation studied in outer array could lead to wrong decision. The existence of outliers is 

often ignored and the impact is overlooked, thus endanger the experiment by producing 

false alarm and giving completely wrong parameter setting. The optimum condition 

from the data that contains outliers is compared with the corrected data measurement. 

The finding presents the indication procedure on how to confirm whether the data is 

reliable or not for evaluation. The data is unreliable when two main indicators are 

detected.  Firstly, the measurement data plot detects outlier through linear regression 

analysis as it does not belong on the linear line. Secondly, dB gain difference from 

reproducibility examination of signal-to-noise ratio (SNR) between estimation and 

confirmation run is more than 30% shows that the experiment is a failure. This failure 
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affects the experimental design and lead to wrong optimum condition. Investigation has 

to be made whenever anomalies are found, and outlier analysis is one kind of 

investigation analysis. In this practical experiment, the criticality to measurement data is 

discussed on a case study performed in T-peel adhesion test to find an optimum 

condition of a peel strength measurement system.  

 

7.2 Experimental Method using Parameter Design 

 

Parameter design in robust engineering method is used for this experiment. In order to 

observe the effect of outliers on optimum condition, two L9s are constructed; one with 

outlier data (L9A) and another one with no outliers (L9B). Experiments were then 

carried out to detect outlier and its effect on signal-to-noise ratio (SNR). The importance 

to be critical to data is presented in outlier detection procedure. The measurement data 

is evaluated for outlier detection through regression plot and reproducibility of 

experiment. The specimen utilizes the aluminum peel side [4]. Table 7.1 shows the 

signal factors, noise factors, and control factors used in this practical experiment. 

 

Table 7.1: Factors and their levels in L9 

               

 

 

 

 

Unit Level 1 Level 2 Level 3

A : Peel angle o 60 90 120

B : Peel speed mm/s 6 9 12

C : Data region % 30 50 70

D : Spring thickness mm 0.3 0.4 0.5

Signal factor

M : Specimen width mm 5 10 15

Noise factor Level N1 Level N2

Peel angle deviation, D o  +2 -2

Tensile weight, w g 8 4

Control factor

Levels
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7.3 Experimental Results and Discussions 

Peel strength result is taken for SNR calculation. First measurement result is labelled as 

L9A and shown in Table 7.2.  The data, Yij,  is assumed independent and in normal 

distribution. 

Table 7.2:  L9A Result 

Run Specimen width (mm) SNR 

(dB) 5 10 15 

1 9.07 8.44 16.21 16.88 25.25 26.13 10.03 

2 7.92 7.85 14.95 15.19 22.22 21.75 11.20 

3 9.61 9.45 19.01 20.93 27.72 30.47 4.87 

4 8.04 8.44 19.57 20.32 27.62 30.07 3.55 

5 8.52 8.21 16.84 17.21 26.05 25.68 16.27 

6 7.57 8.17 15.77 15.55 21.72 22.44 7.69 

7 6.39 6.49 13.52 13.71 20.14 20.58 14.18 

8 12.88 8.21 20.86 20.52 29.60 30.22 2.20 

9 7.69 7.08 17.30 16.50 24.87 23.75 6.37 

 

 

SNR,  = 10 log (1/r) [ (S - Ve) / VN ]       (7.1)  

S = ((9.07+8.44)5+(16.21+16.88)10+(25.25+26.13)15)
2 

                   2(5
2
+10

2
+15

2
) 

Ve = Se/fe = ( ST - S  - SNx ) / 4                    (7.2) 

ST = 9.07
2
+8.44

2
+16.21

2
+16.88

2
+25.25

2
+26.13

2 

SNx=((9.07)5+(16.21)10+(25.25)15)
2
+((8.44)5+(16.88)10 

+(26.13)15)
2
 ) / (5

2
+10

2
+15

2
) - S  

VN = Se’ / fe’ = (ST - S) / 5  = 0.29              (7.3) 

 = 10 log10(1/2(5
2
+10

2
+15

2
))[(S - Ve) / VN ] = 10.03dB 

 

Once the result is obtained, it is important to be critical to data before 

proceeding to further analysis. Otherwise, the analysis of improper data will endanger 

the experiment and lead to improper conclusion. Linear regression plot is one 
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alternative to investigate the existence of outliers. Measurement data for L9A is shown 

in Figure 5. In 5mm, one outlier is detected as it does not belong to its population group. 

Peel strength of that one point is abnormally different, that is in run 8; 12.88N. The 

investigation is continued by plotting the regression plot for 5mm as in Figure 7.1 to 

investigate the problem. N1 and N2 are assumed as two variables and the correlation 

coefficient, r, is used to measure the linear relationship between two variables. The 

squared coefficient of correlation, R
2
, gives the proportion of common variance between 

two variables, also called coefficient of determination [7]. The closer the value of R
2
 is 

to 1, the stronger the linear association between the variables. One extremely deviant 

observation, so-called outlier, can dramatically influence the value of R
2
 [5]. 

 

 

 

 

 

 

 

Figure 7.1:  L9A measurement data 

In Figure 7.2, R
2
 without outlier is 0.766, but when the outlier is added to the set, the 

correlation is equal to -1.935. R
2
 can never be negative as it is the square of r. The value 

of R
2
 is bounded by 0 < R

2
 < 1. The existence of outlier presents a suspicious 

observation and the result need to be repeated to confirm the cause or else it might lead 

to wrong conclusion.  In L9A, the outlier data is 12.88N in run 8 for specimen 5mm 

under N1. Outlier is not observed in specimen 10mm and 15mm as R
2
 for specimen 

10mm and 15mm is 0.910 and 0.895 respectively. Then, mean SNR so-called process 

average is calculated to find the effect of each control factor. The process average is 

used to calculate the optimum condition based on SNR factorial effect plot. 
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Figure 7.2: Specimen 5mm measurement result 

 

Optimum condition for L9A derived from SNR formula in (1) is A2 B2 C3 and D2. The 

detection procedure is proceed by checking the experiment reproducibility through 

comparison of SNR estimation and confirmation dB gain. Estimation SNR for optimum 

condition is calculated by: 

= A2+B2+C3+D2 – (DOF n-1)(  / n )                          (7.4) 

= (A2+B2+C3+D2) – (4 factor–1)(average SNR in L9A) 

= 41.84dB – 3(8.48dB)  = 16.39dB 

Estimation SNR for worst condition is calculated to get the dB gain. The effect of the 

optimum condition is shown by the dB gain size. 

= (A3+B3+C1+D3) – (4 factor–1)(average SNR in L9A) 

= 24.07dB – 3(8.48dB)  = - 1.38dB 

 

Thus, estimated dB gain is 17.77dB. Confirmation run is done to ensure the 

reproducibility of optimum condition. However, the confirmation dB gain is 9.75dB, 

which is 45.1% different from estimation dB gain. The result of experiment is 

considered not satisfactory. This indicates  the possibility of wrong optimum condition 

resulted from outlier data. The dB gain difference should not exceed 30% difference 

from estimation dB gain [6]. From the anomaly of R
2
 and dB gain difference, second L9 

which is called L9B in Table 7.3 is employed as to repeat the experiment and confirmed 

the outlier reproducibility. All 9 runs are conducted again to reduce extraneous sources 

of variation.  
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Table 7.3: L9B Result (repeated experiment) 

Run Specimen width (mm) SNR  

(dB) 5 10 15 

1 8.70 8.37 16.62 16.78 24.96 24.09 12.40 

2 8.04 8.12 15.28 16.21 23.91 24.52 11.77 

3 8.72 8.09 16.59 16.39 24.49 24.30 15.15 

4 7.79 8.04 15.68 15.86 23.87 24.38 15.97 

5 8.45 8.41 16.49 16.20 24.12 23.99 14.85 

6 8.26 8.18 15.51 15.80 24.43 24.32 13.28 

7 7.59 7.74 14.77 15.15 22.16 22.20 16.76 

8 7.46 7.69 15.03 15.83 22.68 23.58 11.76 

9 8.49 8.27 15.87 16.29 23.76 24.09 14.43 

 

Run 8 which found to have outlier in earlier experiment, L9A; is plotted as in Figure 7.3 

(a). Therefore, by repeating the experiment in run 8 as in L9B, the linear plot is shown 

in Figure b. The linear relationship is clearly observed in L9B for run 8 and the data is 

acceptable as no outlier is observed. The outlier in Figure 7.2 is clearly depicted in 

Figure 7.3 (a) for specimen width 5mm. Figure 7.3 (b) illustrates the repeated 

experiment (L9B) and linearity of peel strength is observed. 

 

  

(a)                                (b)                                                            

Figure 7.3: Run 8 for L9A (a) and L9B (b) 
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Measurement data of L9B is plotted to observe any outlier. R
2
 for 5mm, 10mm, and 

15mm are 0.729, 0.676, and 0.645 respectively. No outlier is observed. The outlier in 

L9A is a special cause, due to environment noise or measurement mistake that cause the 

12.88N as outlier data. SNR as in (1), SNR process average and effect plot, and 

estimation SNR as in (4) are calculated as same as L9A. The optimum condition for 

L9B is A2 B1 C3 D3 as shown in Fig. 7.4. The estimated db gain is 7.31dB and 

confirmation db gain is 6.53dB. Table 7.4 summarized only 10.7%  difference, thus 

L9B is considered a success. 

 

 

Figure 7.4: SNR factorial effect plot for L9B and L9A 

 

Table 7.4  Reproducibility Examination For L9A And L9B 

Type Condition Estimated Confirmation 

L9A 

A2 

B2 

C3 

D2 

Optimum 16.39 15.10 

Worst -1.38 5.35 

SNR dB gain 17.77 9.75 

Gain difference 8.02 dB (45.1% difference) 

L9B 

A2 

B1 

C3 

D3 

Optimum 17.49 16.45 

Worst 10.18 9.92 

SNR dB gain 7.31 6.53 

Gain difference 0.78 dB (10.7% difference) 

0
2
4
6
8

10
12
14
16
18

A1 A2 A3 B1 B2 B3 C1 C2 C3 D1 D2 D3

S
ig

n
al

-t
o
-N

o
is

e 
ra

ti
o
, 


 (
d

B
) 

L9A (data with outlier) L9B

Peel angle Peel speed Data region Spring thickness 



127 

 

Notice that there are some deviations between condition L9A and L9B. SNR 

for L9B is higher than L9A due to repetition error since L9B is done after realizing the 

outlier existing, which took some time gap between both experiment.  The variation is 

also due to extraneous factors which inevitably vary during experiment such as 

temperature and humidity. As the practical experiment focused on  the effect of outlier 

from response data and its influence on optimum condition, the difference in optimum 

condition level between separated data set is assumed has  no effect in outlier 

examination.  

 

7.3.1 Replacement with Regression Point 

 

Decision must be done carefully between repeating the experiment of the whole 

orthogonal array or replacing the data with regression point. This is done to prevent any 

extraneous variation or the noise that is not under study is not affecting the 

measurement result. Run 8 which contains the outlier is omitted to allow normal data 

calculation. This method is treated as missing data treatment. Table 7.5 shows the 

calculation of linear regression from L9A result. N1 is considered as x-data and N2 as 

y-data.  

Line of best fit is Y = b1X + b0     (7.5) 

with slope; b1 =  Sxx / Sxy            (7.6) 

Table 7.5: L9A Linear Regression Data 

      
  

Sxx  Sxy  

Run X Y X - average X 
Y - average 

Y 

(X - average 

X)
2
 

(X - average X)(Y - 

average Y) 

1 9.07  8.44  0.971 0.4257 0.94  0.413399032 

2 7.92  7.85  -0.184 -0.1636 0.03  0.030141322 

3 9.61  9.45  1.511 1.4351 2.28  2.168047901 

4 8.04  8.44  -0.061 0.4216 0.00  -0.025510789 

5 8.52  8.21  0.421 0.1925 0.18  0.081115043 

6 7.57  8.17  -0.532 0.1501 0.28  -0.079834222 

7 6.39  6.49  -1.711 -1.5262 2.93  2.611636619 
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8 
  

        

9 7.69  7.08  -0.415 -0.9352 0.17  0.388439319 

Average X =  8.10 

Average Y = 8.02 

Sum of Sxx = 6.82 

Sum of Sxy = 5.587 

 

By using equation (7.6), b1 = 0.8187. Thus, intercept; b0 is calculated by inserting the 

average of X and Y into equation (7.5). Therefore, line of best fit is: 

Y = 0.8187 X + 1.3859             (7.7)     

The correlation coefficient, R
2 
, gives the proportion of common variance between two 

variables, also called coefficient of determination. The closer the value of R
2
 is to 1, the 

stronger the linear association between the variables. One extremely deviant observation, 

so-called outlier, can dramatically influence the value of R
2
 [7]. The line of best fit is 

used as the predicted Y in R
2
. R

2
 is 0.8013. Figure 7.5 shows the regression plot for the 

best fit line. 

R
2
 =  (Y – Y)

2
 

                    (Y – Y)
2
            (7.8) 

          

Figure 7.5: Linear regression plot for run 8 
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from equation (7.7). Thus, the replacement data  of the new X is 8.33. SNR  for the 

replacement data from linear regression point is 4.42 dB. Initial SNR with outlier is 2.20, 

the replacement with regression data is much better. The repeating experiment has SNR 

11.76 dB. Table 7.6 summarizes the three SNR results in obtained in run 8. 

 

Table 7.6: Treatment of outlier data using repeating L9 and replacement by regression 

Type 
5mm 10mm 15mm 

SNR  Sens.  
N1 N2 N1 N2 N1 N2 

Initial outlier 12.88 8.21 20.86 20.52 29.60 30.22 2.20 6.12 

Repeated (L9B) 7.46 7.69 15.03 15.83 22.68 23.58 11.76 3.75 

Regression point 8.33 8.21 20.86 20.52 29.60 30.22 4.12 5.97 

 

Although the SNR of run 8 in L9B is the best compared to replacement of 

regression data, consideration such as experimental time and cost must need to be 

considered. Therefore, the lifespan of specimen is studied before deciding on repeating 

or replacement data should be done. If changed condition of specimen is observed, it is 

advisable to repeat the experiment to prevent the extraneous variation. However, if there 

is no changed in specimen condition, treating it as missing data treatment is worth 

enough.  

 

7.4 Conclusion 

 

The importance of making thorough analysis of assumptions and possible existence of 

outliers have become obvious from the case study in this paper. Even though the 

confirmation test indicated the problem and thus trigger suspicious to data, a thorough 

investigation of possible anomalies in measurement data should be performed. Thus, it 

is very important to ensure that the data is reliable enough to draw a conclusion at the 

end of the experiment. Two ways to examine on data reliability:  

a) Outliers examination - by observing the linear relationship in regression plot. R
2 

changed dramatically when deviant observation is found. 
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b) Reproducibility examination – Estimation and confirmation in dB gain difference 

should not deviates too much or exceeds 30%. The similar the value between 

estimation and confirmation SNR, thus  more reliable the optimum condition is. 

 

Figure 7.6 presents the outlier checking methodology flow. Figure 7.6 summarized the 

outlier checking methodology to prevent any misleading conclusion from SNR analysis. 

Planning the experiment carefully is extremely important to ensure a smooth and 

reliable result. Enable the function, quality characteristic selection, and noise, control 

and orthogonal array selection is done in Plan stage. When planning is complete, 

experiment is ready to be implemented thus labeled as Do stage. Before confirming the 

SNR result, linear regression from the measurement data is plotted to observe any 

abnormalities and extraneous variation. Reproducibility in measurement is analyzed 

through confirmation experiment by comparing the dB gain between estimation and 

confirmation SNR. If the condition of sample has changed, the experiment is necessary 

to be repeated because variation is greater for a sample that has changed its condition. 

However, if the sample has no changed condition (short period of time), it is worth 

enough to be treated as missing data treatment through linear regression. Replacement 

of regression point found in linear regression analysis is done instead of doing another 

new experiment. Finally, the optimum level is accepted as an action for further 

application of the confirmed optimum condition. Measurement data should be examined 

immediately once the experiment is performed to prevent perils. The finding of this 

chapter is presented in R. Dolah et al. [8] concerning on the data criticality in 

measurement process. 
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Figure 7.6: Outlier checking methodology flow 
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CHAPTER 8  DISCUSSIONS ON CONCLUSION 

 

Chapter 5, 6 and 7 explained the robust design methodology step by step from the ideal 

function stage to the experiment implementation. These findings are categorized into 

several stages of measurement systems. Measurement systems in each section are 

explained thus enhancing the general measurement system of parameter design. 

 

8.1 Methodology for Measurement System Design of Quality Engineering  

 

The research of measurement system design has included the three components of 

Taguchi Method that are System Design, Parameter Design, and Tolerance Design.  

The practical experiment of peel strength measurement is not suitable for tolerance 

design because the response is not a part to be measured exactly. This practical case 

study is minimizing variation in peel strength as much as possible. Tolerance design is 

not suitable to be applied using this practical case study. Therefore, only system design 

and parameter design are explained. 

 

8.1.1 System Design 

 

System design is the conceptualization and synthesis of a product or process to be used. 

This is where the new ideas, knowledge and concepts in science and technology are 

utilized to determine the right combination of materials, parts, processes, and design 

factors that will satisfy functional and economical specifications. Therefore, before 

going in depth to optimize a process for example the T-peel test process in this case; 

first one should think of the system itself whether it satisfies the function and 

economically designed. Mechanical testing method is studied and final conclusion is 

drawn from system design analysis. The practical case study is using T-peel test for the 

flexible film packaging as a method for measuring peel strength of an adhesive. Firstly, 

consideration on mechanical basic test methods to evaluate the lamination strength are 

studied that are peel, shear, and tension testing. Peel tests are most commonly used to 

evaluate the laminated film or bonded adhesives. Thus, peel test is preferred when 



135 

 

working with multiple film packaging in this study that are poly ethylene (PET), 

polyamide, aluminum, cast poly propylene (CPP), and bonded with adhesives. Shear 

test Shear adhesion test is one of the PSA test to evaluate the holding properties. Shear 

adhesion is the resistance to movement of a tape specimen when a shearing load is 

applied. In other words, shear adhesion is holding power. The essence of the test is a 

given area of tape is adhered to a substrate, placed in vertical position, and loaded with a 

given mass for example a quartz block. The measurement includes the slippage of a 

specimen for the standardized loading time, or in other words the ability to adhere to a 

standard stainless steel plate. Another measurement of adhesive test method is tensile 

test or known as tension testing. Tensile test is done in which a sample is subjected to a 

controlled tension until failure. This test is important to predict how a material will react 

under other type of forces. Mechanical characteristics that usually been measured in 

tensile test are tensile strength, maximum elongation, and reduction in area. As the 

specimen focused on mechanical peeling property, thus elongation is not much 

concerned here. Therefore, tensile test is not being selected.  

There are four main types of peel tests: 90
o
 peel, 180

o
 peel, T-peel, and climbing 

drum peel. The 90
o
 peel test is suitable for a flexible adhesive material that is adhered to 

a more rigid substrate. The 180
o
 peel test is best used when the flexible substrate can be 

bent back by 180
o
. The T-peel test is best used when both adhesive and adherend are 

similar or flexible. The climbing drum peel test is suitable to determine the peel 

resistance of adhesive bonds between sandwiches of two layers. This study assesses 

packaging film made out of flexible material and consisting of several layers of flexible 

films. Therefore, the T-peel test is the most suitable peel test to measure the peel 

strength of this material. The selection of testing method is part of system design based 

on knowledge from specialized fields or so-called specialist’s territory, and neither 

quality control nor the design of experiments can help it. Figure 8.1 below summarized 

the selection of mechanical testing method for flexible film packaging: 
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Figure 8.1: Selection of mechanical testing method in system design phase 

 

8.1.2 Parameter Design 

 

Dr. Taguchi has emphasized that quality must be designed into products from the start. 

Everywhere not only Japan, but also in Europe and United States began adopting 

Taguchi’s robust design approaches as part of product’s quality improvement and robust 

design. Quoted by Phadke, 1989, robust design is and engineering methodology for 

improving productivity during research and development so that high quality products 

can be produced quickly and at low cost. The idea behind robust design is insensitivity 

to variation in uncontrollable parameters. The minimization of variation in parameters is 

done in parameter design process. Parameter design is a stage where the controllable 

factor is observed on how the product or process reacts with uncontrollable factor in a 

system. Parameter design is a main thrust of Taguchi approach. Appropriate level of 

factors are determined to ensure the system is less sensitive to variation or in other 

words, to make the system robust. By doing this approach, the performance of a product 

or process is much better thus produce high quality product and reducing loss to the 

customer. Once system design is finished, the next step is to determine the optimum 

level of individual parameters of the system.  

Bo Bergman and Bengt Klefsjö [1] explained that a robust design is considered 

as improvement stage of the product development process. A simple mathematic 
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description is illustrated with an output variable denoted as y with a target value yo. 

Three design parameters x1, x2, x3 and a noise factor Z as an uncontrollable variation is 

shown in equation 8.1: 

Y = f (X1, X2, X3, … Z1, Z2, Z3, ..  ) = bo + b1X1 + b2X2 + b3X3 + bZZ + b2Z X2Z +                

(8.1) 

 is an unknown, small residual term which is independent on the design parameter.  

With X2 = -bZ / b2Z, the influence of noise factor Z is completely disappears. The 

equation is said to be robust because the influence of noise factor is minimized and 

disappeared. The noise factors in an experiment can be varied, as assumed that it is 

controllable during the experiment and uncontrollable in real life. There is some case 

whereby noise is not detected and its appearance is not even known. These variations 

are caused by extraneous factors. Extraneous factor could deviate the output result 

unintentionally. In Chapter 3, the study on the effect of the outliers as extraneous factor 

is described thoroughly and method to overcome the ignorance of outliers has been 

presented. The existence of outliers is often ignored. Outliers may sway the output 

result thus giving an inaccurate optimum condition as the end result.  

 

8.2 Flow for Measurement System in Robust Design Engineering  

 

The findings can be gathered as one measurement system design for parameter design in 

Taguchi method. Literature review explained that most Taguchi method application only 

informed about application of the tool without discussing on the concept of variation 

measurement in the early of implementation [2][3][4]. On the other hand, measurement 

systems of robust design are explained deeply in Tirthanka Dasgupta et al., Bovas 

Abraham et al., V. Roshan Joseph et al., and Deuk Soo Kang et al.  

 As from voice of customer, the target or customer specification is aligned in 

Quality Function Deployment house (QFD). The findings are then being channeled to 

product development section to satisfy or fulfill the QFD requirements. In product 

development, the QE implementation is branched out through two channels that are 

management strategy and development implementation stage using engineering tool for 

QE. In the management strategy, the opponents or resistance of implementing QE is 

overcome and counter measured. Findings from Fuji Xerox and Company B are taken 
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into account as to overcome the negative feedback of QE implementation in an 

organization. For development implementation stage, parameter design is identified as 

an engineering tool. Parameter design method is illustrated in laboratory using T-peel 

test method and is compared with implementation in Fuji Xerox. Parameter design as 

QE engineering tool can be applied in any environment, be it industrial application or 

research field. Methodology comparison in Figure 5.4a and 5.4b of Chapter 5 is used to 

produce a framework on how to apply QE methodology to obtain robustness of a 

product or process. Measurement system design is drafted from this very beginning 

stage of product development.  

The parameter design in engineering tool is further analyzed to ensure the 

measurement has covered total variability in data. There are four stages in measurement 

systems for this flexible film. The first measurement system is the function system 

measurement (F). Secondly, noise strategy measurement (N) is done followed by 

control factor selection and determination I(C). The last stage is optimization 

measurement (O). Figure 8.2 showed the measurement system in parameter design.  

The system is a close-loop measurement system called as F-N-C-O ladder. 

Problem statement is the system ignition followed by the four sub-systems; F for 

Function system, N for Noise system, C for Control system, and O for Optimization 

system. Application of the optimum condition is the output of the measurement system. 

The F-N-C-O is connected to each other by the Plan-Do-Study-Action so-called 

P-D-S-A cycle. In each sub-system, P-D-S-A cycle is used for continuous improvement 

from one sub-system to another. Each sub-system is started with P: Plan stage and end 

up with A: Act stage. The Act stage in Function system ( F ) is moving the Plan stage in 

Noise system ( N ).  And the Act stage in N is moving the Plan stage in Control system 

( C ) and so on. In optimization system (O), S: Study stage analyze the normality of the 

data spread. If the spread of data is not good (NG), the flow is back to Function system 

( F ) under D:Do stage of selecting the quality characteristic. If the reproducibility is 

low detected in O system, the experiment was a failure. The failure is often related to 

basic function setting, quality characteristics and others. Thus, the flow is back to F. 

This P-D-S-A cycle ensures the mobility of the system and dependency to each 

sub-system. The equation Y = f (X1, X2, X3,..Z1, Z2, Z3, .. ) shown at the bottom of 

F-N-C-O ladder represents the output; Y as the function of the Xs as in the Control 
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system ( C ) and Zs as the Noise system (N). Details on each sub-system are elaborated 

in further sections. 

 

 

 

 

 

 

 

 

 

 

 

 

      

    

 

 

 

 

 

Figure 8.2: F-N-C-O ladder for measurement system in robust design engineering 
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and analyze the response. Measure the function, that is energy related because energy 

has additivity. 

In this research, peel strength is the energy for flexible film testing. At “Do” 

stage, peel strength has been used as quality characteristic for the practical experiment 

using parameter design. After the quality characteristic is identified, type of 

signal-to-noise ratio (SNR) is studied. In “Study” stage, analysis on which suitable 

quality characteristic is done to ensure the variation is totally captured. It is important to 

identify whether or not the system has the signal factor. There are static SNR without 

signal factor and dynamic SNR with signal factor. Measurement system is a perfect 

illustration of dynamic system. In a measurement system, the measurand is always in 

dynamic state as the range of measurement is used. The shaded area covering the static 

SNR means different characteristic of measurement term. Static in robust design 

consists of bigger-the-better (BTB), smaller-the-better (STB), nominal-the-best (NTB), 

and operating window (OW). In this research, dynamic SNR is chosen because signal 

factor that is specimen width is used. Signal factor is a controllable variable that helps 

to actualize or accomplish the intention. Factors cited for the purpose of expressing 

intention or attaining a target are called signal factor. The width of the specimen is a 

signal factor used as a medium to actualize the intention of getting the peel strength 

result. From preliminary studies, the wider the specimen width, the greater the peel 

strength is. Peel strength increase proportionally to specimen width. 

Three widths are used (5mm, 10mm, and 15mm) to measure peel strength 

linearity. Hence, the signal to noise ratio (eta, ) for dynamic response is used in this 

study to measure various ranges of input to ensure robustness. Another application 

example of signal factor is in dyeing process. In dyeing process, dyeing temperature 

considerably affects darkness. If temperature is changed to adjust darkness, then 

temperature is a signal factor. Signal factor has no influence on SNR but have a 

significant effect on the mean. As explained in early section, the mean of peel strength 

changes according to specimen width.  

Next, under “Act” stage, an ideal function and finally P-diagram is constructed 

to get a full view of the parameter design system. An ideal function shows a relationship 

between a signal and an output characteristic under certain conditions of use. In robust 

engineering, research and development are conducted by reducing the variability of a 
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function under various conditions and bring the function as close as possible to the ideal 

function under standard condition [5]. Function measurement consists of below 

processes as shown in Figure 8.3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Figure 8.3: Function (F) system 

 

8.2.2 Noise System ( N ) 
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the control factors that are likely to affect the variability and the mean of the response. 

After identifying the experiment objectives, it is usually preferable to select the 

responses before selecting the noise factor. Therefore, the “Act” stage of constructed 

ideal function and P-diagram in F sub-system has connected the “Plan” stage in N 

sub-system. After function measurement is determined for the quality characteristic, 

noise measurement is done. When planning an experimental design, selecting factors 

that affect the response and their levels of value or setting are very important. If 

incorrect factors and levels are chosen in the experiment, the results may be incomplete 

or misleading. Number of factors and levels are chosen based on objectives of the 

experiment. Relate with response objective, for example if the objective is to minimize 

variation of peel strength, make sure the noise factor can produce the variation in peel 

strength and the design space is covered as best as it can. Engineering knowledge of the 

process can be used to select noise factors and level. Historical data, previous 

experimental results, theoretical knowledge, expert opinion, observational data and 

other relevant data can be used in judging what noise factor should be. The noise 

strategy is very important which involves the selection of noise factor. Engineering 

knowledge is very useful in ensuring the stability of the optimum condition in long term. 

When source of variation is identified clearly, this will minimize the risk of having the 

unstable optimum condition. The robustness of measurement result is heavily depending 

on the noise factor. In long term, reproducibility of measurement must be equal or most 

equal to the measurand. 

 In selecting the noise level, the range of factor levels should be selected as the 

levels are not so close to each other because the effect on the response is not observable 

or important nearby effects will be undetected. The level also should not be so far apart 

that there is a region of unknown process behavior between the factor levels. The level 

also depends on the response being considered. Two-level is chosen when the factor 

either has or has no effect on the response. Three-level of a factor is chosen to study 

curvature in the response. Normally in two-level factor, it is possible to assess whether 

there is curvature in one or more factors by adding center points at the center of its 

range. Four-level factor or more is to study further curvature, to locate sudden rise or 

drop in the response. In other words, extra level is meant to understand some pattern or 

change behavior. Then, the noise validation study is made in “Do” stage to categorize 

the group of noise parameter. For example, set 1, or usually denoted as N1 gather the 

low setting of noise parameters. Set 2, or N2 denotes the high setting of noise 
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parameters. This is the special characterization of Taguchi method that the noise 

parameter is separated in outer array. The effect of noise parameter is studied in Taguchi 

method and placed in outer array. The objective is to determine the best setting of those 

parameters which can be controlled during the standard conditions and minimize the 

effect of noise parameters which causes variability in product performance. Taguchi 

method focuses on achieving robustness in the functional performance. However in 

classical design of experiments (DOE), the objective is to minimize the effect of 

parameters using blocking or randomization strategies. Thus, in DOE all parameters are 

placed in one array and no distinction of control and noise parameters. 

 In studying the noise factor to be measured in outer array, there are three types 

of data measurements as explained in Chapter 3 section 3.2.2.2. This practical 

experiment emphasizes on the outer array layout effect on optimum condition. This is 

done under “Study” stage to study the selected noise factor. Firstly, the assumption of 

current behavior in the response is evaluated based on theoretical knowledge of peel 

strength. Practical experiment is done to confirm the assumption of the peel strength 

curve. This is called the preliminary study of the assumption. In practical experiment to 

proof the assumption, the peel strength is found decreasing from 60
o
 to 90

o
 peel angle. 

Deviation of peel angle gives clear value of peel strength, either high peel strength or 

low peel strength. As the trend of peel strength is increasing, an assumption is made on 

higher peel strength tends to be affected by higher peel angle. This assumption is an 

outer array derived from theoretical analysis. However, the trend from 90
o
 onwards 

showing a very small increment. Deviation of +2
o
 for this region is hardly separated, 

thus peel strength for N1 is not necessarily higher than N2. Thus, measurement of peel 

strength is further analyzed to understand the actual phenomena or response behavior. 

As the objective is to minimize variation in peel strength, coverage of data is an 

important for data measurement in outer array. Full range coverage is the noise 

parameter to fulfill this phenomenon. Other measurement that could possibly occur in 

the response is further analyzed. In this case, average measurement is done. Finally, 

under “Act” stage, the noise parameter that satisfies the total response behavior is 

chosen. Outer array which covers the whole variability is chosen to ensure the result of 

optimum condition is not misleading. Figure 8.4 summarized the noise strategy: 
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Figure 8.4: Noise (N) system 
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8.2.3 Control System ( C ) 

 

Control factor is the factor that can be controlled during experiment and also during 

customer use. In this C stage, the control factor selection and determination are done. 

Taguchi’s strongest contributions to the design of experiments were to focus the 

experimenter’s attention on minimizing the variability of the response and not only 

optimizing the response. Thus, control factor and noise factor are separated in inner 

array and outer array respectively. Most statistical methods concentrating on modeling, 

predicting, and controlling the average response, new method of experimental design 

and analysis are crucial. Control factor is placed in inner array of orthogonal array. 

Control factors affect process variability as measured by the SNR. Control factor has 

three categories. The first category is the factor whose different settings give different 

average responses. These factors are said to be active but have no interaction with noise 

factors. Second category is a group of control factors which are active by virtue of 

having an interaction with noise factors. They have the dispersion effect. Finally, the 

third category is the factors which have no effect on the response or called as non-active. 

This kind of factor can be set at their cheapest or most convenient levels.  

Selecting the control parameters can be started by relating with the response 

objective. Similarly like in selecting the noise parameter, engineering knowledge of the 

process can be used to select and judge the control parameters and their level apart from 

historical data, previous experimental results, theoretical knowledge, expert opinion, 

observational data and other relevant data. After identifying the noise factor, control 

factor evaluation is done. Noise measurement system is done before the control factor 

system to ensure the effect of all the noise parameter can be minimized by the best 

control-factor-level combination. Therefore, the “Act” stage in N sub-system is the 

input for the “Plan” stage in C sub-system. In this thesis, there are three characters in 

designing T-peel test to minimum variation that are testing condition, design or machine 

condition and specimen condition. Testing condition includes peel angle, peel speed, 

peel length, and spring thickness. Design or machine condition includes diameter of the 

drum and module of spur gear. Specimen condition is tensile weight to keep the 

specimen in T-shape position in minimizing the variation during peeling and data region 

coverage from constant peel strength curve. From these characters, “Do” stage presents 
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the determined control factor. The final control factors for the T-peel test are tensile 

weight, peel angle, peel speed, spring thickness, data region, diameter of drum, and 

module of spur gear. Peel length is fixed at 60mm in x-axis direction. 

Control-factor-level is then been “Study” to prevent any misleading results due to 

incorrect control-factor-level. Final control factor and level is selected in “Act” stage 

thus activate the “Plan” stage in the next sub-system. Figure 8.5 summarizes the 

methodology flow of control measurement system (C): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5: Control factor selection and determination (C) system 

 

8.2.4 Optimization System (O) 

 

Once the function, noise and control measurement are done, optimization stage takes 

place. “Act” stage in C sub-system acts to activate the “Plan” stage in O sub-system. 
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based on noise and control factor strategies. Orthogonal array is chosen based on 

number of control factor and noise factor and their levels. Orthogonal array is the design 

space. It is a balance set of experimentation run. Every pair of columns, all 

combinations of levels occur in equal number of times. The design used in this thesis is 

L9 and L18. Four three-level of control factors is used in L9 that results for 54 

experimental runs. One two-level factor and six three-level control factor are used in 

L18 that result for 108 experimental runs. Outer array of N1 and N2 with one 

three-level of signal factor is used. Dynamic SNR is employed. The relationship 

between the mean response and the levels of signal factor is linear. In “Do” stage, 

experiment is implemented based on the setting of levels in orthogonal array. The 

measurement data is recorded and further analysis on SNR is done.  

 In “Study” stage, the criticality of data and assumption is analyzed to ensure 

the measured data is genuine from extraneous variation that is not in the measurement 

system. The spread of measured data is checked through linear regression plot for 

abnormality checking. Outlier is often overlook thus giving misleading conclusion. 

Practical case study is given in Chapter 7 for studying the effect of outlier in 

measurement system. Next, the confirmation test is done for reproducibility checking. 

When estimation SNR gain is not comparable with confirmation gain resulting more 

than 30% difference, the measured data is not reproducible and investigation needs to be 

done. If this mistake is realized more than three months, repetition of the experiment of 

that particular point is needed. However, if the mistake is realized less than three 

months, the abnormal data can be replaced with regression point by treating it as 

missing data. Confirmation experiment is done once again to ensure the reproducibility 

is less than 30% or 3 dB. If reproducibility is low, then the loop is back to the F system 

under Do stage. Either to repeat or replace with regression point in a linear relation, 

specimen condition must be taken into account. This is done to minimize the outer noise 

and inner noise due to environmental condition and deterioration of elements in the 

sample respectively. Thus the optimum condition is accepted in “Act” stage. Figure 8.6 

summarized the optimization measurement system: 
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Figure 8.6: Optimization (O) system 

 

8.3 Conclusion  

 

The measurement procedures in Chapter 5, 6 and 7 clearly explained on the 

measurement system in each stage of parameter design. The system is divided into four 

sections for details. F (function), N (noise), C (control) and O (optimization) are the 

stages of parameter design measurement system. This is the mainstream of 

measurement system in parameter design as stated in the research objective (Chapter 1) 

to establish the measurement system design for parameter design achieved using the 

five scopes of research. 

While many research focuses on application of parameter design, very less 

concern on the measurement system in every stage of parameter design implementation. 
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This thesis explained the measurement system in four categories so that to encapsulate 

the methodology in detail. The objective stated to present the measurement system 

design not only the result of experiment using parameter design in practical case but the 

methodology of measured data is explained. Five scopes have been decided to achieve 

the objective. Firstly, the procedure of optimum condition is explained in Chapter 6. 

Selection of multiple optimum conditions is done through L9 experiment. Three 

optimum conditions for flexible film are discussed: the aluminum peel side condition, 

the CPP peel side condition, and the harmonized condition. The signal-to-noise ratio for 

the CPP peels side condition increased by 22% from the aluminum peel side condition; 

thus, it is advised that the CPP peel side condition be used. The SNR of the harmonized 

condition is lower than the CPP and aluminum conditions, but it provides a convenient 

design that can be used without regard for peel side. Selection between CPP or 

harmonized condition is based on objective of the experimenters objective. It is advised 

that the optimum condition for the CPP peel side (A1 B1 C1 D3) be used for T-peel tests 

of flexible film, since the CPP optimum condition had the highest SNR (20.11dB) and 

thus had minimum variation in peel strength. The robust parameter design method in 

quality engineering benefited T-peel test optimization by presenting a harmonized 

condition. To achieve the same optimum condition at any peel angle surface, optimum 

condition for harmonized design was chosen by selecting the level with the smallest gap 

between the Al and CPP peel angle SNR factorial effect plots. Trade-off method is used 

for harmonized design to provide a convenience method to experimenter. The decision 

of selecting the optimum condition is explained in I (implementation) stage of 

measurement system design flow. Then, selection of noise strategy is done through L18 

experiment which presents the possibilities exists in outer array data measurement. The 

most reliable optimum condition is the one which covers the whole variability of data 

covered by noise parameter presented in outer array. Noise parameter evaluation process 

is explained in N (noise) stage of measurement system design flow. 

 Second scope covered the systematic way in handling the outliers to prevent 

false alarm and wrong or misleading optimum condition. This scope is presented in O 

(optimization) stage of measurement system design flow under “Study” label. This 

paper will emphasize on the importance to be critical to data. The existence of outliers is 

often ignored and the impact is overlooked, thus endanger the experiment by producing 
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false alarm and giving completely wrong parameter setting. The finding presents the 

indication procedure on how to confirm whether the data is reliable or not for evaluation. 

The data is unreliable when two main indicators are detected that are linear regression 

check and SNR reproducibility check. The L18 experiment of multiple noise strategy 

and L9 experiment on the effect of outliers had encapsulate the third scope which to 

establish a procedure on how to analyze variability and optimization when designing a 

measurement system in parameter design. 

 The fourth scope underlined the importance of observing the difference of 

parameter design practise in laboratory and industry. This scope had been encapsulated 

in Chapter 5 which explained the application of parameter design in two companies and 

management of quality engineering  implementation. Barriers and counter measure 

procedure are presented so as to analyze not only in practical point of view but also to 

implementation in real working environment. Business, education, and technical 

barriers are the main obstacle’s group that hindered the implementation widely. Fuji 

Xerox had revealed their way of overcoming the obstacles and Company B had 

explained their quality engineering culture. The laboratory way of implementing QE 

methodology flow is approximately similar between laboratory case study and Fuji 

Xerox. It is proven that QE engineering tool can be applied in any environment, be it 

industrial application or research field. The F (function) stage has been emphasized in 

industry’s application in Fuji Xerox and Company B because function is very important 

as the initial or foundation basis before starting the quality engineering steps. C 

(control) and N (noise) stage in measurement system cycle have been used as guideline 

for both laboratory and industry practice in parameter design factor selection. 

 Finally, the fifth scope to establish a mainstream flow in order to achieve high 

quality experimental design. Four categories consist of F, N, C, and O is briefly 

summarized general mainstream flow of measurement system in parameter design. For 

instant, mechanical engineering case using peel strength standardized method is blended 

with the industry experience of parameter design application have served a complete 

measurement system design focusing in parameter design of Taguchi Method. Finally, 

with these findings, a mainstream flow is established to achieve high quality 

experimental design. Experimental is the perfect tool for measurement. The reliability 
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of measurement depends on how well it is planned, how well the data are analyzed, and 

how the results are evaluated as shown in FNCO cycle of measurement systems. This 

research has affects the existing measurement system in parameter design by providing 

higher confidence level and optimization rate. By coming out with the measurement 

system using robust design engineering method, metrology in parameter design 

becomes more convergent and higher degree of confidence in reliability. It also has 

enlightened the black box of parameter design method by clarifying the reasons behind 

optimization result. 
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CHAPTER 9  FUTURE RESEARCH 

 

When a systematic general system is developed in this thesis, there are few items that 

need to be explored more. Firstly, the measurement system in tolerance design need to 

be established because tolerance design and parameter design are both included in the 

improvement phase of RCI [1] . Thus, comparison or gap analysis could further enhance 

for the betterment of this measurement system.  

In addition, the context of robust measurement system should be studied due to 

difference perspective of robust methodology found in literature review. One of the 

example is the paper by Dasgupta et al. [2] presents different variation countermeasure 

compared to Yano’s [3] approach. Miller and Wu [4] also presented on different look at 

dynamic parameter design and robust design measurement systems. A performance 

measure on signal-response relationship is one of the contradictions. Perhaps, further 

research on this measurement system in parameter design could connect and bridging 

the existence gap between these two.  

The existing gap found in papers of Measurement journal with Dr. Hiroshi 

Yano’s works could be minimized with further research. Dr. Yano’s works on the 

importance of parameter design need to be recognized in this journal and measurement 

research field. Dr. Yano is known as a prominent researcher in metrology and 

measurement science. His outstanding book, “Metrological control: Industrial 

Measurement Management” presents many useful and interesting information about 

metrology. However, his name has not much been cited in papers for Measurement 

journal. Why such a prominent researcher had been left out in this specific journal that 

reflects his expertise?  
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APPENDIX I 

SNR Calculation L9 

 

Aluminum peel side result: Peel strength, signal to noise ratio  , and sensitivity  

     5mm 10mm 15mm SNR 

 

Sensitivity 

 
Run A B C D N1 N2 N1 N2 N1 N2 

1 1 1 1 1 8.08 7.98 16.08 15.84 23.34 23.68 17.1 3.96 

2 1 2 2 2 7.45 7.27 14.70 15.02 22.60 22.52 18.83 3.50 

3 1 3 3 3 7.42 7.68 15.12 15.35 22.98 23.07 20.61 3.69 

4 2 1 2 3 6.91 6.96 14.22 14.36 21.43 21.52 19.75 3.09 

5 2 2 3 1 8.43 8.44 16.71 16.49 24.02 23.61 10.67 4.16 

6 2 3 1 2 8.12 8.24 15.70 16.06 23.65 23.97 17.34 4.03 

7 3 1 3 2 7.62 7.42 15.03 14.86 22.81 23.00 17.48 3.61 

8 3 2 1 3 7.43 7.64 15.01 14.99 22.94 23.17 16.60 3.66 

9 3 3 2 1 8.15 8.52 16.76 16.68 23.99 24.21 12.37 4.24 
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APPENDIX II 

SNR Calculation L9 

 

CPP peel side result: Peel strength, signal to noise ratio  , and sensitivity  

     
5mm 10mm 15mm SN ratio Sensitivity 

Run A B C D N1 N2 N1 N2 N1 N2   

1 1 1 1 1 8.08 7.98 16.08 15.85 23.34 23.68 17.10 3.96 

2 1 2 2 2 7.45 7.27 14.70 15.02 22.60 22.52 18.83 3.50 

3 1 3 3 3 7.42 7.68 15.12 15.35 22.98 23.07 20.61 3.69 

4 2 1 2 3 6.91 6.96 14.22 14.36 21.43 21.52 19.75 3.09 

5 2 2 3 1 8.43 8.44 16.71 16.49 24.02 23.61 10.67 4.16 

6 2 3 1 2 8.12 8.24 15.70 16.06 23.65 23.97 17.34 4.03 

7 3 1 3 2 7.62 7.42 15.03 14.86 22.81 23.00 17.48 3.61 

8 3 2 1 3 7.43 7.64 15.01 14.99 22.94 23.17 16.60 3.66 

9 3 3 2 1 8.15 8.52 16.76 16.68 23.99 24.21 12.37 4.24 
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APPENDIX III 

SNR Calculation L18 

Peel strength result for Type A 
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APPENDIX IV 

SNR Calculation L18 

Peel strength result for Type B 
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APPENDIX V 

SNR Calculation L18 

Peel strength result for Type C 
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"~ 11.64318 "~ 16.3128 
S~ -1.10042 S~ 1.8481 4 

.oJ 00 4 
M, r-,'h M, MI '" "3 

N, t Nl N, t N, NI t N, 1<1 t N2 Nl t N2 NI t ~~ 

8.·H 8 . 7~ 16.38 16.92 23.92 I 24A 1 8.16 I 8.30 16.21 16.39 23.70 23 .60 

ST- 1810.875 (fr- O) ST- 1735. 11 (fT- 0 ) 
Sp- \869.779 (!P- I ) Sp- 17&J .~ (fJl'- I ) 
SN"- jP 0.2858 1 (l'Nxp= I ) SNxll= 0.00124 (rN"!? I ) 
S~ 0.810482 (ft- . ) S~ 0.5515 (fez 4 ) 

S.- 1.096292 (fe' .. , ) Se· .. 0.~!27J (fe-. , ) 
V~ 0.20262 1 V~ 0.13717 

VN- 0.2 192j8 VN- 0.11055 .- 10 . 8~639 .- 13 .6285 

S- " .Z~~ I S- 4.'" 

,. , 000 
MI M2 J"U MI ~u M3 

NI N2 NI N2 NI I m NI I "2 "I "2 1<1 N2 
3.13 3 .... 7.69 7.79 l U I I 11.11 1.03 I 7.11 13.63 13.67 19.35 19.29 

ST- 397.-1115 (fT- 0 ) ST- 1220.22 (rr .. 0) 

5il- 391,l1JJ (!P- I ) SI'- 1218.83 (tP- I ) 
SNlCli- I.JJE-01 (&o;xli- I ) SNX~ l.lE~ (fNxli- I ) 
s.- 0. lJ8242 (re- 4 ) S~ 1.39168 (fe- 4 ) ... - 0.1382"2 (fe '= , ) Se'= 1.39163 (fe' ''' , ) 
V.,. 0.030$56 1 Vo- 0 .3-1792 

VN- 0.02764& \IN- 0 .27834 .. lJ. J22BJ .- 7.9615 

S- ·2.-1~6 S- 2.-1072 
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~, ~. 

"' ill lli "' ill W 

1<1 "' N. Nl NI "' "' "' " "' "' " ."' .M lJ.OO '"" IUl II.J< ,-" 7.67 11.1' 15.9< lU' RO» 

,,- !lOUIS (rr~ ., ,,- 17U.l l (rr_ ., 
.~ 1101.O!7 (~ " .~ 17lJ.tIlI (II)- " SN.~ O.oml S (IS_ """ ' , SN·~ 0.000)22 (IS'Jio- ' , 
~ 0.7'!l ll (lie- " ~ O."JQl (fe- o , 
~ - 0.76<176 (1<-. n ~'- U')l! ("" . n 
,.~ 0.11191) ,~ 0.11076 
,~ 0. ll11l1 \'N- 0.-

~ IO.lH<5' ~ lMMl 

~ 1 .~l!1 ~ U1611$ 

"",10 

"' '" lli 

" " "' " NI Nl 
l.&OS6 HZI lUll 11.7f01i 16.6 ... U 17.031. 

,,- 39L5Iln (rr_ . , n - !IOII.l) (IT_ . , 
.~ m .H O'! (1IJoo " '0- !>Ol .711 (fI)- " Sl<>jl- Q,anllll (IS,!,- " SN> JI- O.Ol'm «No ll- " ~ O.Ol<9<1I<! (f<- " ~ O.llU (r.- . , 
~ - 0.076433 (,,.. n ~ - a.llm (f< _ , , 
, ~ O,Ol j~l ,.~ o.lll1 
''N_ 0.0 15191 ' 'N_ 0.'0707 

~ lM1'I'l ~ 1O.11l .- -l.lWl .. l.11M! 

-" "",ll 

"' W lli M, ,0 ," 
" " "' ., " " " " 1<1 1<. 1<1 " 9.54'~l 9 .l193'5 11.6951 UW 1U3, JH&J I '.l l . ll '.l. l7 '.1906) ' .0173' 1) .03 19 Jl. l111 

.~ m·6.IJ (IT- . , ,,- ' SII.?J! (fr- ') 

.~ 1'501.61& (IJI- " .... . 59-,141 (IJI- " m,o- O.~llI6 (IS' II- " SNxlJoo 0.0001 . (1S"!lo- , ) - l.O!llJl (f.- " ~ 0,03199 (fo- ., 
k - '-6116.11 (ft '. ' ) k _ 0.01913 (f, ' · n 
V ... O.llTIU ,~ 0,01121 

\'1<- O..!~lIJ \ '1<- O,017SJ 

~ 9.196<98 ~ I$_~' .- '.WlOl ~ ·1.127 
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00, IJ 00, .. , "2 MJ .. , M2 MJ 

NI I N2 NI N2 NI Nl NI I Nl NI N2 Nt ,~ 

7.46973 17.48&011 1>1.8777 )4.&209 21.79&'& ll..4827 ... 61"1 1 4.5197 9.00&36 8.99<44' 13.20H IJ.2HS 

ST- 1489..$49 (IT" . ) ST- "3.74!! (rr .. ') 
51!- 1489.176 (fll- 1 ) 51!- " 3.66 (fll- 1 ) 
SNxj}- 0.038805 (fN "JJ- I ) SN"~ 1.1£-05 (fNlt,... I ) 
So- 0,3J42·15 (f~ n s.- o.oa4. (ft- n ... - O.li)C)j) (ft '· 'l "" - 0.0&-48) (ft". 'l 
\'~ 0.083561 \'~ 0.0212 

\'N" 0 .07461 \'r.; .. 0.0 169115 .,.. 14.'5016 .,.. 16.6167 
S- 3.278236 S- ·LOISi 

no 15 no 16 

MI Ml M3 MI Ml M3 
NI N2 NI N2 NI N2 NI N2 NI N2 NI N2 

6.45493 6 .606822 12.4219 12 .8395 IS .9OS 18 .9789 3.67481 3.62272 7.44766 7.32046 11.3101 11 .5859 

ST= 1122 .185 (fT= 6 ) ST= 397 .837 (fT= 6 ) 

SIP 1121.998 ($= I ) SIP 397 .673 ($= I ) 
SNxlF 0 .051403 (tNxlF I ) SNx l3= 0 .0097 (tNxlF I ) 
S~ 0 .13658 (fe= 4 ) S~ 0 .15386 (fe= 4 ) 

Se'= 0 .187983 (fe '= 5 ) Se'= 0 .16356 (fe '= 5 ) 

V~ 0 .034145 V~ 0 .03847 
VN~ 0 .037597 VN~ 0 .03271 

"~ 16.29732 "~ 12 .3968 
S~ 2.048806 S~ -2.4561 

0011 0010 .. , ill MI >11 ill Ml 
NI ,~ NI N2 NI I N2 NI N2 NI N2 NI N2 

5.72701 5,872575 (H)OS) 11.15-13 17.617 I 17 .J()6.f 8.76307 8.10506 16 .1099 16.1309 2".5217 1l .. U5~ 

ST- 962 .2331 (IT'" . ) ST- 1916.2.1 (IT" . ) 

51!- 962.03; (~ 1) SI!- 1915.02 (~ I ) 
SN,;t j}- OJ)·J5t6-1 (fN ><~ 1) SS:o. p.. 0.21706 (fN )(~ I ) 

Se- 0. 1508n (fe- , ) S<- 1.00338 (ft- , ) 
Se'- 0. 196036 (fe'- , ) ", '- 1.2204S (fe'- , ) 
v~ 0.03i718 Veo- O.l!OB5 

\'K- 0.039207 VN- O~_ .,.. 15,.14112 ,- 10..1947 

5- 1.380161 5- 4.31019 


