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Abstract

This thesis is concerned with the modeling of filtration combustion of thin reactive por-
ous media, with an intended application on the consequence of material property on a
controlled experimentally observed fingering instability in reverse smoldering combustion.
The challenges usually encountered with such modeling of porous media are the absence of
a complete description of the microstructure of complex materials and of distributed local
chemical reactions.

At the pore scale level, we use the forms of existing combustion type equations describing
two competing transport mechanisms-the transport of heat and the transport of react-
ants. Also we provide a complete description of the intended material of interest, which we
assume to consist of periodic arrangement of solid inclusions embedded in a matrix of a
gaseous phase. Due to the difficulty in dealing with the distributed nature of the localized
chemical reactions at surfaces of the solid inclusions and the highly oscillating coefficients
in the governing conservation laws, we apply the homogenization method in order to de-
rive distinct and tractable functional forms of macroscopic limit problems, which allow for
treatment of different problem scenarios.

Furthermore, we rely on the derived macroscopic equation structures to investigate the
emergence of two-dimensional fingering states. Based on the derived homogenization limits
with effective diffusion tensors and on the mechanism of thermal-diffusion instability, we
discuss the consequence of material property on the behavior of the fingering instability.
Also, we investigate anisotropy effect on the fingering patterns, and treat numerically the
disparity of the derived macroscopic models since two distinct forms of the models are
derived-the one-temperature equilibrium model and the distributed-temperature nonequi-
librium model.

Finally, we show the well-posedness of the microscopic model and justify its rigorous con-
vergence to the homogenization limit, using both mathematical and numerical tools. We
further compared the values of the homogenized effective tensors with some known the-
oretical bounds, and show some of the factors that may influence the effective diffusion
tensors such as volume fraction of inclusion and geometric form of the inclusion.



Preface

During my Master’s program at Eindhoven University of Technology, I was privileged
to work under the supervision of Professor Adrian Muntean, who first introduced me to
multiscale modeling via the homogenization method, during an introductory homogeniza-
tion course. It was his idea to use homogenization method to develop filtration combustion
models that inspired the content of this thesis. The idea was to develop an idealized de-
scription of the porous material and of the physics of the phenomenon at the microscopic
level, which was missing from previous efforts. I was motivated in this area by the results
detailed in the works of Ikeda and Mimura (2008); Fasano et al. (2009) on mathematical
modeling of smoldering combustion in microgravity. This guided my research interest to
pursuing a Ph.D. position at the Meiji Institute for Advanced Study of Mathematical Sci-
ences.

Thus, this thesis is devoted to the application of the homogenization technique to a smolder-
ing combustion problem under microgravity conditions. In view of the problem of interest,
this study attempts to provide answers, from a new point of view based on the homogen-
ization theory, to some questions in smoldering combustion pertaining to those reported
experimentally in Zik and Moses (1999); Olson et al. (1998). These questions concern the
relation of the homogenization theory approach to previous efforts on a smoldering com-
bustion problem. It is often difficult to distinguish most models derived by homogenization
from other macroscopic models that exist in the literature (see Fasano et al., 2009; Kagan
and Sivashinsky, 2008, e.g.), since the two approaches rely on macroscopic descriptions
that seem functionally identical. However, the models derived (in Chapter 3) through the
homogenization method arise as limit problem from a pore scale description (representative
of a simplified adiabatic model (Chapter 2)), and hence reflect the macroscopic behavior
of this description. Unlike in other macroscopic models, the effective diffusion tensors (see
Chapter 5) from homogenization are determined by the solutions of a so-called cell prob-
lems, which describe the influence of geometry. In most scenarios, the geometry effects
induce anisotropy in the system (Chapter 8), which introduces a new perspective to the
studied combustion models. Also, the effective tensors can be used to study the homo-
genized models in order to verify the contribution of the homogenization approach to the
phenomenon of interest (see Chapters 7 and 8). This aspect is treated under fingering
patterns of the first kind. In a slightly different consideration similar to most previous
efforts (see Kagan and Sivashinsky, 1996; Yuan and Lu, 2013; Chen et al., 1992; Kim



vi

et al., 1996), the effective tensors are replaced by dimensionless free parameters, leading to
thermal-diffusion instability in the system. This is treated under fingering patterns of the
second kind. Other significance of the homogenization approach as applied in this thesis
include to provide answers to the following mathematical questions (Chapters 4 and 5):

(i) How close is the solution of the homogenized problem from the solution of the pore
scale description of the problem?

(ii) How good are the derived effective tensors, and the corrector estimates in approxim-
ating oscillations of the heterogeneous medium?

It is more difficult to provide answers to these questions by using existing mathematical
models, which are specifically more useful when analyzing the problem from the viewpoint
of pattern formation (see Ikeda and Mimura, 2008; Fasano et al., 2009; Lu et al., 2006,
e.g.). Thus, the scope of this thesis is basically on the derivation of macroscopic models
from a pore scale description, verification of the derived models with effective diffusion
tensors using mathematical and numerical tools, and application of the derived models to
a problem of reverse smoldering combustion.
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Chapter 1

Introduction

1.1 Background

The modeling of reactive flows in reactive porous materials has been a subject of interest
over the years. Specifically, in the theory of flame propagation, combustion reactors and
filtration combustion, reactive flows cover a broad range of areas of phenomenological
importance. An example is in the case of filtration combustion process in which a self-
sustaining heterogeneous exothermic reaction front propagates through a porous material
that reacts with a gaseous (liquid) oxidizer infiltrating the pores of the solid matrix.

In this framework, the characteristics of filtration combustion waves can be determined
by a number of factors; the kinetics of chemical reaction of the solid-gaseous reactants, the
thermal and filtration properties of the physical system, the existence of heat losses, as well
as the direction of oxidizer transport to the reaction zone. Based on the direction of flow of
the inlet oxidizer and the direction of propagation of thermal and reaction fronts, filtration
combustion can be classified as reverse (counterflow), forward (coflow) and two-sided fil-
tration regimes (see Figure 1.1). It is classified as reverse (forward) filtration regime when
the reaction zone propagates in the opposite (same) direction to the direction of flow of the
inlet oxidizer. The two-sided filtration combustion occurs when the oxidizer gas flows both
from the inlet and outlet. Figure 1.2 depicts a schematic of a reverse filtration combustion
regime in a porous solid. In this regime, the material is ignited at the outlet; an oxidizer gas
infiltrates the pore of the solid matrix from the inlet; reaction occurs at surfaces presented
by the solid, and a reaction front propagates opposite to the direction of flow of the ox-
idizer gas. Filtration combustion has been studied extensively in the literature (see Wahle
et al., 2003; Oliveira and Kaviany, 2001; Rein, 2005; Henneke and Ellzey, 1999, e.g.) and
its significance is not limited to such important processes as smoldering and self-sustaining
high temperature synthesis (SHS) of materials, etc. In particular, smoldering describes a
slow, low temperature, and flameless form of burning porous materials. It is considered
a potential fire hazard because the process of smoldering is difficult to detect, involves
the release of toxic gaseous fumes and may transit into flaming, making it a precursor of
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Figure 1.1: Schemes of filtration regimes. (a) counterflow (reverse) (b) concurrent (forward)
(c) two-sided filtration regime; u and v are the filtration and reaction flux velocities; the
shaded region indicates the burnt fuel and the line demarcating the two regions is the
reaction front.

accidental fires.

Inspite of its disadvantages, smoldering has some important features; specifically, the smol-
dering combustion of biomass has a positive environmental impact on lowering the CO2

presence in the atmosphere. SHS, on the other hand, employs high-temperature combustion
waves to synthesize materials. While the process of smoldering and SHS may be different
in their applications, the underlying mechanisms are similar, thus allowing for a descrip-
tion of the processes with the same mathematical model. For a detailed discussion on the
theory of filtration combustion, we refer to Wahle et al. (2003). An importance aspect

Oxidizing
gas

Reaction front

pore
solid

ignition

Figure 1.2: Typical scenario of flow in a reverse (counterflow) filtration combustion of a
solid porous material
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in the formulation of mathematical models of filtration combustion involves the role of
thermal and filtration properties related to the inherent nature of micro-structural distri-
bution of materials. Although existing filtration combustion models have been successfully
used in the study of filtration combustion problems (Fatehi and Kaviany, 1994; Di Blasi,
1995; Buckmaster, 1985; Yarin et al., 2004), it is desirable in most cases to understand the
influence of processes taking place at distinct observation scales. While most combustion
phenomena are observed at scales much larger than the scale of heterogeneities, it may turn
out to be insightful if the influence of local structure and processes can be integrated into
the study of filtration combustion. A formidable challenge in this direction is the absence of
a complete description of microstructure of materials for practical applications, and hence
an explicit representation of local heterogeneity may not be possible. This necessitates the
design of mathematical models capable of approximating the heterogeneous medium by a
homogeneous medium described by some averaged parameters. Furthermore, such equival-
ent descriptions, if they exist, should take into account the influence of the heterogeneities
at the local (microscopic) scale.

According to the presentation in Wahle et al. (2003), filtration combustion waves can be in-
vestigated under a one-temperature or two-temperature description based on the strength
of the gas flux infiltrating the porous material. One-temperature models are appropriate
for describing slowly propagating coflow filtration combustion waves in which the time of
contact between the solid particles and the gas is sufficiently large for rapid thermal equilib-
rium to occur. However, for a relatively large gas flux, convectively driven coflow filtration
combustion waves depend on the presence of a distinctive temperature difference between
the gaseous and solid phases, and thus can only be described by a two-temperature model.

On the other hand, in counterflow filtration waves, the solid fuel at the vicinity of the
reaction zone loses heat to the cool infiltrating gas. This means that such filtration waves
are necessarily driven by conduction because the convective mechanism depends on the
ability of the gas to deliver heat to the unburned solid fuel. However, the infiltrating gas
absorbs heat from the unburned solid fuel, and hence driving the combustion process to-
wards its extinction. Schult et al. (1995); Decker and Schult (2004) reported an analysis of
a one-temperature model in which extinction of steady traveling waves occur when the gas
influx is sufficiently large. Under such sufficiently large gas flux, the gas and solid phases
may not have a sufficient time to equilibrate, in which case a two-temperature model suf-
fices.

In the counterflow regime, the transport of an infiltrating gas opposite to the direction
of propagation of the reaction front suppresses combustion. This is because the solid near
the reaction zone loses heat to the cool infiltrating gas, thus decreasing the combustion
temperature and hence the reaction rate. It is also known that in counterflow configuration
under a smoldering regime, the propagating reaction front exhibits characteristic combus-
tion instability in form of fingering patterns. This instability is known to be driven by
the destabilizing effect of oxidizer deficiency (Zik and Moses, 1999; Zik et al., 1998; Olson
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et al., 1998). In addition to the influence of filtration properties, namely the porosity of the
material, it is also important to take into account, in a counterflow regime, the effect of the
conductivity contrast that exists between the interacting gaseous and solid phases as well
as the effect of a forced suppression1 of the reaction rate. In the present study, we focus on
the consequence of these effects on the behavior of a counterflow smoldering combustion
wave.

1.2 Experimental overview of the problem of coun-

terflow smoldering combustion

In their fundamental experiment, Zik and Moses (1999) showed that a thin solid mater-
ial, in a counterflow smoldering regime, develops a steady fingering state. The instability
emerged in a well-defined regime of Rayleigh Ra, and Peclet Pe, numbers, in which the
effect of natural convection is suppressed, with molecular diffusion dominating in the ho-
rizontal plane. The studied system combines a two-dimensional Hele-Shaw geometry with
smoldering combustion, in which a uniform flow of oxygen interacts with a thin porous
reagent to produce char, gaseous product and heat that drives the process. The details of
the experimental set-up can be found in Zik and Moses (1998, 1999). The destabilizing
effect of reactant transport, which plays the same role as the thermal diffusion instability,
is enhanced under a countercurrent configuration.

The emerging front exhibits directional fingering instability along the direction of flow,
with two decoupled length scales-the finger width and the spacing between the fingers.
These length scales correspond to two transport mechanisms: transport of heat and trans-
port of reactants. The transport of reactants, which is controlled by the Pe, determines the
front velocity and the spacing d between fingers, whereas the characteristic finger width
w depends on the ability of the front to release heat. The design of their experiment
emphasizes uniformity on the following quantities:

(i) flow of the oxidizer,

(ii) sample fuel ( e.g., Whatman grade no. 2),

(iii) ignition at one end of the fuel.

In the absence of uniformity in any of the mentioned quantities, the emerging fingering
patterns exhibit nonuniformity. Specifically, in a highly anisotropic porous sample, the uni-
formity and reproducibility of the patterns is reduced, otherwise distinct regimes of the
fingering patterns can be observed. The nonuniformity is such that the fingering patterns
are directed towards a lateral side of the sample, and may also propagate along the lateral
boundaries. The experiments capture three basic and distinct fingering states-connected
front, tip-splitting fingers, and sparse fingers as shown in Figure 1.3. The fingering patterns

1Forced suppression means that the reaction rate of the chemical reaction is appropriately tuned prior
to the onset of the combustion process.
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(a) Connected front (b) Tip-splitting fingers (c) Sparse fingers

Figure 1.3: Spatial profiles of two-dimensional fingering (char) patterns of a filter paper sample, observed
experimentally in a Hele-Shaw cell; The char propagation is from bottom to top; Ignition is initiated at
the bottom and oxidizer gas is passed from the top, in a typical counterflow configuration. The char is
identified by the dark finger-like patterns, and the light shades are the quenched part of the flame, which
separates regions of burned parts from unburned parts. (a) connected front which manifests at high flux
velocity; the fingers are connected. (b) Tip-splitting regime marked by splitting of sole fingers at the tips; it
is observed at a moderate flux velocity. (c) Sparse fingers, which manifest at a relatively low flux velocity;
the fingers are more distinct from each other and the tips do not split. The snapshots are courtesy of
Professor Elisha Moses (Weizmann Institute of Science).

depicted in Figure 1.3 are obtained under uniform conditions as mentioned above. How-
ever, there are other forms of patterns which are observed under nonuniform conditions.
Furthermore, it was also shown that the role of the small gap (see experimental setup in Zik
and Moses, 1999) between the plates of the Hele Shaw cell is to inhibit natural convection-
an inexpensive alternative to turning off gravity. This implies that increasing the width
of the gap enhances the strength of natural convection. This induces some characteristic
behavior on the fingering pattern, e.g. thickening of the finger width and the emergence
of nonuniform patterns in most cases. It was shown that the finger width w is linearly
dependent on the gap size h. This quantitative dependence is consistent with a qualitative
observation, which show that the finger width is determined by the ability of the front to
release heat. For a full description of the experiment and other forms of pattern behavior,
we refer the interested reader to Zik and Moses (1998); Zik et al. (1998); Zik and Moses
(1999); Olson et al. (1998).

1.3 Mathematical treatment of filtration combustion

There is a vast number of filtration combustion models in the literature, which has been
used to investigate filtration combustion processes. Here, we describe a couple of the models
which are related to the discussions in the present study. We begin with the form of filtration
combustion model presented in Yarin et al. (2004). To describe filtration combustion, they
used the mass, momentum (in form of Darcy’s law) and energy equations.
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One-temperature filtration combustion model (Yarin et al. (2004))

∂ρg

∂t
+
∂ρg

∂t
= −σW, (1.1)

ρm,0
∂η

∂t
= W, (1.2)

dP

dx
= −µf

kf

, (1.3)

∂

∂t

{(
cgρg + cmρm + cpρp)T

}
+ cg

∂

∂x
(ρgufT ) = λ

∂2T

∂x2
+ qW, (1.4)

where ρ, P and T are the density, pressure and temperature, respectively. W is the chemical
reaction rate; η = (ρm,0 − ρm)/ρm,0 is the completeness of conversion of the solid reagent;
cm and cp are the specific heat of the solid reagent and product, cg is the isochoric specific
heat of the gaseous oxidizer, q is the heat released by the reaction, kf is the filtration
coefficient equal to the permeability of the porous matrix divided by the gas viscosity, λ is
the thermal conductivity. The subscripts g,m and p refer to gaseous phase, solid reagent
and combustion product, respectively. The system of Eqs. (1.4)–(1.4) is supplemented by
the equation of state of the gaseous phase assumed to be an ideal gas

mP = ρgRgT, (1.5)

where Rg is the gas constant, m is the medium porosity. The chemical reaction rate is
given by

W = zP νf(η)exp
(
− E

RT

)
, (1.6)

The specific heats and densities have the following relations

cm + σcg = (1 + σ)cp (1.7)

ρm = ρm,0(1− η) (1.8)

ρp = (1 + σ)ρm,0η. (1.9)

In (1.6), the burn-out function is given by

f(η) = (1− η),

where z and ν are kinetic constants, E is the activation energy, R is the universal gas con-
stant. Most filtration combustion models in the literature generally have the macroscopic
form given by (1.2)–(1.4). Such equations are particularly useful, in view of their simple
forms, when dealing with problems related to analysis of thermal structures of combustion
waves as well as stability of filtration combustion models.
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Two-temperature (non-adiabatic) filtration combustion model (Fasano et al.
(2009))

The previous model only accounts for a one-temperature equation for the gas-solid com-
bustion system. Also, the process of heat transfer between the system and the environment
is not taken into account, and hence placing it in the class of adiabatic models. Presently,
we introduce another type of filtration combustion model, in which heat transport is ac-
counted in the solid and gaseous phases. It also takes into consideration different heat
transfer mechanism; heat exchange between the solid and gas, and between the solid and
the environment. The model is presented by Fasano et al. (2009) in an attempt to describe
the experimentally studied smoldering phenomena under microgravity conditions. Their
model emphasizes the significance of heat losses in the observed combustion instability. In
addition, the characteristics of the model is such that both counterflow and coflow combus-
tion waves can be successively treated. Thus, the prediction of the model coincides with
the experimental work reported by Olson et al. (1998). For a detailed presentation of the
model, we refer the interested reader to Fasano et al. (2009).

Other relevant models treating the smoldering combustion under microgravity includes the
one-temperature model of (see Ijioma et al., 2013; Kagan and Sivashinsky, 2008; Ikeda and
Mimura, 2008, e.g.). Using a pore-network, two-temperature filtration combustion model,
Lu and Yortsos (2005a); Lu et al. (2006) analyzed the distinct fingering regimes of the ex-
perimentally observed fingering instability under adiabatic and non-adiabatic conditions.
There are also other related studies on the development of fingering instability reported in
the literature Yuan and Lu (2013).

In the present study, the method of homogenization is applied for the first time in order to
investigate the consequence of material property such as the intrinsic geometric form of the
microstructure, the thermal and filtration properties, etc. on a developed fingering state in
counterflow smoldering combustion of thin porous materials. The microscopic description
is inspired from a previous attempt (Kagan and Sivashinsky, 2008), in which the pertin-
ent system of equations was reduced to an interface problem that analyzes regimes of the
traveling reaction front. Most other problems of interest reported so far in the literature
have been focussed on the analysis of the pattern-forming system in terms of verifying
the distinct fingering states Ikeda and Mimura (2008); Lu and Yortsos (2005a), the the
spread rate of the reaction front Fasano et al. (2009); Kagan and Sivashinsky (2008), as
well as the effect of heat losses (Yuan and Lu, 2013; Lu and Yortsos, 2005a). However,
our primary interest is to analyze the problem from a new point of view that is based on
the homogenization theory. First, we develop a model that takes into consideration the
microstructure of the material, the interplay between components of the medium, and the
influence of microstructure on the structure formation. The latter entails investigating an-
isotropy effects on the fingering patterns. This generalizes the upscaled models developed
previously for isotropic porous media (Ijioma et al., 2013), and also allows for discussion of
various anisotropic situations. In addition to analyzing the fingering patterns in isotropic
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porous media, the role of anisotropy on the behavior of the fingering patterns is a major
contribution in this thesis.

Furthermore, the starting point of the modeling is to assume, at the pore scale, a material
with uniformly repeating cells, embedded in a matrix of a gaseous phase. This implies that
a single cell consists of a solid part (made of cellulosic fiber in this case) and a gaseous
part (the air filled part). The cells are allowed to cover the entire material, thus providing
a complete description of the material. At this level, the cells can be of any simplified geo-
metric forms in two or three-dimensions; even more complex geometries are also possible.
The balance laws at the pore scale are based on the two competing transport processes-the
transport of heat and the transport of mass of reactants-which are defined on the con-
structed periodic medium. The problem of this description (see Figure 1.4) is that the

Locally-distributed
reaction sites on

rapidly
oscillating parameters

e.g.

s

(a)

(b)
(c)

Figure 1.4: The scheme of the periodic domain indicating some of the challenges at the pore
scale description; (a) the reactions are locally distributed on the surfaces Γε,i, which makes
the reaction front less tractable for combustion applications; (b) the domain dependence
on a scale parameter, ε which increasingly becomes small; (c) the parameters of the domain
are rapidly oscillating, as indicated by the oscillating curve;

physical quantities in the governing laws are rapidly oscillating between the phases. Also,
the chemical reactions assume a distributed nature on surfaces Γε,i of the solid inclusions,
and the periodic medium depends on a small scale parameter ε. Thus, for tractability of
the method for applications, we need a method of overcoming the challenges encountered
by working on the periodic heterogeneous medium. The method should preserve the rel-
evant properties of the medium and the phenomenon of interest. An exemplary method
that provides us with the desirable approximation technique for the pore scale description
is the homogenization method, which is presently used in this study.

The consequence of approximating the pore scale description by a homogenized (averaged)
description raises further mathematical questions on the efficiency of the homogenization
process. It turns out that we are immediately faced with two distinct problems: at the large
(observation) scale, the homogenized problems determine the macroscopic limit behavior of
the pore scale description. They are also viable for the verification of physical phenomenon
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of interest. At the pore scale level, we deal with the problem of establishing convergence to
the homogenization problem. This process require some mathematical rigor, in which we
will approach through the notion of two-scale convergence and corrector results (see Al-
laire, 1992; Nguestseng, 1989; Neuss-Radu, 1996; Fatima and Muntean, 2014, for instance).

In order to show qualitatively the efficiency of the homogenization process through the
design of multiscale numerical methods, we require the construction of correctors, at least
of the first order with respect to a scale parameter ε. Then, the homogenized solutions may
be “corrected” as depicted in Figure 1.5, thus recovering the original pore scale description,
in this case, at the first order of approximation. We point out that additional correctors
may also be relevant as long as the scale parameter entering the computation is not sig-
nificantly small. In Figure 1.5, we illustrate the scheme of the multiscale reconstruction of
microscopic solution by using the first two terms of the asymptotic expansion:

Cε(t, x) ≈ C0(t, x) + εC1(t, x,
x

ε
)

Figure 1.5: Scheme of the multiscale numerical algorithm; the term on the left is the solu-
tion of the microscopic (pore) problem, Cε(t, x); on the right is the homogenized solution

C0(t, x) and the corrector C1(t, x,
x

ε
); the sum of the two terms equals the reconstructed

solution, C0(t, x) + εC1(t, x,
x

ε
).
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1.4 Outline of this thesis

This thesis is concerned with the modeling, analysis and simulation of filtration combustion
of reactive porous materials, with an intended objective of analyzing the development of
fingering instability in reverse smoldering combustion of heterogeneous porous materials.
The structure of this thesis is divided into Chapters, which end with a brief summary of the
results, and further open questions that may be of interest for future research consideration.

In Chapter 2, we describe the mathematical modeling of the filtration combustion pro-
cess at the pore level. We also give a brief introduction to the homogenization method. At
this level, the description of the geometry, the transport processes and chemical reaction
are also presented based on the physical process of interest.

Chapter 3 presents the derivation of the macroscopic models for filtration combustion by
the asymptotic homogenization method. By scaling relations in ε, three distinct materials
are analyzed based on thermal conductivity contrast: material with moderately conductive
inclusions, highly conductive inclusions and weakly conductive inclusions embedded in a
gaseous matrix such that the inclusions remain distinct from each other. The homogeniza-
tion method allows us to derive formulas for calculating the effective transport coefficients,
which are different for each of the considered models. Two of the derived macroscopic mod-
els have the form a one-temperature equilibrium model of filtration combustion, whereas
the third model is a class of two-scale combustion model, which has not yet gained pop-
ularity in the framework of combustion problems in literature.

In Chapter 4, the rigorous upscaling of the pore scale description presented in Chapter
2 is examined using the two-scale convergence method due to Allaire (1992) and Nguest-
seng (1989). We recovered a class of two-scale homogenization limit problems, the effective
diffusion formulas and the correctors. Also, the strong convergence of the homogenization
process was proven using the notion of two-scale convergence.

In Chapter 5, we present the calculation of the effective thermal conductivity tensor for
the derived macroscopic models. We examine some of the important factors influencing the
effective thermal conductivity such as the volume fraction of inclusions, and geometric form
of the inclusion. The numerical values of the effective thermal conductivity obtained from
homogenization are compared with some known theoretical bounds for effective thermal
conductivity.

Chapter 6 presents a reconstruction procedure to recover the solution of the pore scale de-
scription through corrections to the homogenized solutions. We investigate the convergence
rates of the homogenization process presented in Chapter 3. The relative error estimates
between original problem and the reconstructed solution are compared with theoretical
estimates derived in Chapter 4.
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In Chapter 7, the derived macroscopic models are analyzed for the development of fingering
instability in reverse filtration combustion of an isotropic porous material. We examine two
different problems: first we verify the implication of the limit homogenized problems on the
behavior of the fingering patterns, and secondly, we analyze the pattern behavior based on
the mechanism of thermal diffusion instability, which is well studied in combustion liter-
ature (see Kagan and Sivashinsky, 1996, e.g.). This is one of the main chapters of this thesis.

Chapter 8 is a consequence of the results presented in Chapter 7. We examine the be-
havior of the finger-like patterns in an anisotropic porous medium. The pattern behavior
in various anisotropic geometries is analyzed in terms of distinct anisotropic matrices. We
also verified that even in the case of highly anisotropic media, distinct fingering regimes
are captured, except for a change in the uniformity of the patterns. This observation is
consistent with the experimental work of Zik and Moses (1999).

Finally, the results of the previous chapters are summarized in Chapter 9. This chapter un-
derlies the significant results of the present study and gives further insights on prospective
areas for future research.

1.5 Statement of originality

Contrary to previous efforts toward the analysis of fingering instability of thin porous
samples, we approach the problem from a new point of view based on the periodic homo-
genization theory. This allows for the incorporation of microstructures of materials into the
modeling. This is relevant when dealing with the influence of microstructure on structure
formation. Previous efforts have been restricted to macroscopic descriptions, which are usu-
ally introduced directly at the macroscopic level; In Lu and Yortsos (2005a), an attempt
is made using a pore network simulator, which does not present a complete description of
the material.

While the behavior of fingering patterns have been reported experimentally in the lit-
erature Zik and Moses (1999) for highly anisotropic media, it has not yet been shown
through mathematical modeling. Thus, we analyze the fingering instability from the per-
spective of anisotropic porous media. In the present study, the behavior of patterns res-
ulting from distinct types of anisotropic tensors is examined. We attempt to analyzing the
structure of patterns in anisotropic porous media via a fixed geometry consideration. The
analysis based on fixed geometries revealed how anisotropy can be induced into the conser-
vation laws through the effective diffusion tensors. The latter shows a degree of consistency
between the orientations of the microstructure geometry with directional fingering of the
patterns.

It is evident from literature that different types of materials can exhibit fingering patterns,
which explains why the phenomenon is seems to be fuel independent. However, it is unclear
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how conductivity contrast can influence the pattern behavior. We analyze the problem of
conductivity contrast based on the homogenization theory. This allows considering general
porous samples with distinct conductivity contrast. The motivation behind here is that in
the regime of reverse filtration combustion, heat conductivity is an important mode of heat
transfer besides the radiative heat mechanism. This aspect of structure formation has also
not gained much insight. Until now, the effect of conductivity contrast on the behavior of
emerging fingering patterns has not been studied. We analyze in this framework different
factors determining the contribution of conductivity contrast in a particular combustion
scenario: heat conductivity, fuel conversion within fingers, ability of fingers to tip-split, as
well as the time for onset of ignition.



Chapter 2

Upscaling strategy and formulation
of the local scale problem

2.1 The homogenization strategy

In this section, we describe the method of homogenization1 which we plan to use in the
present study. The method is based on formal asymptotic expansion and was developed
by Bensoussan et al. (1978) and (Sanchez-Palencia, 1980; Zhikov et al., 1994; Bakhvalov
and Panasenko, 1989, etc.). It is usually referred to as the homogenization of periodic
structures (HPS), because the method is built upon the assumption of working with a
heterogeneous structure, and of periodic fields and parameters describing processes in such
media. The HPS method (Bakhvalov and Panasenko, 1989; Hornung, 1997; Auriault et al.,
2009; Persson et al., 1993; Sanchez-Palencia and Zaoui, 1985; Sanchez-Palencia, 1980; Ben-
soussan et al., 1978; Cioranescu and Paulin, 1998) has been successfully used in capturing
the effective behavior of porous media having complex interconnected parts with proper-
ties, which are presumably rapidly oscillating. The effective behavior of such systems is
known in the limit of the homogenization process and allows to study not only the mac-
roscopic behavior of a pore scale description, but also to adapt the macroscopic equations
for other applications.

While it is evident that the real life structure of most materials are not periodic, the HPS
method provides a mathematically complete description of the structure of complex mater-
ials in such a way as to allow tractability to practical problems posed on complex structures
and to their rigorous mathematical treatments. For any choice of periodic structure, the
micro-macro transition process gives an equivalent macroscopic description, intrinsic to the
material and to the phenomenon of interest (Auriault et al., 2009).

Contrary to most other methods e.g., volume averaging method (see Whitaker, 1999, e.g.),

1Homogenization is simply a collection of methods that approximates a heterogeneous medium by a
homogeneous medium with constant parameters.
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HPS does not rely on any assumption on the physics of the model at the macroscopic level
in order to ensure the quality of the result. For instance, in the derivation of conservation
laws for energy, there is usually, in most cases, the use of the assumption of thermodynamic
equilibrium in order to pass to a macroscopic one-temperature model. Such an assumption
is not a requirement in the HPS method. The structure of the derived macroscopic models
are sometimes quite different from the structures of the corresponding microscopic model.
This fact arises due to estimations of physical parameters governing the process of interest,
and it will be made clearer in Chapter 3, when we discuss distributed microstructure2 com-
bustion models.

The periodicity assumption, which is based on a translational invariance, implies the ex-
istence of a unit cell, or put differently, a representative elementary volume (REV) at the
scale of the heterogeneity. The invariance property ensures that the REV remains fixed on
its translation to cover the entire structure of interest. However, in recent years, attention
has been given to locally-periodic3 structures (see Chechkin and Piatnitski, 1999; Fatima
et al., 2011, e.g.). In addition to the locally-periodic treatment, there are problems (see
Meier, 2008), specifically in the framework of reactive flows in porous media, in which
the REV is assumed to evolve in time. Such homogenization problems are usually treated
under the assumption of an evolving microstructure. Another aspect concerns the REV
used in stochastic homogenization. It has been shown that the results obtained for peri-
odic media upscaling is equivalent to the results obtained for a large class of stochastically
random media (Auriault et al., 2009). Thus, this justifies that the periodic assumption on
the media is not too restrictive.

The validity of the HPS method is based on the existence of separation of length scales,
i.e. the following condition is satisfied:

ε =
l

L
� 1, (2.1)

where l is the characteristic length of the periodic cell (heterogeneity) and L is the charac-
teristic length of the domain or observation at the macroscopic level. The condition (2.1)
provides a small scale parameter ε which, through a normalization procedure, allows for
a discussion of distinct problems based on some phenomenon of interest. In subsequent
sections and in Chapter 3, the following general homogenization procedure as outlined in
Auriault (1991):

1. Description of the geometry of the microstructure, and hence the periodic medium
of the physical system of interest. The condition of separation of scales allows us

2This relates to the continuous distribution of cells at the homogenization limit, where each macroscopic
point is associated with a representative model cell. (see Hornung and Showalter, 1990; Hornung, 1997,
e.g.).

3Locally-periodic means here, very much in the spirit of Bensoussan et al. (1978), that the REV is
x-dependent.
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to introduce two distinct length scales, which are dimensionless with respect to the
normalization of the dimensional variable x̃ = (x1, x2, x3) with the length scales at
the REV level and the macroscopic level, i.e.

• macroscopic variable x = x̃/L,

• microscopic variable y = x̃/l,

where x and y are related via the small scale parameter by

x = εy (2.2)

y =
x

ε
. (2.3)

(2.2) refers to the microscopic viewpoint and (2.3) to the macroscopic viewpoint. In
the present study, we consider the macroscopic viewpoint, although the two view-
points result to the same homogenization limit.

y

l

L

x

Y

y

normalization

uYg

Ys

1

Figure 2.1: Scheme of the macroscopic viewpoint; the representative elementary volume of
characteristic length l is normalized with the characteristic size of the domain L; Ωε is the
normalized domain with ε-periodically distributed microstructures.

2. Description of the physical process at the pore scale. At this level, it is assumed that
the conservation laws, the values of the parameters, the geometry, and the physical
quantities which describe the phenomena of interest are known.

3. In the next step, the local problem is nondimensionalized, and then the dimensionless
quantities are estimated as a function of powers of the scale parameter ε. According
to Auriault et al. (2009), the estimation should satisfy

εp+1 � q � εp−1, (2.4)
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for any dimensionless quantity q which is of the order O(εp). This step as already
pointed out by (Auriault (1991)) is an important stage during which the physics of
the problem is taken into account. It is this estimation that determines precisely
the structure of the limit problem, which is either a purely macroscopic model or
a two-scale model at the upscaled level. The estimation is required before the final
step.

4. In the final step, an asymptotic expansion of the form

φε(x) = φ(0)(x,
x

ε
) + εφ(1)(x,

x

ε
) + ε2φ(2)(x,

x

ε
) +O(ε3), (2.5)

is substituted into the normalized local equations, where φ(i), i = 1, 2, · · · , are y-
periodic and φ(0), which is of order O(1) with respect to ε in (2.5), is associated
with the solution of the homogenized limit problem. For a detailed description of the
method and further steps taken to arriving at the homogenization limit, we refer to
(see Bensoussan et al., 1978; Sanchez-Palencia, 1980; Hornung, 1997; Auriault et al.,
2009, e.g.).

2.2 Formulation of the local problem

This section deals with the mathematical description of the problem at the pore scale. As
a first step, we start with the description of the porous structure we have in mind-a thin
cellulosic porous material. The main assumption at this stage is that the geometry of the
material is periodic, and hence the translational invariance property can be applied. Sub-
sequently, the mathematical description of local processes will be stated, bearing in mind
the most important physical phenomenon of interest. Finally, we give a brief discussion of
the distributed microstructure combustion model, and end this chapter with few comments
on further directions towards the extension of our simplified presentation.

2.2.1 Description of the geometry

Having mentioned that the periodic assumption on the geometry of the medium is not
restrictive, it then makes sense to start our description of the medium with such a sim-
plified periodic geometry. In Chapter 5, we will show that for any choice of geometry, the
micro-macro upscaling gives an equivalent macroscopic description, which is intrinsic to
the material and to the phenomenon of interest. Most porous materials are macroscopically
homogeneous at the observational scale. This motivates the development of most purely
macroscopic models because of the difficulty in detecting the possibility of a separation
in length scales and of the possible inhomogeneity in the considered medium. Thus, the
starting point is to reveal the inhomogeneity present in the material structure with the
aid of a microscopic. Based on microscopic evidence, the structure of the sample of filter
paper consists of a complex perforated arrangement of fibre. This is depicted in Figure 2.2.
The pore space and the complex thin-like intersection of fibers are clearly pronounced at
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Microscopic
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Figure 2.2: A sample of Whatman filter paper showing (a) Microscopic zoom of the sample
revealing the perforated fibre structure; the gas-filled parts (pores) and the solid fibre part.
(b) the sample at the macroscopic scale. The snapshots are courtesy of N.J Suematsu (Meiji
University).

this scale (Figure 2.2a). At the scale of the heterogeneity, air infiltrates the material and

x1

x2

x3

(a) periodic medium

Yg

Ys

(b) The unit cell

Figure 2.3: (a) The periodic medium; (b) Representative elementary volume (REV) showing
the gas part Yg and the solid part Ys.

interacts with surfaces presented by the solid fibre. Assuming the typical length at the
scale of the heterogeneity to be δ, the characteristic length, l, of the REV can be identi-
fied, and it is sufficiently large, i.e. δ < l to represent the features at the pore scale. The
constituent of the unit volume consists of a spherical geometry, with a smooth boundary,
representative of the solid fibre, which is assumed to be dispersed in a matrix of gas part
(see Figure 2.3bb). We assume that the periodic heterogeneous medium (see Figure 2.3a)
we have in mind satisfies the following properties:

(i) the typical length L at the macroscopic scale is in the x1 direction;

(ii) the period l of the structure representing the scale of the heterogeneity is sufficiently
small compared to the macroscopic scale;

(iii) the length of the region along x3-direction is by far small compared to the character-
istic lengths in the (x1, x2)-directions;
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(iv) x3 has arbitrary periodicity.

Let Ω be a thin sheet of rectangular bounded open set represented by Ω =
∏3

j=1(0, aj) ⊂ R3,
with aj > 0, j = 1, 2, 3, and let ∂Ω be its exterior boundary. The porous medium is endowed
with the macroscopic coordinates x = (x1, x2, x3), and a reference periodicity cell is chosen
in R3:

Y := {(y1, y2, y3)|0 < yj < 1, j = 1, 2, 3}, (2.6)

with microscopic coordinates y = (y1, y2, y3), within which a spherical open set with smooth
boundary ∂Ys is represented by:

Ys := {(y1, y2, y3)|
3∑
j=1

(yj − y0
j )

2 < R2} ⊂ Y. (2.7)

In (2.7) R is the radius and y0
j , j = 1, 2, 3, is the centre of the spherical structure and also

the centroid of the reference periodicity cell. Henceforth, this structure is referred to as
the solid part. The solid part is embedded in a pore space Yg := Y \ Y s, which is referred
to as the gaseous part, so that the reference cell can be written as Y = Yg ∪ Ȳs. The
boundary ∂Ys represents the interface separating the gas part and the solid part, and ∂Y
is the boundaries enclosing the sets in Y and is represented as Sg := ∂Y . With the small
scale parameter ε, the periodicity cell as well as its distinct parts and interior boundary
are rescaled and translated to cover the macroscopic domain, i.e.

Y ε := {(y1, y2, y3)|0 < yj < ε, j = 1, 2, 3},

Y ε
s := {(y1, y2, y3)|

3∑
j=1

(yj − εy0
j )

2 < (εR)2},

Y ε
g := Y ε \ Y ε

s,

so that the translated subsets are represented by

Y ε
k := {(y1, y2, y3)|yj = yj + εkj, j = 1, 2, 3, (y1, y2, y3) ∈ Y ε}, k = (k1, k2, k3) ∈ Z3.

Let the number of cells with respect to the scale parameter ε, in each coordinate direction,
be defined as Nj(ε) := |aj|ε−1 and the total number of cells in Ω by N(ε) :=

∏3
j=1Nj(ε).

Let Y ε
g,k = Y ε

k \ Y
ε

s,k be any translated gas part with Y ε
s,k, the corresponding solid part.

Then the ensemble of the disconnected solid parts is given by

Ωε
s := {(y1, y2, y3)|(y1, y2, y3) ∈ Y ε

s,k,k = (k1, k2, k3) ∈ Z3, 0 ≤ kj ≤ Nj(ε), j = 1, 2, 3},

such that the matrix of interconnected gas parts can be represented by Ωε
g := Ω \ Ω

ε

s.
Further, the interior boundaries are represented by

Γε := {(y1, y2, y3)|(y1, y2, y3) ∈ ∂Y ε
s,k,k = (k1, k2, k3) ∈ Z3, 0 ≤ kj ≤ Nj(ε), j = 1, 2, 3}.
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2.2.2 Description of the flow field

In this section, the mathematical model of the combustion process occurring on the surface
of the solid structure is described. The full fluid dynamics of the problem posed in the
porous material follows a creeping flow, but following Fasano et al. (2009) regarding the
complications that may arise while investigating the full fluid dynamics, we introduce a
simplifying assumption that the flow in the porous medium is a constant laminar field u
of air in the pore matrix Ωε

g. The key point justifying this approximation is that, in the
smoldering regime we are considering, the mass flow rate is much larger than the mass
exchange rate due to combustion; u is not so much influenced by the combustion process
(Fasano et al., 2009). Thus, the flow field is given by

uε(x) =

{
0,x ∈ Ωε

s,

v,x ∈ Ωε
g,

(2.8)

where (2.8) implies the restriction of convection to the gas phase region Ωε
g, and hence

a spatially periodic flow is assumed, i.e. uε(x) = u(x,
x

ε
) ∈ Ωε

g,y = x/ε, and with the

continuous vector field u(x,y) defined in Yg×Ω and periodic in y, it satisfies the following
incompressibility conditions:

divxu = 0, and divyu = 0 ∈ Yg, and u · n = 0 on ∂Ys,

where n is the unit outward normal on ∂Ys with respect to Yg.

2.2.3 Mass transport of the gaseous species

For a combustion process, the flowing gas constitutes a mixture of gaseous chemical species
which are governed by mass conservation equations that are similar in form. However, in a
simplified presentation, we do not investigate all the gaseous components in the mixture.
In particular, we consider the oxygen flow, which is the major component in the gaseous
mixture that takes part in the oxidative combustion process. Thus, we assume that its flow
is governed by the following convection-diffusion equation

∂C

∂t
+ u·∇C −∇·(D∇C) = 0, x ∈ Ωε

g, t > 0, (2.9)

where C is the concentration and D is the molecular diffusion coefficient, assumed here to
be constant.

2.2.4 Heat transport in the gas and solid phases

The transport of heat in the gas part and the subsequent conduction of heat in the solid part
follow from the Fourier law of heat conduction. The gas phase heat equation is governed
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by a convection-conduction equation, whereas the predominant mode of heat transport in
the solid phase is governed by heat conduction. Thus, we have

Cg
∂Tg

∂t
+ Cgu·∇Tg −∇·(λg∇Tg) = 0, x ∈ Ωε

g, t > 0, (2.10a)

Cs
∂Ts

∂t
−∇·(λs∇Ts) = 0, x ∈ Ωε

s, t > 0, (2.10b)

where Ci = ρici is the volumetric heat capacity of phase i, λi is the heat conductivity and
Ti is the temperature. Since the reaction between the phases is purely heterogeneous and
takes place on the surface of the solid, the transport equations are coupled at the pore
boundary Γε.

2.2.5 Description of the chemical process

The chemical process in the considered combustion regime Zik and Moses (1999); Lu and
Yortsos (2005a) assumes the following form

Solid fuel +O2 → solid product + gas product + heat. (2.11)

For an oxygen-limited reaction, the reaction rate W is given by a one-step first order
reaction with respect to the deficient gaseous reactant. We also assume that adsorption of
the reactant on the solid surface is negligible. The temperature-dependent rate coefficient
k is governed by the Arrhenius’ law, viz.

k(T ) = Aexp

(
−Ta
T

)
. (2.12)

Here, A is the pre-exponential factor, Ta is the activation temperature of the reaction, and
T is the temperature at the gas-solid interface, Γε, satisfying T = Tg = Ts. The micro-
heterogeneous reaction, localized on the solid-gas interface, induces coupling terms in form
of source/sink terms respectively for the oxygen and heat equations where Q is the heat
release. The reaction at the surface Γε is given by the following boundary conditions

Interface conditions

(λg∇Tg − λs∇Ts)·n = QW (T,C), x ∈ Γε, t > 0, (2.13a)

Tg = Ts, x ∈ Γε, t > 0, (2.13b)

D∇C ·n = −W (T,C), x ∈ Γε, t > 0, (2.13c)

where n is the outward unit normal vector which points in a direction outside Yg, and
W (T,C) is given by

W (T,C) = ACexp

(
−Ta
T

)
. (2.14)
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Additionally, the char product R, is given by

∂R
∂t

= W (T,C), x ∈ Γε, t > 0. (2.15)

So far, the governing equations together with the associated interior coupling conditions
have been described. Additionally, the following boundary conditions are prescribed at the
exterior boundaries:

Diffusive thermal insulation conditions

n·∇Ti = 0,n·∇C = 0, ∂Ω \ ({x = 0} ∪ {x = a1}), t > 0. (2.16)

Upstream/Downstream boundary conditions

Ti = Tu, C = Cu, {x = 0} ∩ ∂Ω, t > 0, (2.17a)

n·∇xTi = 0,n·∇xC = 0, {x = a1} ∩ ∂Ω, t > 0. (2.17b)

Here, u denotes the unburnt or initial values, and i = g. The problem is further supple-
mented with appropriate initial conditions in order to describe the problem fully.

2.2.6 Nondimensionalization

In this section, the system of equations derived in the Section 2.2 are scaled, and hence
some dimensionless numbers are introduced, which will allow for the discussion of distinct
problems as well as their upscaling. The scaling process fundamentally aids in the estima-
tion of parameters in the system and also to the description of the physics of the phenomena
at the microscale. As stated earlier, this is an important step prior to the formal homogen-
ization technique which we will consider in Chapter 3. The spatial-temporal variables are
scaled as follows:

x = x∗Lc, t = t∗tc,

where Lc is the characteristic length scale at the macroscopic level and tc, the charac-
teristic time of the observation. After introducing the following characteristic quantities
subscripted with c, First, we introduce some characteristic values

ρg = ρ∗gρgc, cg = c∗gcgc, λg = λ∗gλgc, Ti = T ∗i (Tb − Tu) + Tu,

ρs = ρ∗sρsc, cs = c∗scsc, λs = λ∗sλsc, A = AcA
∗, Q = QcQ

∗,

C = C∗Cc,R = R∗Rc, D = D∗Dc,u = vuc,Ω = Ω∗Lc,

(2.18)
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the dimensionless equations take the following form:

Cg

∂T ∗g
∂t∗

+ Cg
uctc
Lc

v ·∇T ∗g −
Kgctc
L2

c

∇·(λ∗g∇T ∗g ) = 0, (2.19)

mCs
∂T ∗s
∂t∗
− Kgctc

L2
c

K∇·(λ∗s∇T ∗s ) = 0, (2.20)

where Cg = ρ∗gc
∗
g, and Cs = ρ∗sc

∗
s are respectively the dimensionless heat capacities of the

constituents in the gas-phase and solid-phase respectively. Note that the quantities in (2.18)
have their usual meanings as given in Section 2.2. The coefficients appearing in (2.19) are
defined as:

Kgc :=
λgc

ρgccgc

,PT :=
Kgctc
L2

c

,m :=
ρsccsc

ρgccgc

,K :=
λsc

λgc

,

where Kgc is the gas phase thermal diffusivity, PT , the ratio of thermal transport to the time
scale of the observation. The ratio of heat capacities in the material is denoted as m and
the corresponding ratio of heat conductivities is K. Further, we define the temperature of
combustion product, Tb := Tu+QcCc/ρgccgc and introduce the following global characteristic
time scales

tD :=
L2
c

Dc

, tA :=
Lc

uc

, tG :=
Lc

Ac

, tR :=
Rc

CcAc

,

where tD is the characteristic global diffusion time scale, tA is the characteristic global
advection time scale, tg and tR are respectively the characteristic time of gas reaction and
the characteristic time of combustion product. We introduce also the following characteristic
dimensionless numbers

PeL :=
Lcuc

Dc

=
tD
tA

(Péclet number),

Leg :=
Kgc

Dc

(gas-phase Lewis number),

Da :=
LcAc

Dc

=
tD
tg

(Damköhler number).

We take the characteristic time of diffusion in the subdomain, Ωε
g, as the characteristic

time of the observation at the macroscopic scale, i.e. tc = tD. Rewriting (2.19) in terms of
the introduced dimensionless numbers leads to following:

Cg

∂T ∗g
∂t∗

+ CgPeLv ·∇T ∗g − Leg∇·(λ∗g∇T ∗g ) = 0 (2.21a)

mCs
∂T ∗s
∂t∗
−KLeg∇·(λ∗s∇T ∗s ) = 0. (2.21b)
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After introducing some simplifications, the corresponding boundary conditions to (2.21a)-
(2.21b) are

n·(Legλ
∗
g∇T ∗g −KLegλ

∗
s∇T ∗s ) = DaQ∗W ∗(T ∗, C∗), (2.22a)

T ∗g = T ∗s , (2.22b)

with

W ∗(T ∗, C∗) = A∗C∗ exp

(
− Ta
T ∗(Tb − Tu) + Tu

)
. (2.23)

Similarly, the mass concentration of oxygen in dimensionless form is:

L2
c

Dctc

∂C∗

∂t∗
+
ucLc

Dc

v ·∇C∗ −∇·(D∗∇C∗) = 0, (2.24)

where

PC =
L2
c

Dctc
the ratio of global characteristic transport times.

With the choice of characteristic time of diffusion tD, we introduce the Péclet number in
(2.24) to get

PC
∂C∗

∂t∗
+ PeLv ·∇C∗ −∇·(D∗∇C∗) = 0. (2.25)

The boundary condition corresponding to (2.25) is

D∗∇C∗ ·n = −DaW ∗(T ∗, C∗). (2.26)

The solid char product is given in dimensionless form as

∂R∗

∂t∗
=
tcAcCc

Rc

W ∗(T ∗, C∗),

=
tD
tR
W ∗(T ∗, C∗).

(2.27)

Finally, the system is completed with the following scaled initial and boundary conditions:

T ∗i = 0, C∗ = 1,R∗ = 0, x ∈ Ω, t = 0. (2.28)

T ∗i = 0, C∗ = 1, {x = 0} ∩ ∂Ω, t > 0, (2.29)

n·∇T ∗i = 0,n·∇C∗ = 0, {x = a1} ∩ ∂Ω, t > 0. (2.30)
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2.3 Summary

In this chapter, we have described, based on simplified assumptions related to the choice
of microstructure, the heat mechanism, the flow and filtration properties, and the filtra-
tion combustion of reactive thin porous materials At the pore scale, we used two distinct
transport processes, corresponding to the flow of heat and reactants, to model a basic com-
bustion scenario. This is typical to most macroscopic models, in which the equations are
introduced directly at the macroscopic level. However, by incorporating the description of
material microstructure into the modeling, we intend to develop a system that allows to
understand the influence of microstructural properties on the physical problem of interest.
This is the main objective of this chapter. We also focussed on the reduction of the pore
scale description to its dimensionless form. The latter is crucial (see Auriault, 1991, e.g.,)
for the discussions presented in Chapter 3. Here, we basically identified the relevant di-
mensionless parameters based on the physics of interest.

We also mention some important aspect of the modeling that has been neglected presently.
It concerns the role of heat transfer mechanism to the structure formation, the evolution
of fingering patterns in terms of the conversion efficiency, and a modeling description res-
ulting in a two-temperature functional equation at the macroscopic level. Although these
factors are in the focus of this thesis, we expect that incorporating them into the system
will bring us closer to most other models and analysis reported in the literature (see Kagan
and Sivashinsky, 1996; Lu and Yortsos, 2005a; Fasano et al., 2009, e.g.).

Presently, we have adopted the classical homogenization approach for the study of flame
propagation. Our modeling can be extended to cover problems with “evolving microstruc-
ture”. This describes a situation where drastic changes in the microstructure due to com-
bustion of the material are taken into consideration. One of the challenges of proceeding
in this direction is on the efficient method of integrating the evolving structures in the
actual filtration combustion process. Thus, a method for solving the problem of “variable
(i.e. evolving) microstructure” may be to consider a situation, resembling to (1.2)–(1.4), in
which the conversion efficiency η enters the formulation of the problem, i.e. if the porosity
can be related to the amount of material consumed.

The approach in this thesis has the advantage that the periodic averaging procedure shows
precisely how the porosity enters the transport and other coefficients. In this way, instead
of focusing on the evolving geometry, one may simply focus on the consequence of the
changing medium; which is the depletion of the material by combustion. Proceeding in
this direction can provide more insights on the influence of variability in geometry, and
hence in porosity on the propagation of reaction fronts and then compare this result to the
situation in fixed geometries.



Chapter 3

Derivation of macroscopic equations
of filtration combustion by periodic
homogenization

In this chapter, we consider the homogenization of a counterflow filtration combustion
problem, in which a gas containing a gaseous oxidizer is forced opposite to the direction of
the reaction front. We have already mentioned in Chapter 1, Section 1.1 that combustion
waves resulting from counterflow filtration of a gas are basically driven by conduction.
Thus, we will consider homogenization problems that take into account the influence of
conductivity contrast that exists between the interacting gaseous and solid phases near
the reaction sites. In addition, the form of the homogenization problems derived in this
chapter will depend on the proper estimation of the thermodynamic properties of the por-
ous material. For instance, distinct macroscopic combustion models which are based on
thermal conductivity of the material will be discussed, which according to the microstruc-
tural description introduced in Section 2.2.1, allows to focus on the geometry and thermal
properties of the inclusions.

3.1 Porous material with moderately conductive in-

clusions

3.1.1 Estimation of dimensionless parameters

In this section, we discuss the macroscopic behavior of combustible thin porous materials
in which the thermal conductivity of the inclusions is assumed to be comparable1 to the
thermal conductivity of the gas matrix. With respect to the inclusions, the model derived
in this section will be referred to as Moderately Conductive Inclusions (MCI). This is
because the order of magnitude of the conductivity of the inclusions is neither higher nor

1In the context of this discussion, “comparable” means that the order of magnitude of the ratio between
any two related physical parameters, say of the gas λg and the solid phase λs, is λs = O(λg).



26 Derivation of macroscopic equations of filtration combustion by homogenization

lower than that of the gas matrix. It will be shown later on, such an estimation generally
leads to situations, in which the connectivity of the phases does not affect the form of the
homogenized limit problem since no large contrast of conductivity exists. We start off with
the system:

Cg
∂Tg

∂t
+ Cgv ·∇Tg −∇·(λg∇Tg) = 0, x ∈ Ωε

g, t > 0, (3.1a)

Cs
∂Ts

∂t
−∇·(λs∇Ts) = 0, x ∈ Ωε

s, t > 0, (3.1b)

Tg = Ts, x ∈ Γε, t > 0, (3.1c)

n·(λg∇Tg − λs∇Ts) = εQW (T,C), x ∈ Γε, t > 0. (3.1d)

The first step is to assume that solutions to the unknown fields in (3.1a)-(3.1d) follow a
two-scale formal asymptotic expansion, namely:

Ti(x, t) = T
(0)
i (x,y, t) + εT

(1)
i (x,y, t) + ε2T

(2)
i (x,y, t) +O(ε3), (3.2a)

C(x, t) = C(0)(x,y, t) + εC(1)(x,y, t) + ε2C(2)(x,y, t) +O(ε3), (3.2b)

where T
(n)
i and C(n), n = 1, 2, . . . , i = {g, s} are Y periodic in y with y =

x

ε
. Due to the

scale separation (x,
x

ε
), the unknowns in (3.2a) and (3.2b) are functions of three variables:

x,y and t. Consequently, we transform the derivatives through the chain rule:

∇x = ∇x +
1

ε
∇y. (3.3)

Applying the expansions (3.2a)-(3.2b), using (3.3) and collecting terms with the same
powers of ε, we obtain the following sequence of boundary value problems:

Boundary value problem for T
(0)
g and T

(0)
s :



−∇y ·λg(∇yT (0)
g ) = 0, y ∈ Yg,

−∇y ·λs(∇yT (0)
s ) = 0, y ∈ Ys,

T (0)
g = T (0)

s , y ∈ ∂Ys,

(λg∇yT (0)
g − λs∇yT (0)

s ) ·n = 0, y ∈ ∂Ys,

T (0)
g and T (0)

g are Y periodic.

(3.4)

By introducing in (3.4) the following forms

T (n)(x,y, t) = T (n)
g χYg(y) + T (n)

g χYs(y),

λ(y) = λgχYg(y) + λsχYs(y),
(3.5)
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we can rewrite (3.4) as 
∇y ·(λ∇yT (0)) = 0, y ∈ Y ,[
T (0)

]
∂Ys

= 0, y ∈ ∂Ys,[
λ∇yT (0)

]
∂Ys
·n = 0, y ∈ ∂Ys,

T (0) is Y periodic,

(3.6)

where [ · ]∂Ys represents the jump Tg − Ts across the interface ∂Ys. Problem (3.6) involves
only derivatives in y, while x and t are present as parameters. The only periodic solution
satisfying (3.6) for the local heat problem is that T (0)(x,y, t) must be a constant, i.e.

T (0)(x,y, t) = T 0(x, t). (3.7)

By using (3.5), we write the following boundary value problem for T (1):

Boundary value problem for T
(1)
g and T

(1)
s :


∇y ·(λ(∇yT (1) +∇xT (0))) = 0, y ∈ Y ,[
T (1)

]
∂Ys

= 0, y ∈ ∂Ys,[
λ(∇yT (1) +∇xT (0))

]
∂Ys
·n = 0, y ∈ ∂Ys,

T (1) is Y periodic,

(3.8)

The linearity of (3.8) makes it possible to consider the following cell problems for the
components of the vector, N = (N1,N2,N3), with each problem corresponding to a unit
macroscopic gradient ∇xT (0) = ej, j = 1, 2, 3, where ej is the canonical orthonormal basis
in R3 

∇y ·(λ(∇yN + I)) = 0, y ∈ Y ,
[N ]∂Ys = 0, y ∈ ∂Ys,

[λ(∇yN + I)]∂Ys ·n = 0, y ∈ ∂Ys,

N = 0,N is Y periodic,

(3.9)

Therefore, the solution to the problem (3.8) can be written as

T (1)(x,y, t) = N (y)·∇xT (0)(x, t) + T
(1)

(x, t). (3.10)

In (3.10), N is the vector satisfying (3.9) and T
(1)

(x, t) is basically the average w.r.t. y
over T (1)(x,y, t). Again, using the more compact form (3.5), the boundary value problem

for T
(2)
g and T

(2)
s is given viz.
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Boundary value problem for T
(2)
g and T

(2)
s :

(Cg + Cs)
∂T (0)

∂t
−∇y ·(λ(∇yT (2) +∇xT (1)))−

∇x ·(λ(∇yT (1) +∇xT (0))) + Cgv ·∇xT (0) = 0, y ∈ Y[
T (2)

]
∂Ys

= 0, y ∈ ∂Ys,[
λ(∇yT (2) +∇xT (1))

]
∂Ys
·n = QW (T (0), C(0)), y ∈ ∂Ys,

T (2) is Y periodic.

(3.11)

The existence of T (2) enforces a compatibility condition that involves taking the mean of
(3.11), applying the divergence theorem and using the prescribed conditions on ∂Ys, i.e.

− 1

|Y |

∫
Y

∇y ·(λ(∇yT (2) +∇xT (1))dY = − · · ·

1

|Y |

∫
Sg

λ(∇yT (2) +∇xT (1))·ndS − 1

|Y |

∫
∂Ys

λ(∇yT (2) +∇xT (1))·ndS
(3.12)

The first integral at the right-hand side of (3.12) vanishes due to periodicity in Y and the
second integral leads to

1

|Y |

∫
∂Ys

−QW (T (0), C(0))dS = −|∂Ys|
|Y |

QW (T (0), C(0)) (3.13)

Also, we obtain the following averages:

∂T (0)

∂t

 1

|Y |

∫
Y

(Cg + Cs)dY

 = Ceff ∂T
(0)

∂t
, (3.14)

v ·∇xT (0) 1

|Y |

∫
Yg

CgdY = φCgv ·∇xT (0). (3.15)

Further, we see, by using (3.10), that

∇yT (1) +∇xT (0) = (∇yN + I)∇xT (0). (3.16)

Using (3.16), It follows from (3.11) and using the fact that the integration with respect to
y commutes with the derivative with respect to x, we have

∫
Y

∇x ·(λ(∇yT (1) +∇xT (0)))dY = ∇x ·

 1

|Y |

∫
Y

λ(∇yN + I)dY

∇xT (0)

 (3.17)
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Finally, the macroscopic description is viz.

Ceff ∂T
(0)

∂t
−∇x ·(λeff∇xT (0)) + φCgv ·∇xT (0) = φsQW (T (0), C(0)), (3.18)

with

λeff
ij =

1

|Y |

∫
Yg

λg(Iij +
∂N j

g

∂yi
)dY +

∫
Ys

λs(Iij +
∂N j

s

∂yi
)dY

 , i, j = 1, 2, 3 (3.19)

Ceff =
1

|Y |

∫
Yg

CgdY +

∫
Ys

CsdY

 (3.20)

= φCg + (1− φ)Cs, (3.21)

where φ denotes here the porosity of the material.

3.2 Porous material with highly conductive inclusions

In this section, we discuss the homogenization problem of the local heat model derived
in Section 2.2.4 in a framework of high contrast in thermal conductivity. As pointed out
earlier (see Olson et al., 1998; Wahle et al., 2003; Zik and Moses, 1999, e.g.)), an important
mode of heat transfer for counterflow smolder propagation is solid phase heat conduction.
Therefore, we analyze the macroscopic behavior of a porous solid fuel, in which the thermal
conductivity of the inclusion is high compared to the matrix (gaseous) thermal conductivity.
Thus, we refer to the derived model as the Highly Conductive Inclusions (HCI).

3.2.1 Estimation of dimensionless parameters

Prior to the introduction of the asymptotic expansions in the conservation laws, we start
with the estimation of the dimensionless parameters introduced in Section 2.2.6. Since the
more thermal conductive inclusion Ys is not interconnected, and hence the mechanism of
the flow is dominated by the gaseous phase Yg, we choose the time of diffusion in the matrix
at the macroscopic scale as the characteristic time of observation tc:

tc =
L2

c

Dc

(3.22)

The contrast of thermal conductivity is such that we assume the following conductivity
ratio:

K =
λsc

λgc

= O(ε−1). (3.23)
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Alternatively, (3.23) can also be estimated following the line of argument in Lewandowska
et al. (2004, 2005); Szymkiewicz (2004): Assuming the time of heat diffusion in the matrix
to be the characteristic time of observation at the macroscopic level. We have

tc =
L2

c

Kgc

, Kgc =
λgc

ρgccgc

( cf. Section 2.2.6 ). (3.24)

Then, the ratio (3.23) can be estimated from the ratio of thermal diffusivity:

Ksc

Kgc

=
λsc

λgc

ρgccgc

ρsccsc

, (3.25)

such that we assume the following estimates:

λsc

λgc

= O(ε−1),
ρgccgc

ρsccsc

= O(1), ( cf. Section 2.2.6 ). (3.26)

Other estimates of dimensionless parameters include: PeL = O(1), advection is comparable
to mass diffusion at the macroscopic scale; Da, assumes a diffusion-controlled regime at
the macroscopic scale. The estimates gives rise to the following normalized equations with
respect to ε :

Cg
∂Tg

∂t
+ Cgv ·∇Tg −∇·(λg∇Tg) = 0, x ∈ Ωε

g, t > 0, (3.27a)

εCs
∂Ts

∂t
−∇·(λs∇Ts) = 0, x ∈ Ωε

s, t > 0, (3.27b)

Tg = Ts, x ∈ Γε, t > 0, (3.27c)

n·(ελg∇Tg − λs∇Ts) = ε2QW (T,C), x ∈ Γε, t > 0. (3.27d)

We now solve the following boundary value problems corresponding to the ε−2 term.

Boundary value problem for T
(0)
s and T

(0)
g{

∇y ·(λs∇yT (0)
s ) = 0, y ∈ Ys

λs∇yT (0)
s ·n = 0, y ∈ ∂Ys,

(3.28)

whose solution has the form

T (0)
s (x,y) = T (0)

s (x), (3.29)

while for the problem posed in Yg{
∇y ·(λg∇yT (0)

g ) = 0, y ∈ Yg

T (0)
g = T (0)

s (x), y ∈ ∂Ys,
(3.30)
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we obtain the following solution:

T (0)
s (x,y) = T (0)

s (x) = T (0)(x). (3.31)

Since T
(0)
s and T

(0)
g are y-independent, all subsequent spatial derivatives in y vanishes. The

next problem uses the ε−1 term of T
(0)
s and the ε0 term of the interface condition:

Boundary value problem for T
(1)
s{

∇y ·(λs(∇yT (1)
s +∇xT (0))) = 0, y ∈ Ys

λs(∇yT (1)
s +∇xT (0))·n = 0, y ∈ ∂Ys.

(3.32)

The problem (3.32) is different from the problems considered earlier. We multiply the terms

in (3.32) by y·∇xT (0)+T
(1)

s , integrating by parts over Ys, and using the prescribed condition
on ∂Ys :∫
Ys

∇y ·(λs(∇yT (1)
s +∇xT (0)))(y ·∇xT (0) + T

(1)

s )dY

=

∫
Ys

λs(∇yT (1)
s +∇xT (0))2dY −

∫
∂Ys

n·λs(∇yT (1)
s +∇xT (0))(y ·∇xT (0) + T

(1)

s )dS

=

∫
Ys

λs(∇yT (1)
s +∇xT (0))2dY = 0.

(3.33)

The positivity of λs implies that ∇yT (1) +∇xT (0) = 0 a.e. in Ys. Thus, we obtain

T (1)
s (x,y) = −y ·∇xT (0) + T

(1)
(x) for x ∈ Ω, y ∈ Ys (3.34)

Boundary value problem for T
(1)
g{

∇y ·(λg(∇yT (1)
g +∇xT (0))) = 0, y ∈ Yg

T (1)
g = T (1)

s = −y ·∇xT (0) + T
(1)

(x), y ∈ ∂Ys,
(3.35)

where ∇xT (0) and T
(1)

(x) are taken as forcing terms. The solution of (3.35) can be written
in the form:

T (1)
g (x,y) = N (y)·∇xT (0) + T

(1)
(x), (3.36)

where the vector N (y) is the solution of the following boundary value problem{
∇y ·(λg(∇yN + I)) = 0, y ∈ Yg

N + y = 0, y ∈ ∂Ys.
(3.37)



32 Derivation of macroscopic equations of filtration combustion by homogenization

For the macroscopic equations, we look at the ε0 term from T
(2)
g and the ε1 term from T

(3)
s ,

i.e.

Cg
∂T (0)

∂t
= ∇y ·(λg(∇yT (2)

g +∇xT (1)
g ))+

∇x ·(λg(∇yT (1)
g +∇xT (0)))− Cgv ·∇xT (0)

g , y ∈ Yg,

Cs
∂T (0)

∂t
= ∇y ·(λs(∇yT (3)

s +∇xT (2)
s )) +∇x ·(λs(∇yT (2)

s +∇xT (1)
s )), y ∈ Ys,

λg(∇yT (2)
g +∇xT (1)

g )·n = λs(∇yT (3)
s +∇xT (2)

s )·n +QW (T (0), C(0)), y ∈ ∂Ys.

(3.38)

Averaging (3.38) over Yg and Ys, and using the prescribed boundary condition, we are led
to

((1− φ)Cs + φCg)
∂T (0)

∂t
+ φCgv ·∇xT (0) =

1

|Y |
∇x ·

∫
Yg

λg(∇yT (1)
g +∇xT (0))dY

+

1

|Y |
∇x ·

∫
Ys

λs(∇yT (2)
s +∇xT (1)

s )dY

+ φsQW (T (0), C(0)).

(3.39)

Since T
(2)
s is unknown, we transform the integrals by identifying the heat fluxes in each

constituent (cf. Lewandowska et al., 2005):

qg = λg(∇yT (1)
g +∇xT (0)), (3.40a)

qs = λg(∇yT (2)
g +∇xT (1)

s ). (3.40b)

The flux in (3.40a) satisfy the following dyadic product identity

qik =
∂

∂yj
(ykqij), where qi = ∇y ·(y ⊗ qi), i = {g, s}, k, j = 1, 2, 3.

Since the solid inclusions are completely embedded in the matrix, it makes sense to apply
the divergence theorem to the integrals in (3.39), i.e.∫

Yg

qgdY =

∫
∂Ys

(y ⊗ qg)·ndS +

∫
Sg

(y ⊗ qg)·ndS (3.41a)

∫
Ys

qsdY = −
∫
∂Ys

(y ⊗ qs)·ndS, (3.41b)

(qg − qs)·n = 0, y ∈ ∂Ys. (3.41c)
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Substituting (3.41a) and (3.41b) for the integrals in (3.39) and making use of the condition
of flux continuity (i.e. the boundary condition corresponding to the ε1 term) over ∂Ys, we
obtain:

Ceff ∂T
(0)

∂t
+ φCgv ·∇x = ∇x ·(λ̂eff∇xT (0)) + φsQW (T (0), C(0)), (3.42)

where the effective conductivity tensor, λ̂eff , is given by the following surface integral:

λ̂eff
kj =

1

|Skg |

∫
Skg

λkig

(
∂Nj
∂yi

+ Iij

)
yknidS, i, j, k = 1, 2, 3. (3.43)

From (3.43), we see that the effective conductivity is evaluated over the cross-sectional
surface of Y , orthogonal to the kth-direction.

3.3 Porous material with weakly conductive inclusions

In this section, we discuss a different scenario in the homogenization problem of the local
heat model derived in Section 2.2.4. In this case, the contrast of thermal conductivity is such
that heat conduction in the inclusion is slow, i.e. the thermal conductivity of the inclusion
is quite low compared to that of the gaseous phase. Thus, we refer to the derived model as
the Weakly Conductive Inclusions (WCI). We will see later on that the derived model has
the form of the microstructure models (see Hornung and Showalter, 1990; Hornung, 1997).
In the context of the present study, we may simply refer it as a distributed-temperature
combustion model since the derived temperature is distributed between the macroscopic
medium and the local medium of the inclusion.

3.3.1 Estimation of dimensionless parameters

The estimation of the parameters follows similarly as discussed in the previous section.
In this case, the contrast of thermal conductivity is such that we assume the following
conductivity ratio:

K =
λsc

λgc

= O(ε2). (3.44)

Other estimates of the dimensionless parameters corresponding to PeL,Da and Leg are
given as in the previous section. Now, we consider the following problem:

Cg
∂Tg

∂t
+ Cgv ·∇Tg − ~∇(λg∇Tg) = 0, (3.45)

Cs
∂Ts

∂t
− ε2~∇(λs∇Ts) = 0, (3.46)

n·(λg∇Tg − ε2λs∇Ts) = εQW (T,C), (3.47)

Tg = Ts, (3.48)



34 Derivation of macroscopic equations of filtration combustion by homogenization

The expansion for the gas phase is still valid for the case considered here; in the solid-phase,
we have

ε0Cs
∂T

(0)
s

∂t
+ ε1 · · · = ε0~∇y(λs∇yT

(0)
s ) + ε1O(ε1) (3.49)

The corresponding boundary conditions at the gas-solid interface have the following form

ε−1(λgn·∇yT
(0)
g ) + ε0(λgn·(∇yT

(1)
g +∇xT

(0)
g ))

+ ε1(λgn·(∇yT
(2)
g +∇xT

(1)
g )− (λsn·∇yT

(0)
s ) + · · ·

= −ε1(QW (T (0), C(0)) +O(ε)),

(3.50)

and

ε0T (0)
g + ε1T (1)

g + · · · = ε0T (0)
s + ε1T (1)

s + · · · . (3.51)

Following the same argument as before, we obtain the following results for the first two
terms of the gas-phase temperature:

T (0)
g (x, y, t) = T (0)

g (x, t), (3.52)

T (1)
g (x, y, t) = N (y)·∇xT

(0)
g (x, t) + T

(1)

g (x, t), (3.53)

with the periodic vector N = (N1,N2,N3) satisfying the following cell problem:
∇y · (λg(∇yN + I)) = 0 in Yg,

λg(∇yN + I)·n = 0 on ∂Ys,

N = 0,N is Y periodic.

(3.54)

Further, we look for a corresponding solution to the ε0 term:

Cg
∂T

(0)
g

∂t
= ∇y ·(λg(∇yT

(2)
g +∇xT

(1)
g )) +∇x ·(λg(∇yT

(1)
g +∇xT

(0)
g ))− Cgv · ∇xT

(0)
g .

(3.55)

As a result of the compatibility condition for the existence of T (2), we integrate (3.55) over
Yg and obtain

φCg
∂T

(0)
g

∂t
=

∫
Yg

∇y ·(λg(∇yT
(2)
g +∇xT

(1)
g ))dY

+

∫
Yg

~∇x(λg(∇yT
(1)
g +∇xT

(0)
g ))dY − φCgv · ∇xT

(0)
g .

(3.56)
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By applying the divergence theorem to the integrals on the right hand side of (3.56) in
turn, we obtain∫

Yg

∇y ·(λg(∇yT
(2)
g +∇xT

(1)
g ))dY

=

∫
Sg

λgn·(∇yT
(2)
g +∇xT

(1))dS +

∫
∂Ys

λgn·(∇yT
(2)
g +∇xT

(1))dS.

(3.57)

In (3.57), the boundary integral over Sg vanishes due to Y -periodicity of T
(2)
g and T

(1)
g . The

integral over ∂Ys satisfies the following equality, based on the prescribed boundary data:∫
∂Ys

λgn·(∇yT
(2)
g +∇xT

(1))dS =

∫
∂Ys

λs∇yT
(0)
s ·ndS −

∫
∂Ys

QW (T (0), C(0))dS, (3.58)

where

−
∫
∂Ys

QW (T (0), C(0))dS = −φsQW (T (0), C(0)), (3.59)

and by divergence theorem, the second boundary integral is∫
∂Ys

λs∇yT
(0)
s ·ndS = −

∫
Ys

∇y ·(λs∇yT
(0)
s )dY

= −
∫
Ys

Cs
∂T

(0)
s

∂t
dY.

(3.60)

The integral in (3.60) changes sign because n = ng = −ns, where ng and ns are respectively
the gas-phase and solid-phase unit normal vectors. It is clear, by using the solutions in
(3.52), that

∇yT
(1)
g +∇xT

(0)
g = (∇yN + I)∇xT

(0)
g , (3.61)

so that the last integral in (3.56) reduces to

∫
Yg

∇x ·(λg(∇yT
(1)
g +∇xT

(0)
g ))dY = ∇x ·

∫
Yg

λg(∇yN + I)dY

∇xT
(0)
g . (3.62)



36 Derivation of macroscopic equations of filtration combustion by homogenization

From the discussions so far, one can write the following macro-model as the homogenization
limit:

φCg
∂T

(0)
g

∂t
(x, t) + φCgv·∇xT

(0)
g (x, t) + S(x, t)

= λeff∇2
xT

(0)
g (x, t) + φsQ(T (0)

g (x, t), C(0)(x, t)), x ∈ Ω,

S(x, t) =

∫
∂Ys

λs∇yT
(0)
s (x, y, t)·ndS, x ∈ Ω,

Cs
∂T

(0)
s

∂t
(x, y, t) = ∇y ·(λs∇yT

(0)
s (x, y, t)), x ∈ Ω, y ∈ Ys,

T (0)
s (x, y, t) = T (0)

g (x, t), x ∈ Ω, y ∈ ∂Ys,

(3.63)

where the effective thermal conductivity is given by

Laeff
ij =

λg

|Y |

∫
Yg

(Iij +
∂N j

∂yi
)dY. (3.64)

3.3.2 Convolution formulation of (3.63)

The homogenized limit problem (3.63) can be reformulated as a one temperature model
without having to deal with a macro-micro coupling as seen in (3.63). In order to work in
this direction, we provide an explicit formula for the problem posed in Ys. First, we con-
sider the form of the source term S(x, t) which provides a coupling between the two phase
temperatures. Problems of this nature occur have been dealt with in Hornung (1997), but
following a different approach. Here, we simply consider the standard method of eigenfunc-
tion expansion. We consider the problem (3.49) as well as the first term of the boundary
condition (3.51) corresponding to ε0, i.e.

Cs
∂T

(0)
s

∂t
= ∇y ·(λs∇yT

(0)
s ), x ∈ Ω, y ∈ Ys, t > 0,

T (0)
s (x, y, t) = T (0)

g (x, t), x ∈ Ω, y ∈ ∂Ys, t > 0,

T (0)
s (x, y, t) = Ts(0), x ∈ Ω, y ∈ Ys, t = 0.

(3.65)

Since T
(0)
g (x, t) is known, we transform the problem (3.65) by setting

T (0)
s (x, y, t) = T (0)

g (x, t) +W(y, t), (3.66)

so that the initial boundary value problem becomes

∂W
∂t
−∇y ·(α∇yW) = −∂T

(0)
g

∂t
, x ∈ Ω, y ∈ Ys, t > 0, (3.67)

W = 0, y ∈ ∂Ys, t > 0, (3.68)

W = Ts(0)− Tg(0), x ∈ Ω, y ∈ Ys, t = 0, (3.69)
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with α = λs/Cs taken to be a positive constant. Here we have transient effects and a source
term resulting from the temperature imposed at the boundary. From (3.67), it is clear
that the transient effect associated withW depends linearly on the forcing term associated
with T

(0)
g , where T

(0)
g is a constant temperature in Yg. The problem (3.67) can be solved

by Fourier series. The domain of interest Ys is a ball of radius, R, assumed for the moment
to be centered at the origin. Assuming spherical symmetry, the temperature in W only
depends on t and the radial distance r, we transform the initial boundary value problem
(3.67) to the radial variable r =

√
y2

1 + y2
2 + y2

3, i.e.

∂U
∂t
− α∂

2U
∂r2

= rQ(x, t), 0 < r < R, t > 0,

U(r, 0) = rW(r, 0), 0 < r < R,

U(0, t) = 0, t > 0,

U(R, t) = 0, t > 0,

(3.70)

where U(r, t) = rW(r, t) andQ(x, t) = −∂T (0)
g /∂t.With the eigenfunctions sin (nπr/R) , n =

1, 2, . . . , of the corresponding homogeneous eigenvalue problem, we look for solution in the
series form

U(r, t) =
∞∑
n=1

Un(t) sin
nπr

R
, for each fixed t > 0. (3.71)

The coefficients, Un(t), are then given by the Fourier sine coefficients formula

Un(t) =
2

R

R∫
0

U(r, t) sin
nπr

R
dr. (3.72)

Similarly, the forcing term is expanded viz.

rQ(x, t) =
∞∑
n=1

Qn(t) sin
nπr

R
, where Qn(t) =

2

R

R∫
0

Q(x, t) sin
nπr

R
rdr. (3.73)

We apply (3.71) in (3.70), i.e.

Urr = −
∞∑
n=1

Un(t)
(nπ
R

)2

sin
nπr

R
and Ut =

∞∑
n=1

U ′n(t) sin
nπr

R
. (3.74)

The Fourier coefficients of Ut(r, t) are

U ′n(t) =
2

R

R∫
0

Ut(r, t) sin
nπr

R
rdr =

∂

∂t

 2

R

R∫
0

U(r, t) sin
nπr

R
rdr

 . (3.75)
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Substituting (3.74) in (3.70), and using the eigen property,

∞∑
n=1

[
U ′n(t) + α

(nπ
R

)2

Un(t)

]
sin

nπr

R
=
∞∑
n=1

Qn(t) sin
nπr

R
, (3.76)

requires that we consider the following linear ordinary differential equations for the coeffi-
cients Un(t)

U ′n + α
(nπ
R

)2

Un = Qn(t), n = 1, 2, . . . (3.77)

(3.77) is a linear first order differential equation, in which possible methods of solution will
be the integrating factor or variation of parameters. With the integrating factor eα(nπ/R)2t,
(3.77) can be written as (

eα(nπ/R)2tUn
)′

= eα(nπ/R)2tQn(t), (3.78)

so that on integration and using the initial condition, we obtain

Un(t) = U(r, 0)e−α(nπ/R)2t + e−α(nπ/R)2t

t∫
0

eα(nπ/R)2τQn(τ)dτ. (3.79)

The initial condition U(r, 0) admits the following series expansion

U(r, 0) = rW(r, 0) =
∞∑
n=1

Un(0) sin
nπr

R
, and hence Un(0) =

2

R

R∫
0

W(r, 0) sin
nπr

R
rdr.

(3.80)

Thus, the solution is given in series form as

U(r, t) =
∞∑
n=1

Un(0)e−α(nπ/R)2t +

t∫
0

e−α(nπ/R)2(τ−t)Qn(τ)dτ

 sin
nπr

R
, (3.81)

where

Un(0) =
2

R

R∫
0

(Ts(0)− Tg(0)) sin
nπr

R
rdr

=
2R

π

(−1)n+1

n
(Ts(0)− Tg(0))
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and

Qn(t) = − 2

R

R∫
0

∂T
(0)
g

∂t
sin

nπr

R
rdr,

= −2R

π

(−1)n+1

n

∂T
(0)
g

∂t
.

Since the initial condition vanishes for Ts(0) − Tg(0) ≡ 0, we obtain the following series
solution

W(r, t) =
2R

π

∞∑
n=1

(−1)n+1

n

− t∫
0

e−α(nπ/R)2(τ−t)∂T
(0)
g

∂τ
dτ

 1

r
sin

nπr

R
.

By divergence theorem, the forcing term, S(x, t), can be then expressed as

S(x, t) =

∫
∂Ys

λs∇yT
(0)
s ndS = −

∫
Ys

∇y ·(λs∇yT
(0)
s )dY

= −Cs
∂

∂t

∫
Ys

T (0)
s dY.

(3.82)

(3.82) implies by using the time convolution notation,

(ϕ ∗ ψ)(t) =

t∫
0

ϕ(t− τ)ψ(τ)dτ,

− (1− φ)Cs
∂T

(0)
g

∂t
+ 8R

∞∑
n=1

(−1)n+1

n

− t∫
0

e−α(nπ/R)2(τ−t)∂T
(0)
g

∂τ
dτ

 R∫
0

sin
nπr

R
rdr,

− (1− φ)Cs
∂T

(0)
g

∂t
− ∂

∂t

(
ζ(t) ∗ ∂T

(0)
g

∂t

)
,

(3.83)

where the kernel, ζ(t), in the convolution term of (3.83) is given as

ζ(t) =
8R3

π

∞∑
n=1

1

n2
e−α(nπ/R)2t. (3.84)

Thus, the macroscopic model can be written viz.

(φCg + (1− φ)Cs)
∂T (0)

∂t
+ φCgv·∇xT

(0) + ∂t(ζ(t) ∗ ∂tT (0))

= λeff∇2T (0) + φsQ(T (0), C(0)), x ∈ Ω, t > 0.

(3.85)
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3.4 Homogenization of the filtration gas oxidizer model

As in the case of the temperature models, we derive a macroscopic model for the concen-
tration of the oxidizer. Obviously, in practice, the derivation of the upscaled concentration
equation needs to be done simultaneously with the temperature model.

3.4.1 Estimation of dimensionless parameters

We consider the following on the following parameter regime:

PeL = O(1),PC = O(1),Da = O(ε)

∂C

∂t
+ v ·∇C −∇·(D∇C) = 0, x ∈ Ωε

g, t > 0, (3.86a)

−D∇C ·n = εW (T,C), x ∈ Γε, t > 0. (3.86b)

We introduce in (3.86a) and (3.86b) the expansions (3.2a) and (3.2b), and identify powers
of ε. From these expansions, we are led to a few local boundary value problems:

Boundary value problem for C(0) :


−∇y ·(D∇yC(0)) = 0, y ∈ Yg,

−D∇yC(0) ·n = 0, y ∈ ∂Ys,

C(0) is Y periodic.

(3.87)

Similar to (3.6), any solution of (3.87) is unique up to an additive function of x and t,
where x and t are parameters. Thus, the solution to (3.87) is

C(0)(x,y, t) = C(0)(x, t). (3.88)

(3.88) implies that the concentration C(0) is a constant over the period.

Boundary value problem for C(1) :


−∇y ·(D(∇yC(1) +∇xC(0))) = 0, y ∈ Yg,

−D(∇yC(1) +∇xC(0))·n = 0, y ∈ ∂Ys,

C(1) is Y periodic.

(3.89)
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The gradient,∇xC(0), is only present as a source term in (3.89). Due to linearity and the
fact that spatial derivatives are only in y, it makes sense to consider the following local
problem for the periodic vector N = (N1,N2,N3), with a mean of zero over Yg, i.e.

∇y ·(D(∇yN + I)) = 0, y ∈ Yg,

D(∇yN + I)·n = 0, y ∈ ∂Ys,

N = 0,N is Y periodic,

(3.90)

where the solution to (3.89) can be written in the form

C(1)(x,y, t) = N (y)·∇xC(0) + C
(1)

(x, t), (3.91)

and C
(1)

(x, t) is only an arbitrary function of x and t. With the results obtained from
(3.88) and (3.91), we write the boundary value problem for C(2) as

Boundary value problem for C(2)


∂tC

(0) −∇y ·(D(∇yC(2) +∇xC(1)))−∇x ·(D(∇yC(1) +∇xC(0)))+

v ·∇xC(0) = 0, y ∈ Yg,

−D(∇yC(2) +∇xC(1))·n = W (T (0), C(0)), y ∈ ∂Ys

C(2) is Y periodic.

(3.92)

Applying the compatibility condition for the existence of C(2), and using the expressions
for C(0) and C(1), respectively in (3.92), we obtain

− 1

|Y |

∫
Yg

∇y ·(D(∇yC(2) +∇xC(1)))dY = · · ·

− 1

|Y |

∫
Sg

(D(∇yC(2) +∇xC(1)))·ndS − 1

|Y |

∫
∂Ys

(D(∇yC(2) +∇xC(1)))·ndS.
(3.93)

The first integral at the right-hand side of (3.93) vanishes due to periodicity condition in
Y and the second integral yields

1

|Y |

∫
∂Ys

W (T (0), C(0))dS = φsW (T (0), C(0)) (3.94)

The average of the remaining terms in (3.93) is viz.

φ
∂C(0)

∂t
+ φv ·∇xC(0) −∇x

 D

|Y |

∫
Yg

(∇yN (y) + I)dY

∇xC(0) (3.95)
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Collecting the terms together, the macro-model can be written as

φ
∂C(0)

∂t
+ φv ·∇xC(0) −∇x ·(Deff∇xC(0)) = −φsW (T (0), C(0)), (3.96)

where the effective diffusion tensor Deff is defined as:

Deff
ij =

D

|Y |

∫
Yg

(Iij +
∂N j

∂yi
)dY. (3.97)

3.5 Summary

In this chapter, we have derived via the homogenization of periodic structures three macro-
scopic models from a pore scale description of a combustion process (see details in Chapter
2). These models are representative of distinct macroscopic behaviors, which are based on
thermal conductivity contrast. The derivation of the models was based on scaling the ratio
of thermal conductivity, K = λs/λg, in the order of magnitude, ε, i.e. O(εα).

We point out that based on the choice of α, different classes of equilibrium or non-
equilibrium models can be obtained. For instance, when α = 1, the thermal conductivity
ratio is O(ε) and the solution of rescaled equation results to a model with local equilib-
rium as in the case of MCI model, but having an effective thermal conductivity defined
in the highly thermal conductivity subdomain (cf. Allaire and Habibi (2013)). This means
that the influence of the thermal conductivity λs of the inclusion becomes negligible, and
hence heat conduction is slow in the inclusion. The model also falls in the class of Weakly
Conductive Inclusions model. Similarly, for α ≥ 3 the heat conduction in the inclusion is
very slow that we may consider such porous materials as near insulation. The resulting
equation is similar in form to the WCI model, but with the exclusion of the exchange term.
The problem behaves as a one-temperature system, with the effective thermal conductiv-
ity corresponding to the highly thermal conducting subdomain. The case of α = 2 falls in
the class of distributed microstructure models as we have shown. It represents a class of
two-scale models, in which the temperatures of the constituent phases are not in thermal
equilibrium. The model arises because the material has a low thermal conductivity in the
inclusion compared to the matrix part, and hence is referred to it as Weakly Conductive
Inclusions (WCI) (cf. Section 3.3).

Two of the derived models have the functional forms of a one-temperature (equilibrium)
filtration combustion model studied in the literature (see Kagan and Sivashinsky, 2008;
Oliveira and Kaviany, 2001; Fatehi and Kaviany, 1994, e.g.). In the context of this study,
we refer to the two equilibrium models as Moderately Conductive Inclusions (MCI) (with
α = 0; see Section 3.1) and Highly Conductive Inclusions (HCI) (with α = −1; see Sec-
tion 3.2). The names reflect on the thermal conductivity of the inclusions in relation to
the gaseous phase conductivity. The scheme of the resulting equilibrium models is given
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Figure 3.1: Schemes of homogenized limit problems; (a) the one-temperature model as
an (homogenized) equilibrium limit; (b) the distributed-temperature model as a two-scale
(non-equilibrium) limit.

in Figure 3.1a. The derivation of the macroscopic models does not require the use of the
assumption of thermal-diffusive equilibrium. This requirement follows naturally from the
rigorous mathematical treatment by the homogenization method. The developed models
are in general for the qualitative treatment of the development of patterns in reverse com-
bustion in porous media. Nevertheless, the results of the homogenization technique present
an effective way of integrating material microstructural properties into a macroscopic sys-
tem describing real life processes. Thus, it can serve as a paradigm for further investigation
of combustion processes in a rigorous mathematical treatment.

The form of the models are representative of adiabatic models since they were derived
under the assumption that the gaseous and solid parts are in perfect contact, and external
heat losses to the environment are neglected. This assumption raises further question on
the physical implication of external heat losses to the phenomenon of interest. Although
the inclusion of such heat mechanisms can provide more insight on the physical process,
its exclusion is adequate for the interest of the present study. There is a vast literature
modeling combustion in a non-adiabatic setting. These include (Ikeda and Mimura, 2008;
Fasano et al., 2009; Oliveira and Kaviany, 2001; Lu and Yortsos, 2005a; Yuan and Lu,
2013; Lu et al., 2006, e.g.). Also, the distributed-temperature model (see Figure 3.1b) is
not popular among combustion communities and can be a subject of future investigation.

A prospective research direction in this case involves the usually used notion of “instant-



44 Derivation of macroscopic equations of filtration combustion by homogenization

aneous diffusion” in physical processes, especially in combustion and chemical reaction
processes. The problem pertains to a filtration combustion problem whereby thermal dif-
fusion processes in a system is far from equilibrium. For instance, in order to give a precise
account for the transport of heat across different phases e.g., in a gaseous and solid phase,
consideration has to be given to the different time scales involved. Specifically, one may
consider a situation in which heat diffusion across a solid material requires more time
to equilibrate compared to the diffusion of heat in the gaseous phase. Hence, the prob-
lem exhibits two distinct time scales of diffusion. As we have shown, the two-scale model
(see Figure 3.1b) arises as a limit problem from the application of the homogenization
method. In this limit problem, we deal with two coupled problems-a macroscopic problem
in a homogeneous medium and a micro-scale problem posed in the inclusion.



Chapter 4

Derivation of macroscopic equations
of filtration combustion by two-scale
convergence

The method employed in Chapter 3 is based on a heuristic approach that the solutions
to the unknown fields in the filtration combustion model are in the form of a formal
asymptotic expansion in ε. Under the assumptions of this ansatz, the unknown fields are
approximated by the zeroth order term of the asymptotic series as ε tends to zero. In
this chapter1, we proceed by providing a rigorous mathematical justification to the homo-
genization results presented previously. We will apply the two-scale convergence method
developed by Nguestseng (1989) and Allaire (1992). This method is attractive since one
can simultaneously deduce the homogenized limit problems presented in Chapter 3 and
prove the convergence of the homogenization process. Also, the method rigorously justifies
the first two terms in the asymptotic expansion of the sequence of unknown fields. It is
also suitable for deriving corrector estimates which allow to obtain strong convergences by
improving on the weak convergence to the homogenized solutions. The corrector problems
will be discussed in Chapter 6.

4.1 Description of the geometry

For the considered problem, the geometry is as described in Chapter 2, Figure 2.3a. Here,
we reproduce its cross-section along to the direction of flow in Figure 4.1. It consists of
circular solid inclusions which are periodically distributed in a gaseous matrix. Let the
domain Ω (a bounded open set in Rd), with period εY (ε is a small positive number,
and Y = (0, 1)d is the unit cell. Typically, d = 2 or 3). The unit cell Y is divided into
two constituent parts–Ys an open subset of Y with Y s ⊂ Y (solid part or inclusion) and
Ys := Y \ Y s, (gaseous part or matrix). We also denote by Γ = ∂Ys, the smooth boundary
of Ys. Let χg(y) (respectively χs(y)) be the characteristic functions of Yg (respectively Ys),

1This chapter is partly a joint work with Tasnim Fatima and Adrian Muntean (Eindhoven).
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extended by Y -periodicity to the whole of Rd, and satisfying the condition

χg(y) + χs(y) = 1 in Y.

Thus, the domain Ω can be split into two subdomains

Ys

Yg

Figure 4.1: Uniformly distributed periodic domain

Ωε
g =

{
x ∈ Ω | χg

(x
ε

)
= 1
}

and Ωε
s =

{
x ∈ Ω | χs

(x
ε

)
= 1
}
,

defined respectively for the constituents in the gaseous (matrix) part and in the solid
(inclusion) part.

4.2 Mathematical model

4.2.1 Microscopic model

Let us consider a non-stationary heat diffusion problem with convection in a medium
consisting of the two subdomains Ωε

g (interconnected matrix) and Ωε
s (ensemble of the

inclusions). The properties of the medium are such that the coefficients are varying in space,
in the sense that they take only two different values of the same order of magnitude. Also,
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we introduce in the medium, a gaseous oxidizer, which occupies the gaseous subdomain,
Ωε

g, and reacts with the material at the surface Γε = ∂Ωε
g∩∂Ωε

s separating the constituents.
Note that the surface Γε is constructed as the union of all translated smooth boundary of
Ys with ∂Ω ∩ Γε = ∅. This implies that the inclusions do not intersect with the exterior
boundary ∂Ω of the domain Ω. Assume also that the inclusions do not touch each other.
Let the thermal conductivity of the constituent parts be defined by the constants λg and
λs. Hence, we denote the varying conductivity coefficient λε of the periodic medium Ω by

λε(x) = λgχg

(x
ε

)
+ λsχs

(x
ε

)
, x ∈ Ω. (4.1)

Similarly, the volumetric heat capacity, Cε, is defined by

Cε(x) = Cgχg

(x
ε

)
+ Csχs

(x
ε

)
x ∈ Ω. (4.2)

Convection of gaseous oxidizer only takes place in the gaseous subdomain Ωε
g. Thus, we

define it as follows

uε(x) =

{
0, x ∈ Ωε

s,

v, x ∈ Ωε
g,

(4.3)

where (4.3) implies the restriction of convection to the gaseous subdomain Ωε
g, and thus

we assume a spatially periodic flow i.e. uε(x) = u(x,
x

ε
) in Ωε

g, y = x/ε. The continuous

vector field u(x, y), defined in Yg × Ω, is periodic in y and divergence free, i.e.

divxu = 0, and divyu = 0 in Yg, and u · n = 0 on ∂Ys,

where n is the unit outward normal on ∂Ys with respect to Yg. Molecular diffusion of
gaseous substances is also restricted to Ωε

g. Let the temperature and mass concentration of
oxidizer in the domain Ω be denoted respectively by T ε and Cε. The temperature can be
decomposed as

T ε(x) =

{
T εs (x), x ∈ Ωε

s,

T εg(x), x ∈ Ωε
g,

where T ε is continuous on the interface Γε. Besides the continuity of temperature across the
interface, chemical reactions also take place at the interface Γε between Ωε

g and Ωε
s leading

to a discontinuity in the heat fluxes across the interface, i.e. the following conditions are
given across the interface

(λg∇T εg − λs∇T εs ) · n = εQW (T ε, Cε), x ∈ Γε, t > 0, (4.4)

T εg = T εs , x ∈ Γε, t > 0, (4.5)

where Q > 0 is a given constant and W (T ε, Cε) is the reaction rate defined by

W (T ε, Cε) = ACεf(T ε), A > 0. (4.6)
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We also assume that the following condition holds across the interface for the concentration
of gaseous oxidizer:

D∇Cε) · n = −εW (T ε, Cε), x ∈ Γε, t > 0. (4.7)

Thus, the governing equations are given by

Hε



Cg

∂T εg
∂t

+ Cgu
ε ·∇T εg −∇·(λg∇T εg) = 0, x ∈ Ωε

g, t > 0,

Cs
∂T εs
∂t
−∇·(λs∇T εs ) = 0, x ∈ Ωε

s, t > 0,

T εg = T εs , x ∈ Γε, t > 0,

n·(λg∇Tε
g − λs∇Tε

s) = εQW(Tε
s,C), x ∈ Γε, t > 0.

(4.8)

In terms of the introduced coefficients, (4.8) can be written in a compact form:
Cε∂T

ε

∂t
+ χgCgu

ε · ∇T ε −∇ · (λε∇T ε) = 0, x ∈ Ωε, t > 0,

λε
∂T ε

∂n
= εQW (T ε, Cε), x ∈ Γε, t > 0,

T ε is continuous, x ∈ Γε, t > 0.

(4.9)

The equations for the concentration field is given by

Mε


∂Cε

∂t
+ uε ·∇Cε −∇·D∇Cε = 0, x ∈ Ωε

g, t > 0,

−D∇Cε ·n = εW(Tε,Cε), x ∈ Γε, t > 0.
(4.10)

The equation for the solid product is given by

Rε

{
∂Rε

∂t
= W (T ε, Cε), x ∈ Γε, t > 0. (4.11)

The initial and external boundary conditions are given by

T ε = T0, C
ε = C0, R

ε = R0 x ∈ Ω, t = 0, (4.12)

T ε = TD, C
ε = CD x ∈ ΓD, t > 0, (4.13)

∇T ε · n = 0,∇Cε · n = 0, x ∈ ΓN , t > 0 (4.14)

Here, ΓD ∪ ΓN , with ΓD ∩ ΓN = ∅, represents the external boundaries, where ΓD, is the
Dirichlet boundary and ΓN , points out the Neumann part of the boundary.
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4.2.2 Macroscopic model

We give the macroscopic model derived through formal asymptotics in Chapter 3 in the
strong forms, H0 and M0, respectively for the macroscopic temperature T and macroscopic
concentration C. We have

H0


Ceff ∂T

∂t
+
|Yg|
|Y |
Cgu·∇T −∇· (λeff∇T ) =

|Γ|
|Y |

QW (T,C), x ∈ Ω, t > 0,

T = T0, x ∈ Ω, t = 0,

T = TD, x ∈ ΓD, t > 0,

∇T · n = 0, x ∈ ΓN , t > 0,

(4.15)

where the effective coefficients are defined by

λeff
ik :=

1

|Y |

∫
Yg

λg

(
Iki +

∂N g
k

∂yi

)
dy +

∫
Ys

λs

(
Iki +

∂N s
k

∂yi

)
dy

 , (4.16)

and

Ceff :=
1

|Y |

(
Cg|Yg|+ |Ys|Cs

)
. (4.17)

The functions Nj, j = 1, 2, 3 solve the following cell problem

∂

∂yi

[
λg

(
Iik +

∂N g
k

∂yi

)]
= 0, y ∈ Yg, (4.18a)

∂

∂yi

[
λs

(
Iik +

∂N s
k

∂yi

)]
= 0, y ∈ Ys, (4.18b)

N g
k = N s

k , y ∈ Γ, (4.18c)

λg

(
Iik +

∂N g
k

∂yi

)
ni = λs

(
Iik +

∂N s
k

∂yi

)
ni, y ∈ Γ, (4.18d)

where N g
k and N s

k , k = 1, 2, 3 are y-periodic and satisfy

〈N〉 =
1

|Y |

∫
Yg

N g
k dy +

∫
Ys

N s
kdy

 = 0. (4.19)

Similarly, the macroscopic concentration model is expected to satisfy

M0



|Yg|
|Y |

∂C

∂t
+
|Yg|
|Y |

u·∇C −∇· (Deff∇C) = − |Γ|
|Y |

W (T,C), x ∈ Ω, t > 0.

C = C0, x ∈ Ω, t = 0,

C = CD, x ∈ ΓD, t > 0,

∇C · n = 0, x ∈ ΓN , t > 0,

(4.20)
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with the following formula for the computation of the effective mass diffusion coefficient,
Deff , defined by

Deff
ik =

D

|Y |

∫
Yg

(
Iki +

∂Nk

∂yi

)
dy, i, k = 1, 2, 3 (4.21)

The functions Nk, k = 1, 2, 3 solve the following cell problems:

∂

∂yi

[
D

(
Iik +

∂Nk

∂yi

)]
= 0, y ∈ Yg, (4.22a)

D

(
Iik +

∂Nk

∂yi

)
ni = 0, y ∈ Γ, (4.22b)

where i, k = 1, 2, 3, and the vector-valued function N is y-periodic and satisfy 〈N 〉 = 0.
Finally, the macroscopic equation for the solid product

R0

{
∂R

∂t
= W (T,C), x ∈ Ω, t > 0. (4.23)

4.2.3 Function spaces and norms

In the sequel, we will often use the following function spaces:

H = L2(Ω), (u, v)Ω =
∫

Ω
u(x)v(x)dx, ‖u‖Ω = (u, u)

1/2
Ω

L2(0, τ ;H), (u, v)Ω,τ =
∫ τ

0
(u(t), v(t))Ωdt, ‖u‖Ω,τ = (u, u)

1/2
Ω,τ

V = W 1,2(Ω), (u, v)V = (u, v)Ω + (∇u,∇v)Ω

V = L2(0, τ ;V ), (u, v)V =
∫ τ

0
(u(t), v(t))V dt

VD = {v ∈ V | v = 0 on ΓD a.e. on (0, τ)}

W = {v ∈ V | ∂tv ∈ V ′}, where V ′ = L2(0, τ ;V ′) is the dual space of V

WD = VD ∩W

We also use the following

(u, v)Γ,τ =

τ∫
0

∫
Γ

uvdγdt.

Likewise, the above descriptions are also applicable for functions defined on perforated
domains Ωε

g,Ω
ε
g and Ωε ≡ Ω and their boundaries Γε. For details of the definitions and

properties of the function spaces indicated here, (see Adams and Fournier, 2003).
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4.3 Restrictions on parameters and data

In order to establish the uniform boundedness of the sequence of functions (Cε, T ε, Rε),
and hence the rigorous passage to the limit of the homogenization process discussed in
Chapter 3, we need to introduce a set of restrictions on the data and parameters, which
we collect as Assumptions (A).

4.3.1 Assumptions

We assume the following

(A1) D ∈ L∞(Yg)3×3, λg, λs ∈ L∞(Y )3×3, and satisfy

3∑
i,j=1

Di,jξiξj ≥ D0|ξ|2, ∀ξ ∈ R3,∀y ∈ Yg, (4.24)

|Dε(x)ξ| ≤ D1|ξ|, ∀ξ ∈ R3.

3∑
i,j=1

λg,s
i,j ξiξj ≥ λ0|ξ|2, ∀ξ ∈ R3,∀y ∈ Y , (4.25)

|λε(x)ξ| ≤ λ1|ξ|, ∀ξ ∈ R3,

for some constants D0, D1, λ0, λ1 > 0.

(A2) f is bounded and a globally Lipschitz function. Furthermore

f(α) =

 positive, if α > 0,

0, otherwise.

(A3) Cg, Cs are bounded, i.e. µ0 ≤ max{Cg, Cs} ≤ µ1;µ0, µ1 > 0.

(A4) C0, T0 ∈ H1(Ω) ∩ L∞+ (Ω) and R0 ∈ L∞+ (Γ).

(A5) ‖uε‖L∞(Ω) ≤Mu <∞ and uε → u strongly.

(A6) CD, TD ∈ L2(0, T ;H1(Ωε
g)) ∩ L∞+ ((0, T )× Ω).

For brevity, the nonlinear reaction term W (T ε, Cε) = ACεf(T ε) is represented by W ε.
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4.3.2 Trace inequalities for perforated domain

Lemma 4.3.1. (a) For a function u ∈ H1(Yg) one has the estimate

‖u‖2
Γ ≤ C(‖u‖2

Yg
+ ‖∇u‖2

Yg
). (4.26)

(b) For a function uε ∈ H1(Ωε
g) one has the estimate

ε ‖uε‖2
Γε ≤ C(‖uε‖2

Ωεg
+ ε2 ‖∇uε‖2

Ωεg
). (4.27)

The proof of (4.3.1) is given in Lemma 3 of Hornung and Jäger (1991). We also recall
a classical lemma from Allaire and El Ganaoui (2009):

Lemma 4.3.2. There exists a constant C > 0, not depending on ε, such that
√
ε ‖uε‖Γε ≤ C ‖uε‖H1(Ωεg) , ∀uε ∈ H1(Ωε

g). (4.28)

Definition 4.3.3. We call the triplet (Cε, T ε, Rε) a weak solution to (4.9)-(4.11), if

Cε ∈ CD +WD(Ωε
g)

T ε ∈ TD +WD(Ω)

Rε ∈ L2((0, T )× Γε),

(4.29)

and the following variational formulation

(∂tC
ε, φ)Ωεg,τ + (Dε∇Cε,∇φ)Ωεg + (uε∇Cε, φ)Ωεg = −ε(W ε, φ)Γε , (4.30)

(Cε∂tT ε, ϕ)Ωεs + (λε∇T ε,∇ϕ)Ωεs + (χεgCgu
ε∇T ε, ϕ)Ωεs = εQ(W ε, ϕ)Γε , (4.31)

(∂tR,ψ)Γε = (W ε, ψ)Γε (4.32)

is satisfied for all t ∈ (0, τ) and for all φ ∈ WD(Ωε
g), ϕ ∈ WD(Ω), ψ ∈ L2((0, τ)× Γε) and

Cε(t)→ C0 in L2(Ωε
g), T ε(t)→ T0 in L2(Ω), Rε(t)→ 0 in L2(Γε) as t→ 0.

Theorem 4.3.4. Assume (A1)-(A6). Then there exists at least a global-in-time weak solu-
tion in the sense of Definition 4.3.3.

Proof. The proof is based on the Galerkin argument. Since W (T ε, Cε) is a globally Lipschitz
function in both variables, this makes the proof rather standard (Evans, 1998).

Theorem 4.3.5. Assume (A1)–(A4), then there exist a unique solution of the weak mi-
croscopic problems (4.30)-(4.32).

Proof. We want to show that if Cε ∈ CD+WD(Ωε
g), T ε ∈ TD+WD(Ω) and Rε ∈ L2((0, T )×

Γε), with (Cε(0), T ε(0), Rε(0)) ≡ 0, such that the weak formulations

(∂tC
ε, φ)Ωεg + (Dε∇Cε,∇φ)Ωεg = −ε(W ε, φ)Γε − (uε∇Cε, φ)Ωεg , (4.33)

(Cε∂tT ε, ϕ)Ω + (λε∇T ε,∇ϕ)Ω = εQ(W ε, ϕ)Γε − (χεgCgu
ε∇T ε, ϕ)Ω, (4.34)

(∂tR,ψ)Γε = (W ε, ψ)Γε (4.35)
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are satisfied a.e. on (0, τ) for all φ, ϕ ∈ VD and ψ ∈ L2((0, τ)× Γε), then (Cε, T ε, Rε) ≡ 0.

We test the weak formulations (4.30)–(4.32) by (φ, ϕ, ψ) ≡ (Cε, T ε, Rε), and treat the
weak problems separately. In (4.30), the convective term vanishes since uε is divergence
free. Using the coercivity condition on Dε, the boundedness2 of f , and the trace inequality
(Lemma 4.3.1), we obtain

1

2

d

dt
‖Cε(t)‖2

Ωεg
+D0 ‖∇Cε(t)‖2

Ωεg
≤ C(‖Cε(t)‖2

Ωεg
+ ε2 ‖∇Cε(t)‖2

Ωεg
) (4.36)

d

dt
‖Cε(t)‖2

Ωεg
+ (D0 − ε2C) ‖∇Cε(t)‖2

Ωεg
≤ ‖Cε(t)‖2

Ωεg
.

Integrating (4.71) from 0 to t

‖Cε(t)‖2
Ωεg

+ (D0 − ε2C) ‖∇Cε‖2
Ωεg,τ
≤ C

t∫
0

‖Cε(s)‖2
Ωεg
ds. (4.37)

Applying Gronwall’s inequality and taking the supremum along t ∈ [0, τ ] yields the desired
result.

In (4.69), the convective term vanishes for a similar reason. Using the coercivity condi-
tion on λε and applying a combination of the Schwartz and Young’s inequality on the
nonlinear term, we obtain

µ0

2

d

dt
‖T ε(t)‖2

Ω + λ0 ‖∇T ε(t)‖2
Ω (4.38)

≤ εC
[1

2

∫
Γε

(f(T ε)T ε)2dγ +
1

2

∫
Γε

|Cε|2 dγ
]

The positivity3of f is such that ∫
Γε

(f(T ε)T ε)2dγ ≥ 0, (4.39)

and using the trace inequality and (4.37) on the second boundary integral on the right
hand side of the inequality, we obtain after integration from 0 to t, the desired result.

T ε = 0. (4.40)

The uniqueness of Rε follows naturally from the uniqueness of T ε and Cε.

2One can show that our problem satisfies a weak maximum principle. Thus, we expect Cε, T ε and Rε

to be uniformly bounded. Hence, f is bounded.
3For our system, we can also show that Cε ≥ 0 a.e. in Ωε

g, T
ε ≥ 0 a.e. in Ω and Rε ≥ 0 a.e. on Γε.

Particularly, f ≥ 0 a.e. on Γε.
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Definition 4.3.6. We call (C, T,R) a weak solution to (4.15)-(4.23), if

C ∈ CD +WD(Ω),

T ∈ TD +WD(Ω),

R ∈ L2((0, T )× Ω),

(4.41)

and the following variational formulation

|Yg|(∂tC, φ)Ω + (Deff∇C,∇φ)Ω + |Yg|(u∇C, φ)Ω = −|Γ|(W,φ)Ω, (4.42)

Ceff(∂tT, ϕ)Ω + (λeff∇T,∇ϕ)Ω + Cg(u∇T, ϕ)Ω = Q|Γ|(W,ϕ)Ω, (4.43)

(∂tR,ψ)Ω = (W,ψ)Ω (4.44)

is satisfied for all t ∈ (0, τ) and for all φ ∈ VD(Ω), ϕ ∈ VD(Ω), ψ ∈ L2((0, τ) × Ω) and
C(t)→ C0 in L2(Ω), T (t)→ T0 in L2(Ω), R(t)→ 0 in L2(Ω) as t→ 0.

Remark 4.3.1. The existence of weak solutions to (4.42)-(4.44) follows by proving the
two-scale convergence. In the sequel, we focus on the uniqueness issue.

Theorem 4.3.7. Assume (A1)–(A4), then there exist a unique weak solution of the vari-
ational formulation (4.42)-(4.44).

Proof. We show that if T,C ∈ WD, R ∈ L2((0, T ) × Ω), (C(0),T(0),R(0)) ≡ 0 such that
the weak formulations

|Yg|(∂tC, φ)Ω + (Deff∇C,∇φ)Ω = −|Γ|(W,φ)Ω − |Yg|(u∇C, φ)Ω, (4.45)

Ceff(∂tT, ϕ)Ω + (λeff∇T,∇ϕ)Ω = Q|Γ|(W,ϕ)Ω − Cg(u∇T, ϕ)Ω, (4.46)

(∂tR,ψ)Ω = (W,ψ)Ω, (4.47)

are satisfied a.e. on (0, τ) for all φ, ϕ ∈ VD and ψ ∈ L2((0, τ)×Ω), then (C, T,R) ≡ 0. We
test the weak formulations by (φ, ϕ, ψ) ≡ (C, T,R) to obtain

C1

2

d

dt
‖C(t)‖2

Ω + (Deff∇C,∇C)Ω = |Γ|(W,C)Ω − |Yg|(u∇C,C)Ω, (4.48)

C2

2

d

dt
‖T (t)‖2

Ω + (λeff∇T,∇ϕ)Ω = Q|Γ|(W,T )Ω − |Yg|(u∇T, T )Ω, (4.49)

C3

2

d

dt
‖R(t)‖2

Ω = (W,R)Ω. (4.50)

The convective term vanishes since u is divergence free. We use the coercivity of Deff and
λeff in the second term on the left hand side of (4.48) and (4.49), the boundedness of f ,
and Cauchy-Schwartz inequality on the nonlinear reaction terms. We eventually arrive at
the following

C1

2

d

dt
‖C(t)‖2

Ω +D0‖∇C(t)‖2
Ω ≤ C5‖C(t)‖2

Ω, (4.51)

C2

2

d

dt
‖T (t)‖2

Ω ≤ C6(‖T (t)‖2
Ω + ‖C(t)‖2

Ω − λ0‖∇T (t)‖2
Ω), (4.52)

C3

2

d

dt
‖R(t)‖2

Ω ≤ C7(‖R(t)‖2
Ω + ‖C(t)‖2

Ω). (4.53)
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The conclusion follows by direct application of Gronwall’s inequality (see Evans, 1998,
e.g.).

4.4 ε-independent estimates

In order to use the two-scale convergence method, we need to establish some a priori
(uniform in ε) estimates on the unknowns (Cε, T ε, Rε).

Lemma 4.4.1. Assume (A1)–(A4). Then there exists a constant, C, independent of ε
such that the weak solution to the microscopic problem (4.30)–(4.32) satisfies the following
a priori estimates

‖Cε‖L2(0,τ ;L2(Ωεg)) + ‖∇Cε‖L2(0,τ ;L2(Ωεg)) +
√
ε‖Cε‖L2(0,τ ;L2(Γε)) ≤ C, (4.54)

‖T ε‖L2(0,τ ;L2(Ω)) + ‖∇T ε‖L2(0,τ ;L2(Ω)) +
√
ε ‖T ε‖L2(0,τ ;L2(Γε)) ≤ C, (4.55)

√
ε‖Rε‖L∞((0,τ)×Γε) +

√
ε‖∂tRε‖L2((0,τ)×Γε) ≤ C. (4.56)

Lemma 4.4.2 (Additional a priori estimates). Assume (A1)-(A5). The following ε-independent
bounds hold:

‖∂tCε‖L2(0,τ ;L2(Ωεg)) + ‖∂tT ε‖L2(0,τ ;L2(Ω)) ≤ C, (4.57)

where C is a generic constant independent of ε.

For the proof of Lemma 4.4.1 and Lemma 4.4.2, see Appendices B and C respectively.

4.4.1 Extensions to Ω

Lemma 4.4.3. There exists an extension operator P ∈ L(H1(Yg);H1
#(Y )) linear and

continuous, such that there exists a constant C satisfying

‖Pu‖H1(Y ) ≤ C‖u‖H1(Yg)

for every u ∈ H1(Yg).

Proof. See Lemma 2.4 in Monsurro (2003) for proof details.

Remark 4.4.1. Using Lemma 4.4.3, we extend the functions defined in Ωε
g in the domain

Ωε
s (see Allaire, 1992; Allaire and Murat, 1993) covering finally Ω. See also extension results

by (Cioranescu and Paulin, 1979).
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4.5 Two scale convergence

In this section. we prove a rigorous homogenization result using the two-scale convergence
method to verify the results derived in Chapter 3 by using formal asymptotic expansion.
This method relies essentially on the a priori estimates indicated in the previous section.
In what follows, we will recall the notion of two scale convergence for functions defined on
periodic domains. Also, in the sequel, we will denote the extension PCε of Cε simply by
Cε. Note that the temperature field does not need to be extended.

Definition 4.5.1. A bounded sequence uε in L2((0, τ) × Ω) is said to two-scale converge
to a function u0(t, x, y) ∈ L2((0, τ)×Ω;Y ) if there exists a subsequence still denoted by uε

such that

lim
ε→0

τ∫
0

∫
Ω

uε(t, x)ψ(t, x,
x

ε
)dxdt =

1

|Y |

τ∫
0

∫
Ω

∫
Y

u0(t, x, y)ψ(t, x, y)dxdydt, (4.58)

for any Y -periodic test function ψ(t, x, y) ∈ L2((0, τ)× Ω;C#(Y )).

The notion of two-scale convergence makes sense because of the next compactness
theorem (Nguestseng, 1989) and (Allaire, 1992).

Theorem 4.5.2. From each bounded sequence uε ∈ L2((0, τ) × Ω), we can extract a sub-
sequence and there exists a limit u0(t, x, y) ∈ L2(0, τ,Ω × Y ) such that the subsequence
two-scale converges to u0.

The generalization of Theorem 4.5.2 to bounded sequences in L2(0, τ ;H1(Ω)) is the
following:

Proposition 4.5.3. From each bounded sequence uε(t, x) ∈ L2(0, τ ;H1(Ω)), we can extract
a subsequence such that there exists two limits u0(t, x) ∈ L2(0, τ ;H1(Ω)) and u1(t, x, y) ∈
L2((0, τ) × Ω;H1

#(Y )) such that for the subsequence, uε(t, x) converges weakly to u0(t, x)
in L2(0, τ,H1(Ω)) and ∇uε(x, t) two-scale converges to ∇xu

0(t, x) +∇yu
1(x, y).

The concept of two-scale convergence can naturally be extended to sequences defined
on periodic surfaces (see Allaire et al., 1995) and (see Neuss-Radu, 1996).

Proposition 4.5.4. For any sequence uε in L2(Γε) such that

ε

τ∫
0

∫
Γε

|uε|2dx ≤ C, (4.59)

there exist a subsequence, still denoted by uε, and a limit function u0(t, x, y) ∈ L2(0, τ ×
Ω;L2

#(Γ)) such that uε two-scale converges to u0 in the following sense

lim
ε→0

ε

τ∫
0

∫
Γε

uε(t, x)ψ(t, x,
x

ε
)dxdt =

1

|Y |

τ∫
0

∫
Ω

∫
Γ

u0(t, x, y)ψ(t, x, y)dxdydt, (4.60)

for any Y -periodic test function ψ(t, x, y) ∈ L2(0, τ × Ω;C#(Γ)).
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The estimates in Lemma 4.4.1 and Lemma 4.4.2 lead to the following convergence
results:

Lemma 4.5.5. Assume (A1)–(A6). Then it holds as ε→ 0 that:

(a) Cε ⇀ C0, T ε ⇀ T 0 weakly in L2(0, τ ;H1(Ω),

(b) Cε ∗⇀ C0, T ε
∗
⇀ T 0 weakly in L∞((0, τ)× Ω),

(c) ∂tC
ε ⇀ ∂tC

0, ∂tT
ε ⇀ ∂tT

0 weakly in L2((0, τ)× Ω),

(d) Cε → C0, T ε → T 0 strongly in L2(0, τ ;Hβ(Ω)) for
1

2
< β < 1,

also
√
ε‖Cε − C0‖L2((0,τ)×Γε) → 0 and

√
ε‖T ε − T 0‖L2((0,τ)×Γε) → 0 as ε→ 0.

(e) Cε 2
⇀ C0, T ε

2
⇀ T 0,∇Cε 2

⇀ ∇xC
0 +∇yC

1, C1 ∈ L2((0, τ) × Ω;H1
#(Yg)/R), ∇T ε 2

⇀
∇xT

0 +∇yT
1, T 1 ∈ L2((0, τ)× Ω;H1

#(Y )/R),

(f) Rε 2
⇀ R0, and R0 ∈ L∞((0, τ)× Ω× Γ),

(g) ∂tC
ε 2
⇀ ∂tC

0, ∂tT
ε 2
⇀ ∂tT

0, and ∂tR
ε 2
⇀ ∂tR

0 ∈ L2((0, τ)× Ω× Γ).

Proof. (a) and (b) are obtained as a direct consequence of the fact that Cε, T ε are bounded
in L2(0, τ ;H1(Ω)) ∩ L∞((0, τ) × Ω); up to a subsequence (still denoted by Cε, T ε) Cε, T ε

converges weakly to C0, T 0 in L2(0, τ ;H1(Ω)) ∩ L∞((0, τ)× Ω). A similar argument gives

(c). To obtain (d), we use the compact embedding Hβ′
(Ω) ↪→ Hβ(Ω), for β ∈

(1

2
, 1
)

and

0 < β < β′ ≤ 1 (since Ω has a Lipschitz boundary). We have

W := {Cε, T ε ∈ L2(0, T 0;H1(Ω)) and ∂tC
ε, ∂tT

ε ∈ L2((0, τ)× Ω)}.

For a fixed ε, W is compactly embedded in L2(0, τ ;Hβ(Ω)) by the Lions-Aubin Lemma;
cf. e.g. Lions (1969). Using the trace inequality for oscillating surfaces

√
ε‖Cε − C0‖L2((0,τ)×Γε) ≤ C‖Cε − C0‖L2(0,τ ;Hβ(Ωεg))

≤ C‖Cε − C0‖L2(0,τ ;Hβ(Ω))

where ‖Cε − C0‖L2(0,τ ;Hβ(Ω)) → 0 as ε→ 0. Similar argument holds for the rest of (d).
To investigate (e), (f) and (g), we use the notion of two-scale convergence as indicated in
Definition 4.5.1 and 4.5.4. Since Cε are bounded in L2(0, τ ;H1(Ω)), up to a subsequence

Cε 2
⇀ C0 in L2((0, τ)×Ω), and ∇Cε 2

⇀ ∇xC
0 +∇yC

1, C1 ∈ L2((0, τ)×Ω;H1
#(Yg)/R). By

Theorem 4.5.4, Rε in L∞((0, τ) × Γε) converges two-scale to R ∈ L∞((0, τ) × Ω × Γ) and
∂tR

ε converges two-scale to ∂tR in L2((0, τ)× Ω× Γ).
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Theorem 4.5.6. Let (Cε, T ε, Rε) be the sequence of solutions of (4.9)-(4.11). Let (C0, T 0, R0)
be the solution of the homogenized problems (4.15)-(4.23). Then the sequences T ε and
∇T ε two-scale converge to T 0 and (∇xT

0(x, t) + ∇yT
1(x, y, t)) respectively. Denote by ·̃

the extension by zero in the domain Ωε
s. The sequences C̃ε and ˜∇Cε two-scale converge

to C0(t, x)χg(y) and χg(y)(∇xC
0(x, t)+∇yC

1(x, y, t)), respectively. (T 0, T 1), (respectively
(C0, C1) ) is the unique solution in TD +WD(Ω)× L2(0, τ ;L2(Ω;H1

#(Y )/R)) (respectively
CD +WD(Ω) × L2(0, τ ;L2(Ω;H1

#(Yg)/R))). Additionally, Rε ∈ L∞((0, τ) × Γε) converges
two-scale to R0 ∈ L∞((0, τ)× Ω× Γ)

Proof. The a priori estimates in Lemma 4.4.1 and Lemma 4.4.2 imply that, up to a sub-
sequence, T ε two-scale converges to a function T 0 ∈ TD + WD(Ω) and ∇T ε two-scale
converges to ∇xT

0(x, t) + ∇yT
1(x, y, t), where T 1 ∈ L2(0, τ ;L2(Ω;H1

#(Y )/R)). Similarly,
Cε two-scale converges to a function C0χg(y) ∈ CD +WD(Ω) and ∇Cε two-scale converges
to χg(y)(∇xC

0(x, t) +∇yC
1(x, y, t)), where C1 ∈ L2(0, τ ;L2(Ω;H1

#(Yg)/R)). Furthermore,
T ε and Cε two-scale converge to T 0 and C0 on the periodic surface Γε, by Proposition 4.5.4.

In a first step, we compute the correctors T 1(t, x, y) and C1(t, x, y) in terms of the gradients
∇xT

0(x, t) and ∇xC
0(x, t) respectively. This is done by choosing test functions ϕε(t, x) =

εϕ1(x,
x

ε
) and φε(t, x) = εφ1(x,

x

ε
) respectively in the variational formulations (4.31) and

(4.30) for T ε and Cε, where ϕ1(t, x, y) and φ1(t, x, y) are smooth functions in x and Y -
periodic in y, i.e.

ε

τ∫
0

∫
Ω

Cε∂T
ε

∂t
ϕ1dxdt+

τ∫
0

∫
Ω

λε∇T ε∇yϕ
1dxdt+ ε

τ∫
0

∫
Ω

χεgu
ε∇T εϕ1dxdt (4.61)

= ε2
τ∫

0

∫
Γε

QW εϕ1dγdt

Passing to the two-scale limit in (4.61), we have

lim
ε→0

τ∫
0

∫
Ω

λε∇T ε∇yϕ
1dxdt (4.62)

=

τ∫
0

∫
Ω

∫
Y

λ(y)(∇yT
1(x, y, t) +∇xT

0(x, t)) ·∇yϕ
1(t, x, y)dydxdt

=

τ∫
0

∫
Ω

∫
Yg

λg(y)(∇yT
1(x, y, t) +∇xT

0(x, t)) ·∇yϕ
1(t, x, y)dydxdt

+

τ∫
0

∫
Ω

∫
Ys

λs(y)(∇yT
1(x, y, t) +∇xT

0(x, t)) ·∇yϕ
1(t, x, y)dydxdt = 0,
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which gives precisely the variational formulation of (3.8) for T 1. Thus, we have shown that

T 1(t, x, y) =
3∑
j=1

∂T 0

∂xj
(t, x)Nj(y), in Ω× Y and a.e. in t (4.63)

In a similar way, we show in (4.30) that

ε

τ∫
0

∫
Ωεg

∂Cε

∂t
φ1dxdt+

τ∫
0

∫
Ωεg

Dε∇Cε∇yφ
1dxdt+ ε

τ∫
0

∫
Ωεg

uε∇Cεφ1dxdt (4.64)

= ε2
τ∫

0

∫
Γε

W εφ1dγdt,

and passing to the two-scale limit in (4.64)

lim
ε→0

τ∫
0

∫
Ωεg

Dε∇Cε∇yφ
1dxdt (4.65)

=

τ∫
0

∫
Ω

∫
Yg

D(y)(∇yC
1(x, y, t) +∇xC

0(x, t)) ·∇yφ
1(t, x, y)dydxdt = 0,

which gives the variational formulation of (3.89) for C1, and hence proving that

C1(t, x, y) =
3∑
j=1

∂C0

∂xj
(t, x)Nj(y), in Ω× Yg and a.e. in t (4.66)

In a second step, we recover the homogenized problems for T 0 and C0 by choosing another
set of test functions ϕε and φε in the variational formulations (4.31) and (4.30) for T ε, and
Cε respectively. Note that the form of the test functions in both cases are identical, except
that the definition of the cell solutions Nj manifesting in the second terms are different,
i.e.

ϕε(t, x) = ϕ0(t, x) + εϕ1(x,
x

ε
), with ϕ1(t, x, y) =

3∑
j=1

∂ϕ0

∂xj
(t, x)Nj(y), in Ω× Y (4.67)

φε(t, x) = φ0(t, x) + εφ1(x,
x

ε
), with φ1(t, x, y) =

3∑
j=1

∂φ0

∂xj
(t, x)Nj(y), in Ω× Yg, (4.68)
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Using (4.67) in (4.31), we obtain the following

τ∫
0

∫
Ω

Cε∂T
ε

∂t
(ϕ0 + εϕ1)dxdt+

τ∫
0

∫
Ω

λε∇T ε(∇xϕ
0 +∇yϕ

1)dxdt (4.69)

+

τ∫
0

∫
Ω

χεgu
ε∇T ε(ϕ0 + εϕ1)dxdt

=

τ∫
0

∫
Γε

QW ε(ϕ0 + εϕ1)dγdt

=
4∑
j=1

Ij,

where Ij, j = 1, 2, · · · , 4 identifies each integral in (4.69). In order to pass to the two-scale
limit in I1, we first see that

τ∫
0

∫
Ω

Cε∂T
ε

∂t
ϕ0dxdt = −

τ∫
0

∫
Ω

Cε∂ϕ
0

∂t
T εdxdt+

[ ∫
Ω

CεT εϕ0dx
]∣∣∣τ

0
. (4.70)

Now, we pass to the two-scale limit on the right hand side of (4.70),

lim
ε→0

τ∫
0

∫
Ω

Cε∂T
ε

∂t
ϕ0dxdt = −

τ∫
0

∫
Ω

∫
Y

C(y)
∂ϕ0

∂t
T 0dxdydt+

[ ∫
Ω

∫
Y

C(y)T 0ϕ0dx
]∣∣∣τ

0
(4.71)

=

τ∫
0

∫
Ω

∫
Y

C(y)
∂T 0

∂t
ϕ0dxdydt,

where

∫
Y

C(y)dy :=

∫
Y

χgCgdy +

∫
Y

χsCsdy =

∫
Yg

Cgdy +

∫
Ys

Csdy. (4.72)
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Passing to the two-scale limit in I2, we obtain

lim
ε→0

τ∫
0

∫
Ω

λε∇T ε(∇xϕ
0 +∇yϕ

1)dxdt (4.73)

=

τ∫
0

∫
Ω

∫
Y

λ(y)(∇xT
0 +∇yT

1) · (∇xϕ
0 +∇yϕ

1)dydxdt

=

τ∫
0

∫
Ω

∫
Yg

λg(∇xT
0 +∇yT

1) · (∇xϕ
0 +∇yϕ

1)dydxdt

+

τ∫
0

∫
Ω

∫
Ys

λs(∇xT
0 +∇yT

1) · (∇xϕ
0 +∇yϕ

1)dydxdt.

Similarly for I3, we get

lim
ε→0

τ∫
0

∫
Ω

χεgu
ε∇T ε(ϕ0 + εϕ1)dxdt = − lim

ε→0

τ∫
0

∫
Ω

χεgu
ε(∇xϕ

0 +∇yϕ
1)T εdxdt (4.74)

= −
τ∫

0

∫
Ω

∫
Yg

Cgu(x, y)(∇xϕ
0 +∇yϕ

1)T 0dydxdt

=

τ∫
0

∫
Ω

∫
Yg

Cgu(x, y) · ∇xT
0ϕ0dydxdt,

where the last integral follows by a simple integration by parts and using the assumptions
on the velocity u. Passing to the two-scale limit in I4, we have

lim
ε→0

ε

τ∫
0

∫
Γε

QACεf(T ε)ϕ0dγdt =

τ∫
0

∫
Ω

∫
Γ

QAC0f(T 0)ϕ0dγdxdt (4.75)

=

τ∫
0

∫
Ω

∫
Γ

QAW (T 0, C0)ϕ0dγdxdt.

Summing up the limits of the terms Ij, j = 1, 2, 3, 4, we conclude that the limit of the
variational formulation of the problem (4.9) is simply the variational formulation of the
boundary value problem (4.15) and (3.8) corresponding to the homogenized solution T 0

and the corrector T 1.
To get the two-scale limit of the variational formulation (4.30), we apply the test function
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in (4.68), and proceed as follows:

τ∫
0

∫
Ωεg

∂Cε

∂t
(φ0 + εφ1)dxdt+

τ∫
0

∫
Ωεg

Dε∇Cε(∇xφ
0 +∇yφ

1)dxdt (4.76)

+

τ∫
0

∫
Ωεg

uε∇Cε(φ0 + εφ1)dxdt

=
4∑
j=1

Ij.

Passing to the two-scale limit in each integral Ij of (4.76), we arrive at the following
formulation

lim
ε→0

4∑
j=1

Ij (4.77)

=

τ∫
0

∫
Ω

∫
Yg

∂C0

∂t
φ0dydxdt+

τ∫
0

∫
Ω

∫
Yg

D(y)(∇xC
0 +∇yC

1) · (∇xφ
0 +∇yφ

1)dydxdt

+

τ∫
0

∫
Ω

∫
Yg

u·∇xC
0dydxdt = −

τ∫
0

∫
Ω

∫
Γ

W (T 0, C0)φdγdxdt.

Again, we conclude that the limit of the variational formulation of the problem (4.10) is up
to some integration by parts manipulations, the variational formulation of the boundary
value problem (4.20) and (3.89) corresponding to the homogenized solution C0 and the

corrector C1. Now, we take ψ(t, x,
x

ε
) ∈ C∞((0, τ) × Ω, C∞# (Γ)) and pass to the following

two scale limit

τ∫
0

∫
Ω×Γ

∂R0

∂t
ψ(t, x, y)dxdγdt =

τ∫
0

∫
Ω×Γ

W (T 0, C0)ψ(t, x, y)dxdγdt (4.78)

Remark 4.5.1. We point out that by proving the two-scale convergence of the microscopic
problem, we have also established the existence of weak solutions to the macroscopic model
(i.e. it finds by means of a subsequence the convergence to the macroscopic limit). Thus,
the existence of solutions to the macro problem is now shown. Also, since the assertion
of Theorem 4.5.6 is based on the convergence of extracted subsequences of solutions, the
convergence of the entire sequence follows from Theorem 4.3.7.
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4.5.1 Strong formulation of the two-scale limit equations

In this section, we wish to recover the strong formulation of the homogenization limit
equations. In order to achieve this, we use the two-scale variational formulation derived in
Theorem 4.5.6. Basically, it is a simple matter of setting (φ1, ϕ1) ≡ 0 in the second integral
limit I2 in Theorem 4.5.6 and integrating by parts with respect x, i.e.

τ∫
0

∫
Ω

∫
Yg

D(y)(∇xC
0 +∇yC

1) · ∇xφ
0dydxdt (4.79)

= −
τ∫

0

∫
Ω

φ0divx

∫
Yg

D(y)(∇xC
0 +∇yC

1)dy

 dxdt
+

τ∫
0

∫
∂Ω

φ0divx

∫
Yg

D(y)(∇xC
0 +∇yC

1)dy

· ndsdt.
The second integral on the right vanishes due to compact support of φ0. Hence, the re-
maining integral implies

− divx

∫
Yg

D(y)(∇xC
0 +∇yC

1)dy

 , a.e. in Ω and t ∈ [0, τ ]. (4.80)

Now, using (4.66) for C1 in (4.84), we obtain

−divx

∫
Yg

D(y)(∇xC
0 +∇yC

1)dy

 (4.81)

= −divx(Deff(∇xC
0)), a.e. in Ω and t ∈ [0, τ ],

where

Deff
jk =

∫
Yg

D(y)

(
Ijk +

∂Nj
∂yk

)
dy, j, k = 1, 2, 3. (4.82)

Repeating the same procedure for the heat equation, we get

τ∫
0

∫
Ω

∫
Y

λ(y)(∇xT
0 +∇yT

1) · ∇xϕ
0dydxdt, (4.83)

=

τ∫
0

∫
Ω

∫
Yg

λg(∇xT
0 +∇yT

1) · ∇xϕ
0dydxdt+

τ∫
0

∫
Ω

∫
Ys

λs(∇xT
0 +∇yT

1) · ∇xϕ
0dydxdt,
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By a similar argument as before, we are lead to the following

− divx

∫
Yg

λg(y)(∇xT
0 +∇yT

1)dy +

∫
Ys

λs(y)(∇xT
0 +∇yT

1)dy

 , (4.84)

a.e. in Ω and t ∈ [0, τ ].

Similarly, by using formula (4.63), we have

−divx

∫
Yg

λg(y)(∇xT
0 +∇yT

1)dy +

∫
Ys

λs(y)(∇xT
0 +∇yT

1)dy

 (4.85)

= −divx(λeff(∇xT
0)), a.e. in Ω and t ∈ [0, τ ],

where

λeff
jk =

∫
Yg

λg(y)

(
Ijk +

∂Nj
∂yk

)
dy +

∫
Ys

λs(y)

(
Ijk +

∂Nj
∂yk

)
dy, j, k = 1, 2, 3. (4.86)

Repeating the same procedure for the convective term gives the desired results.

Remark 4.5.2. The tensors defined by formulas (4.82) and (4.86) are symmetric and pos-
itive definite (see Cioranescu and Donato, 1999). In order to recover the strong formulation
of the correctors T 1 and C1, we simply need to set (φ0, ϕ0) ≡ 0 and integrate by parts with
respect to Y. Summing up all terms in the integral limits Ij and using the averaging for-
mulas for C(y),u, etc. we arrive at the strong formulation of the homogenization problems
H0 and M0 given respectively in (4.15) and (4.20).

4.6 Strong convergence

The results of the previous section give only a weak convergence of the triple (Cε, T ε, Rε)
and the gradients (∇Cε,∇T ε). In this section, we wish to improve this weak convergence
in order to achieve strong convergence in L2(0, τ ;L2(Ω)). This generally requires some reg-

ularity assumptions, specifically that the corrector terms T 1(t, x,
x

ε
) and C1(t, x,

x

ε
) belong

to the space H1(Ω) (see Allaire, 1992, cf. Theorem 2.6). By formulas (4.63) and (4.66), this
requirement seems to be satisfied if either the homogenized solutions (T 0(t, x), C0(t, x)) or
the solutions to the cell problems Nj(y) are smooth. The approach we will use in order to
determine the strong convergence results is described in (Allaire, 1992) in the context of
two-scale convergence.

Theorem 4.6.1. Assume that (∇yT
1(x, y, t),∇yC

1(x, y, t)) is smooth enough and denot-
ing by χεg the characteristic function of the gas part Ωε

g, then the sequence (∇T ε(t, x) −
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∇T 0(t, x)−∇yT
1(t, x,

x

ε
)) converges strongly to zero in L2(0, τ ;L2(Ω)d) and the sequence

(∇Cε(t, x)−∇C0(t, x)−∇yC
1(t, x,

x

ε
))χεg converges strongly to zero in L2(0, τ ;L2(Ω)d).

Proof. We test the variational formulation (4.31) of T ε with the difference T ε(t, x) −
T 0(t, x) − εT 1(t, x,

x

ε
). Using the coercivity condition on λε and the boundedness of Cε,

we obtain

µ0

2

τ∫
0

∫
Ω

∂

∂t

∣∣∣T ε − T 0 − εT 1
∣∣∣2dxdt (4.87)

+λ0

τ∫
0

∫
Ω

∣∣∣∇T ε(t, x)−∇T 0(t, x)−∇yT
1(t, x,

x

ε
)
∣∣∣2dxdt

≤ 1

2

τ∫
0

∫
Ω

Cε ∂
∂t

∣∣∣T ε(t, x)− T 0(t, x)− εT 1(t, x,
x

ε
)
∣∣∣2dxdt

+

τ∫
0

∫
Ω

λε
∣∣∣∇T ε(t, x)−∇T 0(t, x)−∇yT

1(t, x,
x

ε
)
∣∣∣2dxdt

+

τ∫
0

∫
Ω

χεgu
ε∇
∣∣∣T ε(t, x)− T 0(t, x)− εT 1(t, x,

x

ε
)
∣∣∣2dxdt

= ε

τ∫
0

∫
Γε

QW εT εdγdt+
1

2

τ∫
0

∫
Ω

Cε ∂
∂t

∣∣∣T 0(t, x) + εT 1(t, x,
x

ε
)
∣∣∣2dxdt

−
τ∫

0

∫
Ω

Cε ∂
∂t

(
T ε(t, x)

(
T 0(t, x) + εT 1(t, x,

x

ε
)
))
dxdt

+

τ∫
0

∫
Ω

λε
∣∣∣∇T 0(t, x) +∇yT

1(t, x,
x

ε
)
∣∣∣2dxdt

−2

τ∫
0

∫
Ω

λε∇T ε(t, x) ·
(
∇T 0(t, x) +∇yT

1(t, x,
x

ε
)
)
dxdt

=
5∑
j=1

Ij

We treat each term Ij in the sum independently, and noting that the convective term
vanishes due to the assumptions on uε. Basically, we require to show that the two-scale
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limit of the sum vanishes. First, we pass to the two-scale limit in I1, and obtain

lim
ε→0

ε

τ∫
0

∫
Γε

QW (T ε, Cε)T εdγdt =

τ∫
0

∫
Ω

∫
Γ

QW (T 0, C0)T 0dydxdt (4.88)

= |Γ|
τ∫

0

∫
Ω

QW (T 0, C0)T 0dxdt

Now, passing to the two-scale limit in the second and third terms, results to the following

lim
ε→0

(
I2 + I3

)
= −1

2

τ∫
0

∫
Ω

∫
Y

C(y)
∂

∂t
|T 0(t, x)|2dydxdt (4.89)

−Ceff

τ∫
0

∫
Ω

∂T 0

∂t
T 0dxdt

Passing to the two-scale limit in I4 and I5, we have

lim
ε→0
−2

τ∫
0

∫
Ω

λε∇T ε ·
(
∇T 0 +∇yT

1
)
dxdt+

τ∫
0

∫
Ω

λε|∇T 0 +∇yT
1|2dxdt (4.90)

= −
τ∫

0

∫
Ω

∫
Y

λ(y)
∣∣∣∇xT

0(t, x) +∇yT
1(t, x, y)

∣∣∣2dydxdt
= −

τ∫
0

∫
Ω

∫
Yg

λg

∣∣∣∇xT
0(t, x) +∇yT

1(t, x, y)
∣∣∣2dydxdt

−
τ∫

0

∫
Ω

∫
Ys

λs

∣∣∣∇xT
0(t, x) +∇yT

1(t, x, y)
∣∣∣2dydxdt

Now, using the formula (4.63) for T 1(t, x, y) in (4.90), we obtain after some simplifications

= −
τ∫

0

∫
Ω

λeff∇xT
0(t, x) · ∇xT

0(t, x)dxdt, (4.91)

where λeff is given by the formula

λeff
ij =

∫
Yg

λg(∇yNi(y) + ei)·(∇yNj(y) + ej)dy (4.92)

+

∫
Ys

λs(∇yNi(y) + ei)·(∇yNj(y) + ej)dy.



4.6. Strong convergence 67

Summing up the integral limits yields

|Γ|
τ∫

0

∫
Ω

QW (T 0, C0)T 0dxdt− Ceff

τ∫
0

∫
Ω

∂T 0

∂t
T 0dxdt (4.93)

−
τ∫

0

∫
Ω

λeff∇xT
0(t, x) · ∇xT

0(t, x)dxdt,

which is equal to zero due to the variational formulation of the homogenized problem
(4.15). The left hand side of the inequality (4.87) implies that

λ0 lim
ε→0

∥∥∥∇T ε(t, x)−∇T 0(t, x)−∇yT
1(t, x,

x

ε
)
∥∥∥2

L2(0,τ ;(L2(Ω))d)
→ 0. (4.94)

Hence,

∇T ε(t, x)−∇T 0(t, x)−∇yT
1(t, x,

x

ε
)→ 0. (4.95)

Similarly,

µ0 lim
ε→0

∥∥∥T ε(t, x)− T 0(t, x)− εT 1(t, x,
x

ε
)
∥∥∥2

L2(0,τ ;L2(Ω))
→ 0, (4.96)

and hence

T ε(t, x)− T 0(t, x)− εT 1(t, x,
x

ε
)→ 0. (4.97)

Finally, we see, by following a similar argument as in the case of the temperature field,
that the strong convergence of the concentration field can be deduced as the following:

D0 lim
ε→0

∥∥∥χεg(∇Cε(t, x)−∇C0(t, x)−∇yC
1(t, x,

x

ε
)
)∥∥∥2

L2(0,τ ;(L2(Ω))d)
→ 0. (4.98)

∇Cε(t, x)−∇C0(t, x)−∇yC
1(t, x,

x

ε
)→ 0. (4.99)

Similarly,

lim
ε→0

∥∥∥Cε(t, x)− C0(t, x)− εC1(t, x,
x

ε
)
∥∥∥2

L2(0,τ ;L2(Ω))
→ 0, (4.100)

and hence

Cε(t, x)− C0(t, x)− εC1(t, x,
x

ε
)→ 0. (4.101)
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4.6.1 Basic ideas behind corrector estimates

In the previous section, we have seen how corrector results (see Allaire, 1992; Cioran-
escu and Donato, 1999, for more details) can be obtained with the two-scale convergence
method. The latter method emphasizes on the strong convergence of microscopic solutions
to the macroscopic solutions, in which the first two terms

T ε ≈ T 0(t, x) + εT 1(t, x, y) +O(ε2),

Cε ≈ C0(t, x) + εC1(t, x, y) +O(ε2).

of the asymptotic series is rigorously justified. However, we cannot immediately assess
the convergence rates of the homogenization process by simply relying on the strong con-
vergence results. The corrector estimates allow us to access the quality of the averaging
(homogenization) method by determining the convergence rates which estimate the error
contribution generated when approximating microscopic solutions with macroscopic ones.
These estimates also play an important role in the design of multiscale numerical methods.
The method we use in this section to establish the corrector estimates is based on the
unfolding method. The notion of unfolding provides a systematic way of connecting un-
folded sequences defined on fixed domains with sequences defined in ε-dependent domain.
For details of this method for both fixed and perforated domains, we refer to (Cioranescu
et al., 2002, 2006). In Section 4.6.3, we will indicate the expected structure of the corrector
estimates relying on a procedure involving the concept of periodic unfolding (see Fatima
et al., 2012). For energy-based methods for deriving corrector estimates, we refer to (Mun-
tean and Noorden, 2013, e.g.). In the sequel, we introduce some operators needed for this
method.

4.6.2 Basic unfolding operators

Definition 4.6.2 (Domain and boundary unfolding operators T ε). Let Ω be an open
bounded set in Rn. For each x ∈ Rn, there exists a unique element in Rn, denoted by[x
ε

]
Y
, such that

x− ε
[x
ε

]
Y

= ε
{x
ε

}
Y
∈ Y. (4.102)

Define

Ω̃ε
g = Int

( ⋃
ξ∈Λε

ε(ξ + Y)
)
, where Λε = {ξ ∈ Zn | ε(ξ + Y ) ∩ Ω} 6= ∅, (4.103)
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Figure 4.2: The domains Ωε
g, Ω̃

ε
g,Ω

ε,δ
g and Ω̃ε,δ

g

where the set Ω̃ε is the smallest finite union of εY cells containing Ω. We also define a
subdomain of Ωε

g, i.e. for every δ > 0,we set

Ωε,δ
g = {x ∈ Ω | d(x, ∂Ω) > δ} and (4.104)

Ω̃ε,δ
g = Int

( ⋃
ξ∈

∏ε,δ

ε(ξ + Y)
)

where,

∏ε,δ = {ξ ∈ Zn | ε(ξ + Y ) ∩ Ω} ⊂ Ωε,δ
g }.

1. For any function φ ∈ Lp(Ωε
g), p ∈ [1,∞], the unfolding operators T εYg : Ωε

g → Ω × Yg

are defined by

T εYg(φ)(x, y) =

φ(ε
[x
ε

]
Y

+ εy), for a.e. y ∈ Yg, x ∈ Ω̃ε
g,

0, for a.e. y ∈ Yg, x ∈ Ω \ Ω̃ε
g,

(4.105)

2. For any function φ ∈ Lp(Γε), the boundary unfolding operator TΓε : Γε → Ω × Γ, is
defined by

T εΓ (φ)(x, y) =

φ(ε
[x
ε

]
Y

+ εy), for a.e. y ∈ Γ, x ∈ Ω̃ε
g,

0, for a.e. y ∈ Γ, x ∈ Ω \ Ω̃ε
g,

(4.106)
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Definition 4.6.3 (Domain and boundary averaging operators). The following averaging
formula hold:

1. For any φ ∈ Lp(Ωε
g), p ∈ [0,∞], we define the local average operator (i.e. the mean

in cell Yg), Mε
Yg

: Lp(Ωε
g)→ Lp(Ω), by setting

Mε
Yg(φ)(x) =

1

|Yg|

∫
Yg

T εYg(φ)(x, y)dy =
1

εn |Yg|

∫
ε[x
ε

]+εYg

φ(y)dy, x ∈ Ω (4.107)

2. The operator QεYg : Lp(Ω̃ε,δ
g )→ W 1,∞(Ω), for p ∈ [1,∞] is defined as Q1-interpolation

of Mε
Yg

(φ), : i.e.

QεYg(φ)(εξ) =Mε
Yg(φ)(εξ), for ξ ∈ Zn (4.108)

and

QεYg(φ)(x) =
∑

k∈{0,1}n
QεYg(φ)(εξ + εk)xk11 · · ·xknn , for x ∈ ε(Y + ξ), ξ ∈ Zn,(4.109)

where for k = (k1, · · · , kn) ∈ {0, 1}n. The points xkll are given by

xkll =


xl − εξl

ε
, if kl = 1,

1− xl − εξl
ε

, if kl = 0.

(4.110)

3. The operator QεYg : W 1,p(Ωε
g)→ W 1,∞(Ω), p ∈ [1,∞] is defined by

QεYg(φ) = QεYg(P(φ))
∣∣∣
Ωεg

,

where QεYg is given above, and

P : W 1,p(Ωε
g)→ W 1,p(Rn)

is an extension operator such that

‖P(φ)‖W 1,p(Rn) ≤ C ‖φ‖W 1,p(Ωε) .

We also recall the form of the operator for fixed domains, i.e.

QεY (φ)(εξ) =Mε
Y (φ)(εξ), for ξ ∈ Zn, (4.111)

where Mε
Y (φ) is the average of φ given by

Mε
Y (φ)(x) =

1

|Y |

∫
Y

P(φ)(εξ + x)dx, x ∈ Ω. (4.112)
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4. For p ∈ [1,∞], the averaging operator U εYg : Lp(Ω× Yg)→ Lp(Ωε
g) is defined by

U εYi(Φ)(x) =


1

|Y |

∫
Y

Φ(ε
[x
ε

]
Y

+ εz,
{x
ε

}
Y

)dz, a.e. x ∈ Ω̃ε
g,int

0, a.e. x ∈ Ωε
g \ Ω̃ε

g,int

(4.113)

5. U εΓ : Lp(Ω× Γ)→ Lp(Γε) is defined as

U εΓ(Φ)(x) =


1

|Y |

∫
Γ

Φ(ε
[x
ε

]
Y

+ εz,
{x
ε

}
Y

)dz, a.e. x ∈ Γ̃εint

0, a.e. x ∈ Γεg \ Γ̃εint

(4.114)

For more details on the properties of the unfolding operators, see Cioranescu et al.
(2002); Griso (2004).

4.6.3 Structure of the corrector estimates

By using the introduced operators and trusting the error estimates deduced in Fatima et al.
(2012) for a related multiple scale reaction-diffusion system, we expect that, as ε→ 0, the
following corrector estimates hold true:

‖Cε − C0‖L2((0,τ)×Ωεg) + ‖∇Cε −∇C0 −
n∑
j=1

QεYg

(
∂C0

∂xj

)
∇yNj‖2

L2((0,τ)×Ωεg) ≤ Cε
1
2 , (4.115)

‖T ε − T 0‖L2((0,τ)×Ω) + ‖∇T ε −∇T 0 −
n∑
j=1

QεY
(
∂T 0

∂xj

)
∇yNj‖2

L2((0,τ)×Ω) ≤ Cε
1
2 ,

ε
1
2‖Rε − U εΓ(R0)‖L2((0,τ)×Γε) ≤ Cε

1
2 ,

where (Cε, T ε, Rε) is the solution to the microscopic problem (4.9)–(4.10) and (C0, T 0, R0)
is the solution to the homogenized problems (4.15)–(4.10). Nj are the solutions to the
cell problems defined by (4.18) and (4.22). The operators QεYg ,Q

ε
Y and U εΓ are defined in

(4.108),(4.111), and (4.114) respectively.

Remark 4.6.1. In view of the corrector estimates (4.115), we expect these estimates to
hold for drifts of order of magnitude O(εα), with α ∈ [0,∞); faster drifts would need special
handling.

4.7 Summary

In this chapter, we have shown the rigorous passage to the homogenization limit using
the two-scale convergence method; thereby verifying the accuracy of the homogenization
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process in Chapter 3, which is based on a formal asymptotic expansion. A similar procedure
can also be adapted for the case of high contrast, highly heterogeneous media, but with a
few modifications with respect to the a priori estimates and the notion of convergence (see
Allaire, 1992). Further, the notion of two-scale convergence allowed us to guess the form
of the corrector estimates (6.24) based on the details presentation in Fatima et al. (2012).
The latter is the main scope of Chapter 6, where we will use a multiscale reconstruction
algorithm to show the agreement of our numerical corrector estimates with the theoretical
estimates presented here. In addition, we also indicated corrector results for our two-scale
limit problem. Alternatively, one may also proceed differently: we can compare the quality
of our corrector results with error estimates deduced from a purely diffusion problem as
shown in (Allaire and El Ganaoui, 2009; Allaire and Habibi, 2013; Bensoussan et al., 1978).



Chapter 5

Numerical verification of the effective
diffusion tensors

The HPS method applied in Chapter 3 allows the derivation of upscaled equations which
describe in an effective way the behavior of the microscopic description at the pore scale. It
is important to study the rigorous convergence of the microscopic equations to the macro-
scopic equation since the method, which is only based on a formal mathematical approach,
raises further questions on the validity of the derived macroscopic equations with effective
(constant) diffusion tensors. Also, it is important to verify that the effective coefficients are
consistent with some known theoretical estimates. In Chapter 4, the convergence proof of
the system of equations have already been stated using the two-scale convergence method.
In this chapter, we proceed differently. Specifically, we are interested more on the numerical
justification of the derived effective diffusion tensors. Thus, the outline of this chapter is
the following: The effective diffusion tensors are numerically calculated using the derived
formula in Chapter 3 (see Eqs (3.19),(3.43) and (3.64)). These calculations require solving
local boundary value problems (cell problems) posed on a single period. We point out that
the cell problems may be different based on the interconnectivity of the inclusions and on
the phase that dominates the transport process at the macroscopic level. Thus, distinct cell
problems are to be solved for each of the considered homogenization problems. The main
interest in this section is to investigate the sensitivity of the effective tensors to variations
in the thermal conductivity contrast, the volume fraction of the inclusions, and in the
anisotropy of the medium. Subsequently, the effective diffusion tensors are compared with
some known theoretical bounds (see Hashin and Shtrikman, 1963; Hashin, 1983, e.g.). We
also refer to Auriault et al. (2009) for a discussion of the Voigts upper bound and Reuss
lower bound.
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5.1 Computation and analysis of the effective coeffi-

cients

In this section, we consider the computation of the effective thermal conductivity tensors
for the three different model problems described in Chapter 3. Subsequently, the effective
tensors are analyzed based on a number of factors that influence the effective tensors. The
cell problems resulting from the model problems are based on the thermal conductivity
contrast of the gas and solid parts of the medium. The conductivity coefficients are assumed
to be homogeneous and locally isotropic in both subdomains. For the thin porous structure
we have in mind, we neglect the contribution to the effective thermal conductivity in the
vertical direction and hence focus more on two dimensional geometries.

5.1.1 Bounds for the effective thermal conductivity

We briefly describe some of the known upper and lower bounds which we intend to use for
the analysis of the effective thermal conductivity tensors. These bounds are given in terms of
the properties of the medium such as the volume fractions and thermal conductivities. As it
is usually the case in the study of effective properties of composite structures or aggregates
(see Wendt et al., 1970; Szymkiewicz, 2004; Wall, 1997, for more details), and in problems
related to multiphase flows in porous media (Hashin, 1983; Hashin and Shtrikman, 1963),
the effective properties of materials can be compared with some known upper and lower
bounds. The highlight of the HPS method is the computation of effective properties which
characterize the behavior of the observation at the macroscopic level. For a porous medium
consisting of a complex arrangement of its constituents with varying pore sizes across the
medium, the effective thermal conductivity will depend generally on the local properties
of the constituent phases such as the volume fractions, the thermal conductivities of the
phases and the spatial arrangement of the constituents.
The relation defining the upper Voigt bound (V) and lower Reuss (R) bound (see Auriault
et al., 2009, e.g.) is:

λR ≤ λeff ≤ λV , (5.1)

where λeff , λR and λV are constants (i.e. for an isotropic geometry) representing respectively
the effective thermal conductivity, the lower Reuss bound and the upper Voigt bound. The
bounds are defined as follows:

λR =
λgλs

Vsλg + Vgλs

, (5.2a)

λV = Vgλg + Vsλs, (5.2b)

where Vg and Vs are respectively the volume fraction of the matrix and inclusions. λR defines
the harmonic mean of the constituent conductivities and λV , their arithmetic mean. Both
λR and λV are known as fundamental bounds because the relation (5.1) is always true.
However, there are stronger bounds, based on additional assumption that the material is
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isotropic on the macroscopic scale. These are called the Hashin and Shtrikman bounds,
named after the founders Hashin and Shtrikman (Hashin and Shtrikman (1963)). The
Hashin-Shtrikman lower λHS− and upper λHS+ bounds are defined for λg > λs :

λHS− = λV − VgVs(λg − λs)
2

(D − Vs)λs + Vsλg

≤ λeff ≤ λV − VgVs(λg − λs)
2

(D − Vg)λg + Vgλs

= λHS+, (5.3)

where D is the dimension of the geometry. The lower bound λHS− corresponds to situations
in which a low conductivity inclusion (usually a sphere) is embedded in a highly conductive
matrix., whereas the reverse is the case for the upper bound λHS+.

5.1.2 Effective thermal conductivity for the MCI model

For the Moderately Conductive Inclusions (MCI) model, the cell problems are defined over
the entire period cell Y :

∂

∂yi

[
λg

(
Iik +

∂N g
k

∂yi

)]
= 0, y ∈ Yg, (5.4a)

∂

∂yi

[
λs

(
Iik +

∂N s
k

∂yi

)]
= 0, y ∈ Ys, (5.4b)

N g
k = N s

k , y ∈ Γ, (5.4c)

λg

(
Iik +

∂N g
k

∂yi

)
ni = λs

(
Iik +

∂N s
k

∂yi

)
ni, y ∈ Γ, (5.4d)

where i, k = 1, 2;N g
k and N s

k , k = 1, 2 are y-periodic and satisfy

〈N〉 =
1

|Y |

∫
Yg

N g
k dY +

∫
Ys

N s
kdY

 = 0. (5.5)

n is the outward unit normal on Γ with respect to the gas part. The problem (5.4a)-(5.4d)
and (5.5) is solved in each of the k-directions, with k = 1, 2 for a two dimensional geometry.
After the numerical computations of the cell problems, the effective conductivity is then
calculated from the following formula:

λeff
ik =

1

|Y |

∫
Yg

λg

(
Iki +

∂N g
k

∂yi

)
dY +

∫
Ys

λs

(
Iki +

∂N s
k

∂yi

)
dY

 , i, k = 1, 2. (5.6)

Note that in most cases, the geometry used is symmetric, and hence the effective thermal
conductivity tensors in such cases is isotropic, i.e. λeff

11 = λeff
22 . In order to calculate the

effective thermal conductivity tensor defined by (5.6), we first solve the solution of the cell
probems of (5.4). These solutions are illustrated for the two canonical directions in Figure
5.1.
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Figure 5.1: Solution of the local boundary value problem for the MCI model with a centered
circular inclusion of volume fraction Vs = 0.502. (left): function N1 and (right): function
N2.

5.1.3 Effective thermal conductivity for the HCI model

For the Highly Conductive Inclusions (HCI) model, the cell problems are restricted to the
gas part Yg of the period cell Y , with an inhomogeneous Dirichlet condition prescribed on
the surface Γ. The cell problem in this case has the following form:

∂

∂yi

[
λg

(
Iik +

∂Nk

∂yi

)]
= 0, y ∈ Yg, (5.7a)

Nk + yk = 0, y ∈ Γ, (5.7b)

where i, k = 1, 2; the vector-valued function N is y-periodic and n is the outward unit
normal on Γ with respect to the gas part. The effective thermal conductivity is given by a
surface integral:

λeff
jk =

λg

|Sjg|

∫
Sjg

(
Iik +

∂Nk

∂yi

)
yjnidS, i, j, k = 1, 2. (5.8)

In (5.8), Sg represents the surface of the period domain Y which is orthogonal to the k-th
direction. The solutions to the local boundary value problems are depicted in Figure 5.2.
The local thermal conductivity in this case is dominated by the connected gas phase, since
the inclusions are not connected. However, the influence of the high thermal conductivity
of the inclusion is not negligible.
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Figure 5.2: Solution of the local boundary value problem for the HCI model with a centered
circular inclusion of volume fraction Vs = 0.502. (left): function N1 and (right): function
N2.

5.1.4 Effective thermal conductivity for the WCI model

For the case of Weakly Conductive Inclusions (WCI) model, the cell problem is restricted
to the gas part Yg of the period cell Y , with a Neumann condition at the interface Γ:

∂

∂yi

[
λg

(
Iik +

∂Nk

∂yi

)]
= 0, y ∈ Yg, (5.9a)

λg

(
Iik +

∂Nk

∂yi

)
ni = 0, y ∈ Γ, (5.9b)

where i, k = 1, 2; the vector-valued function N is y-periodic and satisfy 〈N 〉 = 0. The
effective thermal conductivity is defined by the following formula:

λeff
ik =

λg

|Y |

∫
Yg

(
Iki +

∂Nk

∂yi

)
dY, i, k = 1, 2. (5.10)

Similar to the local boundary value problem of the HCI model, the local thermal diffusion
is dominated in the gas phase since the thermal conductivity of the solid phase is relatively
small. In Figure 5.3, the solutions to the local boundary problems are calculated. Note
that these solutions are both qualitatively and quantitatively identical to the problem
of mass diffusivity in the gas phase. However, the difference between the two transport
processes is given by their diffusion coefficients. The effective thermal conductivity constant
calculated from formula (5.10) is given by λeff = 7.67 × 10−5, while the effective mass
diffusivity constant is Deff = 8.1 × 10−2. The latter is calculated simply by replacing the
thermal conductivity 2.38× 10−4W/cm K of the gas with the molecular diffusion constant
D = 0.25 cm/s2. We point out that the effective tensors described here are constants since
they are obtained for an isotropic geometry.
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Figure 5.3: Solution of the local boundary value problem for the WCI model with a centered
circular inclusion of volume fraction Vs = 0.502. (left): function N1 and (right): function
N2.

5.2 Derivation of limiting cases from cell problem of

the MCI model

In this section, we study the local boundary value problem of the MCI model (5.4) in order
to determine the limiting passage to the local boundary value problems described in (5.7)
and (5.9). The idea is to perform a series of numerical simulations for the problem (5.4) on
a simple two dimensional local geometry. The geometry is locally isotropic in the respective
constituent phases and consists of centered circular inclusion. The volume fraction of the
inclusion for the geometry is Vs = 0.502. The numerical simulation was carried out by
varying the ratio of the thermal conductivity of the inclusion λs to the thermal conductivity
of the matrix λg within a range from λs/λg = 10−6 to λs/λg = 10−6. We point out that
in the numerical calculations, the given ratio serves as the conductivity of the inclusion
in problem (5.4), and also in the calculation of the effective thermal conductivity through
formula (5.6). The ratio of the effective thermal conductivity normalized by the thermal
conductivity of the matrix λeff/λg is plotted as a function of λs/λg (Figure 5.4 ), and
its asymptotic behavior is such that the effective thermal conductivity λeff approaches a
constant value λeff = 0.32λg at the far left limit for λs/λg � 10−2. This value coincides with
the value of the effective thermal conductivity calculated for problem (5.9) using formula
(5.6). Similarly, at the far right limit for λs/λg � 103, λeff approaches a constant value
λeff = 3.1λg, which also coincides with the effective thermal conductivity of the HCI model
calculated with (5.7) and (5.8). By comparing the numerical results with the bounds, we see
that the numerical results are in good agreement with the upper (if λs/λg < 1) and lower
(if λs/λg > 1) Hashin-Shtrikman bounds. Based on the asymptotic behavior of λeff , we
conclude that the problem (5.9) can be regarded as the limiting case of the problem (5.4)
when λs/λg → 0, whereas the problem (5.7) is a limiting case of the problem (5.4) when
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Figure 5.4: Effective thermal conductivity of the isotropic medium consisting of circular
inclusions (s) as a function of the ratio of the inclusions thermal conductivity to the matrix
thermal conductivity λs/λg. The effective thermal conductivity tends to a constant value
λeff = 0.32λg at the far left limit for λs/λg � 10−2 and to λeff = 3.1λg for λs/λg � 103

at the far right limit. The numerical results are compared with the bounds of Hashin and
Shtrikman (λHS+ and λHS−), and also Voigt (λV) and Reuss (λR).

λs/λg → ∞. These results are also consistent with other studies related to the effective
properties of porous media (e.g. Szymkiewicz, 2004; Auriault et al., 2009).

5.3 Effect of volume fraction of inclusions

The effective thermal conductivity (cf. mass diffusivity) of a porous material can be influ-
enced by the volume fraction of inclusions. In this section, we analyze the behavior of the
effective thermal conductivity of a typical porous medium with variations in the volume
fraction of inclusion. Different forms of geometries are also possible, and they have been
studied in much details in other contexts related to the analysis of the effective properties
of porous media (see Auriault et al., 2009; Szymkiewicz, 2004, and references therein). In
these studies, it was shown that the difference in the estimates of distinct geometries are
not significant. Thus, for brevity of presentation, we consider a simple geometry consisting
of a centered circular inclusion. Note that if the ratio of conductivity is of the same order
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of magnitude (i.e. if λs/λg = 100) as in Figure 5.4, the bounds coincide with the numerical
value of the effective thermal conductivity. This is indicated by the dotted lines in the Fig-
ure 5.4. However, since this ratio is rarely satisfied in physical systems, we show in Figure
5.5 the evolution of the numerical values of the effective thermal conductivity λeff with the
volume fraction of inclusions Vs. In the same plot, we also compared the numerical values
with the respective bounds. In Figure 5.5, we compared the effective thermal conductivity

Figure 5.5: Evolution of the effective thermal conductivity of the MCI model having a
centered circular inclusion with the volume fraction of the inclusion.

of the MCI model with the bounds of Hashin and Shtrikman (λHS+ and λHS−). Also, we see
that the fundamental bounds (λV and λR) are satisfied for this problem. The thermal con-
ductivity contrast in the problem is assumed to be moderate in the sense that λs/λg ∼ 1.
In the numerical calculation, we used the physical values of the solid and gas phase thermal
conductivities λs = 7× 10−4W/cm K and λg = 2.38× 10−4W/cm K. respectively.

Furthermore, let us consider a more interesting case as depicted in Figures 5.7a and 5.7b,
when the conductivity ratio satisfies λs/λg � 1. Figure 5.7a corresponds to a case of an
insulation material at λs = 0. This implies that the flow is dominated solely by the matrix
conductivity λg, in which case λeff is obtained by solving problem (5.9). As we mentioned
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earlier, the latter is functionally identical to the local boundary value problem for the effect-
ive mass diffusivity Deff given in (3.90). In Figure 5.7b, the ratio is given by λs/λg = 10−2.
In both cases, the numerical values are compared with the theoretical bounds of Hashin-
Shtrikman and Voigt-Reuss. In Figure 5.7, the lower bounds are close to zero. The values
of the effective thermal conductivity coincide with the Hashin-Shtrikman upper bound. In
Figure 5.7, we see that when the diameter of the circular inclusion is close to the period
length, the effective thermal conductivity is close to zero because the circles are touching
each other and heat conductivity can no longer be dominated in the gaseous phase.

Figure 5.6: Evolution of the effective thermal conductivity of the HCI model having a
centered circular inclusion with the volume fraction of the inclusion.

For the medium with highly conductive inclusions, we assumed the ratio of thermal
conductivity to be λs/λg = 104. Figure 5.6 shows the evolution of the effective thermal
conductivity with the volume fraction of inclusion. Unlike the WCI model, the values
of the effective thermal conductivity for the HCI model coincide with the lower Hashin-
Shtrikman bound. The effective thermal conductivity, which is obtained from (5.7) tends
to infinity when the volume fraction of the inclusion Vs approaches 1.
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(a) Evolution of the effective thermal conductivity of the WCI model having a centered circular
inclusion with the volume fraction of the inclusion. The thermal conductivity ratio is λs/λg = 0.

(b) Evolution of the effective thermal conductivity of the WCI model having a centered circular
inclusion with the volume fraction of the inclusion. The thermal conductivity ratio is λs/λg =
10−2.

Figure 5.7: Effective thermal conductivity of the WCI model, and comparison of the ef-
fective thermal conductivity with the Hashin-Shtrikman and Voigt-Reuss bounds.
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5.4 Anisotropy of the effective thermal conductivity

tensor

Anisotropy effects is a property of nonuniform porous materials. It means that the direction
of flow in such a medium is not simply the direction of the gradient of the transport
processes. In order to mimic a physical material that exhibits anisotropy, we performed
numerical simulations for a geometry with a centered elliptical inclusion. We take, for

Figure 5.8: Different orientations of the inclusion with the angular orientation θ.

example, a typical ellipse that has a A-semiaxes of a = 0.3 and a B-semiaxes of b = 0.48.
Thus, the volume fraction of the inclusion is fixed to Vs = 0.451433. On the other hand,
the angular orientation, θ, of the ellipse is varied in increments of 15 about its major axis
(see Figure 5.8). We chose a range θ = 0, 15, · · · , 180. Note that within the given range,
the resulting tensors have distinct properties. The form of the tensors can be grouped into
two categories namely diagonally anisotropic and symmetrically anisotropic tensors. The
derived effective tensors on the other half of the range, i.e. θ = 105, 120, · · · , have negative
off-diagonal entries which, for a generic tensor

λ =

a b

c d

 ,

defined in the first half of the range, one can obtain tensors on the other half by the
following representation

λθ =

 a µb

µc d

 ,

where µ = sgn cos θ. Figure 5.9 shows the solutions to the local boundary value problem
(5.7) for values of the orientation angle: θ = 0, 45, 60, 105. Following the presentation of the
previous section, we analyze the effect of anisotropy for the HCI and WCI local boundary
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value problems. In all cases, the effective thermal conductivity tensor depends on the an-
gular orientation of the inclusion, which gives rise to different forms of anisotropic tensors.
At θ = 0, 90, and 180, the effective thermal conductivity is diagonally anisotropic (DA),
as shown in Figures 5.10a and 5.10b. In between these locations, the tensors are basic-
ally symmetrically anisotropic. We also compared the numerical values of the anisotropic
tensors with Voigt-Reuss bounds. For the WCI model, the values of λeff

WCI for the diagonally
anisotropic tensors are more closer to the Voigt upper bound λV. On the other hand, for
the HCI model, the diagonally anisotropic tensors are closer to the Reuss lower bound
λV. However, the off-diagonal entries are farther below λR. This result implies that the
Voigt-Reuss bounds are consistent with the principal direction of flow in both cases, even
though the off-diagonal directions may not be insignificant.
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(a) Angular orientations of the inclusion. Left: θ = 0◦; right: θ = 45◦.

(b) Angular orientations of the inclusion. Left: θ = 60◦; right: θ = 105◦.

Figure 5.9: Solution of the local boundary value problem (5.7) with centered elliptical
inclusion.
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(a) Comparison of the effective thermal conductivity of the HCI model having a centered elliptic
inclusion with the angular orientation, θ, of the inclusion. The thermal conductivity ratio is
λs/λg = 104.

(b) Comparison of the effective thermal conductivity of the WCI model having a centered elliptic
inclusion with the angular orientation, θ, of the inclusion. The thermal conductivity ratio is
λs/λg = 0.

Figure 5.10: Evolution of effective thermal conductivity of the WCI and HCI models, and
their comparison with the Voigt-Reuss bounds.
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5.5 Summary

In this chapter, we have discussed the behavior of the effective diffusion tensor when chan-
ging various relevant parameters. Specifically, the analysis has been limited to two dimen-
sional geometries, in which the inclusion (circle and ellipse) is centered within the unit
period. The present study has neglected treatment of other geometries and their arrange-
ments within the unit period, simply because their contribution is not so significant for the
same volume fraction of inclusion (see Szymkiewicz, 2004, e.g.). The effective thermal con-
ductivity tensor depends strongly on the volume fraction of inclusion. We point out that
a similar treatment to the two dimensional problems considered presently is also viable
for three-dimensional geometries. Most of these have been treated in other contexts (see
Auriault et al., 2009; Szymkiewicz, 2004, and references therein).

We have shown that for a large contrast in the constituent thermal conductivity, the effect-
ive thermal conductivity is determined by the thermal conductivity of the interconnected
phase, as clearly detailed for the HCI and WCI models. It was also shown that the local
boundary value problems (5.7) and (5.9) are limiting cases of the problem (5.4), which was
used in determining the effective thermal conductivity for the HCI and WCI models. The
implication of the contrast is such that the influence of the thermal conductivity of the
inclusions may be neglected if λs/λg � 102. For the considered isotropic geometry (circle),
the values of λeff obtained for the weakly conductive inclusion correspond to the upper
bound, λHS+, of Hashin-Shtrikman, while for the highly conductive inclusions, λeff is in
agreement with the lower bound, λHS−, of Hashin-Shtrikman.

We also considered the effect of anisotropy in the medium by varying the angular ori-
entation of the inclusion, for a fixed volume fraction of the elliptical inclusion. The result
includes distinct forms of anisotropic tensors. The diagonally anisotropic tensors satisfy
the Voigt-Reuss bounds. Specifically, the diagonal entries for the HCI model satisfy the
Reuss bound, λR, while the Voigt upper bound is satisfied for the WCI model. However,
the off-diagonal entries are farther below λR for the HCI model. They also fall below λR for
most values of θ. Thus, we conclude that the Voigt-Reuss bounds are consistent with the
principal directions of flow (diagonal entries) in both cases, even though the off-diagonal
entries may not be insignificant. The characterization of the effect of anisotropy is the sub-
ject of Chapter 8. In the context of the phenomenon of interest in the present study, we will
consider in Chapters 7 and 8 the contribution of the effective properties derived through
homogenization to the macroscopic behavior of fingering instability in both uniform and
nonuniform media.



Chapter 6

Numerical verification of the
macroscopic equations

As pointed out in Chapter 2, either of two viewpoints can be adopted in the study of
homogenization theory. In Chapter 3, we derived the macroscopic system of equations by
using the macroscopic viewpoint (see Figure 2.1). In this viewpoint, problems are solved in
a fixed domain with cells of size ε, which tend to zero. However, following the microscopic
viewpoint (see Auriault et al., 2009; Allaire and El Ganaoui, 2009, e.g.), the size of the
period cell, normalized with l, is of unit size and independent of ε (see Figure 6.1). This
implies that as ε tends to zero, the periodicity cells do not tend to zero. However, the
total number of cells is increased, i.e. the size of the macroscopic domain is of order ε−1.
In this viewpoint, instead of using the macroscopic space variable x ∈ Ω, we use the
microscopic space variable y = x/ε. Thus, in the y-coordinate system, the computational
domain increases with the scaling, ε−1Ω as ε tends to zero. Following Allaire and El Ganaoui

y

l

L

x

Y

y

normalization

1

1

-1

uYg

Ys

-1

Figure 6.1: The scheme of the microscopic viewpoint used here for computational purposes.
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(2009), we describe the physical and computational domains as follows: let the fixed domain
be represented viz.:

Ω :=
2∏
j=1

(0, aj),

then, the rescaled computational domain is defined by:

Ω̂ := ε−1Ω =
2∏
j=1

(0, aj/ε).

There exist integers Nj such that aj/ε = Njlj, for j = 1, 2. Note that this definition ensures

that only periodicity cells of unit size belong to Ω̂. For any function u(x) defined on Ω, the

rescaled function û(y) defined on Ω̂ satisfies the following relations:

û(y) = u(εy) = u(x), (6.1a)

∇yû(y) = ε(∇xu)(εy) = ε∇xu(x) (6.1b)

We point out that all physical quantities defined on Ω̂ are denoted with a hat ̂ symbol.
The ensemble of the respective solid and gas parts, Ω̂s and Ω̂g, are also defined according

to the same transformation relating Ω and Ω̂. We restrict the discussion in this section to
the MCI model, in which the full governing equations are given as follows:

Hε



Cg
∂Tg

∂t
+ Cgv ·∇Tg −∇·(λg∇Tg) = 0, x ∈ Ωε

g, t > 0,

Cs
∂Ts

∂t
−∇·(λs∇Ts) = 0, x ∈ Ωε

s, t > 0,

Tg = Ts, x ∈ Γε, t > 0,

n·(λg∇Tg − λs∇Ts) = εQW (Ts, C), x ∈ Γε, t > 0.

(6.2)

Mε

γ
∂C

∂t
+ v ·∇C −∇·D∇C = 0, x ∈ Ωε

g, t > 0,

−D∇C ·n = εβW (Ts, C), x ∈ Γε, t > 0,
(6.3)

where the coefficients γ and β have no physical meaning in the problem at hand and satisfy
γ = β = 1. In the new coordinate system, (6.2) and (6.3) take the following form

Ĥε



ε2Ĉg
∂T̂g

∂t
+ εV̂ T ·∇T̂g −∇·(λ̂g∇T̂g) = 0, y ∈ Ω̂g, t > 0,

ε2Ĉs
∂T̂s

∂t
−∇·(λ̂s∇T̂s) = 0, y ∈ Ω̂s, t > 0,

T̂g = T̂s, y ∈ Γ̂, t > 0,

(λ̂g∇T̂g − λ̂s∇T̂s)· n = ε2Q̂W (T̂s, Ĉ), y ∈ Γ̂, t > 0.

(6.4)
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M̂ε

ε
2γ̂
∂Ĉ

∂t
+ εV̂ C ·∇Ĉ −∇·D̂∇Ĉ = 0, y ∈ Ω̂g, t > 0,

−D̂∇Ĉ ·n = ε2β̂W (T̂s, Ĉ), y ∈ Γ̂, t > 0.

(6.5)

In a similar way, the homogenized problems become

Ĥ0

{
ε2Ĉeff ∂T̂

∂t
+ εV̂ Tφ·∇T̂ −∇· (λ̂eff∇T̂ ) = ε2Q̂φsW (T̂ , Ĉ),y ∈ Ω̂, t > 0. (6.6)

M̂0

{
ε2γ̂φ

∂Ĉ

∂t
+ εV̂ Cφ·∇Ĉ −∇· (D̂eff∇Ĉ) = −ε2β̂φsW (T̂ , Ĉ),y ∈ Ω̂, t > 0. (6.7)

We are interested in the first order homogenization approximation

uε(x) ≈ u0(x) + εu1(x,
x

ε
),

which, under the coordinate transformation, is equivalent to:

ûε(y) ≈ û0(y) + û1(y). (6.8)

Thus, the first order correction to the homogenized problems (6.6) and (6.7) is defined as

û1(y) = εu1(εy,y) = εu1(x,
x

ε
) =

2∑
j=1

∂û0

∂yj
(y)Nj(y). (6.9)

In (6.9), we see that the solution N (y) to the cell problems are not rescaled since they are
already defined on the unit periodicity cell in the y-coordinate. Also, for the considered
problems, the cell problems are solved only once because they satisfy the translational
invariance property and do not depend on the field variables T̂ and Ĉ.

Error estimates and rate of convergence of the homogenization process

The error estimates between the exact and the reconstructed solutions will be given in
the discrete form of the L2−norms. However, following the line of argument in Allaire and
Habibi (2013), we compute relative errors between the reconstructed solutions of the form
(6.8) and the exact solutions. It can be shown that the relative errors are invariant under
the coordinate transformation and are given as

‖uε(x)− (u0(x) + εu1(x,
x

ε
))‖L2(0,τ ;Ω)

‖uε(x)‖L2(0,τ ;Ω)

=
‖ûε(y)− (û0(y) + û1(y))‖L2(0,τ ;Ω̂)

‖ûε(y)‖L2(0,τ ;Ω̂)

(6.10)

and

‖∇uε(x)−∇(u0(x) + εu1(x,
x

ε
))‖L2(0,τ ;Ω)

‖∇uε(x)‖L2(0,τ ;Ω)

=
‖∇ûε(y)−∇(û0(y) + û1(y))‖L2(0,τ ;Ω̂)

‖∇ûε(y)‖L2(0,τ ;Ω̂)

.

(6.11)
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In order to verify the convergence rate of our homogenization results, the error estimates
(6.10) and (6.11) defined respectively for a generic scalar field û and its gradient are com-
pared with the slopes of ε and

√
ε. We define these estimates for the temperature and

concentration fields as well as their gradients by

ERR(T ) =
‖T̂ ε(y)− (T̂ 0(y) + T̂ 1(y))‖L2(0,τ ;Ω̂)

‖T̂ ε(y)‖L2(0,τ ;Ω̂)

≤ Cε, (6.12)

ERR(C) =
‖Ĉε(y)− (Ĉ0(y) + Ĉ1(y))‖L2(0,τ ;Ω̂)

‖Ĉε(y)‖L2(0,τ ;Ω̂)

≤ Cε, (6.13)

and

ERR(∇T ) =
‖∇T̂ ε(y)−∇(T̂ 0(y) + T̂ 1(y))‖L2(0,τ ;Ω̂)

‖∇T̂ ε(y)‖L2(0,τ ;Ω̂)

≤ C
√
ε, (6.14)

ERR(∇C) =
‖∇Ĉε(y)−∇(Ĉ0(y) + Ĉ1(y))‖L2(0,τ ;Ω̂)

‖∇Ĉε(y)‖L2(0,τ ;Ω̂)

≤ C
√
ε. (6.15)

The error estimates are also consistent with the theoretical estimates deduced in Section
4.6.1 Eq. (4.115).

6.1 Algorithm for reconstructing solutions to the ho-

mogenization problem

We detail in this section the computational procedure used to reconstructing an approx-
imate homogenized solution, in order to recover the details in the pore scale description,
and hence achieve better convergence between the homogenized problems and the exact
problems. The method presented here is solely based on post-processing of the computed
cell solutions and the homogenized solutions. The first approach (see Algorithm 1) can
be understood as a reconstruction by interpolation at grid points of the computational
domain. The second approach is based on successive generation of cell solutions N (y) that

cover the discrete computational domain Ω̂h. First, we recall the method of computation
for the general homogenization procedure for periodic structures:

1. Solve the cell problems in each of the canonical ej directions for the temperature and
concentration fields

2. Calculate the effective thermal conductivity and diffusion tensors using the solutions
of the cell problems

3. Solve the coupled system of homogenized problems for the temperature T̂ 0 and con-
centration Ĉ0 fields
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4. For the purpose of reconstructing an approximate solution to the homogenized prob-
lems, the following two steps are required:

(a) Compute the corrector (6.9),

(b) Reconstruct an approximate solution (6.8).

6.1.1 Two reconstruction algorithms

Algorithm 1

Data: Given û0(y),∇yj û
0(y) defined on Ω̂h and Nj, j = 1, 2. defined on a periodicity

unit cell Y.
Result: Generate data for û0(yi),∇yj û

0(yi), at subgrids Ω̂h,i of unit size and
compute û0(y) + û1(y) using Nj(y).

Partition the grid Ω̂h into a number of subgrids Ω̂h,i such that

Ω̂h =

Nh⋃
i=1

Ω̂h,i

For each Ω̂h,i, interpolate

û0(yi),
∂û0

∂yj
(yi), yi ∈ Ω̂h,i, i = 1, 2, · · · , Nh.

Compute the sum

û1(yi) =
2∑
j=1

∂û0

∂yj
(yi)Nj(y), yi ∈ Ω̂h,i.

Assemble subgrid solutions in Ω̂h,i and reconstruct an approximate solution

û0(y) + û1(y), y ∈ Ω̂

Algorithm 1: Reconstruction of solution by partitioning of grid points and interpolation.

In Algorithm 1, the reconstruction is based on the fact the gradients ∇û0 of the ho-
mogenized solutions can be recovered through interpolation on subgrids Ω̂h,i of unit size.

This implies a sequence of interpolations of the gradients at the subgrid, Ω̂h,i level. This
operation is memory inefficient and increases the computational time.
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Data: Given û0(y),∇yj û
0(y) defined on Ω̂h and Nj, j = 1, 2. defined on a periodicity

unit cell Y.
Result: Generate a lattice of copies of Nj and compute û0(y) + û1(y) using Nj(y).

Generate copies of Nj to cover the grid Ω̂h

Compute the sum

û1(y) =
2∑
j=1

∂û0

∂yj
(y)Nj(y), y ∈ Ω̂h.

Reconstruct an approximate solution

û0(y) + û1(y), y ∈ Ω̂.

Algorithm 2: Reconstruction of solution by generation of lattice of copies of N .

Algorithm 2

Alternatively, instead of generating a sequence of subgrid gradients ∇yiû
0, yi ∈ Ω̂h,i, we

generate a lattice of copies of cell solutions Nj, in which each Nj belongs to Ω̂h,i and

their union covers a grid of size Ω̂h (see Figure 6.2). Then, the reconstruction proceeds by

computing the sum (6.9) directly on the grid Ω̂h, and subsequently adding the sum to the

homogenized solution û0(y) that is already available in the computational domain Ω̂h. The
algorithm is as given in Algorithm 2.



6.2. Numerical verification of the homogenization process 95

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

(a) N1 in the e1 direction for problem Ĥ.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

(b) N2 in the e2 direction for problem Ĥ.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

(c) N1 in the e1 direction for problem M̂.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

(d) N2 in the e2 direction for problem M̂.

Figure 6.2: Lattices of cell solutions used in the reconstruction algorithm (2) for a typical
reference computation ε0 = 1/4.

6.2 Numerical verification of the homogenization pro-

cess

In order to check the efficiency of the reconstruction algorithms 1 and 2, we consider a
simple case of the model problems (6.4)-(6.5) and (6.6)-(6.7), in which we neglect the re-
action terms, hence decoupling of the system of equations. This allows for studying the
respective heat and concentration models independently. The convection term, on the other
hand, is considered relatively small with respect to the problem at hand. This is consistent
with the classical HPS method1 used in the present study. 2

1The classical HPS method is adopted in the present study to investigate a combustion phenomenon
that exhibits diffusional instability. In this sense, the convective flux is relatively low.

2We refer to the presentation in Auriault and Adler (1995) and the recent extension to the classical HPS
method-two-scale expansion with drift Allaire et al. (2010)-for treating problems with strong convection
and chemical reactions.
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We start with a computation domain Ω̂ = ε−1Ω =
∏2

j=1(0, aj/ε), with aj/ε = Njlj, where
lj = 1cm corresponds to the length of the unit periodicity cell and Nj = 4 in the reference
computation3. The two-dimensional periodicity cell (see Figure 6.3) has been chosen as a
cross-section of the three dimensional periodic medium (see Figure 2.3a) along the direc-
tion of flow. Alternatively, since the thin layer of the medium is negligible, the geometry of
the periodic medium can be considered in the (y1, y2)-plane. The radius of the solid part

Yg

Ys

u

Figure 6.3: Two dimensional periodicity cell.

in Figure 6.3 is r = 0.4 cm, such that the volume fraction of the gas part is calculated
as |Yg| = φ = 1 − πr2. In the considered geometry, the physical quantities related to the
diffusion and thermal conductivity are isotropic, and their values are given in Table A.1.
For a generic physical quantity ϕ̂ defined in (6.4) and (6.5), and respectively in (6.6) and
(6.7), its value is associated with the physical value for a generic quantity ϕ described in

the physical domain Ω. That is, in the rescaled problems Ĥ and M̂, the quantity ϕ̂ varies
with ε. However, in a reference computation, the value of ϕ̂ matches exactly the physical
value. That is, for a given reference computation ε0 = ε, the quantity ϕ̂ defined in the y-
coordinate system, in relation to a generic quantity ϕ defined in the original (macroscopic
viewpoint) x-coordinate system, satisfies the following relation:

εdϕ̂ := ϕ. (6.16)

However, in the test for convergence of the homogenization process, the physical quant-
ities defined in Ω̂ vary with ε according to εdϕ̂, where d represents the exponent of ε in
the rescaled problems (i.e. problems defined in the y-coordinate system). Specifically, by
using (6.16) in (6.4) and (6.5), respectively (6.6) and (6.7), the physical quantities with ε
coefficients are chosen, for the reference computation, as follows:

ε2Ĉg,s = Cg,s, ε
2Ĉeff = Ceff , ε2Q̂ = Q, (6.17)

ε2γ̂ = γ, ε2β̂ = β, εV̂ α = vα, (6.18)

3A typical computation in which the physical quantities in the computational domain Ω̂ retain their
physical values.
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where vα are defined according to problems Ĥ and M̂, with α = T,C.

We prescribe Dirichlet boundary condition for the temperature and concentration fields
on the left boundary and a Neumann boundary condition at the right boundary. Specific-
ally, the corresponding boundary conditions are:

T̂ = 300K, Ĉ = 0.46, at y1 = 0, (6.19a)

∂T̂

∂y1

=
∂Ĉ

∂y1

= 0, at y1 = a1/ε. (6.19b)

In order to test for the rate of convergence of the homogenization process as ε tends to
zero, (alternatively, as the number of periodic cells tends to infinity), we are required to add
cells in both directions, in each subsequent computation from a reference computation (see
Figure 6.4a) This is equivalent to allowing ε become smaller and smaller. Alternatively, we
can also enforce periodic boundary conditions in the y2-direction (see Figure 6.4b) simply
for computational efficiency. This means that it is not necessary to add cells in the y2-
direction; hence N2 is fixed and we simply add cells in the y1-direction. The value of N1

is increased by a unit step in each computation, with N1 ranging from 4 to 12, i.e. the
number of cells in the y1-direction increases according to

ε =
1

N1

. (6.20)

The initial conditions for temperature and concentration are given by:

T̂ = 500K, Ĉ = 0.23. (6.21)

We also note that the domain of the homogenized problems has the same domain size and
boundary conditions as described above, except that the domain is homogeneous. All com-
putations are performed with a finite element algorithm for each of the distinct problems,
and are implemented in the finite element application, COMSOL Multiphysics®, with
quadratic triangular elements. The application allows to handle complex domain shapes
and easy implementation of the periodic boundary conditions. However, the reconstruction
procedure is implemented in Matlab® as a post-processing step. The solutions to the cell
problem (5.4), corresponding to the MCI model, are computed on the unit cell depicted in
Figure 6.3, whereas computations of the cell solutions are restricted only to the gas part,
Yg, of the unit cell since the diffusion mechanism is dominated by the gas phase. For the
implementation of the cell solutions, the coefficients must satisfy the scaling in powers of
ε which is implied in each of the model problems. For instance, this condition is trivially
satisfied for the MCI model since the coefficients, in each part of the medium, assume their
physical values, and hence satisfy the order of magnitude O(1) with respect to ε.
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successive levels

of cell addition

reference domain

(a) Two directional cell addition.

periodic boundary

periodic boundary

(b) One directional cell addition.

Figure 6.4: The scheme of domain Ω̂ for the microscopic viewpoint with constant periodicity
cells of unit size and successive levels of cell additions for each value of ε.

6.3 Simulation results for problems Ĥε and Ĥ0

In this section, we describe the solutions to problems Ĥε and Ĥ0 for a reference compu-
tation corresponding to ε0 = ε = 1/7. The decoupled equations are now in the form of a
convection-diffusion equation. Hence, the question of how much of the convective transport
is adequate for the validity of the HPS method used in this study has to be treated. Thus,
in this section, we consider the influence of convective transport on error estimates related
to the temperature and its gradient. Specifically, we consider the following problems:

1. Computation of the first order correction to the homogenized solution, T̂ 0(y).

2. Estimation of error for a reference computation ε0 = 1/7, in which we vary the
strength of convection in small increments, for each successive computation. This
will allow us to access the range of the flow velocity, under which the problems Ĥε

and Ĥ0 remain valid.

3. Furthermore, the validity of the model will be judged based on the convergence of
the reconstructed solution T̂ 0(y) + T̂ 1(y) to the exact solution, T̂ ε(y). Hence, plots
of error estimates of the temperature and its gradients are related to different flow
velocities.

4. Since the corrector term T̂ 1(y) does not satisfy a Dirichlet boundary condition, we use
Neumann-type boundary conditions in order to avoid complications with boundary
layers; but only in the reference computation presented in this section. The following
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initial condition is used:

T̂ ε,0(y, 0) = 500 + σ exp {−(y − a1/ε)
2}, with σ > 0. (6.22)

Figure 6.5: Solutions to the cell problems N1 and N2 corresponding to problem Ĥ.

As a first step, we compute the solution to the cell problems in the considered geometry
(see Figure 6.3). The solutions are depicted in Figure 6.5, and correspond to the problem,

Ĥ. The solutions allow to compute the effective thermal conductivity tensor; in this case,
for the MCI model. Since the geometry of the problem is symmetric, the effective thermal
conductivity tensor is isotropic and the calculated value is given by

λ̂eff =

3.96 · 10−4 0.00

0.00 3.96 · 10−4

 . (6.23)

The top panel of Figure 6.7 (from left to right) depicts respectively the solutions to the exact

temperature T̂ ε and homogenized temperature T̂ 0, whereas the bottom panel (from left to

right) shows the reconstructed temperature T̂ 0 + T̂ 1 and the difference T̂ ε − (T̂ 0 + T̂ 1),

between the exact and reconstructed solutions. The solution of the first order term, T̂ 1

(see Figure 6.6), depends on the gradient of the homogenized temperature, and is computed
as the sum

T̂ 1(y) =
2∑
j=1

∂T̂ 0

∂yj
(y)Nj(y), (6.24)

where Nj are the solutions to cell problems illustrated in Figure 6.5. While the homogen-

ized temperature T̂ 0 represents the non-oscillatory (averaged) term in the asymptotic sum

that approximates the exact solution T̂ ε, the oscillatory behavior of solution to the exact
problem Ĥε are contained in higher order terms of the asymptotic expansion of T̂ ε. The
oscillatory behavior can be recovered by adding more terms of the asymptotic expansion
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Figure 6.6: Solution to the first order term T̂ 1 of the asymptotic expansion of T̂ ε computed
from (6.24).

to the zeroth order (homogenized) term depicted in Figure 6.7b. Specifically, it can be seen

in Figure 6.6 (see also Figure 6.8b) that the first order term T̂ 1 is oscillating. This is what
we require in the present study in order to correct the homogenized solution. Note that if
the small scale parameter ε is quite small, the contribution of the first order corrector as
well as higher order correctors become less important. Figure 6.9 shows the magnitude of
the temperatures for the exact solution and the reconstructed solution. Clearly, it can be
seen that the magnitude of the error is quite small.
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(b) T̂ 0.
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(c) T̂ 0 + T̂ 1
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(d) T̂ ε − (T̂ 0 + T̂ 1)

Figure 6.7: Solutions to problems Ĥε and Ĥ0 at t = 400s, for the reference computation
ε0 = ε = 1/7.
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Figure 6.8: Longitudinal cross-section of solutions at t = 400s showing (a) Zeroth order

(homogenized) temperature T̂ 0; (b) First order temperature, T̂ 1; (c) comparison of the

various temperatures T̂ ε, T̂ 0 and T̂ 0 + T̂ 1; (d) comparison of the gradients of the temper-

atures |∇T̂ ε|, |∇T̂ 0| and |∇(T̂ 0 + T̂ 1)|. All computations refer to ε0 = ε = 1/7, and V=0.0
cm/s.
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Figure 6.9: Magnitude of solution gradients to problems Ĥε and Ĥ0 at t = 400s, for the
reference computation ε0 = ε = 1/7.
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6.4 Simulation results for problems M̂ε and M̂0

In this section, we simply follow the outline given in Section 6.3. Also, we restrict the
discussions to a reference computation corresponding to ε0 = ε = 1/7. Unlike in the
previous section, an inhomogeneous Dirichlet boundary condition is prescribed at the left
boundary. For the problems M̂ε and M̂0, the reconstructed solution is given by Ĉ0 + Ĉ1,
where the first order term of the asymptotic expansion

Ĉε(y) ≈ Ĉ0(y) + Ĉ1(y) + · · · (6.25)

is defined as a sum similar to (6.24). The solutions N1 and N2 to the cell problems, in this
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Figure 6.10: Solution to the first order term Ĉ1 of the asymptotic expansion of Ĉε.

Figure 6.11: Solutions to the cell problems (left) N1 and (right) N2, corresponding to

problem M̂.

case, are restricted to the gas part Yg of the periodicity cell, and are illustrated in Figure
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6.11. The effective diffusion tensor is computed using the solutions N1 and N2. It can be
seen that the tensor is isotropic, owing to the nature of the considered geometry, i.e.

D̂eff =

0.080523 0.00

0.00 0.080523

 . (6.26)

The solutions to the exact problem M̂ε and homogenized problem M̂0 are given in Figure
6.12 Figure 6.14 shows the magnitude of the temperatures for the exact solution and the
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x

y

 

 

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0

10

20
x 10

−5
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Figure 6.12: Solutions to problems M̂ε and M̂0 at t = 200s, for the reference computation
ε0 = ε = 1/7.

reconstructed solution. It can be seen that the magnitude of the error is quite small.
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Figure 6.13: Longitudinal cross-section of solutions at t = 200s showing (a) Zeroth order

(homogenized) concentration Ĉ0; (b) First order concentration, Ĉ1; (c) comparison of the

various concentrations Ĉε, Ĉ0 and Ĉ0 + Ĉ1; (d) comparison of the gradients of the con-

centrations |∇Ĉε|, |∇Ĉ0| and |∇(Ĉ0 + Ĉ1)|. All computations refer to ε0 = ε = 1/7, and
V=0.0 cm/s.
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Figure 6.14: Magnitude of solution gradients to problems M̂ε and M̂0 at t = 200s, for the
reference computation ε0 = ε = 1/7.
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6.5 Simulation results for the coupled problems Ĥ and

M̂

The nonlinear system of convection reaction-diffusion equations is considered using the
data of Table A.1. We are particularly interested in estimating the convergence of the
homogenization process and to access the numerical rate of convergence as ε tends to zero.
This is done respectively in the relative L2 norms (6.10) and (6.11) between the exact and
reconstructed solutions and between their gradients. We proceed as in the previous section
by computing the solutions for the problems Ĥ and M̂. The heat of reaction Q is chosen
in a moderate regime, in which there is no resulting flame propagation. For the problems
described in this section, we prescribe Dirichlet boundary conditions on the left boundary
(i.e. y1 = 0) for the temperature and concentration fields and a homogeneous Neumann
conditions at the right boundary, i.e.

T̂ = 300K, Ĉ = 0.23, at y1 = 0,
∂T̂

∂y1

=
∂Ĉ

∂y1

= 0, at y1 = a1/ε. (6.27)

For checking the numerical convergence of the homogenization process, we chose the fol-
lowing initial condition (6.28) for the temperature, so that the physical behavior of the
solutions do not change drastically as ε tends to zero.

T̂ ε,0(y, 0) = 1000 + σ exp {−(y − a1/ε)
2}, with σ ≥ 0. (6.28)

6.5.1 Convergence rates for the coupled system with no convec-
tion

First, we consider the coupled problem, in which the flow field V = (0, 0, 0)cm/s. In
this case, the two directional scheme (Figure 6.4a) of domain for cell addition is adopted,
which involves adding cells in both y-directions at each successive computation (or at each
decrease in the value of ε). We only consider moderate simulations for which the total
number of cells N(ε) in the domain is not so large. The total number of cells in each
computation is given in Tables 6.1 and 6.2. Also, a Neumann-type boundary condition is
prescribed in the y2-directions. The resulting relative errors on the temperature field and its
gradient, given respectively by (6.12) and (6.14), are plotted in Figures 6.15 and 6.16. The
relative errors are compared respectively with linear plots of ε and

√
ε. In Figures 6.15 and

6.16, it can be seen that the relative error estimates satisfy the theoretical estimates given
in Section 4.6.1. Similarly, the relative errors on the concentration field and its gradient,
given respectively by (6.13) and (6.15), are plotted in Figures 6.17 and 6.18 as functions
of ε. We also see that the convergence rates described in Section 4.6.1 are satisfied. These
results are also depicted in Tables 6.1 and 6.2.
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N(ε) ε ERR(T )
√
ε ERR(∇T )

16 2.500 · 10−1 9.344 · 10−3 5.000 · 10−1 1.145 · 10−1

25 2.000 · 10−1 5.469 · 10−3 4.472 · 10−1 9.047 · 10−2

36 1.667 · 10−1 3.485 · 10−3 4.082 · 10−1 7.818 · 10−2

49 1.429 · 10−1 2.621 · 10−3 3.780 · 10−1 7.129 · 10−2

64 1.250 · 10−1 1.858 · 10−3 3.536 · 10−1 6.645 · 10−2

81 1.111 · 10−1 1.447 · 10−3 3.333 · 10−1 6.323 · 10−2

100 1.000 · 10−1 1.175 · 10−3 3.162 · 10−1 6.105 · 10−2

121 0.909 · 10−1 9.025 · 10−4 3.015 · 10−1 5.946 · 10−2

144 0.833 · 10−1 7.407 · 10−4 2.887 · 10−1 5.809 · 10−2

Table 6.1: Relative error estimates at distinct values of ε for the nonlinear problem with
no convection.

N(ε) ε ERR(C)
√
ε ERR(∇C)

16 2.500 · 10−1 4.718 · 10−3 5.000 · 10−1 1.285 · 10−2

25 2.000 · 10−1 3.209 · 10−3 4.472 · 10−1 9.379 · 10−3

36 1.667 · 10−1 2.853 · 10−3 4.082 · 10−1 7.184 · 10−3

49 1.429 · 10−1 1.570 · 10−3 3.780 · 10−1 5.476 · 10−3

64 1.250 · 10−1 1.313 · 10−3 3.536 · 10−1 4.584 · 10−3

81 1.111 · 10−1 1.071 · 10−3 3.333 · 10−1 3.927 · 10−3

100 1.000 · 10−1 8.645 · 10−4 3.162 · 10−1 3.449 · 10−3

121 0.909 · 10−1 7.265 · 10−4 3.015 · 10−1 3.096 · 10−3

144 0.833 · 10−1 6.866 · 10−4 2.887 · 10−1 2.831 · 10−3

Table 6.2: Relative error estimates at distinct values of ε for the nonlinear problem with
no convection.

6.5.2 Convergence rates for the coupled system with convection

We now illustrate the relative errors on the coupled system of reaction diffusion equations
with convection. We chose a flow field along the y1-direction V = (0.05, 0, 0), which is
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Figure 6.15: Relative error on the temperature as a function of ε.
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Figure 6.16: Relative error on the temperature gradient as a function of ε.

within a moderate regime for flows described for the problem at hand. We adopt the one-
directional scheme (Figure 6.4b) of the domain for cell addition. This scheme implies the use
of periodic boundary conditions in the y2-direction, so that we do not require additional
cells in the y2-direction; we simply add cells in the y1-direction. The total number of



6.5. Simulation results for the coupled problems Ĥ and M̂ 111
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Figure 6.17: Relative error on the concentration as a function of ε.
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Figure 6.18: Relative error on the concentration gradient as a function of ε.

cells in each computation is given in Tables 6.3 and 6.4. As will be illustrated later on,
the scheme cuts down on the total number of cells, and hence a gain in CPU resources
is achieved. Figures 6.23 and 6.24 illustrate respectively simulation results at t = 40s,
for the temperature and concentration fields. The resulting relative errors ERR(T ) and
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N(ε) ε ERR(T )
√
ε ERR(∇T )

16 2.500 · 10−1 9.989 · 10−2 5.000 · 10−1 1.189 · 10−1

20 2.000 · 10−1 6.005 · 10−3 4.472 · 10−1 9.340 · 10−2

24 1.667 · 10−1 4.370 · 10−3 4.082 · 10−1 8.116 · 10−2

28 1.429 · 10−1 3.131 · 10−3 3.780 · 10−1 7.315 · 10−2

32 1.250 · 10−1 2.286 · 10−3 3.536 · 10−1 6.779 · 10−2

36 1.111 · 10−1 1.947 · 10−3 3.333 · 10−1 6.440 · 10−2

40 1.000 · 10−1 1.582 · 10−3 3.162 · 10−1 6.201 · 10−2

44 0.909 · 10−1 1.460 · 10−3 3.015 · 10−1 6.028 · 10−2

48 0.833 · 10−1 1.328 · 10−3 2.887 · 10−1 5.892 · 10−2

Table 6.3: Relative error estimates at distinct values of ε for the nonlinear problem with
V = (0.05, 0, 0)cm/s.

N(ε) ε ERR(C)
√
ε ERR(∇C)

16 2.500 · 10−1 1.192 · 10−2 5.000 · 10−1 1.931 · 10−2

20 2.000 · 10−1 1.092 · 10−2 4.472 · 10−1 1.549 · 10−2

24 1.667 · 10−1 1.010 · 10−2 4.082 · 10−1 1.244 · 10−2

28 1.429 · 10−1 9.976 · 10−2 3.780 · 10−1 1.087 · 10−2

32 1.250 · 10−1 9.354 · 10−3 3.536 · 10−1 9.338 · 10−3

36 1.111 · 10−1 8.997 · 10−3 3.333 · 10−1 8.337 · 10−3

40 1.000 · 10−1 8.817 · 10−3 3.162 · 10−1 7.631 · 10−3

44 0.909 · 10−1 8.680 · 10−3 3.015 · 10−1 7.084 · 10−3

48 0.833 · 10−1 8.595 · 10−3 2.887 · 10−1 6.658 · 10−3

Table 6.4: Relative error estimates at distinct values of ε for the nonlinear problem with
V = (0.05, 0, 0)cm/s.

ERR(∇T ) respectively for the temperature and its gradient are depicted in Figure 6.19
and Figure 6.20 and also on Table 6.3. We see that the convergence rates, calculated within
the chosen flow field, are consistence with the theoretical estimates (4.115).
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Figure 6.19: Relative error on the temperature as a function of ε for V = (0.05, 0, 0)cm/s.
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Figure 6.20: Relative error on the temperature gradient as a function of ε for V =
(0.05, 0, 0)cm/s.
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Figure 6.21: Relative error on the concentration as a function of ε for V = (0.05, 0, 0)cm/s.
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Figure 6.22: Relative error on the concentration gradient as a function of ε for V =
(0.05, 0, 0)cm/s.
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(a) ε = 1/4. (b) ε = 1/5. (c) ε = 1/6. (d) ε = 1/7.

(e) ε = 1/8. (f) ε = 1/9. (g) ε = 1/10. (h) ε = 1/11.

Figure 6.23: Collage of temperature profiles for distinct values of ε, using the one directional
scheme of cell addition. Cells are added at each successive simulation corresponding to a
value of ε. The top and bottom of the domain represent the y1-direction, from which cells
are added while the y2-direction is fixed.



116 Numerical verification of macroscopic equations

(a) ε = 1/4. (b) ε = 1/5. (c) ε = 1/6. (d) ε = 1/7.

(e) ε = 1/8. (f) ε = 1/9. (g) ε = 1/10. (h) ε = 1/11.

Figure 6.24: Collage of concentration profiles for distinct values of ε, using the one direc-
tional scheme of cell addition.
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6.6 Summary

In this chapter, we have presented numerical simulation results to follow the theoretical
estimates established in Section 4.6.1 of Chapter 4. The method used in this chapter is
due to Auriault et al. (2009); Allaire and El Ganaoui (2009); Allaire et al. (2010), where a
microscopic viewpoint is used in order to show numerically the convergence rate of a homo-
genization process. In this thesis, we developed two reconstruction algorithms, which are
based on different treatment of the cell solutions. The first algorithm is based on partition-
ing of a discrete domain Ω̂h into subgrids Ω̂h,i of unit size, such that the field variables and
their gradients can be reconstructed on the reduced grid, making it possible to reconstruct
solutions of the corrector terms T 1 and C1 at the subgrid level. This process generally is not
so efficient, as it places high demands on the memory and CPU time. Based on this prob-
lem, a second algorithm was formulated. The latter improves on the problems encountered
with the first algorithm. For this, we only require to generate a lattice of copies of the cell
solutions to periodically cover the computational domain Ω̂.

In this chapter, we focused on the reconstruction of an approximate homogenized solution in
order to recover the oscillations in the microscopic model, and hence show the convergence
rate of our homogenization process. By doing so, we showed that the pore scale descrip-
tion detailed in Chapter 2 converges strongly to the homogenization results in Chapter 3.
The error estimates were established in the relative L2-norms for the variables and their
gradients. Distinct scenarios were also considered. In the first case, we considered the model
problems-heat and mass transport equations-separately by studying the system without the
nonlinear reaction terms. The results of our numerical computations in this case coincide
with the theoretical estimates established in Chapter 4, and further recovers the micro-

scopic behavior, at the first level of approximation (e.g. T ε(t, x) ≈ T 0(t, x) + εT 1(t, x,
x

ε
)).

We also observed some shortcoming of the homogenization method-the approach seems to
fail for high flow velocities. This is also observed from the results of the coupled nonlinear
system with and without convection, in which we investigate the effect of simultaneous
convection and reaction on the convergence rates (see Section 6.5). It was concluded that
within the limit of a suitable flow regime, the predictions of our numerical results are con-
sistent with the theoretical estimates in Section 4.6.1; much in the spirit of Fatima et al.
(2012).

As a future consideration, we expect that the convergence rates detailed in this chapter
can be extended for the case of anisotropic effective tensors since the difference between
isotropic and anisotropic tensors is reflected on the form of the inclusion considered. While
the analysis of this chapter has been restricted to the case of MCI model, the limit models
(HCI and WCI) to the MCI model can also be treated similarly without much adjust-
ment to the procedure presented here. Our numerical algorithms have only been tested
on two-dimensional problems, and may require further improvements in order to handle
three-dimensional geometries. We also point out that provided the scale parameter in the
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asymptotic expansion is not so small, higher order terms, and hence the reconstruction pro-
cedure remains important. In this case, we expect a higher approximation of the problem.
Otherwise, the inclusion of higher order terms become insignificant.



Chapter 7

Pattern formation in reverse
smoldering combustion of isotropic
porous medium

In this chapter1, the macroscopic equations developed in Chapter 3 are investigated in a
framework of reverse (counterflow) smoldering combustion of thin isotropic porous media.
The isotropic behavior of the media is reflected on the calculated effective diffusion and
thermal conductivity matrices. We recall that we have derived the distinct models based on
thermal conductivity contrast. In a first consideration, the behavior of fingering patterns
are studied here strictly through the effective thermal (diffusion) conductivity tensor for
the distinct models. This implies that the control parameter in the rescaled system, e.g.
the Lewis number, which relates the strength of thermal diffusion to that of molecular
diffusion, is considered a fixed parameter. In this case, the rescaled models result to a char-
acteristic length scale that is defined in terms of the thermal diffusivity. This will allow for
treatment of distinct thermal conductivity models in order to ascertain their disparities,
namely, of time of ignition, pattern behavior, etc. and the significance of heat transfer in
counterflow smoldering. On the other hand, the ignition mechanism will depend on appro-
priately chosen parameter space for the pre-exponential kinetic factor, valid for numerical
study of the distinct models, i.e. we do not require an external heat source for ignition in
this case. Specifically, this approach gives a dependence of the kinetic factor on the domain
size. We will refer to the pattern behavior emanating from this consideration as fingering
patterns of the first kind since they arise merely as an attempt to justify the implication
of the conductivity contrast to pattern behavior based on effective Lewis number . In sub-
sequent sections, we discuss the fingering behavior with respect to the distinct models by
controlling respectively the gas flow rate and the heat flow through the Péclet number and
the Lewis number. In this case, the Lewis number is considered a free parameter, and hence

1Part of the results included in this chapter have been published in Combustion Theory and Modelling,
17(2),2013.
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the mechanism of thermal-diffusion instability of flames2 suffices. However, the instability
is mainly controlled through the Lewis number, while the Péclet number only “conditions”
the patterns for the distinct fingering regimes. We refer to such fingering patterns as finger-
ing patterns of the second kind since they arise due to the mechanism of thermal-diffusion
instability.

The objective of the present chapter is to use the derived macroscopic (homogenized)
models to verify most of the fingering regimes exhibited by the experimental observation
of two-dimensional fingering instability of a filter paper sample detailed in Zik and Moses
(1999). While the presently studied system is distinct from the system studied in the ex-
periments, we aim to show, by using the mechanism of thermal-diffusion instability, a close
resemblance of our pattern-forming dynamics to the diffusional instability exhibited in the
fingering patterns reported in the fundamental work of Zik and Moses (1999), see also (Zik
and Moses, 1998; Zik et al., 1998). The present discussion also follows the experimental
observations of finger-like patterns in microgravity presented by Olson et al. (1998). In this
chapter, we focus on isotropic microstructures, which eventually result to isotropic effective
diffusion coefficients. We point out that this consideration is consistent with the structure
of material (i.e. requirement for a uniform material) used for measurement purposes in
the experiment. In addition, the major mechanism of heat transfer is conduction, and we
focus more on adiabatic combustion.3 Besides investigating various regimes of the fingering
instability, we are interested in understanding the contribution of the conductivity contrast
on heat transfer processes related to the distinct models; and the effect of heat release on
the characteristic finger width of the fingering patterns.

7.1 Macroscopic model

We recall the functional form of the macroscopic equations in the simple case of isotropic
effective parameters:

Ceff ∂T

∂t
− λeff∇2T ± φCgv ·∇T = φsQW (T,C),

φ
∂C

∂t
−Deff∇2C ± φv ·∇C = −φsW (T,C),

∂R
∂t

= W (T,C).

(7.1)

2Thermal-diffusion instability refers to a combustion instability that is based on two competing trans-
port processes-the transport of reactants and the transport of heat. The transport of reactants has a
destabilizing effect, while the transport of heat has a stabilizing effect on the combustion wave (see Sivash-
insky, 1983; Pelce and Clavin, 1982, e.g.).

3A combustion process in which there is no consideration to heat exchange to the environment.



7.2. Fingering patterns of the first kind 121

System (7.1) is analyzed in its dimensionless form by introducing some characteristic units
based on the effective equations and the typical values given in Table A.1.

C̃ =
C

C0

, R̃ =
R
R0

, T̃ =
T

Tb

, τ = t
U2

α
, x̃ =

x

lth
,

N =
Ta

Tb

, Ã =
φsAα

U2NeN
, W̃ =

Wα

U2
, lth =

α

U
,

(7.2)

where C0 and R0 are respectively the initial/unburnt concentrations of the deficient oxidizer
and the fuel sample. α is the effective thermal diffusivity defined as α := λeff/Ceff and
Tb := QC0/C

eff is the temperature of combustion product, U is a virtual velocity of a
uniformly propagating plane reaction front. N is a dimensionless activation temperature,
W̃ is a dimensionless reaction rate and the parameter Ã is introduced to normalize the
virtual velocity of normal propagation to one (Matkowsky and Sivashinsky (1978)). In
terms of the quantities introduced, the dimensionless system is given by

∂T̃

∂τ
−∇2T̃ ± φΛPe · ∇T̃ = W (T̃ , C̃),

φ
∂C̃

∂τ
− 1

Le
∇2C̃ ± φPe · ∇C̃ = −W (T̃ , C̃),

∂R̃
∂τ

= HRW (T̃ , C̃),

(7.3)

where
W = ÃNC̃ exp{N(1− 1/T̃ )}.

In (7.3), Pe = (vlth/α, 0) and Le = α/Deff are respectively the effective Péclet number and
Lewis number. HR = C0/φ

sR0 and Λ = Cg/C
eff represent dimensionless coefficients. Sys-

tem (7.3) is solved numerically using the Streamline Upstream Petrov–Garlekin (SUPG)
scheme. The time integration was performed using an implicit BDF solver. The set of equa-
tions (7.1) and (7.3) are functionally identical to Eqs. (25), (26) of Kagan and Sivashinsky
(2008) provided that the derived effective properties in (7.1) can be associated with those
in Eqs. (25), (26) of Kagan and Sivashinsky (2008). The system (7.3) was solved using the
typical values in Table A.1. A feature of the presented numerical results lies on the chosen
characteristic length and range of chosen Péclet numbers.

Remark 7.1.1. In systems (7.1) and (7.3), we have generalized the sign of the convective
term simply to emphasize the fact that the gaseous oxidizer can be passed either from the
downstream or the upstream end. For the problem of reverse smoldering, the ignition is
always located opposite to the direction of the infiltrating gaseous oxidizer.

7.2 Fingering patterns of the first kind

We recall that the homogenization process allows us to investigate the macroscopic behavior
of the effective homogenized equations as the limit of the pore scale description. This



122 Pattern formation in reverse smoldering combustion of isotropic porous medium

description, however, poses a formidable challenge for combustion applications due to the
distributed nature of the reaction rate, the presence of highly oscillating coefficients, and
the dependence of the system on ε� 1 (cf. Section 1.3 of Chapter 1 and also Figure 1.4).
In this section, the macroscopic equations with effective diffusion tensors are investigated
in a counterflow smoldering combustion scenario, in which the control (free) parameter is
the Péclet number. We distinguish different problems by relating the characteristic length
scale of the domain with the thermal diffusion. This invariably places a restriction on the
choice of kinetic factor, A, for the distinct models. The models4 are functionally similar,
except that their diffusion tensors are different. Unlike the MCI and HCI models, the WCI
heat model has a distributed temperature5. However, we focus on the limiting case of
this problem corresponding the choice of the ratio of thermal conductivity O(ε). In our
numerical simulation, the value of the dimensionless pre-exponential factor A, was chosen
within the range [1× 102− 104], and all other parameters correspond to the typical values
given in Table A.1. We point out that in all cases considered, the combustion process
is incomplete. Figure 7.1 depicts the two-dimensional structure of the smolder front; the
location in space, and at each given time, for the flame can be identified at the reaction
region that is delineated within a limited vicinity of tips of the fingers. This region is
traced by darker shades in Figure 7.1 (d), where oxygen is fully consumed as the front
advances. Behind (or along) the fragmented advancing flame front, there is no reaction,
but only a trace of the heterogeneous charred region (see Figure 7.1 (b)). The uncharred
area (i.e. the unburnt reactant region between the charred (dark shaded) region) of the
pattern represents the quenched parts of the fragmented reaction zone and smoldering is
only intensified at the tips of the fingers where the oxidant is fully consumed.

7.2.1 Effect of the Péclet number

In this subsection, we focus on a fingering regime that is conditioned by the effective Lewis
number represented by

Le =
λeff

(Cgφ+ Cs(1− φ))Deff
, (7.4)

where λeff and Deff correspond respectively to the values of the effective thermal conductiv-
ity and diffusivity tensors derived from the homogenization procedure. In (7.4), we see that
the Lewis number depends on the porosity of the medium through the heat capacity. The
emerging fingering instability is controlled through the Péclet number, Pe. At a relatively
low blowing rate, the char pattern emerged as sparse fingers that are strictly distinct from
each other (Figure 7.2). The patterns show a low contrast in the spatially heterogeneous
conversion depth. The conversion depth describes the intensity of the solid fuel conversion
to char. Darker shades in Figure 7.2(a)-(b) represent regions of the pattern with high con-
version intensity or more clearly, this region is shown in lighter shades in Figure 7.2(c)-(d).

4We often refer to the MCI, HCI and WCI models simply as the models.
5The temperature is not in equilibrium. It is distributed between the gas phase and solid phase. In

other contexts, we say that the system exhibits memory effects.
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Figure 7.1: Spatial profiles of the flame structure: (a) temperature (b) char (c) concentration
(d) heat release rate. Solution of the HCI model for Pe = 10, Le = 0.09. Ignition at bottom,
char propagation from bottom to top, gas inlet from top. The spatial axis are in units of
the thermal length of the flame, lth.

At the vicinity of the tips which are indicated in lighter shades, the hotspots emerge prior to
extinction. These are points of higher temperature values in the numerical simulations. The
maximum temperature at an active finger may also alternate from one finger to another
due to the localized reaction at the reaction zone. In this adiabatic consideration, it can
be seen that the visibility of the patterns is impaired by the inability of the fingers to lose
heat, thus the persistence of fingers with weak hotspot. The latter may also contribute to
the eventual widening around the tip of fingers closest to the oxygen source. Consequently,
the fingers shield adjacent fingers, i.e. fingers with weak hot spots, from the oxygen supply.
A further increase in the Péclet number, i.e. Pe = 17 increases the contrast in conversion
depth and the fingers tip-split (Figure 7.3).
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Figure 7.2: Spatial profiles of char pattern for (a) the MCI model at Pe = 0.01, Leeff =
0.01422, A = 0.27 × 104, (b) the HCI model at Pe = 0.01, Leeff = 0.026563, A = 1 × 104.
The fingering patterns are sparse with no tip-splitting. (c)-(d) contour plots showing hot
spots at the vicinity of the tips and regions of higher conversion depths (lighter shade).

7.2.2 Fingering behavior in weakly conductive materials

We investigate the behavior of the fingering patterns for the WCI model as the limit of
weakly conductive materials, i.e. we neglect the memory term arising from the solid phase
heat conduction because the conductive mechanism is dominated by the gas phase. We
attempt therefore to explain the contribution of the conductive heat transfer to the behavior
of fingering patterns arising from the WCI model since besides radiative heat mechanism,
conduction is a major heat transfer mechanism for reverse smolder propagation. First, we
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Figure 7.3: Spatial profiles of char pattern for (a) the MCI model at Pe = 17, Leeff =
0.01422, A = 0.27 × 104, (b) the HCI model at Pe = 17, Leeff = 0.026563, A = 1 × 104.
Fingering patterns with tip-splitting and low conversion depth.

recall the temperature model for the WCI in its convolution form viz.

Ceff ∂T

∂t
+ φCgv·∇xT + ∂t(ζ(t) ∗ ∂tT ) = λeff∇2T + φsQ(T,C), x ∈ Ω, t > 0, (7.5)

where

ζ(t) =
8R3

π

∞∑
n=1

1

n2
e−αs(nπ/R)2t. (7.6)

αs is the solid phase thermal diffusion coefficient and R is the radius for the case of spherical
inclusions. Assuming now the limiting case, i.e. αs → 0, then (7.5) takes the form (7.1), as
well as (7.3) in dimensionless form. At this point, the WCI model is functionally identical
to the MCI and HCI models, except for the contrast in their thermal conductivities. This
corresponds to the case in which the contrast of conductivity is of the order of magnitude
K = O(ε).

7.2.3 Disparity in the models

Up to this point, the behavior of fingering patterns has been described for three distinct
macroscopic combustion models, under a framework of fingering patterns of the first kind.
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Figure 7.4: Spatial profiles of char pattern for (a) the MCI model at Pe = 40, Leeff =
0.01422, A = 0.27×104, decrease in the spatial extent of the front, (b) HCI model at Pe =
40, Leeff = 0.026563. Patterns with characteristic features of tip-splitting and branching.
(c) fingering state at A = 0.23×104 for the MCI model, (d) fingering state at A = 0.85×104

for the HCI model. In all cases computational time decreases with an increase in A.

A distinctive line of argument has been to relate the thermal conductivity contrast with the
fingering instability, in order to ascertain the importance of the conductive mechanism in
reverse smolder, and to what extent heat conduction influences structure formation in com-
bustion. The effective conductivity enters the nondimensionalized forms of the macroscopic
equations through the Lewis number. Thus, the purpose of this subsection is an attempt
to clarify the consequence of the contrast in the models to the behavior of the developed
fingering state. Figures 7.4(a)-(b) indicate fingering patterns at Pe = 40, respectively for
the MCI model and the HCI model. In Figure 7.4(b), the pattern is fully developed with
the characteristic features of tip-splitting, increase in conversion depth and branching of
fingers. Branching of fingers describes the splitting of a sole finger into multiple fingers.
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Figure 7.5: Spatial profiles of char pattern for the WCI model at (a) Pe = 0.01; (b)
Pe = 1; (c) Pe = 5 (d) Pe = 10. From (a)-(d), Leeff = 0.002755 and A = 102. The thermal
diffusivity in this case is low, hence the domain size is larger (in units of lth) compared to
the MCI and HCI models. The low thermal diffusivity in WCI model leads to substantially
higher temperatures in the reacting regions, resulting into high fuel conversion inside the
fingers (darker shades within the fingers). The patterns also show suppressed ability to
tip-splitting at all Pe values due to the production of smaller number of hot spots.

However, these features are not substantial for the MCI model (see Figure 7.4(a)). Likewise
in Figure 7.5, the patterns show suppressed ability to tip-splitting due to smaller number of
hotspots. A reason for the qualitative difference in the three models can be seen from their
sensitivity to the choice of the dimensionless frequency factor A which depends invariably
on the characteristic length of the computational domains. For instance, ignition does not
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occur for some choice of A in the models. In the WCI model, the value of the frequency
factor is small compared to the minimum value sufficient for the onset of ignition for the
MCI and HCI models. This implies that the time of ignition is higher in the WCI model
compared to the ignition times for the MCI and HCI models. It is lowest in the latter.
In the numerical simulations, the higher value of the frequency factor in the HCI model,
relative to the other models, affects the solution viz.

(i) decreases the time required for onset of ignition, and hence faster front velocities,

(ii) improves the strength of the convective transport, thus enhancing the visibility of
the patterns,

(iii) increases the heat release rate, and hence the sensitivity of fingers to tip split due to
increased number of hot spots.

From (iii), the higher heat release rate in the HCI model leads to increased number of
localized hotspots due to the ability of the front to release heat. The excess heat at the
reaction zone promotes the combustion process and the ability of single fingers to tip split
and develop into branches. This behavior is not pronounced in the MCI model, which shows
a higher tendency to tip split and an increase in the spatial extent of the reaction zone at a
frequency factor of A = 0.23× 104 (see Figure 7.4(c)). Figure 7.4(d) indicates the pattern
behavior at a frequency factor A = 0.85×104 for the HCI model. (i) is consistent with other
studies in combustion processes (Aly, 1990; Leach et al., 1990). (ii) follows from the fact
that a robust reverse combustion and convective transport may enhance the visibility of
patterns (see Lu and Yortsos, 2005a). The lower thermal conductivity exhibited by the WCI
model leads to much sharper temperature gradients near the tip, hence to the formation
of smaller number of propagating hotspots. The result is reduced ability for ignition and
suppression of tip-splitting. The low thermal conductivity also result to substantially higher
temperatures in the reacting regions, thus causing intense fuel conversion inside the fingers.
This observation is consistent in other studies for materials of low thermal conductivity
(Lu and Yortsos (2005a)). Also, the patterns are sharper towards the tips of the fingers,
but the visibility of the patterns is impaired in the onset region.

7.3 Fingering patterns of the second kind

In this section, the fingering behavior is treated in terms of thermal-diffusion instability.
While we have used in the previous section the effective Lewis number arising from the
effective diffusion tensors to ascertain the behavior of the different models, by varying only
the Péclet number, the Lewis number is used presently as the main controlling parameter in
order to investigate the emergence of distinct fingering states. However, the Péclet number
is also an important parameter in the model as it conditions the fingering patterns in the
distinct fingering regimes. Thus, the three most important fingering regimes-connected,
sparse and tip-splitting regimes-are currently investigated.
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7.3.1 Effect of the Lewis number

The macroscopic models describe, in an effective sense, a one temperature gas-solid system
for the coupled two temperature microscopic model. Unlike the results presented in the
previous subsection, the behavior of system (7.3) is analyzed by considering the Lewis
number as a free parameter. This allows us to examine the fingering behavior based on
the mechanism of thermal-diffusion instability. According to Olson et al. (1998), the Lewis
number is not the controlling transport mechanism for the fingering behavior. However,
in the models discussed presently, we point out that it introduces some characteristic
features to the fingering behavior. It relates heat transport to mass transport. Thus, it can
characterize different flow regimes in a system with simultaneous convective mass and heat
transport. The focus of this subsection is to show the close resemblance of the mechanism
of the diffusive instability (Zik and Moses (1999); Olson et al. (1998)) to the well-studied
thermal-diffusive instability occurring in low Lewis number premixed gas flames. At a
very low blowing rate, the effective oxygen mass transport is dominant, and hence the
Lewis number is close to a value that is much smaller than unity (Le� 1). Figure 7.6(a)
illustrates the result of fingering pattern for the HCI model at Pe = 0.01. In this regime,
convective heat transport is suppressed by an order of 10−6. Specifically, φΛPe ∼ 10−6.
The fingering pattern shows a steady state of elongated fingers with no tip-splitting, but
sparse fingering in the sense of d/w � 1 (Zik and Moses (1999)) did not emerge. Here,
d represents the distance between fingers and w, the finger width. The emergence of such
steady state regime of sparse fingers with d/w � 1 is presented in (Ikeda and Mimura
(2008); Lu and Yortsos (2005a)), but in a nonadiabatic situation where the effect of heat
losses conditions the state of the emerging fingers. In Figure 7.7(a)-(c) and Figure 7.8(a)-
(c), the flow rate is moderate and the development of fingering patterns with characteristic
features of tip-splitting is substantial. The spacing between the fingers can be controlled by
varying the Lewis number, i.e. an increase in the strength of the convective flux decreases
the spacing between fingers. On the other hand, the inlet velocity or dimensionless Péclet
number affects the development of the pattern. In Figures 7.7 and 7.8, it is evident that the
Pe changes the relative spatial extents of the pattern. In the high Pe limit, however, the
topology of the fingers is very dense and the process may extinct. It is also clear that some
regions of the pattern also exhibited screening effect (Zik and Moses (1999)). Such screening
of fingers by adjacent fingers that are close to the oxygen source causes the screened fingers
to stop growing and the tips of the screening fingers to split. The behavior of the patterns
at large flow rates is shown in Figure 7.6(b) for the HCI model. This regime corresponds to
a Lewis number close to unity (i.e. Le = 1). The result in Figure 7.6(b) indicates a stable
planar front that advances without fragmentation of the reaction zone. The finger patterns
combine together into an unbroken reaction front and no visible pattern is observed. This
regime of connected front is also valid for Lewis number ranges which are much greater
than unity. For example, in the analysis of Britten and Kranz (1985), the results predict
stable patterns in an infinite effective Lewis number.
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Figure 7.6: Spatial profiles of char patterns for the HCI model, showing (a) regime of
constant fingers with no tip-splitting at Pe = 0.01 and Le = 0.01 (b) limit of large flows
at Pe = 10 and Le = 1.

7.3.2 Fingering behavior in larger domains

We investigate the behavior of fingering patterns in a large domain by using the relation-
ship between the thermal diffusivity and the characteristic length scale. The consideration
presented in this section corresponds to the domain of the WCI model, in a thermal-
diffusion instability framework, which is similar to the discussions of the previous subsec-
tion. We basically aim to verify the reproducibility of the patterns in larger domain sizes,
in spite of decreasing strength of the pre-exponential factor, and hence the heat release
rate. Under this consideration, we will see that while it is difficult to ignite the material at
the vicinity of the outlet and longer time of ignition, the mechanism of thermal-diffusion
instability remains adequate for reproducing the distinct fingering regimes of the previous
subsection. In this case, the range of Pe values for the fingering behavior to manifest is
much shorter than those of the MCI and HCI models. The visibility of the structure form-
ation is, however, impaired in the regime of sparse fingers, otherwise the pattern behavior
is considerably akin to those in smaller domains. The size of the domain depicted in Figure
7.9 is about 10 times larger than the size of the domain of the HCI model. The value of
the pre-exponential factor is of magnitude 102 less than the value for the HCI model and
about 101 less than that of the MCI model.
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Figure 7.7: Collage of fingering patterns for the MCI model in the tip-splitting regime
showing the variation of the distance between fingers at (a) Le = 0.1, (b) Le = 0.25, (c)
Le = 0.7. In all cases, Pe = 10.

Figure 7.8: Collage of fingering patterns for the HCI model in the tip-splitting regime
showing the variation of the distance between fingers at (a) Le = 0.1, (b) Le = 0.25, (c)
Le = 0.7. In all cases, Pe = 10.
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Figure 7.9: Spatial profiles of char patterns for the WCI model, showing (a) regime of
constant fingers with no tip-splitting at Pe = 0.01, and Le = 0.01 (b) limit of large flows
at Pe = 3 and Le = 1.

Figure 7.10: Collage of fingering patterns for the WCI model in the tip-splitting regime
showing the variation of the distance between fingers at (a) Le = 0.1, (b) Le = 0.25, (c)
Le = 0.7. In all cases, Pe = 3 and A = 102.



7.4. Ignition through an external heat source and effect of heat release rate 133

7.4 Ignition through an external heat source and ef-

fect of heat release rate

The ignition mechanism employed in the previous sections does not allow much freedom
of choice for the kinetic factor since a constrained parameter range is required in order to
initiate ignition. However, the advantage of initiating the combustion process through ex-
ternal heat sources is that we have more freedom of controlling the behavior of the fingering
patterns through the kinetic coefficient. Also, ignition can be initiated at any location (or
can be nonuniform) within the computational domain. Thus, the target of this section is to

h=0.2 cm

cooling air

parallel plates

h=1 cm

cooling air

vertical convection
is trapped

vertical convection
intensifies and front
losses heat

cross-section of
a finger

vicinity of the tip

Figure 7.11: Schematic of the heat release mechanism in the experiment.

use external heat source to achieve ignition, and further attempt to investigate the effect
of heat release rate on the characteristic finger width. According to Zik and Moses (1999),
the finger width depends on the ability of the fingers to release heat. In order to verify
the latter, Zik and Moses showed that the finger width can be related to the heat losses
in the system by gradually introducing vertical convection through the spacing between
plates of the Hele-Shaw geometry (see Figure 7.11); As the spacing increases the intensity
of vertical convection increases, and heat in the vicinity of the tips are constantly cooled
by the infiltrating gaseous oxidizer. This lowers the heat release rate, and hence the cre-
ation of smaller number of hotspots. The result is suppression of tip-splitting of the fingers.
Further suppression of tip-splitting gives rise to the thickening of fingers. In the absence
of a heat loss mechanism in the considered one-temperature adiabatic model, the strategy
employed is to understand how forced suppression of the heat release rate contributes to
the suppression of tip-splitting, and eventual thickening of fingers.

The external ignition source has the form of a piecewise function defined by

Tign(t) =

{
T1, if 0 < t < ti

T0, otherwise
, (7.7)
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where T0 and T1 are constants. (7.7) is prescribed at the outlet end for the heat equation
and a Dirichlet boundary T = T0 is used at the inlet. For the concentration equation,
convective boundary conditions are used at both ends, i.e.

∂C

∂x
= 0, x = 0, Lx; t > 0. (7.8)

Similar to the numerical results presented earlier, we use thermal-diffusive insulation condi-
tions at the lateral boundaries. All numerical results are well within the tip-splitting regime
conditioned at a Lewis and Péclet numbers of Le = 0.1 and Pe = 10. Figure 7.12 depicts
numerical simulation results describing the effect of varying the pre-exponential factor A
on the fingering patterns. As the value of A decreases, the heat release rate decreases, and
results to the creation of smaller number of hotspots. The result is a reduction in the ability
of the fingers to tip-split. Decreasing the value of A further gives rise to the widening of
the fingers. This implies that the amount of heat released by the front influences the width
of the fingering pattern.
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Figure 7.12: Spatial profiles of char patterns showing the evolution of finger width with heat
release rate. (a) A = 1.7× 104; (b) 1.5× 104; (c) 1.0× 104; (d) 0.85× 104; (e) 0.65× 104;(f)
0.45× 104. The numerical simulations are well within the tip-splitting regime at Le = 0.1
and Pe = 10.
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7.5 Summary

In this chapter, we analyzed the behavior of fingering instability in three distinct isotropic
porous materials that differ in terms of thermal conductivity contrast. We examined the
pattern behavior using two different approaches. The first approach is based on the ef-
fective diffusion constants derived from homogenization, in which the distinct models are
analyzed in order to understand the contribution of the thermal conductivity contrast. This
can be viewed under three different factors: the time for onset of ignition, the ability of
fingers to tip-split and intensity of fuel conversion within the fingers. The time of ignition
is shortest for the HCI model, and longest for the WCI model. However, the WCI model
showed high fuel conversion within the fingers, with less ability of the fingers to tip-split.
The HCI model showed a higher tendency to tip-splitting due to the high heat release rate.
The influence of conductivity for the considered factors is always at the moderate regime
for the MCI model. The macroscopic behavior of the limit models is restricted only to the
regimes of the instability, i.e. the regime of tip-splitting and sparse fingers. The regime of
connected front did not emerge in all range of considered Péclet number; the regime of tip-
splitting fingers is observed at considerably higher flow rates for the HCI and MCI models.
Since the three models exhibit fingering in spite of differences in conductivity, we conclude
that conductivity contrast is not the controlling factor for pattern behavior, i.e. fingering
pattern is not fuel dependent, and can be observed in a vast number of combustible media.
We referred to this approach as the fingering patterns of the first kind since the pattern
behavior is an attempt to confirm the contribution of the homogenization method.

In the second approach, the models are examined for pattern behavior by replacing the
effective diffusion coefficient with a dimensionless Lewis number. This allows for analyz-
ing the fingering patterns in terms of diffusion-thermal instability mechanism (see Kagan
and Sivashinsky, 1996; Sivashinsky, 1983). In this case, the models are selected through
the dependence of domain size on the thermal diffusivity of the respective models. Within
the limit of theoretical assumptions in the problem formulation, we demonstrated that,
in a set of macroscopic numerical simulations, the proposed models of reverse combustion
capture the basic physics underlying the experimental observations of (Zik and Moses,
1999, 1998; Zik et al., 1998) and Olson et al. (1998). While the approach explored in this
study is quite different from those reported in other literatures (see Lu and Yortsos, 2005a;
Ikeda and Mimura, 2008; Fasano et al., 2009, e.g.), the results of the numerical simulations
showed a close resemblance of the pattern-forming dynamics presented in this study with
the mechanism of diffusion driven instability (Zik and Moses, 1999; Olson et al., 1998).
The developed patterns in this case are treated under fingering patterns of the second kind
since the pattern behavior emerge via the mechanism of thermal-diffusion instability.

However, the disparity arising from the models indicates the need for a detailed under-
standing of the effects of kinetic and fuel property interactions to the emerging fingering
instability. While the effect of heat losses has not been considered in the present study,
the results of the numerical simulations presented in this study suggest that heat trans-
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port mechanisms play an important role to the structure of the patterns. We showed that
variations in the heat release rate have influence on the morphology of the patterns. Thus,
a better understanding of the interplay between various heat transport mechanism is still
required. We also examined the influence of heat release on the finger width. The result of
numerical simulation showed that the widening of the finger width can be interpreted in
terms of inability of the fingers to tip-split.

Finally, we see that developed models can be adapted for qualitative treatment of the
development of patterns in reverse combustion in porous media. Nevertheless, the results
of the homogenization method present an effective way of integrating material microstruc-
tural properties into a macroscopic system describing real life processes. Thus, it can serve
as a paradigm for further investigation of combustion processes in a rigorous mathematical
treatment.





Chapter 8

Effect of anisotropy on fingering
instability in reverse smoldering
combustion

Following the discussions in Chapter 7, we focus now on the characteristic behavior of the
fingering instability resulting from the influence of the material microstructure. While the
emergence of fingering patterns is not dependent on the arrangement of microstructures of
porous materials and on the type of material used, the microstructure can potentially in-
duce some forms of nonuniformity on the patterns. This investigation is basically introduced
presently as a completion, to further elucidate how nonuniformities can be introduced in the
studied homogenized models through the effective thermal conductivity and mass diffusion
tensors. The tensors are calculated on idealized anisotropic unit cells. There are a couple
of literature sources dealing with anisotropy effects, induced through effective transport
properties (Cheng et al., 2012; Shkadinskii and Firsov, 1996). The forms of these tensors
serve as a measure of the direction of mass and heat transport. According to Zik and Moses
(1999), experimental evidence indicates that for a highly anisotropic thin porous material,
the uniformity and reproducibility of the fingering behavior is reduced, otherwise material
anisotropy does not have any significant effect on the patterns. We point out that the
derivation of the macroscopic models of anisotropic media studied presently are identical
to the macroscopic models of Chapter 3, since anisotropy is only induced into the system
via the geometry of the medium. However, the effective tensors for anisotropic media are
different; they are scalars in the case of isotropic media, whereas they are second order
tensors with full entries in most cases, for anisotropic media. Different forms of anisotropic
effective tensors can be realized based on the form of the local geometry; diagonally aniso-
tropic, symmetrically anisotropic, and full anisotropic tensors can be realized through the
homogenization procedure, and they usually possess distinctive characteristic properties
which influence the pattern behavior distinctly. We examine the behavior of the different
forms in the sequel.
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8.1 Examples of anisotropic geometries and their ef-

fective tensors

Since the effect of anisotropy is introduced into the system of homogenized equations
through the effective diffusion coefficients, we present examples of anisotropic geometries
and their corresponding effective tensors. It should be pointed out that the forms of the cell
problems for the computation of the effective tensors are similar to the isotropic case. In
real life processes, various kinds of materials exhibit different forms of anisotropic behavior
in their microstructures. However, for brevity of presentation, we describe the behavior of
tensors arising from some chosen anisotropic geometries, such as depicted in Figure 8.1.
The geometries will serve as a framework for discussing different forms of material aniso-
tropy and their influence on pattern behavior. In Figure 8.1a, the geometry of the inclusion

(a) stacked slabs (b) centered slab (c) centered ellipse

Figure 8.1: Examples of anisotropic geometries with intrinsic inclusions.

consists of a cross-section of slabs, which lie adjacent to each other. The central inclusion is
connected to smaller sized rectangles, with two others stacked to the lateral walls. This con-
figuration allows connectivity of the microstructure, which are identified in Chapters 3 and
6 as periodic translations of a single period (see Figure 8.2a). We show later in Subsection

(a) (b) (c)

Figure 8.2: Examples of configurations of periodic anisotropic media for flows in thin porous
materials.

8.1.1 that longitudinal diffusion clearly dominates the transverse diffusion in the geometry
depicted in Figure 8.1a. In Figure 8.1b, however, the inclusions are disconnected and their
periodic translation is illustrated in Figure 8.2b. In this case, the effect of anisotropy also
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dominates in the longitudinal direction, with an enhancement of the effective mass diffus-
ivity. This is simply due to the high porosity of the unit cell. In the two geometries (Figures
8.2a and 8.2b), the principal transport direction is dominated in the longitudinal direction;
the latter direction promotes longitudinal smolder propagation. Lastly, the geometry de-
picted in Figure 8.2c contains an elliptical inclusion, which is oriented at an angle of 45◦.
The orientation ensures that the effective diffusion tensors are symmetrically anisotropic.
The principal direction of flow in this case is in the main diagonal entry.

8.1.1 Calculation of effective tensors and parameters

For the homogenization problem, the effective quantities entering the system of equations
include the effective thermal conductivity tensor, λeff , effective mass diffusion tensor, Deff ,
and respectively the volume and surface porosities φ and φs. These quantities are required
in order to solve the homogenized system of equations. The physical parameters necessary
for the computation of these effective quantities are given in Table A.1. The effective
thermal and diffusion tensors for the stacked slabs are given by:

λeff =

5.081 · 10−4 0.00

0.00 4.634 · 10−4

 , Deff =

0.0550 0.00

0.00 0.0

 . (8.1)

From (8.1), λeff is calculated to 11 digits of precision, while Deff has 12 digits of precision.
The tensor λeff , is diagonally anisotropic, with a principal longitudinal direction. However,
the mass diffusion tensor Deff is a scalar pointing in the longitudinal direction. This re-
duces the mass diffusion equation to one dimension, and hence one may simply consider
the problem in one-dimension. Clearly, for one-dimensional problems, no visible fingering
patterns can be observed. This implies that reproducing fingering patterns on the geometry
consisting of stacked slabs may not be possible. The volume and surface porosities are given
respectively by φ = 0.32 and φs = 4.8.

The effective thermal and mass diffusion tensors for the centered slab are given by:

λeff =

3.535 · 10−4 0.00

0.00 3.117 · 10−4

 , Deff =

0.1532 0.00

0.00 0.0745

 . (8.2)

Likewise, we have diagonal anisotropy for both λeff and Deff . In this case, the precision of
λeff tensor is 12 while that of Deff is 6. λeff and Deff are also dominant in the longitudinal dir-
ection.The volume and surface porosities are given respectively by φ = 0.8817 and φs = 2.0.

Lastly, for the geometry depicted in Figure 8.2c, the effective thermal and mass diffu-
sion tensors are symmetrically anisotropic because of the orientation of the inclusion. The
dependence of the inclusion on angular orientation may serve as a generalization for treat-
ing fully anisotropic effective tensors, as described in Section 5.4 of Chapter 5. The entries
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of the symmetrically anisotropic tensors are given by:

λeff =

 4.03695 · 10−4 1.8507846 · 10−5

1.8507846 · 10−5 4.03695 · 10−4

 , Deff =

0.07618 0.01948

0.01948 0.07618

 . (8.3)

For this geometry, the volume and surface fractions are respectively given by φ = 0.482912
and φs = 2.727364.

8.2 Macroscopic model for general anisotropic tensors

In this section, we begin by describing the general form of the anisotropic system of equa-
tions, which is of interest for the phenomenon of interest. (8.4) can serve as a generalization
of the isotropic case treated in Chapter 7. We recall that the objective of this chapter is to
analyze nonuniformity on the structure of the fingering patterns, based on anisotropy in-
duced through the effective transport coefficients. For highly anisotropic porous materials,
we are required to use the general form of anisotropic equation (8.4).

Ceff ∂T

∂t
± φCgv

∂T

∂x
= λeff

x

∂2T

∂x2
+ λeff

yx

∂2T
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+ λeff
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∂2T

∂x∂y
+ λeff

y

∂2T
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+ φsQW (T,C),

φ
∂C
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x

∂2C
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yx

∂2C

∂y∂x
+Deff

xy

∂2C

∂x∂y
+Deff

y

∂2C

∂y2
− φsW (T,C),

∂R
∂t

= W (T,C).

(8.4)

In (8.4), the anisotropic effect is such that the direction of mass and heat fluxes are not
simply the direction of the gradients. Depending on the entries of the diffusion tensors,
mass and heat transport are more pronounced towards a direction relative to other direc-
tions. Thus, for the problem of thermal-diffusion instability studied presently, the collective
contribution of the mass and heat transport mechanisms will be considered. First, we con-
sider a simpler problem, in which the model conforms to effective diffusion tensors resulting
from the geometries 8.1 and 8.2 discussed in the previous section.

8.2.1 Macroscopic model for diagonally anisotropic tensors

The macroscopic equations for diagonally anisotropic diffusion tensors can be realized from
the general anisotropic equation (8.4) by setting the off-diagonal entries of the anisotropic
tensors to zero, i.e.

λeff
yx = λeff

xy = 0, Deff
yx = Deff

xy = 0,
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such that the system of equation (8.4) reduces to the following:
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∂R
∂t
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(8.5)

Similar to the case of macroscopic (isotropic) equations1, system (8.5) can be reduced to
dimensionless form by introducing some characteristic units on the effective equations.
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(8.6)

where the following simplifications have been introduced in (8.6):

γ =
λeff

y

λeff
x

, αx =
λeff

x

Ceff
,L−1

L =
Deff

x

αx

,L−1
T =

Deff
y

αx

. (8.7)

In (8.10), αx is the longitudinal thermal diffusivity, and LL and LT are respectively the
longitudinal and transverse Lewis numbers.

Remark 8.2.1. The consequence of the anisotropy in the system is the introduction of an
anisotropy factor, γ, in (8.6). This dimensionless scale parameter allows for discussion of
different test cases. It generalizes the anisotropy in the system for the diagonally anisotropic
media, i.e. we assume γ to be an anisotropy indicator such that we set

L−1
T := γL−1

L . (8.8)

The consideration here makes sense since the primary control parameter for the pattern
behavior is the Lewis number, and thermal anisotropy dominates in the system; hence, we
do not treat L−1

T separately.

8.2.2 Macroscopic model for symmetrically anisotropic tensors

The macroscopic equations for the case of symmetrically anisotropic diffusion tensors can
be realized from the general anisotropic equation (8.4) by setting the off-diagonal entries
of the anisotropic tensors to:

λeff
yx = λeff

xy, Deff
yx = Deff

xy ,

1The macroscopic equations can be regarded simply as anisotropic or isotropic equation in order to
differentiate different problems based on their effective diffusion tensors.
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such that the system of equation (8.4) can be rewritten in dimensionless form as:
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where the following simplifications have been introduced in (8.6):
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The general form of the anisotropic tensors for the dimensionless system (8.9) is given by
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where γ and µ are anisotropy indicators in the system and Ld is simply the Lewis number.
However, assuming in addition that the diagonal entries of the anisotropic tensors are the
same, i.e.

λeff
x = λeff
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y ,

then, the nondimensional coefficient tensors reduces to
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Remark 8.2.2. The form of the anisotropic tensors introduced by (8.11) and (8.12) can
further be simplified, i.e. we can chose µL−1

0 simply as µ. We also adapt the general form
(8.11) in our numerical examples.

8.3 Fingering patterns of the first kind

In this section, we investigate the behavior of the macroscopic system with effective tensors,
in a manner similar to the presentation of Section 7.2 of Chapter 7. However, we are
interested in understanding the influence of the effective tensors on structure formation.
The effective diffusion tensors are anisotropic, and conform to the tensors given in (8.11)
and (8.12). The behavior of the system will be also be analyzed by using different forms
of ignition mechanisms. In the first case, we investigate the anisotropic system by using
a form of autoignition2, analogous to the numerical results presented in most sections of
Chapter 7.

2autoignition here describes an ignition without a direct imposition of an external heat source.
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8.3.1 Fingering behavior based on anisotropic effective tensors

For the problems considered in this section, the Lewis number depends on the effective
diffusion tensors. Thus, we simply analyze the anisotropic system of equations by varying
the Péclet number. First, let us consider the behavior of the anisotropic system with diag-
onally anisotropic tensors.

We consider a problem posed in the geometry depicted in Figure 8.1a. For this geometry,
the diffusion process is dominated in the longitudinal direction (i.e. for Deff

y → 0, and

thus L−1
T → 0). The result is that no visible pattern is observed (see Figure 8.3a). This

implies that diffusive transverse perturbation is essential for pattern behavior. Based on
this intuitive understanding of the pattern behavior, it makes sense to examine the situ-
ation corresponding to the far right limit, i.e. L−1

T →∞. In this case, the fingering pattern
manifests as sparse fingers which satisfy w/d � 1. Here, w is the width of the fingers
and d, the distance between fingers. The result is depicted in Figure 8.3b. For the second

Figure 8.3: Spatial profile of char pattern for a typical anisotropic material depicted in Fig-
ure 8.2a. (a) shows the situation when the diffusion process is dominated in the longitudinal
direction and L−1

T → 0. (b) shows the behavior of the fingering pattern at large transverse
perturbation, i.e. L−1

T → ∞. The parameters of this numerical result corresponds to the
effective thermal and diffusion tensors and at Pe = 10.

problem (see Figure 8.1b) of diagonally anisotropic tensors, the pattern behavior is highly
influenced by the dominant mass diffusivity, due to the volume fraction of the gaseous part
(φ = 0.8817) of the medium. The fingering pattern is compact with respect to the spacing
between adjacent fingers and the extent of propagation of the smolder front is limited, i.e.
we have extinction due to the dominant mass flux in the system.

Lastly, we consider the problem posed on the geometry with the elliptical inclusion. Here,
the inclusions are oriented at an angle of 45 degrees from the center of the unit cell (see Fig-
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ure 8.1c). The physical quantities defined in the unit cell are homogeneous with respect
to the phases. However, the effective diffusion tensors are anisotropic because of the ori-
entation of the inclusion. This results to a symmetrically anisotropic system, with tensors
conforming to (8.12). Figure 8.4 shows the influence of the anisotropic medium on the
fingering behavior by relying specifically on the effective diffusion coefficients, but varying
the values of Pe. In Figure 8.4, we show the behavior of the fingering patterns at various
values of Pe.

Furthermore, at all chosen values of Pe, the fingering patterns are nonuniform and tend
to propagate along one side of the lateral boundary; the effect of material anisotropy is
such that propagation of the front is more pronounced along the lateral boundary and
reproducibility of the patterns at low Pe is not viable. To observe the tip-splitting of fin-
gers, the range of Pe values has to be increased. For example, the results illustrated in
Figure 8.4 correspond to a Pe range of Pe = 10 to Pe = 50. These results show increased
fuel conversion within fingers and emergence of tip-splitting fingers. This observation is
consistent with the isotropic results presented in the previous chapter.
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Figure 8.4: Spatial profiles of char patterns for a typical symmetrically anisotropic material
with elliptical inclusions depicted in Figure 8.2c. The material anisotropy is more intense
along a lateral boundary and reproducibility of the patterns at low values of Pe is not
viable; (a) fingering behavior at Pe = 10 with very low fuel conversion with the fingers
except at the right lateral boundary where the fuel conversion is more intense; (b) fingering
behavior at Pe = 20 showing increasing fuel conversion and sharper smolder front; (c) at
Pe = 40, the sharpness of the fingers is enhanced with an onset of tip-splitting; (d) fingering
with characteristic features of tip-splitting at at Pe = 50.
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8.4 Fingering behavior based on anisotropically in-

duced thermal-diffusion instability

In this section, we illustrate the effect of material anisotropy on the fingering patterns by
using the mechanism of thermal-diffusion instability. The numerical results are solved using
an external ignition source as defined by (7.7). The objective of this section is to show how
material anisotropy affects the uniformity as well as reproducibility of the various regimes
of the fingering patterns.

8.4.1 Fingering behavior in diagonally anisotropic medium

The mechanism of thermal-diffusion instability can now be used in order to analyze pattern
behavior in “weakly” anisotropic material by considering a generic diagonally anisotropic
medium satisfying µ = 0 and 0 < γ < 2 in (8.11). The problem in an isotropic medium
can immediately be recovered from this system by setting γ = 1. Figure 8.5 shows spatial
profiles of char pattern for varying intensity of the anisotropy factor γ. The fingering pat-
terns are considered in the tip-splitting regime, which corresponds to Le = 0.1 and Pe = 10.

The numerical results discussed here is typical for a weakly anisotropic medium, in which
the uniformity and reproducibility of the fingering behavior is not significantly affected.
The anisotropy is such that the population (density) of the fingers is changed. For values
of the anisotropy factor γ less than unity, the fingering pattern is dense (see Figure 8.5(a)-
(f)). The increase in the number of fingers is basically due to an increase in the convective
transport in the system. However, for some values of γ greater than unity, the fingers be-
come more distinct from each other (see Figure 8.5(g)-(i)).

This characteristic behavior accounts for the effect of transverse perturbation that mani-
fests at L−1

T > L−1
L , which increases the spacing between adjacent fingers. Figure 8.5(g)

corresponds to the isotropic case at γ = 1, which has been included simply for compar-
ison. It can be seen that pattern behavior for diagonally anisotropic media have qualitative
resemblance to the isotropic media, except for the increase in the population of fingers.
In Figure 8.6, the spatial profiles of char patterns at distinct fingering regimes are illus-
trated. The numerical simulations were calculated for an anisotropy factor of γ = 0.5. In
Figure 8.6, we show the reproducibility of the distinct fingering regimes. The regime of
sparse fingers is depicted in Figure 8.6a. The pattern behavior is qualitatively similar to
the isotropic case since the nonuniformity of the pattern is not obvious. Figure 8.6b shows
the tip-splitting regime, and by increasing the Lewis number from Le = 0.2 to Le = 1, we
arrive at the regime of connected front. (see Figure 8.6(c)(f)). Thus, we conclude that the
distinct fingering regimes can be reproduced for problems posed in a diagonally anisotropic
material. In all cases, the anisotropy indicators are set to γ = 0.5, and µ = 0.
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Figure 8.5: Spatial profiles of char patterns for a generic diagonally anisotropic material.
The material is weakly anisotropic and all regimes of the pattern behavior can be repro-
duced; (a) fingering behavior at γ = 0.35 (b) γ = 0.4 ; (c) γ = 0.5; (d) γ = 0.6; (e)
γ = 0.7;(f) γ = 0.8;(g) γ = 1 (Isotropic case); (h) γ = 1.2; (i) γ = 1.4; the numerical
simulation corresponds to the tip-splitting regime at Le = 0.1.
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Figure 8.6: Spatial profiles of char patterns for a generic diagonally anisotropic material.
The material is weakly anisotropic. In all cases γ = 0.5, µ = 0. From (b)-(f), Pe = 10;
(a) Le = 0.015, P e = 0.1 (sparse fingering regime) (b) Le = 0.1 (tip-splitting regime) ; (c)
Le = 0.2; (d) Le = 0.5; (e) Le = 0.7;(f) Le = 1 (regime of connected front). The distinct
fingering regimes can be reproduced and nonuniformity on the patterns is not pronounced.

8.4.2 Fingering behavior in a symmetrically anisotropic medium

In this subsection, we investigate the pattern behavior arising from an anisotropic medium
with periodically distributed elliptical inclusions. All parameters in the model are taken
from calculations on the unit cell shown in Figure 8.1c. However, the effective Lewis number
for the system is replaced by values of the free parameters defined in (8.12). In Figure 8.7,
the spatial profiles of char patterns are illustrated for the distinct fingering regime for the
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Figure 8.7: Spatial profiles of char patterns for a symmetrically anisotropic material with
inclusion oriented clockwise at angle −45. The material is highly anisotropic. In all cases
γ = 1, µ = 0.2. (a) Le = 0.02 (sparse fingering regime) (b) Le = 0.1 (tip-splitting regime)
; (c) Le = 0.25; (d) Le = 0.5; (e) Le = 0.7;(f) Le = 1 (regime of connected front). The
distinct fingering regimes can be reproduced with a reduction in uniformity.

problem posed in a symmetrically anisotropic material, in which the inclusions are oriented
clockwise at angle of -45. In this case, the material is highly anisotropic, since nonuniform-
ity on the patterns is pronounced. In all the computations, γ = 1, µ = 0.2. Figure 8.7a
corresponds to the regime of sparse fingers at Le = 0.02. It can be seen clearly that the
uniformity of the fingering patterns is reduced since the fingers are directed toward a lateral
boundary. The tip-splitting regime is showed in Figure 8.7b. In this case, the nonuniformity
on the pattern is also obvious. Similarly, for increasing values of the Lewis number, from
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Le = 0.25 to Le = 1, we approach the regime of connected front (Figure 8.7f). While the
fingering behavior manifested nonuniformity at all the fingering regimes, the distinct fin-
gering states are still reproducible. This confirms that material anisotropy is not significant
to the emergence of the distinct fingering states. In Figure 8.8, we illustrate the spatial

Figure 8.8: Spatial profiles of char patterns for a symmetrically anisotropic material
with inclusions oriented counterclockwise at an angle of 45. From (a)- (d) γ = 1, µ =
−0.085,−0.15,−0.2,−0.25; (d) the nonuniformity extends to the right lateral boundary. (e)
γ = 0.5, µ = −0.2 (highly anisotropic case); the fingers are dense; (f) For γ = 1.5, µ = −0.2,
the patterns are more distinct due to increase in transverse perturbation.

profiles of char patterns for a problem posed in a symmetrically anisotropic material with
inclusions oriented counterclockwise at an angle of 45. In this case, the anisotropy indic-
ator µ has negative values, which only affects the direction of the fingering patterns. The



8.5. Summary 153

patterns are directed toward the right lateral boundary compared to the fingering behavior
depicted in Figure 8.7. In Figure 8.8(a)–(d), γ = 1, µ = −0.085,−0.15,−0.2,−0.25. The
nonuniformity on the patterns increases for increasing magnitude of µ. In Figure 8.8(d),
we see an enhancement of the nonuniformity on the patterns, which extends to the right
lateral boundary with front propagation along this boundary. Figure 8.8(e) corresponds
to the case γ = 0.5, µ = −0.2; the system is highly anisotropic, with increased density of
fingers and propagation along lateral boundary. In Figure 8.8(f), the fingering patterns are
distinct due to increase in transverse perturbation at γ = 1.5.

8.5 Summary

In this chapter, we analyzed the behavior of the fingering patterns in terms of material an-
isotropy. The latter has been considered by investigating the behavior of fingering patterns
for different geometry types and arrangements. Specifically, anisotropy was accounted for in
a system of balance laws through the effective transport tensors-the thermal conductivity
and mass diffusion tensors. The properties of these tensors include diagonally anisotropic,
symmetrically anisotropic and fully anisotropic tensors. We considered different scenarios.
First, for the medium consisting of stacked slabs, it was shown that the fingering behavior
did not manifest due to the inability of mass diffusion in the transverse direction. This
situation mimics the behavior of patterns at large flows, and corresponds to a system with
a limiting zero transverse perturbation. However, for large perturbations in the transverse
direction (y-direction), the fingers are more distinct, with a temperature profile that re-
sembles those from a non-adiabatic combustion model. The behavior of fingering patterns
at large transverse perturbation is consistent with the behavior observed in the literature
(see Ikeda and Mimura, 2008; Fasano et al., 2009; Lu and Yortsos, 2005a, e.g.), and in
other context (see Lu and Yortsos, 2005b; Lu and Dong, 2011; Kagan and Sivashinsky,
1996, e.g.) for a non-adiabatic situation. We conclude that transverse perturbations and
hence mass diffusion is an important process for the emergence of fingering patterns in
diffusion-limited system. On the other hand, a diagonally anisotropic system exhibits less
observable effect on the fingering behavior, in terms of nonuniformity on the patterns. The
morphology of the patterns for such systems is almost isotropic, except that the population
of fingers changes with the anisotropy factor.

The explanation for the observed behavior can be viewed from the following direction:
fingering instability in reverse combustion is a form of directional fingering, in the sense
that its direction is mostly pre-dominant in the direction of the flow. An anisotropy effect
in this direction basically promotes the propagation of the fingers along this direction. We
classified materials with such properties as moderately anisotropic materials.

A class of symmetrically anisotropic system was exhibited in a domain consisting of el-
liptical inclusions with a given angular orientation. It should be noted that a pronounced
anisotropic effect in a class of highly anisotropic materials has been described as the effect
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that tends to deviate the fingering instability from its principal direction, and which can
promote propagation along lateral boundaries. A detailed analysis of the geometry with
elliptical inclusions was given in Chapter 5. The next viable step was to investigate the
behavior of the fingers in the framework of fingering patterns of the first and second kinds.
For the patterns of the second kind we conclude that in a highly anisotropic media, the
uniformity and reproducibility of the fingering behavior is reduced, otherwise the distinct
experimentally observed fingering regimes manifested, i.e. material anisotropy has no signi-
ficant effect on the fingering behavior. This observation is consistent with the experimental
work of (Zik and Moses, 1999; Zik et al., 1998; Zik and Moses, 1998).

Furthermore, still open in this research area are a detailed linear stability analysis for
a highly anisotropic media, the influence of spread rate and other filtration properties of
the porous media. One can also consider other scenarios leading to hydrodynamic behavior
of the fingering patterns, which have been reported in other contexts (see Aldushin and
Matkowsky, 1998; Kang et al., 2003; Kadowaki, 2005; Ozerkovskaya et al., 2010; Aldushin
and Braverman, 2009, e.g.). In the present study, the flow field has been considered to be
uniform. It could also be of interest in a future consideration to investigate a system, in
which the flow is nonuniform. We also observed some form of nonuniform structure form-
ation for the case of nonuniform ignition, which still requires additional work on the form
of ignition sources. For more detail on aspects of ignition, we refer to (Shah et al., 2007;
Yarin et al., 2004, e.g.).



Chapter 9

Conclusions

In this chapter, we summarize the most significant results discussed in this thesis. The
present study concerns the modeling of reverse filtration combustion in thin porous ma-
terials, which is intended to support our understanding of the development of fingering
patterns in a constrained experimental observation under microgravity conditions.

The main result of the study is the derivation of macroscopic models of filtration com-
bustion of a thin porous material by homogenization of periodic structures. This was the
scope of Chapter 3. The underlying physical process is governed by two competing trans-
port processes-the transport of heat and the transport of reactants. Thus, at the pore scale
description, we assumed conservation laws for heat and mass transport for the material and
the gaseous oxidizer. Since the phenomenon of interest is dominated by heat conduction,
we analyzed three different porous samples that differ in thermal conductivity. This al-
lowed us to study the influence of conductivity contrast, between the constituent solid and
gaseous phases, to the developed fingering patterns. Thus, three distinct models describe
the macroscopic response to the thermal conductivity contrast. These include the mod-
erately conductive inclusions (MCI) model, the highly conductive inclusions (HCI) model
and the weakly conductive inclusions (WCI) model.

The first two models have the form of a one-temperature filtration combustion model.
The MCI model is obtained when the thermal conductivity ratio of the constituent phases
has an order of magnitude of λs/λg = O(1) with respect to the scale parameter, ε. This
implies a comparable thermal conduction between the two phases, and hence the phases
approach thermal equilibrium as a result. The effective thermal conductivity is determ-
ined by the conductivities of the constituent phases. For the HCI model, the thermal
conductivity ratio satisfies the order of magnitude, λs/λg = O(1/ε), which implies a high
contrast in conductivity; The solid inclusion has high thermal conductivity compared to
the interconnected matrix conductivity. In this case, the thermal flow is dominated by the
interconnected gaseous phase, although the solid phase conductivity is significant. This in-
terplay between the phases also results to thermal equilibrium of the phases. The effective
thermal conductivity is determined by the conductivity of the gaseous matrix and the local
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geometry.

The last model is the WCI model, which is a non-equilibrium model, i.e. a distributed-
temperature filtration combustion model in which two temperature equations arise at the
limit problem; one describing macroscopic flow and the other microscopic flow. This de-
scribes a form of distributed microstructure model like those studied in other contexts (see
Hornung and Showalter, 1990; Lewandowska et al., 2004; Arbogast et al., 1990, e.g.,). The
model is obtained when the thermal conductivity ratio is λs/λg = O(ε2), i.e., the thermal
conductivity of the inclusion is near insulation, and thus is not significant in the thermal
diffusion. The resulting model can be formulated as a single integro-differential equation, in
which the integral term describes the exchange of heat between the matrix and the inclu-
sions. The effective thermal conductivity is determined by the conductivity of the matrix.

The next logical step is the rigorous justification of the formal asymptotic method of
Chapter 3. We do this by using the two-scale convergence method. We not only recovered
the previous forms of the homogenized models, but also we indicated corrector results.

In Chapter 5, we analyzed the influence of the local geometry on the effective thermal
conductivity based on a number of factors: the ratio of thermal conductivity of the two
components, the volume fraction of inclusions, and the material anisotropy. The results of
these analyses were compared with some known theoretical bounds in the literature. Spe-
cifically, the results were compared with the Hashin-Shtrikman and Voigt-Reuss bounds.
The major result of this chapter is that the effective thermal conductivity obtained from
homogenization coincides with the Hashin-Shtrikman bounds and depends solely on the
volume fractions of the constituent phases. We showed the influence of local geometry on
the anisotropy of the effective conductivity tensor by using elliptical inclusions as a typical
anisotropic geometry.

Furthermore, in Chapter 6, we performed numerical simulations for the MCI model to
verify the results of the homogenization process in appropriate relative L2 norms, illus-
trating the strong convergence between the pore-scale description and the reconstructed
homogenized problems. Two distinct reconstruction algorithms were developed specifically
for this purpose. At the heart of the reconstruction algorithm were the solutions to the cell
problems. We showed that the convergence rates of our homogenization process is consist-
ent with the theoretical corrector estimates indicated in Chapter 4.

In Chapter 7, the derived upscaled models were further investigated for a scenario of
reverse smoldering combustion for an isotropic porous material. The disparity between
the distinct upscaled models were analyzed in terms of thermal conductivity differences,
the intensity of fuel conversion within the fingers, the time for onset of ignition, and the
ability of fingers to tip-split. These results are specifically related to the effective thermal
properties obtained through homogenization. In this regard, we refer to such analysis of
finger patterns as fingering patterns of the first kind. In the next step, we examined the
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fingering behavior by using the mechanism of thermal-diffusion instability. In this case,
the effective thermal properties derived from homogenization are not considered. Instead,
we considered the Lewis number as a free parameter. This consideration allowed us to in-
vestigate distinct fingering states: connected front, sparse fingers and tip-splitting fingers.
The result of this analysis showed that the pattern forming dynamics used in this study
has a close resemblance to the experimentally observed fingering behavior (Zik and Moses,
1999; Olson et al., 1998) and most other results in the literature (Ikeda and Mimura, 2008;
Lu and Yortsos, 2005a). For the latter analysis, the fingering patterns were referred to as
fingering patterns of the second kind.

The motivation behind Chapter 8 is due to a previous treatment of fingering behavior
in isotropic media (see Ijioma et al., 2013), and also in Chapter 7 of this thesis. In this
chapter, some basic questions were raised: What is the behavior of the fingering patterns in
an anisotropic porous medium. Can we reproduce the distinct fingering states in a highly
anisotropic media?. The answers to these questions were pointed out in the experimental
paper by Zik and Moses (1999). They concluded that “...for a highly anisotropic media,
the uniformity and reproducibility of the pattern is reduced, otherwise anisotropy has no
significant effect on the fingering behavior”. We examined this conclusion via mathemat-
ical modeling based on homogenization and diffusive-thermal instability approaches. The
conclusions based on our multiscale computational modeling are as follows:

(i) The mathematical modeling, in an anisotropic porous media, is simply a generaliza-
tion of the isotropic case, which is considered in many filtration combustion scenarios
(see Sivashinsky, 1983; Kagan and Sivashinsky, 2008; Oliveira and Kaviany, 2001;
Rein, 2005; Chen et al., 1992; Yuan and Lu, 2013, e.g.) and in mathematical mod-
eling of reverse smoldering combustion (see Ikeda and Mimura, 2008; Fasano et al.,
2009; Lu and Yortsos, 2005a; Ijioma et al., 2013, e.g.).

(ii) The material anisotropy enters the governing equations through the effective aniso-
tropic diffusion tensors.

(iii) Since the patterns are in the form of directional fingering, an anisotropy in the direc-
tion of propagation affects weakly the uniformity, but changes the density of fingers.
In this case, the fingering regimes also manifested.

(iv) In a highly anisotropic media, the uniformity of the patterns is strongly influenced.
This can be seen as directional fingering towards a given boundary and subsequent
propagation of the fingers along that boundary. In addition, the distinct fingering
regimes are also observed

Based on these results, we conclude that material anisotropy influences the uniformity of
the fingering patterns, but the distinct fingering states are observable. This is consistent
with the experimental observations, and further confirms that material anisotropy is not
responsible for the observed fingering behavior.





Appendix A

Physical parameter values

Parameter Unit Gas Solid Other

cp Jkg−1 K−1 1142 1270 –

ρ kgm−3 1376 540 –

D m2s−1 2.5 ×10−5 – –

λ Wm−1 K−1 0.0238 0.07 –

Ta K – – 14432

Tu K 300 300 –

Q Jmol−1 – – 11200

A s−1 – – 2 ×106

Table A.1: Physico-chemical parameters.



Appendix B

Proof of Lemma 4.4.1

B.1 Energy estimate for Cε

Proof. Consider the functions (CD, TD) to be extended in the whole of Ω to be smooth
enough. Let Cj, j = 1, 2, 3, · · · be constants not depending on ε, but depending on the
data and parameters of the microscopic equations. We take φ = Cε−CD in (4.30), and we
obtain
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where the summation represents the integral sum on the right hand side of (B.2). We
estimate the terms Ij, j = 1, 2, · · · , 6 separately. Integrating I1 by parts with respect to



B.1. Energy estimate for Cε 161

the time variable, we obtain
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where the last integrals on the right hand side of (B.3) follow by a combination of Cauchy-
Schwartz and Young’s inequalities. Similarly, I2 is given by
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I3 vanishes due uε is divergence free in Ωε
g and n · uε
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= 0, i.e.
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The next term I4 can be estimated as follows: we use the uniform bound on uε (cf. A5 of
Subsection 4.3.1), and a combination of Cauchy-Schwartz and Young’s inequalities

t∫
0

∫
Ωεg

uε∇CεCDdxds ≤Mu

t∫
0

(∫
Ωεg

|∇Cε(t)|2dx
)1/2(∫

Ω

|CD(s)|2dx
)1/2

ds (B.6)

≤ δMu

2
‖∇Cε‖2

Ωεg,τ
+

1

2δ
‖CD‖2

Ω,τ .
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The term I5 is estimated by using the trace inequality given in Lemma 4.27. We obtain

ε

 t∫
0

∫
Γε

(CεCD − |Cε|2)dγds

 = C6(‖Cε‖2
Ωεg,τ

+ ε2 ‖∇Cε‖2
Ωεg,τ

) (B.7)

+C7(‖CD‖2
Ω,τ + ε2 ‖∇CD‖2

Ω,τ ).

Summing up all the terms and choosing δ conveniently with ε < 1 gives

‖Cε(t)‖2
Ωεg

+ (D − C(δ)− ε2C12) ‖∇Cε‖2
Ωεg,τ

(B.8)

≤ C8 ‖Cε‖2
Ωεg,τ

+ C9

∥∥∥∥∂CD∂t
∥∥∥∥2

Ωεg,τ

+ C10(‖Cε(0)‖2
Ω + ‖CD(0)‖2

Ω)

+C12 ‖CD‖2
Ω,τ + (ε2C13 +D) ‖∇CD‖2

Ω,τ + C14 ‖Cε(0)‖2
Ωεg
.

The desired estimate is deduced after application of the Gronwall inequality. Now, using the
results established in (B.8) and Lemma 4.3.2, there exist a constant C which is independent
of ε such that

√
ε ‖Cε‖L2(0,τ ;L2(Γε)) ≤ C ‖Cε‖L2(0,τ ;H1(Ωεg)) . (B.9)

B.2 Energy estimate for T ε

Proof. We take ϕ = T ε − TD in (4.31), to get

t∫
0

∫
Ω

Cε∂T
ε

∂s
(T ε − TD)dxds+

t∫
0

∫
Ω

λε∇T ε∇(T ε − TD)dxds (B.10)

+

t∫
0

∫
Ω

χεgCgu
ε∇T ε(T ε − TD)dxds = εQ

t∫
0

∫
Γε

Cεf(T ε)(T ε − TD)dγds.

Since f is a positive function on the closed surface Γε and Cε is bounded according to
(B.9), we have that

t∫
0

∫
Γε

f(T ε)(T ε − TD)dγds ≥ 0. (B.11)

Using the boundedness of Cε in the first integral, the coercivity and boundedness of λε

in the second integral, and the fact that the convective term vanishes in the energy term
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|∇T ε|2 of the third integral, we obtain successively for each of the integral terms:

t∫
0

∫
Ω

Cε∂T
ε

∂s
(T ε − TD)dxds =

µ0

2

t∫
0

∫
Ω

∂

∂s
|T ε|2 dxds− µ0

t∫
0

∫
Ω

∂T ε

∂s
TDdxds (B.12)

=
µ0

2

t∫
0

∫
Ω

∂

∂s
|T ε|2 dxds+ µ0

t∫
0

∫
Ω

∂TD
∂s

T εdxds−
[
µ0

∫
Ω

TD(s)T ε(s)dx
]∣∣∣s=t
s=0

.

Applying the Young’s inequality and collecting terms on the proper sides, we have

µ0

2
(1− δ

2
) ‖T ε‖2

Ω ≤
µ0

2
(1 + δ) ‖T ε(0)‖2

Ω +
µ0

2

∥∥∥∥∂TD∂s
∥∥∥∥2

Ω,τ

(B.13)

+
µ0

2δ
‖TD(0)‖2

Ω +
µ0

2δ
‖TD‖2

Ω +
µ0

2δ
‖TD(0)‖2

Ω .

The last two integral terms give

(λ0 −
δλ1

2
) ‖∇T ε‖2

Ω,τ ≤
λ1

2δ
‖∇TD‖2

Ω,τ +
µ1Mu

2
‖∇T ε‖2

Ω,τ +
1

2
‖TD‖2

Ω,τ . (B.14)

Summing up (B.13)–(B.14), we obtain

µ0(1− δ

2
) ‖T ε‖2

Ω + (C3 −
λ1δ

2
) ‖∇T ε‖2

Ω,τ (B.15)

≤ C1(‖TD‖2
Ω,τ + ‖∇TD‖2

Ω,τ +

∥∥∥∥∂TD∂t
∥∥∥∥2

Ω,τ

+ ‖TD(0)‖2
Ω + ‖TD‖2

Ω + ‖T ε(0)‖2
Ω,τ ) + C2 ‖T ε‖2

Ω,τ .

Now, choosing δ conveniently and applying Gronwall’s inequality, we obtain the desired
result

‖T ε‖L2(0,τ ;L2(Ω)) + ‖∇T ε‖L2(0,τ ;L2(Ω)) ≤ C. (B.16)

Since we have equipartition of the energy of the gradient in the constituent phases, i.e.

t∫
0

∫
Ω

|∇T ε|2 dxds =

τ∫
0

∫
Ω

χεg |∇T ε|
2 dxds+

τ∫
0

∫
Ω

χεs |∇T ε|
2 dxds (B.17)

=

t∫
0

∫
Ωεg

|∇T ε|2 dxds+

τ∫
0

∫
Ωεs

|∇T ε|2 dxds

= ‖∇T ε‖2
L2(0,τ ;L2(Ωεg)) + ‖∇T ε‖2

L2(0,τ ;L2(Ωεs))
≤ C,
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we deduce by using (B.16), (B.19), and Lemma 4.3.2 that there exists a constant C, not
depending on ε, such that

√
ε ‖T ε‖L2(0,τ ;L2(Γε)) ≤ C ‖T ε‖L2(0,τ ;H1(Ωεg)) . (B.18)

Thus,

√
ε ‖T ε‖L2(0,τ ;L2(Γε)) ≤ C. (B.19)

B.3 Energy estimates for Rε

Proof. We set as test function ψ = Rε in (4.32) and obtain the following

ε

t∫
0

∫
Γε

∂

∂s
|Rε|2 dγds = 2εA

t∫
0

∫
Γε

f(T ε)CεRεdγds (B.20)

≤ εC

t∫
0

∫
Γε

(|Cε|2 + |Rε|2)dγds

ε

∫
Γε

|R(t)ε|2 dγ ≤ C(1 + ε

t∫
0

∫
Γε

|Rε|2 dγds).

The first integral on the right hand side of the inequality is bounded by Lemma 4.3.2. Thus,

by Gronwall’s inequality we have the desired result. Now, testing (4.32) with ψ =
∂Rε

∂t
, we

obtain

ε

t∫
0

∫
Γε

∣∣∣∣∂Rε

∂s

∣∣∣∣2 dγds = εA

t∫
0

∫
Γε

f(T ε)Cε∂R
ε

∂s
dγds (B.21)

≤ εA

t∫
0

∫
Γε

(
1

2δ
|Cε|2 +

δ

2

∣∣∣∣∂Rε

∂s

∣∣∣∣2)dγds, and hence

ε(1− Aδ

2
)

t∫
0

∫
Γε

∣∣∣∣∂Rε

∂s

∣∣∣∣2 dγds ≤ ε
A

2δ

t∫
0

∫
Γε

|Cε|2 dγds.

Choosing δ conveniently and applying Lemma 4.3.2 lead to the desired result.



Appendix C

Proof of Lemma 4.4.2

C.1 Energy estimate for ∂tC
ε

Proof. For suitable extension of the initial and boundary data of (Cε, T ε), we take in (4.30)

a test function φ =
∂

∂t
(Cε − CD). We obtain that, after using the boundedness of f and

the assumptions on uε:

D

2

∫
Ωεg

|∇Cε|2 dx+

t∫
0

∫
Ωεg

∣∣∣∣∂Cε

∂s

∣∣∣∣2 dxds ≤
t∫

0

∫
Ωεg

∂Cε

∂s

∂CD
∂s

dxds (C.1)

+D

t∫
0

∫
Ωεg

∇Cε ∂

∂t
∇CDdxds+

t∫
0

∫
Ωεg

uε∇Cε∂CD
∂s

dxds

−ε
t∫

0

∫
Γε

Cε∂C
ε

∂s
dγds+ ε

t∫
0

∫
Γε

Cε∂CD
∂t

dγds+
D

2

∫
Ωεg

|∇Cε(0)|2 dx.

The boundary terms can be estimated using the trace inequality, i.e.

−ε
t∫

0

∫
Γε

∂

∂s
|Cε|2 dγds = ε

∫
Γε

|Cε|2 dγ + ε

∫
Γε

|Cε(0)|2 dγ (C.2)

= −C1

(
‖Cε(t)‖2

Ωεg
+ ε2 ‖∇Cε(t)‖2

Ωεg
) + C2(‖Cε(0)‖2

Ωεg
+ ε2 ‖∇Cε(0)‖2

Ωεg

)
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and

ε

t∫
0

∫
Γε

Cε∂CD
∂s

dγds ≤ C1

t∫
0

∫
Ωεg

(|Cε|2 + ε2 |∇Cε|2)dxds (C.3)

+

t∫
0

∫
Ωεg

(∣∣∣∣∂CD∂s
∣∣∣∣2 + ε2

∣∣∣∣∇∂CD∂s
∣∣∣∣2
)
dxds

= C3 ‖Cε‖2
Ωεg,τ

+ ε2C4 ‖∇Cε‖2
Ωεg,τ

+ C5

∥∥∥∥∂CD∂t
∥∥∥∥2

Ωεg,τ

+ ε2C6

∥∥∥∥∇∂CD∂t
∥∥∥∥2

Ωεg,τ

.

The remaining integrals can be estimated as follows:

t∫
0

∫
Ωεg

(
δ

2

∣∣∣∣∂Cε

∂s

∣∣∣∣2 +
1

2δ

∣∣∣∣∂CD∂s
∣∣∣∣2
)
dxds+

D

2

t∫
0

∫
Ωεg

|∇Cε|2 dxds (C.4)

+
D

2

t∫
0

∫
Ωεg

∣∣∣∣ ∂∂s∇CD
∣∣∣∣2 dxds+

δMu

2

t∫
0

∫
Ωεg

|∇Cε|2 dxds+
1

2δ

t∫
0

∫
Ωεg

∣∣∣∣∂CD∂s
∣∣∣∣2 dxds.

Summing all the integral estimates from (C.2)–(C.4) results to

(1− C1(δ))

∥∥∥∥∂Cε

∂t

∥∥∥∥2

Ωεg,τ

+ (D + ε2C7) ‖∇Cε‖2
Ωεg

(C.5)

≤ (C1 − ε2C12) ‖∇Cε(0)‖2
Ωεg

+ C8 ‖Cε‖2
Ωεg,τ

+ C11 ‖Cε(0)‖2
Ωεg

+(C9 + C2(δ) + ε2C10) ‖∇Cε‖2
Ωεg,τ

+ C13

∥∥∥∥∂CD∂t
∥∥∥∥2

Ωεg,τ

+ (C14 + ε2C15)

∥∥∥∥∇∂CD∂t
∥∥∥∥2

Ωεg,τ

.

Now, by choosing δ and ε < 1 conveniently and using the inequalities in Lemma 4.4.1
together with (A4) and (A6), we obtain

∥∥∥∥∂Cε

∂t

∥∥∥∥
L2(0,τ ;L2(Ωεg))

≤ C. (C.6)
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C.2 Energy estimate for ∂tT
ε

Proof. We take ϕ =
∂

∂t
(T ε − TD) in (4.31) such that after using the boundedness of f, Cε

and the coercivity of λε, and divergence free assumption on uε, we obtain

λ0

2

∫
Ω

|∇T ε|2 dx+ µ1

t∫
0

∫
Ω

∣∣∣∣∂T ε∂s

∣∣∣∣2 dxds ≤ λ0

t∫
0

∫
Ω

∂T ε

∂s

∂TD
∂s

dxds (C.7)

+λ0

t∫
0

∫
Ω

∇T ε ∂
∂s
∇TDdxds+ λ1

t∫
0

∫
Ω

χεgu
ε∇T ε∂TD

∂s
dxds

+εQ

t∫
0

∫
Γε

Cε∂T
ε

∂s
dγds− εQ

t∫
0

∫
Γε

Cε∂TD
∂s

dγds+
λ0

2

∫
Ω

|∇T ε(0)|2 dx.

The boundary integrals can be estimated as follows: integration by parts and application
of the Young’s inequality yields

ε

t∫
0

∫
Γε

Cε∂T
ε

∂s
dγds = −ε

t∫
0

∫
Γε

T ε
∂Cε

∂s
dγds+

[
ε

∫
Γε

Cε(s)T ε(s)dγ
]∣∣∣s=t
s=0

(C.8)

≤ ε

2

t∫
0

∫
Γε

(|T ε|2 +

∣∣∣∣∂Cε

∂s

∣∣∣∣2)dγds+
[ ε

2
(

∫
Γε

|Cε|2 + |T ε|2)dγds
]∣∣∣s=t
s=0

= C(1 +

t∫
0

∫
Ωεg

(

∣∣∣∣∂Cε

∂s

∣∣∣∣2 + ε2
∣∣∣∣∇∂Cε

∂s

∣∣∣∣2)dxds

= C.

Remark C.2.1. In (C.8), we have used the boundedness of Cε in (B.9), as well as the
estimate on its time derivative established in (C.6).
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Furthermore, we have

−ε
t∫

0

∫
Γε

Cε∂TD
∂s

dγds = ε

t∫
0

∫
Γε

TD
∂Cε

∂s
dγds−

[
ε

∫
Γε

Cε(s)TD(s)dγ
]∣∣∣s=t
s=0

(C.9)

≤ ε

2

t∫
0

∫
Γε

(|TD|2 +

∣∣∣∣∂Cε

∂s

∣∣∣∣2)dγds+
[ ε

2
(

∫
Γε

|Cε|2 + |TD|2)dγds
]∣∣∣s=t
s=0

= C1

t∫
0

∫
Ωεg

(

∣∣∣∣∂Cε

∂s

∣∣∣∣2 + ε2
∣∣∣∣∇∂Cε

∂s

∣∣∣∣2)dxds+ C2

τ∫
0

∫
Ω

(|TD|2 + ε2 |∇TD|2)dxds

+C3

∫
Ω

(|TD(t)|2 + ε2 |∇TD(t)|2)dx− C4

∫
Ω

(|TD(0)|2 + ε2 |∇TD(0)|2)dx

= C + C2(‖TD‖2
Ω,τ + ε2 ‖∇TD‖2

Ω,τ + C3(‖TD(t)‖2
Ω + ε2 ‖∇TD(t)‖2

Ω)

−C4(‖TD(0)‖2
Ω + ε2 ‖∇TD(0)‖2

Ω).

(C.8) and (C.9) show that the boundary terms are bounded, which we may simply represent
as K. The remaining integrals are estimated as follows:

t∫
0

∫
Ω

(
δµ1

2

∣∣∣∣∂T ε∂s

∣∣∣∣2 +
µ1

2δ

∣∣∣∣∂TD∂s
∣∣∣∣2
)
dxds+

λ1δ

2

t∫
0

∫
Ω

|∇T ε|2 dxds (C.10)

+
λ1

2δ

t∫
0

∫
Ω

∣∣∣∣ ∂∂s∇TD
∣∣∣∣2 dxds+

δMuµ1

2

t∫
0

∫
Ω

|∇T ε|2 dxds+
µ1

2δ

t∫
0

∫
Ω

∣∣∣∣∂TD∂s
∣∣∣∣2 dxds.

Summing up all the integral estimates from (C.8)–(C.10) results to

µ1(1− δ

2
)

∥∥∥∥∂T ε∂t

∥∥∥∥2

Ω,τ

+
1

2
(λ0 − µ1δMu) ‖∇T ε(t)‖2

Ω (C.11)

≤ µ1

δ

∥∥∥∥∂TD∂t
∥∥∥∥2

Ω,τ

+
λ1

2δ

∥∥∥∥∇∂TD∂t
∥∥∥∥2

Ω,τ

+
λ1δ

2
‖∇T ε‖2

Ω,τ +
λ0

2
‖∇T ε(0)‖2

Ω +K.

Now, by choosing δ and ε < 1 conveniently and using the inequalities in Lemma 4.4.1
together with (A4), we obtain ∥∥∥∥∂T ε∂t

∥∥∥∥
L2(0,τ ;L2(Ω))

≤ C. (C.12)
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computations refer to ε0 = ε = 1/7, and V=0.0 cm/s. . . . . . . . . . . . . 106

6.14 Magnitude of solution gradients to problems M̂ε and M̂0 at t = 200s, for
the reference computation ε0 = ε = 1/7. . . . . . . . . . . . . . . . . . . . 107

6.15 Relative error on the temperature as a function of ε. . . . . . . . . . . . . . 110

6.16 Relative error on the temperature gradient as a function of ε. . . . . . . . . 110

6.17 Relative error on the concentration as a function of ε. . . . . . . . . . . . . 111

6.18 Relative error on the concentration gradient as a function of ε. . . . . . . . 111

6.19 Relative error on the temperature as a function of ε for V = (0.05, 0, 0)cm/s. 113

6.20 Relative error on the temperature gradient as a function of ε for V =
(0.05, 0, 0)cm/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.21 Relative error on the concentration as a function of ε for V = (0.05, 0, 0)cm/s.114



178 List of Figures

6.22 Relative error on the concentration gradient as a function of ε for V =
(0.05, 0, 0)cm/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.23 Collage of temperature profiles for distinct values of ε, using the one direc-
tional scheme of cell addition. Cells are added at each successive simulation
corresponding to a value of ε. The top and bottom of the domain represent
the y1-direction, from which cells are added while the y2-direction is fixed. 115

6.24 Collage of concentration profiles for distinct values of ε, using the one dir-
ectional scheme of cell addition. . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 Spatial profiles of the flame structure: (a) temperature (b) char (c) concen-
tration (d) heat release rate. Solution of the HCI model for Pe = 10, Le =
0.09. Ignition at bottom, char propagation from bottom to top, gas inlet
from top. The spatial axis are in units of the thermal length of the flame, lth.123

7.2 Spatial profiles of char pattern for (a) the MCI model at Pe = 0.01, Leeff =
0.01422, A = 0.27×104, (b) the HCI model at Pe = 0.01, Leeff = 0.026563, A =
1× 104. The fingering patterns are sparse with no tip-splitting. (c)-(d) con-
tour plots showing hot spots at the vicinity of the tips and regions of higher
conversion depths (lighter shade). . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Spatial profiles of char pattern for (a) the MCI model at Pe = 17, Leeff =
0.01422, A = 0.27×104, (b) the HCI model at Pe = 17, Leeff = 0.026563, A =
1× 104. Fingering patterns with tip-splitting and low conversion depth. . . 125

7.4 Spatial profiles of char pattern for (a) the MCI model at Pe = 40, Leeff =
0.01422, A = 0.27× 104, decrease in the spatial extent of the front, (b) HCI
model at Pe = 40, Leeff = 0.026563. Patterns with characteristic features
of tip-splitting and branching. (c) fingering state at A = 0.23× 104 for the
MCI model, (d) fingering state at A = 0.85× 104 for the HCI model. In all
cases computational time decreases with an increase in A. . . . . . . . . . 126

7.5 Spatial profiles of char pattern for the WCI model at (a) Pe = 0.01; (b)
Pe = 1; (c) Pe = 5 (d) Pe = 10. From (a)-(d), Leeff = 0.002755 and
A = 102. The thermal diffusivity in this case is low, hence the domain size
is larger (in units of lth) compared to the MCI and HCI models. The low
thermal diffusivity in WCI model leads to substantially higher temperatures
in the reacting regions, resulting into high fuel conversion inside the fingers
(darker shades within the fingers). The patterns also show suppressed ability
to tip-splitting at all Pe values due to the production of smaller number of
hot spots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.6 Spatial profiles of char patterns for the HCI model, showing (a) regime of
constant fingers with no tip-splitting at Pe = 0.01 and Le = 0.01 (b) limit
of large flows at Pe = 10 and Le = 1. . . . . . . . . . . . . . . . . . . . . . 130

7.7 Collage of fingering patterns for the MCI model in the tip-splitting regime
showing the variation of the distance between fingers at (a) Le = 0.1, (b)
Le = 0.25, (c) Le = 0.7. In all cases, Pe = 10. . . . . . . . . . . . . . . . . 131



List of Figures 179

7.8 Collage of fingering patterns for the HCI model in the tip-splitting regime
showing the variation of the distance between fingers at (a) Le = 0.1, (b)
Le = 0.25, (c) Le = 0.7. In all cases, Pe = 10. . . . . . . . . . . . . . . . . 131

7.9 Spatial profiles of char patterns for the WCI model, showing (a) regime of
constant fingers with no tip-splitting at Pe = 0.01, and Le = 0.01 (b) limit
of large flows at Pe = 3 and Le = 1. . . . . . . . . . . . . . . . . . . . . . 132

7.10 Collage of fingering patterns for the WCI model in the tip-splitting regime
showing the variation of the distance between fingers at (a) Le = 0.1, (b)
Le = 0.25, (c) Le = 0.7. In all cases, Pe = 3 and A = 102. . . . . . . . . . 132

7.11 Schematic of the heat release mechanism in the experiment. . . . . . . . . 133

7.12 Spatial profiles of char patterns showing the evolution of finger width with
heat release rate. (a) A = 1.7×104; (b) 1.5×104; (c) 1.0×104; (d) 0.85×104;
(e) 0.65× 104;(f) 0.45× 104. The numerical simulations are well within the
tip-splitting regime at Le = 0.1 and Pe = 10. . . . . . . . . . . . . . . . . 135

8.1 Examples of anisotropic geometries with intrinsic inclusions. . . . . . . . . 140

8.2 Examples of configurations of periodic anisotropic media for flows in thin
porous materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3 Spatial profile of char pattern for a typical anisotropic material depicted in
Figure 8.2a. (a) shows the situation when the diffusion process is domin-
ated in the longitudinal direction and L−1

T → 0. (b) shows the behavior of
the fingering pattern at large transverse perturbation, i.e. L−1

T → ∞. The
parameters of this numerical result corresponds to the effective thermal and
diffusion tensors and at Pe = 10. . . . . . . . . . . . . . . . . . . . . . . . 145

8.4 Spatial profiles of char patterns for a typical symmetrically anisotropic ma-
terial with elliptical inclusions depicted in Figure 8.2c. The material aniso-
tropy is more intense along a lateral boundary and reproducibility of the
patterns at low values of Pe is not viable; (a) fingering behavior at Pe = 10
with very low fuel conversion with the fingers except at the right lateral
boundary where the fuel conversion is more intense; (b) fingering behavior
at Pe = 20 showing increasing fuel conversion and sharper smolder front;
(c) at Pe = 40, the sharpness of the fingers is enhanced with an onset of
tip-splitting; (d) fingering with characteristic features of tip-splitting at at
Pe = 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.5 Spatial profiles of char patterns for a generic diagonally anisotropic material.
The material is weakly anisotropic and all regimes of the pattern behavior
can be reproduced; (a) fingering behavior at γ = 0.35 (b) γ = 0.4 ; (c)
γ = 0.5; (d) γ = 0.6; (e) γ = 0.7;(f) γ = 0.8;(g) γ = 1 (Isotropic case); (h)
γ = 1.2; (i) γ = 1.4; the numerical simulation corresponds to the tip-splitting
regime at Le = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



180 List of Figures

8.6 Spatial profiles of char patterns for a generic diagonally anisotropic material.
The material is weakly anisotropic. In all cases γ = 0.5, µ = 0. From (b)-
(f), Pe = 10; (a) Le = 0.015, P e = 0.1 (sparse fingering regime) (b) Le =
0.1 (tip-splitting regime) ; (c) Le = 0.2; (d) Le = 0.5; (e) Le = 0.7;(f)
Le = 1 (regime of connected front). The distinct fingering regimes can be
reproduced and nonuniformity on the patterns is not pronounced. . . . . . 150

8.7 Spatial profiles of char patterns for a symmetrically anisotropic material with
inclusion oriented clockwise at angle −45. The material is highly anisotropic.
In all cases γ = 1, µ = 0.2. (a) Le = 0.02 (sparse fingering regime) (b)
Le = 0.1 (tip-splitting regime) ; (c) Le = 0.25; (d) Le = 0.5; (e) Le = 0.7;(f)
Le = 1 (regime of connected front). The distinct fingering regimes can be
reproduced with a reduction in uniformity. . . . . . . . . . . . . . . . . . . 151

8.8 Spatial profiles of char patterns for a symmetrically anisotropic material
with inclusions oriented counterclockwise at an angle of 45. From (a)- (d)
γ = 1, µ = −0.085,−0.15,−0.2,−0.25; (d) the nonuniformity extends to the
right lateral boundary. (e) γ = 0.5, µ = −0.2 (highly anisotropic case); the
fingers are dense; (f) For γ = 1.5, µ = −0.2, the patterns are more distinct
due to increase in transverse perturbation. . . . . . . . . . . . . . . . . . . 152



List of Tables

6.1 Relative error estimates at distinct values of ε for the nonlinear problem
with no convection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Relative error estimates at distinct values of ε for the nonlinear problem
with no convection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Relative error estimates at distinct values of ε for the nonlinear problem
with V = (0.05, 0, 0)cm/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Relative error estimates at distinct values of ε for the nonlinear problem
with V = (0.05, 0, 0)cm/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1 Physico-chemical parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 159





List of Tables 183

Nomenclature

Y reference periodicity cell

Ys solid part of the periodicity cell

Yg gas part of the periodicity cell

Y ε rescaled periodicity cell

n normal

Lc characteristic length of the system

`c characteristic length of the pore

y microscopic variable

x macroscopic variable

N vector quantities for cell problems

Tg temperature of gas in the gas part

Ts temperature of solid in the solid part

T effective temperature

C oxygen concentration

W reaction rate

R surface concentration of the solid product

Q heat release

D molecular diffusion coefficient

A pre-exponential factor

Ta activation temperature

cg specific heat capacity of gas

cs specific heat capacity of solid

TY,Γ unfolding operators

QY ,UΓ averaging operators



184 List of Tables

Greek

ε scale parameter

Ωε periodic medium

Γ interior boundary of a single period

Ωε
s ensemble of solid inclusions in Ωε

Ωε
g matrix of interconnected gas part in Ωε

Γε ensemble of gas/solid boundary of the periodic medium

φ volume porosity

φs surface porosity

λ thermal conductivity

ρ density

α thermal diffusivity, α = λeff/Ceff

Superscripts

∼, ∗ nondimensionalised variable

eff effective

s surface

Subscripts

c characteristic quantities

s solid phase

g gas phase

u unburnt or initial values

0 initial values

th thermal

D Dirichlet data



Index

A priori estimates, 55
adiabatic combustion, 120
anisotropic factor, 143
anisotropic media, 139
anisotropic unit cells, 139
Anisotropy, 83
averaging operators, 70

coflow, see filtration regimes
combustion, 3
combustion instability, 3
combustion waves, 2
conduction, 3
convergence rate, 91, 92
corrector estimates, 45
counterflow, see filtration regimes

diagonally anisotropic, 141
diagonally anisotropic media, 143
diffusional instability, 120
distributed microstructure, 14
distributed temperature, 122

effective Lewis number, 119
Effective thermal conductivity, 74
Extensions, 55

filtration combustion, 1
filtration regimes, 1
fingering patterns, 3

heat release rate, 133
Hele-Shaw geometry, 4, 133
Highly Conductive Inclusions, 29

ignition, 133
interpolation, 92

isotropic porous media, 119

kinetic factor, 119

Lewis number, 119

microgravity, 120
microstructure, 3
Moderate Conductive Inclusions, 25

nonuniformity, 139

Péclet number, 119
porous, 1

reaction zone, 1
reactive flows, 1
Reconstruction Algorithm, 92
reference computation, 95
Reuss bound, see Theoretical bounds
REV, 14

self-sustaining high temperature synthesis, 1
smoldering, 1
smoldering regime, 3
Streamline Upstream Petrov–Garlekin, 121
Strong convergence, 64
symmetrically anisotropic media, 150

Theoretical bounds, 74
thermal-diffusion instability, 120
two-scale convergence, 45, 56
two-sided, see filtration regimes

unfolding operators, 68

vertical convection, 133
Voigt bound, see Theoretical bounds
Volume fractions, 79



186 Index

Weakly Conductive Inclusions, 33
Whatman, 17




