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How A Cap-and-Trade Policy of Green House Gases Could Alter the Face of Agriculture in the 
South: A Spatial and Production Level Analysis. 
 

Abstract 

With the Waxman-Markey Bill passing the House and the Obama administration’s push to 

reduce carbon emissions, the likelihood of the implementation of some form of a carbon policy is 

increasing. This study estimates the greenhouse gas (GHG) emissions of the six largest crops 

produced in Arkansas using 63 different production practices as documented by University of 

Arkansas Cooperative Extension Service. From these GHG estimates a baseline state “carbon 

footprint” was estimated and a hypothetical cap-and-trade carbon reduction of 5, 10, and 20% 

was levied on Arkansas agriculture. Results show that while a modest reduction in GHG 

emissions (5%) would only affect crop allocations amongst certain crops while marginally 

reducing state net returns, a 20% reduction would cause major cropping pattern shifts with some 

traditional row crops nearly disappearing. 
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Introduction  

With the Waxman-Markey Bill passing the House and the new administration’s push to reduce 

carbon emissions by late 2009, the likelihood of the implementation of some form of a carbon 

policy is increasing. While greenhouse gas(GHG) emissions have been modeled for quite some 

time, many policy analyses to date have focused either on global or national effects on 

agriculture (Reilly, 2009; Outlaw et al., 2009; Beckman et al., 2009;  McCarl, 2007), individual 

field test plots, or soil and climate based models that work at the field level (Century Model and 

DAYCENT models);  the former lack detail at the local level while being representative and 

relevant at the macro level while the later prove too  myopic as they typically lack inclusion of 

likely responses to economic conditions.  Hence a methodology is needed to analyze carbon 

policy impacts that strikes a middle ground – sufficiently detailed to embody local production, 

soil and climate differences and yet sufficiently representative to provide information for 

agricultural producers and policy makers.   

The purpose of this study is to estimate and analyze GHG emissions of the six largest 

crops (corn, cotton, rice, sorghum, soybeans, and wheat) produced in Arkansas across the range 

of the 63 various production practices documented by University of Arkansas Cooperative 

Extension Service (UACES).  This estimation of GHG emissions by production method focuses 

on effects from cradle-to-farm gate on a county by county basis using a Life Cycle Assessment 

(LCA). The LCA implemented in this study includes the GHG emissions of agricultural inputs 

involved in the production of commodities up to the farm gate (e.g. fertilizer, herbicides, 

pesticides, fuel, agricultural plastics and other chemicals). Excluded are drying, transport, 

module building, ginning, or processing of a commodity.  Further, the methodology applied in 

this analysis excludes tracking of inputs that contribute less than 5% of total emissions.   
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Estimates of GHG emissions by crop and production practice varying within and across 

counties in conjunction with cost of production data allows estimation of the impact of various 

carbon reduction policies on: (1) county and agricultural income redistribution throughout the 

state as a result of; (2) crop acreage reallocation which in turn is affected by; (3) the capping of 

GHG emissions.  The objectives of this study are to: (1) quantify the amount of GHG emissions 

that are emitted by crop and production practice for the major crops in Arkansas; and (2) 

calculate crop acreage reallocation and farm income redistribution at the county level when a 

cap-and-trade system for carbon is implemented to reduce state GHG emissions by 5, 10, and 

20%, respectively.  

 

Life Cycle Inventory  

The Life Cycle Inventory (LCI) developed for this analysis included direct and indirect 

emissions. Direct emissions are those that come from farm operations.  Examples are carbon 

dioxide (CO2) emissions from the use of diesel by tractors and irrigation equipment and the use 

of gasoline by farm trucks. Indirect emissions, on the other hand, are emissions generated off-

farm as a result of the manufacturing of inputs used on the farm.  Examples are GHG emissions 

from the use of natural gas in commercial fertilizer production.   Excluded from this study are 

embedded carbon emissions as a result of upstream production of equipment and tools used on-

farm for agricultural production.  Further, it was assumed that soil carbon remained constant, or 

at equilibrium, and so there was no net carbon sequestration or soil CO2 emission (Kahn et al., 

2007).  The analysis does include soil nitrous oxide (N2O) emissions from application of 

nitrogen fertilizer, as nitrous oxide is 298 times more potent than carbon dioxide as a GHG 

(IPCC 2007). Also, since Arkansas is the largest producer of rice in the United States, methane 
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(NH4) emissions, a direct result of flooded rice cultivation and the anaerobic decomposition of 

organic matter in the soil, were included.  Tyler (2009) analyzed 12 rice production seasons over 

3 states (Texas, Louisiana, and California) and found that the average methane released from rice 

production was 0.00892 mg/m2 of methane per day or an equivalent of  1,367 lbs of carbon per 

acre of paddy rice per year1. Relative to the rest of the agricultural sector the rice and livestock 

industries release large amounts of methane, a GHG 25 times more potent than carbon dioxide.  

Carbon emissions calculations 

Given the above complexities in dealing with GHG emissions, previously reported carbon 

equivalent (CE) emission factors were used to estimate the amount of emissions generated as a 

result of input use (Table 1).  In essence, multiple GHG’s associated with global warming, are 

converted to their carbon equivalents to obtain a “carbon footprint” -- a process stemming from a 

rich engineering literature on carbon equivalence. Values provided by the US Environmental 

Protection Agency (EPA) were used for diesel and gasoline combustion emissions. EcoInvent’s 

life cycle inventory database through SimaPro was used to calculate the upstream emissions 

from the production of fuel. Values provided by Lal (2004), a synthesis of numerous studies 

measuring carbon emissions from farm operations, were used for all other inputs. 

 Nitrous oxide (N20) from soil has been identified as a major contributor to greenhouse 

gas emissions from crop production (Bouwman, 1996; Smith, 1997; Yanai, 2003; Del Grosso, 

2005; Snyder, 2007).   The IPCC (2007) Third Assessment Report conversion factor of 298 units 

CO2 per unit N2O (or 81 units CE) was used based on a 1 percent loss from nitrogen application 

 
1 This results in a carbon equivalent of 16.3 lbs/ac per day. The average days under the flood in Tyler’s (2009) study 
was 83.84, resulting in 1,367 (83.84*16.3) lbs of carbon equivalent per acre per year from methane release in rice 
production.  
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rates.  Although different types of nitrogen fertilizer (e.g. ammonium nitrate or urea) require 

different amounts of energy, and hence CO2 emissions from N20 production, we use a generic 

N20 CE emission value because of the large amount of uncertainty of climatic conditions for a 

given field and more importantly the large variance even within a farm.  

Crop Production Information 

Annual estimates of cost of production for each of the six main crops are available from UACES 

and are reported for different soils, production regions and production practices commonly used 

by producers.  Using the carbon equivalents from Table 1 and the recommended input usage 

from each of the 63 extension production budgets, a per acre GHG emission level could be 

calculated for each budget (Table 2).  As shown, GHG emissions are highest for rice production 

with GHG emission rates roughly four times higher than corn, the next highest emitter. A 

principle component of this large carbon footprint is the methane released during production.  

Table 2 and Figure 1 also illustrate the difference in GHG emission between irrigated and 

non-irrigated production.  Fuel used by irrigation pumps, was the largest source of GHG 

emissions for each irrigated crop besides rice. Pumping water for irrigation takes a significant 

amount of energy (typically diesel) and contributes significantly to the total GHG emissions 

(Figure 1). Wheat, which is all non-irrigated in Akransas, provides an example of non-irrigated 

production as it portrays the relatively small share of fuel’s GHG emissions in production.   

Further, Figure 1 demonstrates the significant impact of nitrogen fertilizer and fuel as a 

percentage of the total carbon footprint of production.  They play the largest role in GHG 

emissions when methane release from paddy rice production is excluded. Nitrogen fertilizer 

encompasses a large percentage of the total GHG due to the high amounts of energy (direct or 
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indirect combustion of fossil fuels) required during its production. In addition, nitrogen applied 

to soil may be converted to nitrous oxide, a potent GHG.  

On average, soybeans had the lowest GHG emissions followed by wheat, sorghum, 

cotton, corn, and rice, respectively. While these relative rankings are important, they do not take 

into account the profitability of each crop. That is, if a carbon policy was implemented that does 

not imply that there would be a large increase of soybean acres and a large decrease of rice acres. 

In fact, in terms of profitability rice is the most profitable crop of the portfolio of crop land use 

choices in the Arkansas Delta and as such producers would be most reluctant to curtail its 

production.  Another key point that this single “carbon score” fails to take into account is 

efficiency of input use. As inputs remain constant and yield increases, carbon per lb/bushel of 

commodity decreases. While some crop production methods (center pivot irrigation for example) 

have high levels of inputs (fuel), they also have a relatively high yield, and so the CE per 

lb/bushel of commodity is much closer to the mean of other, low-input and low-yielding 

production practices such as non-irrigated crops.  On the same note, as new seed technologies are 

adopted that have lower input usage while maintaining yield, carbon per lb/bushel of crop will 

decline as well. So, to imply that rice acreage will decrease because it has the largest carbon 

footprint is only looking at one side of the equation.  Profitability in terms of input and output 

effects must be analyzed at a county level and by production method to estimate how crop land 

use choice will change under various carbon policies.  

 

Modeling County Crop Production 

A state model that tracks crop profitability and resource use similar to that used by Popp et al. 

(2009) was necessary to model producer behavior on a county by county basis.  Tracking fuel, 
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labor, fertilizer, chemical and irrigation water/plastic piping use as reported by UACES for GHG 

emissions was also used to conduct crop profitability analyses by comparing county yields and 

associated revenues to cost of production.  Given the array of production methods discussed 

above (Table 2), crop specific extension experts were consulted to determine which of the 

reported production methods were most prevalent in each of the nine crop reporting districts 

(CRD) as defined by the Arkansas Agricultural Statistics Service. That is, rice extension experts 

were asked to determine which of the eight possible rice production methods in Arkansas were 

most frequently used within each CRD. This effort resulted in CRD-specific cost of production 

and resource use estimates. County level average yields from 2004-2007 (USDA NASS, 2008) 

helped determine returns above the total specified expenses to land, management and capital 

(NR) that in turn were used to model producer crop allocation decisions for all 75 counties in 

Arkansas. 

The model is constrained by historical land use decisions to reflect technological, 

socioeconomic and capital investment barriers.  Hence, historical harvested crop land 

information (including all crops, fruits, vegetables, hay land and hay yield), pasture and irrigated 

acres were collected from agricultural census data for 1987, 1992, 1997 and 2002 (USDA 

Census of Agriculture). Conservation Reserve Program (CRP) acreage, as well as average county 

specific CRP payments for 2007, were obtained from the USDA’s Farm Service Agency (FSA, 

2008). Annual harvested acres for the traditional crops were available electronically by county 

from the Arkansas Agricultural Statistics Service from 1975 to 2007 (NASS).  



Similar to Popp et al. (2009) the net return of Arkansas crop, hay and pasture land are 

maximized by choosing crop acres (x) on the basis of expected commodity prices (p), county 

relevant yield (y) and cost of production information (c) as follows: 

7 
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    xmin ij ≤ xij ≤ xmaxij  
  iacresmini ≤ ∑xij ≤ iacresmaxi for irrigated crops only 
  acresmini ≤ ∑xij ≤ acresmaxi for all crops except pasture and CRP 
 

where i denotes each of the 75 counties of production and j denotes 18 land management choices 

(irrigated and non-irrigated crop production, hay, pasture and CRP).  Xmin and xmax are 

historical county acreage minima and maxima over the harvest years 2000 through 2007 for each 

crop (USDA NASS, 2008).  Iacresmin and iacresmax are the 1987 to 2002 census based 

reported irrigated acres that reflect technological, socioeconomic and capital barriers to 

irrigation, again at the county level.  Acresmin and acresmax are total harvested acres at the 

county level, as collected by the Census, and were amended by adding 10% of county CRP 

enrollments to the maximum harvested acre totals to reflect the potential for added acres from 

land coming out of CRP and the typical ten year enrollment horizon of CRP acreage. Note that 

winter wheat was considered part of harvested acres even though this crop can be entertained in 

double crop rotations with soybean, corn or sorghum crops. Crop price information (pj) was 

based on the July futures prices as of December of the previous year and no commodity price 

program support (Great Pacific Trading Company, 2008).2  Basis expectations were set to zero 

 
2Wheat prices were based on the May futures prices as of September of the previous year. 
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for all crops and prices were adjusted for hauling, drying and commodity board check off 

charges as appropriate. Yields (yij) reflect the per acre county averages for most crops. Since 

Arkansas NASS does not differentiate irrigated and nonirrigated double cropped soybeans and 

sorghum acreage minor modifications as described by Popp et al. (2008) were made to double 

crop soybean maximum and minimum acreage restrictions and grain sorghum yield differences 

between irrigated and non-irrigated production.  Per acre cost of production estimates (cij) were 

developed as reported above. 

Carbon Policy Analysis 

The above model (Eq. 1) was run to develop a crop production baseline for Arkansas using 2007 

conditions and resulted in a county specific and statewide estimate of the amount of GHG 

emitted from agricultural production (Carbonmax).  The model could then be restricted using the 

following constraint: 

(2) ∑Carbonij  * xij ≤ Carbonmax * (1 – a), 

where Carbonij are carbon emissions by county i for land use choice j, xij are acres in production 

as described above, and a represents the targeted fraction of state GHG emissions to be reduced.  

That is, the baseline model allows producers at a county level to allocate acreage to maximize 

profit around a set of historical production constraints without a carbon restriction. A statewide 

carbon footprint was calculated from this baseline, and then 5, 10 and 20% reductions were 

imposed as new constraints.  It is important to note that the carbon reduction is not a county level 

reduction but rather a statewide constraint allowing counties to “trade” GHG emissions amongst 

themselves.   As such, a county that is relatively efficient at producing output per unit of carbon 
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emitted can “purchase” permits from counties that are not as efficient in production. That is, the 

model allocates crop production and associated carbon emissions not by which county uses the 

least GHG per acre, but rather by which county uses the least GHG per unit of output (GHG per 

acre/$ of profit per acre). While the model does not allow for the actual tracking of GHG 

emission permit trading, it does implicitly allocate GHG permits to those counties who use them 

most efficiently3.   The model does not account for the revenue that a county would pay/receive 

by the purchasing/selling of carbon permits. Therefore the changes in county level crop farm 

income only represent the changes associated with crop acreage reallocation. Nonetheless, since 

the transactions between buyer and seller are a zero sum gain, the total change in state crop farm 

income is only a function of crop acreage reallocation and not affected by permit trading. These 

iterations were therefore run to determine changes in crop allocation and the overall profitability 

implications of a carbon cap-and-trade system4.  Profitability and acreage distribution among 

crops were compared to the baseline to analyze how/if they diverge when carbon emissions were 

restricted by 5, 10 and 20%. This assumes that producers will only chose from current 

production practices and does not include the possibility of the adoption of carbon reducing 

production methods/technology.  Excluded from the model are also monitoring costs for 

enforcing carbon emissions restrictions and trading costs.  Essentially we assume that those 

transactions costs would not affect crop acreage allocation decisions. 

 
3 For example, assume that county A and B both produce rice using only production method X (thus theoretically 
cost of production and emissions should be equivalent). If the average yield per acre in county B is 200 bu/acre and 
county A averages 175 bu/ac, because of the profit maximizing nature of the model county B would be “issued” the 
permit. The model does not take into consideration the actual price of the permit nor transactions costs associated 
with it; this is pertinent information that warrants further research.  
4 This assumes that only agriculture would be involved in cap-and-trade and treats Arkansas like a closed economy. 
This also assumes that carbon sequestration is either equal to zero or is not rewarded in the form of offsets. While 
both of these assumptions are quasi-realistic, the focus of this study is not sequestration estimation nor was 
modeling all sectors of Arkansas’s economy feasible.  
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 From these model iterations, estimates of crop acreage and net farm agricultural income 

changes for each of the 75 counties in Arkansas under each of the cap-and-trade scenarios could 

be estimated. These estimates provide valuable insights about which crops/industries would 

stand to lose the most acreage or production if carbon cap-and-trade was implemented for 

agriculture.  

Results  

The crop specific baseline acreage from the unconstrained model is illustrated in Table 3. The 

baseline acreage was within 10% of actual 2007 planting for corn, cotton, grain sorghum, hay 

land, pasture, and soybean, and within 15% of the actual 2007 wheat acreage. Full season 

soybeans and rice are estimated as the two largest crops in Arkansas with 1.6 and 1.4 million 

acres, respectively. Table 3 also presents the impacts of a 5, 10, and 20% reduction in GHG 

emissions on cropping patterns, irrigation water usage, acres in production, and net agricultural 

returns.  

Five Percent Carbon Reduction  

The 5% statewide reduction in GHG results in a relatively small acreage reallocation amongst 

most crops. Nonetheless, there is a large reduction in non-irrigated cotton (22%) and pasture 

(21%) acreage. Intuitively this makes sense given that non-irrigated cotton and pasture have a 

relatively high (for non-irrigated crops) average carbon footprint of 355.8l and 300 lbs/acre, 

respectively and a relatively low average profit per acre of $60.71 and $25.00, respectively. 

Interestingly, with an average carbon footprint nearly four times larger than that of other row 

crops, rice is estimated to decrease by only 1.19% in crop acreage. The high average profitability 

per acre of rice ($206.05) offsets its large carbon footprint. An example of the carbon footprint 

vs. profitability concept is Poinsett County.  It is the largest rice producing county, and the 
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county with the largest baseline GHG emissions, and yet experiences only a 0.11% reduction in 

county net returns as a result of 5% statewide reduction in carbon emissions.  This implies that in 

a cap-and-trade situation, Delta rice producers would purchase emission permits, likely from 

pasture acres in Western Arkansas or from non-irrigated cotton producers in Eastern Arkansas.  

Also, while non-irrigated cotton loses acreage, irrigated grain sorghum experiences a 7.52% 

acreage increase under the 5% GHG reduction attributed to its relatively low (for irrigated crops) 

average carbon footprint of 342.20 lbs/acre and its moderately high average profit per acre 

$98.86 per acre.   

Table 4 presents the county baseline of net farm income as well as the implications of the 

5, 10, and 20% reductions in GHG. Crop reporting districts (CRD) 3, 6, and 9 represent the 

Arkansas Delta and make up approximately 80% of the crop income in Arkansas.5  The Delta 

districts experience only a marginal decrease in average net farm income with a 5% GHG 

reduction at 1.08, 0.36, and 0.73% for CRD 3, 6, and 9 respectively. The CRDs with the smallest 

crop returns experience the largest percentage reductions in average net farm income with CRD 

8, 5, and 2 losing 5.11, 9.65, and 11.65%, respectively (Table 4).6 This indicates that those 

producers outside of the Arkansas Delta region would “sell” their carbon emissions permits to 

the producers in the Delta where carbon efficiency is relatively higher (Figure 2).  While the 

Delta counties have a higher total carbon footprint per acre their carbon equivalent emissions per 

$ of farm income per acre is lower than the non Delta regions. The total decrease in state net 

return from the 5% reduction is estimated at 1.83%.7 

Ten Percent Carbon Reduction  

 
5 This does not include poultry or timber products.  
6 These losses do not reflect the revenue/costs from the carbon emission permits that would be sold/bought.  
7 These does not include the  ancillary effects on the rice processing and cotton ginning industries 
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The results from the 10% reduction in GHG emissions are presented in Tables 3 and 4 as well. 

Rice acreage decreases by 11.49% from the baseline indicating that even its high profitability 

can’t mitigate its large carbon footprint with a 10% reduction in GHG. Irrigated and non-

irrigated sorghum experience the largest acreage increases from the baseline at 24.5 and 10.25%, 

respectively. The increased acreage to sorghum is a function of the relatively high profitability to 

carbon footprint ratio. Again, both non-irrigated cotton and pasture acreage experience a 

significant decrease in relation to the baseline. The Delta regions (CRD’s 3, 6, and 9) experience 

an average crop income loss of 5.45%. The state as a whole loses 5.89% from its baseline net 

return, however; there are large spatial differences in net return reductions. For example, with the 

10% GHG reduction 28% of the counties in CRD’s 2, 5, and 8 lose at least 15% of their baseline 

net returns while 23% of the Delta counties lose less than 1% of baseline net agricultural returns. 

This again illustrates the transfer of carbon credits from the less efficient carbon using regions to 

regions of greater efficiency, namely the Delta (Figure 3).  

Twenty Percent Carbon Reduction 

The estimates from the 20% reduction in GHG iteration present some unique results. Initially the 

model could not find a crop acreage allocation within the historical state harvested acreage 

constraints using traditional crops, hay, pasture and CRP.  Even with some crops (corn, dry 

cotton, wheat, and irrigated sorghum) at their historic minimums, the 20% reduction in GHG 

resulted in some land being diverted to an alternative energy crop, switchgrass, even with its 

price set to zero given the lack of a current market for this alternative.  The rationale for the 

model’s inclusion of switchgrass is its relatively low carbon foot print compared to other crop 

production that was required to meet the minimum state harvested acreage. The model converged 
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with the introduction of 30,000 acres of switchgrass statewide. Even with the introduction of 

switchgrass there were an estimated 18.73% less acres in crop production with the 20% 

reduction in GHG. This illustrates an important point, a 20% reduction in GHG from the 2007 

baseline looks to significantly alter cropping patterns in Arkansas that could not be met using 

traditional crops within historical crop acreage limits. 

   The first obvious result in the 20% GHG reduction scenario is the loss of 18.73% of the 

total acres in production from the baseline estimate. At the 20% GHG reduction level, the issue 

revolves less around that of profit and more on how to meet carbon emission targets within crop 

land use constraints.  That is, current production methods even at or near historical acreage 

minima, are insufficient to meet a proposed 20% carbon emission reduction.   The model’s use of 

a money losing proposition (planting switchgrass without a switchgrass market and a zero price), 

exacerbates the economic impact but illustrates the point.  Irrigated sorghum, corn, wheat, dry 

sorghum, and dry cotton all lose over 50% of their baseline acreage (Table 3).  Rice is estimated 

to lose 13.5% from its baseline acreage. Non-irrigated soybeans and irrigated double cropped 

beans experience the largest increase from the baseline acreage at approximately 42 and 43%, 

respectively.  However, this expansion is not attributed to their profit per acre but rather to the 

fact they have the lowest carbon equivalent emissions per acre.   The total state reduction in net 

returns is 31.64% from the baseline estimate, or 207.71 million dollars. This does not include the 

losses likely to be experienced by the rice milling and cotton ginning industries that would result 

as function of reduced rice and cotton acreage. The Delta counties who were able to keep their 

net returns relatively stable at the 5 and 10% GHG emission reductions via the purchasing of 

carbon permits from other regions in the state now experience an average loss of 32.62% from 

the baseline because of the reduced number of permits to be purchased (Figure 4) . This 
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highlights that not only would there be significant implications for crop redistribution across all 

counties, but also that, unlike the 5 and 10% GHG reductions, there are large statewide net return 

implications as well.  

Conclusions  

The objective of this study was to estimate the amount of carbon-equivalent greenhouse gas 

emitted in the production of the major crops in Arkansas. Using a cradle-to-farm gate Life Cycle 

Analysis, both direct and indirect carbon emissions were estimated including production practice 

details commonly aggregated in other studies. Results of this analysis illustrated the differences 

in emissions on a spatial basis, as well as by production (tillage, irrigation, etc.) practice. This 

analysis provides a baseline for comparisons across counties and across production practices to 

see how inputs and spatially specific production practices impact GHG in production of row 

crops. This analysis also provides a baseline to compare the introduction of various carbon 

reducing policies. Using 2007 as a baseline, a cap-and-trade system was implemented for a 

hypothetically closed agriculture model utilizing county level profit maximization to curtail 

GHG by 5, 10, and 20%.  

From a carbon equivalent standpoint, fuel used for irrigation, was the largest source of 

GHG for each crop besides rice. Non-irrigated crops thus look to be advantageous to meet a 

statewide carbon reduction mandate.  Nitrogen fertilizer was the second largest component of 

total GHG for each crop due to the high amounts of energy required in its production. In 

addition, nitrogen applied to soil may be converted to nitrous oxide, a potent greenhouse gas. 

Rice had the largest average carbon footprint, which was attributed to the large amount of 

methane released from paddy rice production.  
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For the 5 and 10% GHG reduction scenarios, the Arkansas Delta, where 80% of the state 

row crop income is generated, purchased permits from the less carbon emission efficient central 

and western parts of the state resulted in only a 0.93 and 5.45% reduction in net agricultural 

returns excluding the trading costs associated with carbon permits. The state as a whole 

experienced 1.83 and 5.89% crop income losses from the baseline for the 5 and 10% GHG 

reduction policies, respectively. Interestingly, rice whose average carbon footprint is 

approximately four times larger than other row crops only lost 1.19 and 10.25% of its baseline 

acreage under the 5 and 10% GHG reduction scenarios, respectively. This can be attributed to 

the fact that rice’s high carbon footprint is mitigated by its high profitability. Essentially, if a 

cap-and-trade system was introduced, rice producing counties in the Arkansas Delta would 

purchase carbon permits from other parts of the state. Non-irrigated cotton is estimated to lose 

the most acreage under both the 5 and 10% reduction scenarios due to its relatively high carbon 

footprint to profit per acre ratio.  

While the 5 and 10% reductions in GHG caused modest changes in state net return, the 

20% reduction was estimated to reduce state net farm income by 31.64% from the baseline. The 

20% reduction model could not converge given historic planting practices. An alternative crop 

with a low carbon footprint, switchgrass, had to be introduced to meet the historic minimum 

acreage harvested in Arkansas. Even with the introduction of switchgrass there was an 18.73% 

(1.46 million acres) reduction in crop land. While this acreage would likely be enrolled in CRP 

or another low carbon foot print land choice that results in income, unlike the current modeling 

choice of switchgrass, the important result of this research is that traditional row crops in 

Arkansas like corn, wheat, and cotton would lose more than 50% of their baseline acreage with 
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current production practices. This decrease in acreage would also have ripple effects into the 

state commodity processing industry that were not included in this analysis.   

These results show that while a modest reduction in GHG emissions would only affect 

crop allocations amongst certain crops while marginally reducing state net returns, a 20% 

reduction would cause major cropping pattern shifts with some traditional row crops nearly 

disappearing. While the model does not account for trading carbon amongst states or industries it 

does provide a relative sense of where each crop and production practice stands in terms of GHG 

emissions.  This study illustrates that if agriculture is involved in a cap-and-trade type 

arrangement to reduce GHG, major crop pattern changes and significant reduction in crop 

production could result depending on the magnitude of the reduction.  
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Table1. Carbon Equivalent Emission Factors  
Input Carbon-Equivalent Source 
Fuel 
     Diesel 12.06 kg C/liter USA EPA 2007 

&2009, Sima Pro 
     Gasoline 11.16 kg C/liter USA EPA 2007 

&2009, Sima Pro 

Fertilizer 
     Nitrogen 1.30 kg C/kg Lal, R. 2004 
     Nitrogen N2O 1.27 kg C/kg IPNI 2007, IPCC 2007 
     Phosphate 0.20 kg C/kg Lal, R. 2004 
     Potash 0.16 kg C/kg Lal, R. 2004 
     Lime 0.17 kg C/kg Lal, R. 2004 

Herbicide 6.44 kg C/kg Lal, R. 2004 

Insecticide 5.44 kg C/kg Lal, R. 2004 

Fungicide 5.44 kg C/kg Lal, R. 2004 

Defoliant 6.44 kg C/kg Lal, R. 2004 

Growth Regulator 5.44 kg C/kg Lal, R. 2004 

Methane (Paddy Rice) 620.06 kg C/acre Tyler 2009 
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Table 2. Green House Gas (Carbon Equivalent) in Pounds per Acre for Each of the 63 Major 
Production Methods for the 6 Largest Row Crops in Arkansas 

Crop Production Practice 

Carbon 
Equivalent 
Emission 
(lbs/ac) Crop Production Practice 

Carbon 
Equivalent 
Emission 
(lbs/ac) 

Corn Conventional Center Pivot Loamy Soil 554.62 Sorghum Center Pivot Loamy Soil 367.44 
Conventional Flood Loamy Soil 474.84 Flood Loamy Soil 326.71 
Conventional Furrow Loamy Soil 477.58 Furrow Loamy Soil 332.45 

BT Furrow Loamy Soil 477.50 Non-irrigated Mixed Soil 247.43 
RR Furrow Loam Soil 492.98 
RR Furrow Clay Soil 571.07 Full Season Soybeans RR Non-irrigated 109.04 

BT/RR Furrow Loamy Soil 492.98 Conventional Non-irrigated 89.79 
RR Furrow 220.31 
RR Boarder Irr. 193.26 

Cotton RR Non-irrigated Conventional Till 8 Row 363.30 RR Center Pivot 221.19 
RR Non-irrigated Stale Seed Bed 8 Row 348.32 RR Flood 232.07 
RR Center Pivot Conventional Till 8 Row 514.04 Conventional Furrow 209.07 

BG/RR Center Pivot Conventional Till 8 Row 513.66 Conventional Boarder Irr 174.01 
BG/RR Furrow Conventional Till 8 Row 480.61 Conventional Center Pivot 201.91 
Conventional Furrow Conventional Till 12 Row 479.47 Conventional Flood 212.82 

BGII/RRFlex Center Pivot 12 Row Stale Seed Bed  470.63 
BGII/RRFlex Furrow 12 Row Stale Seed Bed  455.48 Double Cropped SB RR Furrow 205.60 
WS/RRFlex Furrow 12 Row Stale Seed Bed 455.18 RR Boarder Irr.  170.55 

RR/Flex Furrow 12 Row Stale Seed Bed 448.46 RR Center Pivot 205.48 
BGII/LL Furrow 12 Row Stale Seed Bed 443.37 RR Flood 202.23 
BGII/RRFlex Furrow No Till 12 Row 456.71 Conventional Furrow 188.45 

BG/RR Center Pivot Stale Seed Bed 12 Row 469.50 Conventional Boarder Irr. 153.40 
BG/RR Furrow 12 Row Stale Seed Bed 455.48 Conventional Center Pivot 188.83 
BG/RR Furrow Conventional Till 12 Row 479.41 Conventional Flood 185.08 

RRFlex Furrow 12 Row Stale Seed Bed 453.48 RR Non-irrigated No Till 75.020 
BGII/LL Center Pivot 12 Row Stale Seed Bed 457.38 RR Furrow No Till 158.89 
BGII/RRFlex Center Pivot No Till 12 Row 477.17 RR Center Pivot No Till 173.15 

LL Furrow 12 Row Stale Seed Bed 440.32 
BG/RRII Center Pivot No Till Stale Seed Bed 12 Row 477.19 Wheat Following Rice Sand/Silt Loam Soil 266.27 

Following Rice Clay 284.23 

Ricea Conventional Seed Silt Loam Soil 1947.77 Following Other Sand/Silt Loam Soil 242.31 
Conventional Seed Clay Soil 2010.48 Following Other Clay Soil 272.25 
Conventional No Till Silt Loam Soil 1959.07 

Conventional Seed Stale Seed Bed Silt Loam Soil 1957.87 
Clearfield Silt Loam Soil 1942.71 
Hybrid Silt Loam Soil 1905.90 

  Conventional Zero Graded No Till Waterseeded  1858.39         

aRice GHG emissions include the estimated 1,367 lbs of C attributed to methane gas release per acre.  
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Table 3. Baseline Crop Acerage and Percent Change in State Crop Acerage Given a 5, 10, and 
20% Reduction in Statewide Green House Gas Emissions 

    % GHG Reduction from Baseline 

Crop 
State Baseline 

Acreage 5% 10% 20% 
Corn (Irrigated) 543,696 1.31 1.80 -73.13 
Non-irrigated Cotton 282,055 -22.18 -25.55 -51.39 
Irrigated Cotton 586,812 2.72 4.32 -7.23 
Non-Irrigated Full Season Beans 728,993 0.52 5.13 42.05 
Irrigated Full Season Beans 1,658,700 0.18 0.71 2.20 
Irrigated Double Crop Beans 144,800 0.00 0.00 43.42 
Rice (Irrigated) 1,464,375 -1.19 -11.49 -13.53 
Wheat (non-irrigated) 801,294 1.11 -6.12 -72.13 
Non-irrigated Sorghum 109,371 0.03 10.25 -69.34 
Hayland 1,409,758 -0.27 -0.51 -32.26 
Pasture 2,036,839 -21.01 -21.01 -21.01 
Irrigated Sorghum 107,109 7.52 24.50 -73.56 
Total Acres in Production 7,836,963 -0.47 -2.23 -18.73 
Total Irrigated Acres 4,505,493 -0.37 -2.11 -13.71 
Total Carbon Emissions 5,937,312,102 -5.00 -10.00 -20.00 
Total Net Returns 656,544,363 -1.83 -5.89 -31.64 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4. Baseline County Revuene and Percent Reduction in County Level Agricultrual 
Revenue Given a 5, 10, and 20% Reduction in Statewide Green House Gas Emissions  

County Baseline (Million $) 5% 10% 20% County Baseline (Million $) 5% 10% 20%
Benton 4.59 7.10 7.10 38.98 Arkansas 43.02 0.26 0.26 11.57
Boone 3.44 7.00 7.00 22.40 Crittenden 17.19 0.03 10.53 37.46
Carroll 3.52 6.58 6.58 25.65 Cross 25.89 0.11 12.44 23.39
Madison 3.42 10.18 10.18 35.50 Lee 20.97 0.29 14.64 62.19
Newton 1.15 12.92 12.92 31.57 Lonoke 25.80 0.38 0.38 27.47
Washington 5.06 8.24 8.24 34.38 Monroe 16.44 0.05 2.58 45.55
CRD 1 21.18 8.08 8.08 32.01 Phillips 28.26 1.08 4.60 55.25

Prairie 26.27 0.34 0.51 24.46
Baxter 1.19 15.21 15.21 27.83 Saint Francis 18.40 0.31 11.09 36.34
Cleburne 1.71 10.55 10.55 37.35 Woodruff 11.64 0.60 3.75 21.53
Fulton 3.16 8.90 8.90 22.67 CRD 6 233.89 0.36 5.41 32.63
Izard 2.16 14.86 14.86 33.30
Marion 1.71 7.44 7.44 17.57 Hempstead 3.67 5.86 5.86 29.63
Searcy 1.99 17.66 17.66 28.56 Howard 1.65 5.95 5.95 22.66
Sharp 2.12 7.09 7.09 33.41 Lafayette 2.52 5.16 5.16 39.95
Stone 1.75 13.56 13.56 42.20 Little River 3.12 3.23 3.23 38.34
Van Buren 1.49 12.29 12.29 34.18 Miller 3.78 2.68 10.10 70.99
CRD 2 17.29 11.65 11.65 30.27 Montgomery 1.01 5.87 5.87 23.45

Pike 0.96 6.25 6.25 32.99
Clay 29.96 0.38 1.19 25.89 Sevier 1.76 8.07 8.07 29.05
Craighead 34.09 0.26 0.36 25.90 CRD 7 18.47 4.91 6.43 40.14
Greene 19.90 0.89 2.43 24.62
Independence 5.43 8.86 16.85 39.75 Bradley 0.36 8.30 8.30 56.74
Jackson 17.87 0.88 10.11 30.61 Calhoun 0.27 15.20 15.20 49.00
Lawrence 20.18 0.44 15.30 16.79 Clark 1.19 8.86 8.86 52.40
Mississippi 38.38 0.71 5.02 27.20 Cleveland 0.44 5.85 5.85 51.97
Poinsett 37.78 0.11 0.47 14.76 Columbia 0.68 18.93 18.93 32.47
Randolph 13.35 2.78 11.11 33.74 Dallas 0.26 20.63 20.63 47.13
White 7.99 7.82 18.61 52.51 Nevada 1.10 4.94 4.94 32.80
CRD 3 224.94 1.08 5.27 25.44 Ouachita 0.41 12.37 12.37 32.51

Union 0.41 8.67 8.67 26.36
Crawford 2.79 3.93 3.93 25.09 CRD 8 5.11 10.25 10.25 41.66
Franklin 2.83 5.13 5.13 43.30
Johnson 1.64 10.26 10.26 53.73 Ashley 8.39 1.27 9.46 36.46
Logan 3.65 5.30 5.30 29.67 Chicot 20.41 1.19 1.19 41.47
Polk 2.01 10.50 10.50 30.62 Desha 27.89 0.35 3.11 39.50
Pope 2.59 6.72 6.72 34.09 Drew 7.01 1.74 25.62 57.92
Scott 1.66 4.85 4.85 16.54 Jefferson 23.22 0.25 0.25 38.58
Sebastian 1.82 8.48 8.48 42.11 Lincoln 13.24 0.81 14.61 32.49
Yell 3.06 10.30 10.30 41.87 CRD 9 100.16 0.73 5.68 39.79
CRD 4 22.05 7.04 7.04 34.97

State Total 656.54 1.83 5.89 31.64
Conway 2.96 4.32 4.32 39.34
Faulkner 4.02 11.01 12.08 23.17
Garland 0.53 23.43 23.43 42.83
Grant 0.59 16.72 16.72 48.86
Hot Spring 0.91 11.40 11.40 37.82
Perry 1.04 5.37 5.37 46.98
Pulaski 2.59 7.54 12.78 48.37
Saline 0.81 18.44 18.44 42.99
CRD 5 13.45 9.65 10.98 37.51

%  GHG Reduction from Baseline %  GHG Reduction from Baseline
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Figure 1. Decomposition of the Total Green House Gas Emission By Crop and Production 
Types 
Note: The Carbon Equivalent for Rice Does Not include the 1,367 lbs Attributed to Methane Release.  
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Figure 2. Estimated County Level Agricultral Green House Gas Reduction from a Statewide 5% 
Cap-and-Trade GHG Reduction Policy 
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Figure 3. Estimated County Level Agricultral Green House Gas Reduction from a Statewide 
10% Cap-and-Trade GHG Reduction Policy 
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Figure 4. Estimated County Level Agricultral Green House Gas Reduction from a Statewide 
20% Cap-and-Trade GHG Reduction Policy 
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