
Copyright

by

Taylor Annette Kessler Faulkner

2022

1

The Dissertation Committee for Taylor Annette Kessler Faulkner
certifies that this is the approved version of the following dissertation:

Learning Robot Policies from Imperfect Human

Teachers

Committee:

Andrea Thomaz, Supervisor

Manuela Veloso

Peter Stone

Elaine Short

Constantine Caramanis

2

Learning Robot Policies from Imperfect Human

Teachers

by

Taylor Annette Kessler Faulkner

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2022

3

Dedicated to my husband and parents, for their love and support.

4

Acknowledgments

I would like to thank Andrea Thomaz, my phenomenal research advisor

and leader of the Socially Intelligent Machines (SIM) lab, for always supporting

my ideas and having my back throughout the highs and lows of graduate

school. Thanks are also owed to Elaine Short, my unofficial secondary advisor,

for helping me develop a work-life balance alongside my thesis during her time

as a postdoctoral researcher in the SIM lab.

Thank you to the collaborators and labmates that I’ve worked closely

with during my PhD (Guy Hoffman, Mai Lee Chang, Akanksha Saran, Tesca

Fitzgerald, Shih-Yun Lo, Adam Allevato, Alex Gutierrez, Priyanka Khante,

Yuchen Cui, Ajinkya Jain, Thomas Wei, Kush Desai, Srinjoy Majumdar, Max

Svetlik, Kim Baraka, Reuth Mirsky, and others) for creating a supportive and

collaborative working environment. A special acknowledgement is also owed to

Mai Lee Chang for reading through my thesis, and for her continued support

through thick and thin during our last year at UT Austin.

I also have to acknowledge my academic advisors and study group from

my undergraduate degree at Denison University, who helped make applying to

graduate school a manageable process. Thanks to my undergraduate computer

science class team (Trevor Masters and Paige Vosmik) for sticking with me for

3+ years of study groups, class projects, and coding competitions. Thank you

5

also to Matt Kretchmar and Ashwin Lall, my research advisors during my time

as an undergraduate at Denison University who encouraged me to apply to

graduate school and provided a wonderful research education that has helped

me throughout my PhD program.

Many thanks to my husband Brant Bowers, parents Rob Kessler and

Kelly Faulkner, and all of the friends who supported me throughout graduate

school: Brant for being the most encouraging and patient partner I could

have asked for, my mom and dad for fostering my academic dreams, and

the close friends I’ve managed to keep in touch with throughout graduate

school (Samantha Allen, Jess Hoffmann, Natalie Foster, Chris Conard, Greg

Ponti, Luc Lisi, Alyss Flynn, Ace Furman, Sara Schroer, Sami Steinkamp, Will

Cornell, Alex Farrenkopf, Nic Lyman, Chris Robie, Will Brackenbury, among

others) for providing support, distraction, and entertainment when graduate

school was too overwhelming. Finally, a thank you to my cats, Lord Albert

Stormageddon (Storm) and Smokira Queen of Shadows (Smoke) for emotional

support, forced breaks when working from home, and typing assistance during

the writing of this document.

6

Learning Robot Policies from Imperfect Human

Teachers

Publication No.

Taylor Annette Kessler Faulkner, Ph.D.

The University of Texas at Austin, 2022

Supervisor: Andrea Thomaz

The ability to adapt and learn can help robots deployed in dynamic and

varied environments. While in the wild, the data that robots have access to

includes input from their sensors and the humans around them. The ability to

utilize human data increases the usable information in the environment. How-

ever, human data can be noisy, particularly when acquired from non-experts.

Rather than requiring expert teachers for learning robots, which is expensive,

my research addresses methods for learning from imperfect human teachers.

These methods use Human-in-the-loop Reinforcement Learning, which gives

robots a reward function and input from human teachers. This dissertation

shows that

Actively modifying which states receive feedback from imperfect,

unmodeled human teachers can improve the speed and

dependability of Human-In-the-loop Reinforcement Learning

(HRL).

7

This body of work addresses a bipartite model of imperfect teachers, in

which humans can be inattentive or inaccurate. First, I present two algorithms

for learning from inattentive teachers, which take advantage of intermittent

attention from humans by adjusting state-action exploration to improve the

learning speed of a Markovian HRL algorithm and give teachers more free

time to complete other tasks. Second, I present two algorithms for learning

from inaccurate teachers who give incorrect information to a robot. These

algorithms estimate areas of the state space that are likely to receive incorrect

feedback from human teachers, and can be used to filter messy, inaccurate

data into information that is usable by a robot, performing dependably over

a wide variety of inputs.

The primary contribution of this dissertation is a set of algorithms that

enable learning robots to adapt to imperfect teachers. These algorithms enable

robots to learn policies more quickly and dependably than other existing HRL

algorithms. My findings in HRL will enhance the ability of robots to learn

new tasks from laypeople, requiring less time and knowledge of how to teach

a robot than prior work. These advances are a step towards ubiquitous robot

deployment in the home, public spaces, and other environments, with less

demand for expensive expert data and an easier experience for novice robot

users.

8

Table of Contents

Acknowledgments 5

Abstract 7

List of Tables 12

List of Figures 13

Chapter 1. Introduction 15

1.1 Learning from inattentive teachers 17

1.2 Learning from inaccurate teachers 18

1.3 Contributions . 19

Chapter 2. Background and Related Work 21

2.1 Background . 21

2.1.1 Reinforcement Learning 21

2.1.2 Policy Shaping . 23

2.1.3 TAMER+RL . 24

2.2 Related Work . 25

2.2.1 Human-in-the-loop Reinforcement Learning 25

2.2.2 Attention from Human Teachers 26

2.2.3 Learning from Incorrect Information 27

2.3 Thesis Motivation . 28

Chapter 3. MDP Framework for Inattentive and Inaccurate Teach-
ers 29

9

Chapter 4. Learning from Inattentive Teachers 32

4.1 Attention-Modified Policy Shaping 34

4.1.1 AMPS Methodology: Altering Exploration Based on At-
tention . 34

4.1.2 AMPS Simulation Experiment: Testing response to at-
tention . 36

4.1.3 AMPS Simulation Results: AMPS learns faster than base-
line . 38

4.1.4 AMPS Robot Experiment: Testing learning response to
human attention with robot study 40

4.1.5 AMPS Robot Results: Robot performs faster with AMPS
given time . 44

4.2 Active Attention-Modified Policy Shaping 48

4.2.1 AAMPS Methodology: Enabling robots to request atten-
tion . 50

4.2.2 AAMPS Simulation Experiment: Testing performance
with attention requests 52

4.2.3 AAMPS Simulation Results: AAMPS learns more quickly
and with less feedback than baselines 55

4.2.4 AAMPS Robot Experiment: Testing attention requests
and human response . 57

4.2.5 AAMPS Robot Results: People have more break time
with AAMPS . 65

4.3 Summary: AMPS and AAMPS improve the performance of
HRL with inattentive teachers 71

Chapter 5. Learning from Incorrect Teachers 74

5.1 Revision Estimation from Partially Incorrect Resources 75

5.1.1 REPaIR Methodology: Incorporating feedback filtering
into HRL . 76

5.1.2 REPaIR Simulation Experiment: Comparing average re-
ward gathered against baselines 79

5.1.3 REPaIR Simulation Results: REPaIR performs more de-
pendably than baselines 84

5.1.4 REPaIR Robot Experiment 88

5.1.5 REPaIR Robot Results: Robot learns a task using REPaIR 90

5.2 Classification for Learning Erroneous Assessments using Rewards 91

10

5.2.1 CLEAR Methodology: Improving REPaIR with the use
of machine learning . 92

5.2.2 CLEAR Simulation Experiment: Testing performance with
simulated feedback . 96

5.2.3 CLEAR Simulation Results: CLEAR performs depend-
ably over multiple levels of feedback correctness 98

5.2.4 CLEAR Human Study: Testing how CLEAR responds to
real human feedback . 99

5.2.5 CLEAR Human Study Results: CLEAR can filter messy
human feedback . 105

5.3 Summary: REPaIR and CLEAR perform more dependably than
baselines . 106

Chapter 6. Scalability of Presented Methods 108

Chapter 7. Summary and Conclusions 114

7.1 Contributions . 117

Bibliography 119

11

List of Tables

4.1 Pretrained state-action pairs in Agood. The first set of state
brackets represents box b1, and the second represents box b2. . 58

5.1 Changes in performance from adding REPaIR to TAMER-P
out of 10 different p settings 85

5.2 Changes in performance from adding REPaIR to TAMER-W
out of 10 different w settings 86

5.3 Changes in performance from adding REPaIR to PS out of 10
different C settings . 87

5.4 The mean AUC for each algorithm. 99

12

List of Figures

1.1 Completed body of work . 19

4.1 Example task environment for AMPS 37

4.2 Total rewards during learning for 100 episodes 39

4.3 Total rewards during learning for 100 episodes with varied at-
tention . 41

4.4 Robot used during AMPS experiments. 42

4.5 Participant survey feedback for AMPS robot actions 45

4.6 Total rewards during AMPS learning 47

4.7 Amount of feedback given by participants during AMPS . . . 48

4.8 AAMPS pipeline, showing steps after taking each action . . . 50

4.9 Simulated algorithm comparison of rewards gathered over each
episode. All algorithms were run for 100 episodes. 57

4.10 Robot performing sorting task used in human study 60

4.11 Divergence of attention requests between AAMPS and AMPS
Interval for one learning run. Requests for attention diminish
over time using AAMPS. 61

4.12 Amount of feedback given during each algorithm. 66

4.13 Amount of words written during each algorithm. 67

4.14 Participant perceptions of the robot 69

4.15 Simulated learning from human study data for each algorithm.
The three algorithms learned at approximately the same rate. 70

5.1 REPaIR Framework . 77

5.2 TAMER-P compared to TAMER-P+REPaIR and Q-Learning 85

5.3 TAMER-W compared to TAMER-W+REPaIR and Q-Learning 86

5.4 PS compared to PS+REPaIR and Q-Learning 87

5.5 Robot vision system . 89

5.6 Performance of PS and PS+REPaIR on a robot 90

13

5.7 CLEAR algorithm: classifier for predicting learning slope . . . 93

5.8 Distractor goal placements for |S| = 225 97

5.9 CLEAR simulation results . 100

5.10 Videos in simulated robot environment 104

5.11 Simulated performance prior to Amazon Mechanical Turk data. 106

14

Chapter 1

Introduction

“Sometimes, I just don’t understand human behavior. After all,
I’m only trying to do my job.”

—C-3PO (Star Wars: Episode V – The Empire Strikes Back)

Robots that are deployed in human environments, such as homes and

public spaces, can benefit from the ability to acquire new skills in order to

adapt to their changing surroundings. Robots that can learn from people can

potentially adapt and learn more quickly than robots that learn from environ-

mental sensor observations alone. Given that expert time is rare and costly,

enabling laypeople to teach robots in the wild will allow more robotic agents

to be deployed in human environments. The ability to learn from any person

the robot comes across would give robots access to more data and learning

opportunities. However, non-experts may be imperfect at supplying learning

robots with data. In this dissertation, I present algorithms for learning from a

bipartite model of imperfect teachers, in which humans can be inattentive and

inaccurate while giving feedback to a learning robot (Figure 1.1). These algo-

rithms use Human-in-the-loop Reinforcement Learning (HRL) to intake data

from human teachers, a method of learning that allows human teachers to give

robots feedback or advice on actions rather than providing full demonstrations.

15

HRL is able to give robots two sources of information: an environmen-

tal reward function and additional feedback from human teachers. Robots can

use one of these sources to confirm the performance of the other, balancing how

much weight a robot puts on each source of information. Many prior methods

in HRL work quite well with human feedback but do not fully address human

limitations or preferences, assuming that human teachers are constantly avail-

able during the learning process, or that the robot has a known prior on how

correct the teacher’s feedback is [43]. In this body of work, I address these

human differences to improve the quality of HRL with imperfect teachers, en-

abling robots to learn more quickly, with policies that are robust to a wide

variety of human input. The two research directives, Learning from inattentive

teachers and Learning from inaccurate teachers are outlined in the following

sections. I define inattentive teachers and inaccurate teachers in Section 3. In

all of these works, I first test the algorithm performance in simulation with a

simulated teacher in order to measure how the algorithm performs in theory.

Then, I test on a physical robot and/or with real people, in order to test how

the algorithms perform in practice.

My algorithms are built on an MDP, and the task is thus assumed to

be Markovian: that is, the next state only depends on the current state, with

no other recorded history factoring in. This means that when teachers come

back to the robot to give it attention, they will not need to know a history of

actions, but instead can infer the best action for the robot to take based on

their observation of the current state alone. However, if people are aware of the

16

robot’s previous actions, they may take this history into account when giving

feedback, which is inherently non-Markovian. Additionally, this Markovian

assumption may not hold in tasks that are history-dependent, which I address

in Chapter 6. Despite these issues, using an MDP will function throughout

this thesis as an approximate model of the human-robot interactions that I

study.

1.1 Learning from inattentive teachers

My work on inattentive teachers includes two algorithms, Attention-

Modified Policy Shaping (AMPS) [24] and Active Attention-Modified Policy

Shaping (AAMPS) [34]. The AMPS algorithm capitalizes on human attention

by increasing exploration when the teacher is available and decreasing explo-

ration while no teacher is present, assuming that teachers are always attentive

when present and only require viewing the current state of the robot to give

feedback. AMPS allows the robot to learn a policy more quickly and requires

less time from teachers than Policy Shaping [30]. In the work following AMPS,

AAMPS extends this method to enable the robot to actively request feedback

from inattentive teachers. This extension allows the robot to receive feedback

at informative points, and takes the burden of deciding when to return to

the learning robot off of human teachers. These works improve the speed

of learning policies using HRL, while requiring less feedback and attention

from human teachers. In this work, periods of attention or inattention are

predetermined, not sensed by the robot. The assumption of perfect attention

17

detection allows us to directly compare AMPS with Policy Shaping. However,

noisy attention perception, as has been done in prior work [26, 42, 48, 63, 67]

could easily be plugged into the AMPS and AAMPS algorithms.

1.2 Learning from inaccurate teachers

To learn from inaccurate teachers, I enable robots to decide which

teacher-provided information to trust, using additional sources of information

such as the reward function in HRL. These works are motivated by circum-

stances in which people will give consistently bad feedback on some states

and consistently good feedback on others. This may happen if teachers are

confused about the task goal or how the robot functions. I present an al-

gorithm, Revision Estimation from Partially Incorrect Resources (REPaIR),

that can filter incorrect information to usable information for the robot and

propose several studies to validate this algorithm. REPaIR saves a maximal

cumulative reward value for each state-action pair and uses this memory to

compute trust values in human feedback. I also present an algorithm, Clas-

sification for Learning Erroneous Assessments using Rewards (CLEAR), that

uses a classifier to learn to predict the slope of the learning curve based on

observed state-action pairs, to reduce the amount of storage space needed to

filter incorrect information. That is, instead of storing reward information

for each individual state-action pair, the classifier enables CLEAR to learn to

predict task performance based on state features and actions. CLEAR also

supplements feedback given by human teachers, in order to more easily extend

18

Figure 1.1: My completed body of work, composed of the AMPS, AAMPS,
REPaIR, and CLEAR algorithms.

to complex tasks, in which robots may need more feedback than is possible to

receive from a single teacher. These methods improve the dependability of

HRL algorithms, enabling them to perform robustly without prior knowledge

or modeling of the correctness of human teachers.

1.3 Contributions

Specifically, this dissertation provides the following contributions:

1. A HRL algorithm (AMPS) that changes RL exploration in order to learn

significantly faster than a baseline with 44% higher area under the learn-

ing curve (Speed) [24] (Chapter 4)

2. A HRL algorithm (AAMPS) that enables robots to ask for attention from

19

inattentive teachers when needed, performing significantly faster than

baselines with ≥ 11% higher area under the learning curve (Speed) [34]

(Chapter 4)

3. A framework for Markov Decision Processes with incorrect feedback [35]

(Chapter 3)

4. An algorithm (REPaIR) that filters imperfect feedback to various HRL

algorithms, enabling the expected performance to match or exceed base-

line when the robot has no prior model of expected human feedback

correctness (Dependability) [35] (Chapter 5)

5. An algorithm (CLEAR) that filters imperfect feedback to a HRL algo-

rithm in a large state space, as well as adding supplemental feedback,

matching or exceeding the performance of an RL baseline, outperforming

an HRL baseline when the robot has no prior model of expected human

feedback correctness (Dependability)

20

Chapter 2

Background and Related Work

“The need for more research is clearly indicated.”

—Data (Star Trek: The Next Generation, Season 4 Episode 11)

This chapter introduces important background concepts and algorithms

and covers relevant prior work. I introduce Reinforcement Learning (Section

2.1.1), the Policy Shaping algorithm [30] (Section 2.1.2), and TAMER+RL

[38] (Section 2.1.3). Then, related work in Human-in-the-loop Reinforcement

Learning (Section 2.2.1), learning from inattentive teachers(Section 2.2.2), and

learning from inaccurate teachers 2.2.3) will be discussed.

2.1 Background

The Reinforcement Learning framework is detailed here here, with a

review of some relevant algorithms in HRL, which are used as baseline algo-

rithms in several of my works.

2.1.1 Reinforcement Learning

Reinforcement Learning (RL) is built on a Markov Decision Process

(MDP). MDPs consist of a tuple (S,A, T,R, γ):

21

• S: a set of states

• A: a set of actions

• T (s, a, s′): a transition function giving the probability of transitioning

to s′ ∈ S when taking a ∈ A in s ∈ S

• R: a reward function, giving reward rs,a after taking a ∈ A in s ∈ S

• γ: a discount factor

The RL algorithm used in the majority of my experiments is Q-

Learning, an off-policy method of RL, which uses a learning rate α and a

discount factor γ to learn Q-values from rewards using a Bellman update over

episodes. Often, Q-Learning is used with Boltzmann exploration to encourage

the learning agent to explore the environment rather than just exploit the cur-

rent Q-values, which can lead to the agent getting stuck in local optima [83,84].

Using Boltzmann exploration, the probability of taking any action a in state

s is

Pr
q
(s, a) =

e
Q(s,a)

τ∑
a′ e

Q(s,a′)
τ

(2.1)

using the learned Q-values Q(s, a) and τ , a temperature parameter.

22

2.1.2 Policy Shaping

Policy Shaping [16, 30] is a form of HRL that enables people to give

binary feedback, positive or negative, to a learning robot. I use this algorithm

as a baseline throughout my body of work. This feedback shapes the robot’s

policy, influencing it towards state-action pairs that have received positive

feedback from a human teacher. All actions consider the human feedback as

the difference in positive and negative values given by the teacher, or ∆s,a.

Using ∆s,a rather than the count of positive feedback on (s, a) compensates

for the possibility that teachers may be slightly inconsistent in their feedback

on the same state-action pair at different times.

Policy Shaping affects the exploration style of the robot, rather than

influencing the rewards or Q-values of the MDP directly. Let the probability

of taking any action using exploration methods based purely on the MDP be

Prq(a|s). The probability that an action is good using feedback is

Pr
c
(a|s) = C∆s,a

C∆s,a + (1− C)∆s,a

(2.2)

where C ∈ [0, 1] is a trust parameter, with 0 being complete distrust

in the human teacher and 1 being complete trust. When C = 0.5, PS reduces

to RL with no feedback. In these experiments, I cap ∆s,a to avoid overflow

computation errors in Python 2.7. Using Prq(a|s) and Prc(a|s), the probability

of taking any action a ∈ A in state s ∈ S while learning is

23

Pr
p
(a|s) = Prq(a|s) Prc(a|s)∑

α∈A Prq(α|s) Prc(α|s)
. (2.3)

2.1.3 TAMER+RL

TAMER is an algorithm for replacing a reward function with human

feedback [36,37]. An extension to TAMER experimented with several methods

of combining scalar feedback with a reward function [38]. I consider two such

methods that were shown to outperform SARSA [76], an on-policy method of

RL. In the following equations, Ĥ(s, a) is the human’s reward function, learned

over time using TAMER. TAMER uses a learned predictor of feedback after

each state-action pair, in tasks that do not allow immediate feedback from

humans after each action [36,37]. Throughout this dissertation, I will refer to

the two versions of TAMER+RL as TAMER-P and TAMER-W, so named for

the variables that enable TAMER+RL to weight the importance of Ĥ(s, a)

versus Q(s, a).

1. TAMER-P:

P (a = argmaxa[Ĥ(s, a)]) = p. (2.4)

With probability 1−p the original RL agent’s action selection mechanism

is used. p is gradually diminished over time, so the human’s feedback is

more influential at the start of the learning process.

24

2. TAMER-W:

a = argmaxa[Q(s, a) + w*Ĥ(s, a)]. (2.5)

2.2 Related Work

In this section, I cover background work in Human-in-the-loop Re-

inforcement Learning (HRL), My work on learning from inattentive teach-

ers relies on changes in attention during human-robot engagement, related

to curiosity-driven learning, and actively requesting specific information from

teachers, related to active learning. My work on learning from incorrect teach-

ers is related to other research that learns from imperfect information from

teachers, and the proposed work is based on adapting to the teaching styles

of human teachers.

2.2.1 Human-in-the-loop Reinforcement Learning

HRL allows a Markov Decision Process (MDP) to be supplemented

with additional input from a human teacher [43]. This input can take many

forms, such as binary or scalar-valued feedback [30, 38, 72, 75, 82], advice on

future actions [40, 41, 45, 51, 71], or action intervention [68]. Human feedback

can also replace the reward function [36]. Other methods of HRL can use full

demonstrations [32, 44, 52, 61, 75]. I will cover some of these works in more

detail in the following sections.

25

2.2.2 Attention from Human Teachers

Related work in human-robot interaction (HRI) considers human at-

tention (or engagement) to modify robot behavior [48, 62, 88], or attempts to

convince people to engage with the robot [14, 73]. However, this work does

not modify learning styles, as my algorithms do. Curiosity-driven learning,

also known as intrinsic motivation, allows learning agents to explore their en-

vironment based on maximizing learning and information potential, not just

maximizing rewards or values [2, 17, 56, 70], but these works do not include

human teachers, or do not give teachers breaks. Previous work by Oudeyer

et al. [56] has combined curiosity-driven learning with human teachers, cre-

ating an agent that chooses whether to follow human advice or explore, but

this work also assumes that human feedback is always available to the robot,

unlike ours. Similar to my algorithms, there has been previous research on

active RL [21] without available human teachers, using initial estimates of an

MDP to direct exploration. However, this exploration is not based on human

feedback. Other prior research on active RL [4, 15, 18–20] queries teachers for

feedback in informative states, but assumes that teachers are always present

and available to give feedback. There is also work that attempts to ask sur-

rounding people for their attention, although the robot is not trying to learn

a task in these cases [53,65].

26

2.2.3 Learning from Incorrect Information

Prior work has proposed algorithms that compensate for incorrect sup-

plemental human feedback ([30, 38, 49, 74]) or demonstrations [27, 33, 75, 80]

in an RL framework. Other works use static [30] or slowly decreasing reliance

on a teacher’s feedback over time [38]. There is also research into how to state

questions to laypeople in such a way to avoid confusion and incorrect answers

about state inference [64]. Sridharan [74] keeps track of policies from a reward

function, and one policy from feedback, weighting trust based on the agreement

between its policy and the reward function policies. Another method bases the

trust in a teacher by comparing teacher advice and currently learned Q-values,

as well as the current trust in a deep RL algorithm [45]. These methods may

discount good feedback at the beginning of learning, when the Q-values and

initial policies are still likely to be incorrect. [49] showed a neural net trained

with a loss function that modeled noise as an asymmetric Bernoulli outper-

formed a neural net trained with binary cross entropy loss in the classification

of pixels from aerial images. Their approach relied on a priori information on

the probability of label flip noise.

There is also research into learning from incorrect information in Learn-

ing from Demonstration (LfD) [7]. In Inverse Reinforcement Learning (IRL),

the agent is provided with full demonstrations from the teacher and has to

estimate the reward function from these demonstrations [13, 22, 31, 91]. How-

ever, all of these works require full demonstrations, or additional information

such as rankings [13] or the relative frequency of bad demos [31,91].

27

2.3 Thesis Motivation

Over this survey of prior works, a pattern emerges. While there are

state-of-the-art HRL algorithms that perform very well with perfect human

teachers, gaps begin to show when people do not behave as ever-present oracles.

When teachers are imperfect, robots can behave unpredictably, learn slowly, or

learn incorrect behaviors. My algorithms use insights about human behavior to

improve the capability of robots learning using HRL, by addressing the cases

in which teachers are inattentive or give inaccurate feedback to a learning

robot. This thesis focuses on enabling robots to learn with the assumption

that humans need breaks and may misunderstand tasks or how the robot

functions.

28

Chapter 3

MDP Framework for Inattentive and

Inaccurate Teachers

This framework is inspired by Everitt et al. [23], who developed a frame-

work for CRMDPs (Corrupt Reward MDPs), for which the reward signal itself

is unreliable. Let t be an individual teacher that gives feedback Ft(s, a) for

state s and action a, and N be the total number of time steps for a learning

algorithm using the IFMDP. Then, potentially imperfect environmental feed-

back is added to an MDP, creating an Imperfect Feedback MDP (IFMDP),

consisting of a tuple (Attt,n, F
∗
t , Ft, S, A,As,seen, T, R, γ):

• Attt,n: a binary variable in

0, 1

that indicates whether the teacher t is present and watching the robot

(1) or not (0) at time step n ∈ N

• F ∗
t (s, a), Ft(s, a): correct and given teacher feedback/advice functions for

teacher t, related by Γ s.t. Ft(s, a) = Γ(F ∗
t (s, a)). Ft(s, a) > 0 indicates

positive feedback.

• S : a set of states

29

• A : a set of actions

• As,seen: a set of actions a ∈ A from state s that have been observed by

teacher t (Attt,n = 1)

• T (s, a, s′) : probabilities of transitioning to s′ ∈ S when taking a ∈ A in

s ∈ S

• Rh(s, a) : the reward function, as defined by some human h

• γ: a discount factor

S,A, T, and Rh are all identical to a standard MDP. In addition, I

supplement the MDP tuple with Attt,n,As,seen, F
∗
t (s, a), and Ft(s, a) to account

for inattentive and inaccurate teachers. For inattentive teachers, Attt,n is a

binary signal that the robot can reference to determine whether a teacher is

paying attention to it. I define attention for this work as a state in which a

teacher t is present and watching the robot, assuming that in this case they

are paying attention to the robot’s actions; this definition does not include a

teacher that is present, watching, but not thinking about the robot. Attt,n can

be toggled by the teacher t, by an experimenter, or by an attention-detection

function [26, 42, 48, 63, 67]. An inattentive teacher t, returning feedback using

Ft(s, a), is defined as follows:

∃n ∈ N s.t. Attt,n = 0. (3.1)

30

For inaccurate teachers, I add F ∗
t (s, a) and Ft(s, a). There exists some

family of reward functions R∗ such that an optimal desired policy π∗ will be

learned. This family of reward functions is defined as R ∈ R =⇒ R → π∗.

However, Rh ∈ R∗ is not necessarily guaranteed. F ∗
t and Ft are the correct and

given teacher feedback functions for some teacher t. A corruption function, Γ,

is defined as the difference between F ∗
t and Ft s.t. Ft = Γ(F ∗

t). If Ft is correct,

Γ will be the identity function.

Here I define correctness, a term that is used in this work to describe

reward functions and human feedback:

• Correct feedback/advice: the ranking of all values or suggested actions

in state s by the teacher is the same as the ranking of all actions in s by

the learned value function.

• Correct reward functions: following R produces the policy π∗.

A correct teacher, as defined above, agrees completely with π∗. Cor-

rectness is defined in relation to V (s, a), the state-action values that would

be learned from S,A, T , and some R ∈ R∗ if all information was given to the

agent. Consider π∗(s) = argmaxa(V (s, a)). Thus the desired policy of the

teacher must match π∗ to be correct. I define Ft∗ as follows:

F ∗
t (s, a) ≥ F ∗

t (s, a
′) ⇐⇒ V (s, a) ≥ V (s, a′). (3.2)

An incorrect teacher can thus be defined as a function Ft(s, a) where:

∃s, a s.t. Ft(s, a) ̸= F ∗
t (s, a).

(3.3)

31

Chapter 4

Learning from Inattentive Teachers

“I want to be alone!”

—Bender (Futurama: Season 7 Episode 12)

“Look at me! I want attention.”

—Bender (Futurama: Season 2 Episode 19)

In this chapter, I present my algorithms for learning from inattentive

teachers. Human-in-the-loop RL methods often assume that the teacher is con-

tinuously paying attention, watching and maintaining awareness of a robot’s

actions. However, the assumption that a human will be constantly available to

give feedback is unlikely to hold. These algorithms, Attention-Modified Policy

Shaping (AMPS) and Active Attention-Modified Policy Shaping (AAMPS),

enable a robot to change its behavior depending on the presence of human

attention. With less human attention, robots learn slowly, and may even learn

incorrect policies under certain algorithmic conditions. For example, Ceder-

borg et al. showed that, in certain cases, robots should interpret a teacher’s

lack of feedback as implying approval of actions when using the Policy Shaping

algorithm [16]. However, this result no longer holds when teachers are paying

intermittent attention, as robots could take bad, even disastrous actions, while

32

interpreting the inattentive teacher’s silence as tacit approval. The algorithms

I present in this chapter enable robots to take human attention into account,

modifying their policy exploration to control which states are observed by a

teacher. This enables the robots to learn faster than baselines, with less human

attention.

Continuing learning as usual while no one is present can speed up learn-

ing, but can also cause unwanted, unpredictable robot behavior during periods

of inattention. In previous approaches to HRL, if no human is available the

robot learns from its environment. However, continuing to explore the envi-

ronment as usual while no human is observing may not be optimal behavior.

For example, consider a robot deployed in a home, learning the necessary

motions to put away dishes. If the robot has a good model of putting cups

away but is still exploring to find more efficient methods, exploring without a

person around to observe and potentially stop the robot is likely to result in

broken glass all over the kitchen. A better approach might be for the robot to

put away cups in a trusted way when left alone, and attempt to learn better

actions when supervision is available. 1

1Parts of this chapter have been previously published under Policy Shaping with Supervi-
sory Attention Driven Exploration [24] ©2018 IEEE and Active Attention-Modified Policy
Shaping [34] ©2019 International Foundation for Autonomous Agents and Multiagent Sys-
tems .

33

4.1 Attention-Modified Policy Shaping

I present an extension to Policy Shaping, a method of HRL, that takes

into account human attention. I define attention as the state of a human

watching and maintaining awareness of a robot’s actions, and consider the

ideal case in which the human’s attention status is fully observable. An inat-

tentive human is defined as in Section 3. During periods of attention, the robot

favors information-gathering actions that allow it to receive feedback about

potentially positive states. When unattended, the robot favors actions that

have previously received positive feedback during periods of attention. This

approach enables the robot to both learn faster in limited-attention scenarios

by increasing exploration when supervision is available, and to act more pre-

dictable during human inattention by exploiting known “good” actions when

in states that humans have previously seen and for which they have provided

positive feedback. If there are actions available that a person has approved,

the robot will choose from them. I test AMPS in both simulation and on a

robot, finding that this method learns faster than Policy Shaping and performs

more safely than Policy Shaping while no one is paying attention to the robot.

4.1.1 AMPS Methodology: Altering Exploration Based on Atten-
tion

I developed an algorithm that changes which actions the robot explores

depending on a human supervisor’s attentional state. This algorithm combines

Q-Learning and Policy Shaping, as described in 2.1.1 and 2.1.2. Both use

34

Algorithm 1: Attention-Modified Policy Shaping

while the robot is learning do
follow Q-Learning
if person is paying attention then

with 50% chance, prioritize a ̸∈ Aseen

if no available actions not in Aseen then
follow Policy Shaping

end
otherwise prioritize a ∈ Agood

if no available actions in Agood then
follow Policy Shaping

end

else
prioritize a ∈ Agood

end

end

Boltzmann exploration [83] with τ set to 0.5, where τ is an exploration constant

decreased by 1% each learning episode. The Q-learning parameters α and γ are

set to 0.1 and 0.9 respectively to maximize the performance of Policy Shaping

on the chosen task.

AMPS chooses actions based on the teacher’s attention, as shown in

Algorithm 1. For each state, the agent keeps track of the actions that the

teacher has seen, Aseen (as defined in Section 3). The agent also keeps track

of Agood ⊆ Aseen, the actions that have received more positive than negative

feedback. In this work, when a person is paying attention (Attt,n = 1 as

defined in Section 3), the algorithm randomly chooses with 0.5 probability

between taking an action that provides new information (the action is not

in Aseen), and taking an action that might lead to a better part of the state

35

space (the action is in Agood). If either Agood or Aseen is empty when the agent

attempts to choose an action from the set, the agent follows the original PS

algorithm. When there is no one paying attention (Attt,n = 0), the agent

maximizes the predictability of its actions by choosing only from a ∈ Agood,

following the original PS algorithm if no such action is available. When the

agent is choosing from a reduced set of possible actions, AMPS calculates the

probabilities of each action using Equation 3 with the reduced set rather than

all possible actions.

4.1.2 AMPS Simulation Experiment: Testing response to attention

I compare AMPS with Policy Shaping on a simulated cup placement

task. The robot’s goal is to push a cup to a desired location on a table, without

pushing the cup off the table. This task could be used to put away cups on a

shelf in specific locations; cups on the edge of a shelf are easier for humans to

reach at a later point. The table is represented by a 6 by 8 grid in simulation.

The goal location for the cup, locG, is on the edge of the table, at

grid square (5,3) with the grid indexed from zero. This task is well-suited

to PS because without human feedback, RL will avoid the edges of the table

during learning since they are near dangerous states. PS allows people to

guide the robot towards locG to allow faster learning. The agent learns the

cup placement task using AMPS and PS. The start location of the cup (2,1)

and locG remain the same throughout.

The problem MDP is formulated as follows:

36

Figure 4.1: Example task environment for AMPS

• S = (x, y), the location on table grid.

• A = {north, south, east, west, end}, where the first four actions represent

a push in that direction and “end” finalizes the position of the current

cup and generates a new cup on the table.

• T = each action pushes one grid square in the specified direction.

The reward is +100 for ending on locG, where this reward is given as

the robot pushes the cup onto the location and taken away if it is pushed off

of the location. There is a penalty of -125 if the cup falls off the table. All

other states have a penalty of -1 to encourage quick travel to the goal.

An oracle represents a human teacher, giving positive feedback when

the agent moves towards locg and negative feedback when the agent moves

away from locg. The oracle has two modes: “attentive” and “inattentive”.

The “inattentive” oracle never gives feedback, while the “attentive” oracle

gives feedback 90% of the time, comparable to a human teacher who may not

provide complete feedback even when paying attention.

37

4.1.3 AMPS Simulation Results: AMPS learns faster than baseline

Figure 4.2 shows the learning curves for AMPS and PS with the oracle

paying attention for two sessions of ten episodes. The shaded sections of the

background indicate attention from the oracle. AMPS performs comparably

to PS during the first round of attention, but strongly outperforms the prior

approach during the period of inattention that follows. In subsequent episodes

without attention, performance is greatly improved. The average area under

the AMPS reward curve (Mean (M) = 7024.025, Standard Deviation (SD) =

548.566) is 44% greater than the average area under the PS reward curve

(M = 4877.61, SD = 1357.4), t(198) = 14.587, p < 0.05 (using Welch’s t-

test). These results suggest that AMPS is learning good actions to take during

attention by exploring the environment and exploiting the oracle’s feedback,

allowing the performance while unattended to be more predictable.

Figure 4.3 shows the result of adding more attention from the oracle

throughout the learning process. The difference between the AMPS and PS

learning curves decreases as more attention is added, as PS is able to learn

more quickly by receiving more feedback. When the oracle pays attention

50% of the time, the percent increase between the average area of PS (M =

5441.34, SD = 775.347) and AMPS (M = 6853.575, SD = 679.433) is 25.95%,

t(198) = 13.63, p < 0.05 (usingWelch’s t-test). When the oracle pays attention

for the entire learning process, the percent increase between the area of PS

(M = 6445.975, SD = 546.658) and AMPS (M = 6832.095, SD = 404.731)

is 5.99%, t(198) = 5.648, p < 0.05. With more aggressive exploration, PS

38

Figure 4.2: Total rewards during learning for 100 episodes. All rewards are
averaged over 100 runs. The shaded background indicates attention.

39

could potentially achieve the same average rewards as AMPS during constant

attention. However, in addition to faster learning under intermittent attention,

the benefit of AMPS is that while this method explores during periods of

attention, it falls back to exploitation of human feedback while no one is paying

attention, which enables more predictable performance while unobserved.

4.1.4 AMPS Robot Experiment: Testing learning response to hu-
man attention with robot study

I also tested AMPS with naive users supervising a robot performing the

cup-pushing task in the real world. The robot pushed a cup on a table divided

into a 6 by 8 grid, with a goal location on the edge of the table. Based on the

simulation results, I hypothesized that AMPS would achieve higher rewards

during periods of inattention and a greater total reward over all episodes than

PS.

This task was implemented on a mobile manipulator robot with a Ki-

nova JACO arm with 7 degrees of freedom and a Robotiq 2-finger adaptive

gripper, shown in Figure 4.4. To push the cup, the robot placed its closed

gripper inside the cup and moved it a predetermined distance forward, back-

ward, right, or left. The state of the cup was calculated by the position of the

gripper over the table by determining in which grid square the robot’s gripper

location falls. The table was always placed in the same location in front of the

robot.

The robot stated the direction in which it planned to move the cup

40

(a) Oracle pays attention 50% of the time.

(b) Oracle pays attention throughout learning process.

Figure 4.3: Total rewards during learning for 100 episodes with varied atten-
tion. All rewards are averaged over 100 runs. The shaded background indicates
attention.

41

Figure 4.4: Robot used during AMPS experiments.

42

before attempting the move. During the task, if the robot tried to push the cup

in a direction but failed due to the cup catching on the table or a manipulator

malfunction, or the cup fell off the table, the experimenter moved the cup to

where the robot expected it to be given the robot’s statement. If the robot arm

caused an error that stopped the learning process, the experimenter restarted

learning from the last saved episode. This only happened once during the

experiments, on a round of inattention. To control the length of the study, I

capped the number of moves per learning episode to twenty pushes. If twenty

pushes were reached, the robot asked for the cup to be placed back at the start

position.

The goal and start locations for the cup were marked on a tabletop.

An computer interface was provided with a “Bad” and a “Good” button that

could be clicked to send positive or negative feedback to the robot. After taking

an action, the robot waited for a response and assumed that no response is

given after a timeout. I brought in participants from the campus community

to observe the robot and provide feedback while the robot learned the cup

pushing task. Each participant observed either the AMPS or PS algorithm. I

asked people to click the “Bad” button if they thought an action was bad and

the “Good” button if they thought an action was good, paying attention only

to the direction of the most recent push action.

Participants were instructed to give feedback for the first ten episodes,

ignore the robot for five episodes, come back to give feedback for another four

episodes, and then let the robot learn on its own for one more episode. During

43

the periods of inattention, participants were asked to sit behind a curtain out

of view of the robot, and complete a survey designed to capture how they

were making decisions about feedback. Each participant looked at an image

of a grid with a goal state highlighted in green (Figure 4.5a). For all 48 grid

squares in randomized order, they were asked to say whether each action choice

(north, east, south, west, and stay) from that square was a “good,” “bad,”

or “neutral” action. After four participants, two of which were used in the

data analysis, I noted that there was occasional directional confusion, so the

instructions were clarified by explicitly listing the grid square the cup would

be in before and after the action. Figure 4.5 b-e shows a heat map of the

participants’ responses, where red indicates a low number of “good” markings

and green indicates a high number of “good” markings.

4.1.5 AMPS Robot Results: Robot performs faster with AMPS
given time

Figure 4.6b shows the rewards for each episode over all participants.

Fourteen participants came in for the study, and four participants were

dropped due to robot or human error. Figure 4.6a shows the average rewards

for each episode over all participants. To find the average rewards for episodes

twenty-one through one hundred and fifty, the robot’s learning progress was

saved after each participant leaves, and then learning was finished in simula-

tion using the previously described simulation environment. The simulation

ran one hundred times for each user, which gives the average performance

of both AMPS and PS over multiple trials. Simulating this process multiple

44

(a) Participant survey (b) North

(c) South (d) East

(e) West

Figure 4.5: Participant survey feedback for robot actions, with goal circled in
black.

45

times allows us to show how AMPS will be expected to perform on average.

The average area under the AMPS learning curve during the time that

the participant was in the lab (the first twenty episodes) (M = −127.4, SD =

348.566) is slightly higher than the average area under the PS curve during the

first twenty episodes. (M = −180.9, SD = 141.216), t(8) = 0.285, p = 0.787.

The average area under the AMPS simulated learning curve from episodes

20-150 (M = 11491.252, SD = 818.651) is higher than the average area under

the PS simulated learning curve (M = 10103.123, SD = 1130.163), t(8) =

1.989, p = 0.085. Figure 4.6b shows that there is significant noise in the

learning progress of the agent during the first twenty episodes, caused by

random factors in RL that cause variation in the rewards received early in

the learning process. However, an improvement can still be seen during the

second period of inattention. The area under the simulated AMPS learning

curve also has a lower variance than that of the simulated PS learning curve.

Figure 4.7 shows that algorithm performance for both AMPS and PS

varies with amount of feedback given per user. The amount of feedback ranges

from 47 to 88. The participants’ feedback to the robot during the experiments

closely matched the feedback of the oracle used in simulation, in which feed-

back was positive if the cup moved towards the goal location and negative

if it moved away from the goal location. The survey responses suggest that

the simulation results are indicative of the performance of the simulator with

a human oracle (see Figure 4.5). Two participants did not give feedback for

state F8.

46

(a) Results averaged over all participants.
The dashed line represents simulated re-
sults. The first twenty episodes are com-
pleted during the human study.

(b) The first twenty episodes of Figure
4.6a, with each participant’s data shown
over 20 episodes.

(c) The first twenty episodes of Figure
4.6a, with average values shown.

Figure 4.6: Total rewards during learning for 150 episodes. The shaded back-
ground indicates attention.

47

Figure 4.7: Amount of feedback given by participants and the resulting areas
under the learning curves

4.2 Active Attention-Modified Policy Shaping

While AMPS allows teachers to take breaks from teaching, the burden

is placed on the user to decide when to pay attention to the robot. This burden

may cause the teacher may be distracted from their other task. Furthermore, if

they are unable to check in on the robot they may miss important moments in

the learning process, during which feedback would have been useful. Especially

with naive teachers, the selected actions may not be the most beneficial for

the learning process.

Consider a person cleaning dishes and teaching a robot to put away

plates and cups. The person begins by giving the robot feedback while it puts

away four cups in a row. The person then goes to the sink with their back

48

turned to wash dishes. While doing so, they miss the robot attempting to put

away a plate for the first time. If the robot had actively decided to ask the

teacher for attention during this attempt, the teacher’s time could have been

balanced better towards giving useful feedback and washing dishes. However,

allowing the robot to interrupt the teacher arbitrarily could become disrup-

tive and prevent the teacher from accomplishing other tasks. Therefore, an

algorithm that chooses informative times to interrupt the teacher is desirable.

To alleviate the decision-making burden from human teachers, Active

Attention-Modified Policy Shaping (AAMPS) actively asks for attention from

a teacher in low-information areas of the state space, when there is uncer-

tainty about the teacher’s feedback. This modification enables robots to learn

even faster than AMPS does, while using less feedback and taking less human

attention. Using AAMPS, a robot asks for attention for states in which it

is uncertain of the teacher’s feedback, with spaces of at least length t in be-

tween each request for attention. First the robot checks how long of a break

the teacher has had. If it is long enough, the robot checks its certainty of

the feedback the teacher might give in the next action. If it is uncertain, it

will request attention and feedback. This method removes the responsibility

of deciding when to provide feedback from the teacher, enabling the robot to

learn quickly while allowing the teacher to spend time on other tasks.

I tested AAMPS both in simulation and in a human study with a robot,

comparing to AMPS and other algorithms, finding that AAMPS learns a de-

sired policy more quickly than AMPS in simulation, with an increase of 11.0%

49

Figure 4.8: AAMPS pipeline, showing steps after taking each action

in area under the learning curve. Furthermore, AAMPS requires attention in

89.9% fewer states than AMPS, as attention is only received in states which

require more information. In the human study, I find that AAMPS allows

people to complete 77.52% more work on a secondary task than AMPS while

the robot receives 48.54% less feedback.

4.2.1 AAMPS Methodology: Enabling robots to request attention

This work uses Policy Shaping [16,30] as a baseline method, described

in more detail in Section 2.1.2. For this work, τ , the temperature parameter for

Boltzmann exploration is set to 0.3. C, the trust parameter for Policy Shaping,

is set to 0.9, meaning that we trust the teacher to give correct feedback 90%

of the time for the task.

The attention-requesting problem is formulated in the following way.

50

The robot requests feedback when it is unsure of any positive actions to take

in a state, and spaces the requests for attention in order to allow breaks from

teaching. This algorithm is shown in Algorithm 2.

In order to define when the robot is unsure of a positive action to take,

∆s,a is used as in the Policy Shaping algorithm: the difference between positive

and negative feedback on state s and action a. A confidence threshold δ is

set such that when ∆s,a ≥ δ for any a ∈ A, the robot considers (s, a) a good

state-action pair, as (s, a) has received δ more positive feedback than negative

feedback. When ∆s,a ≥ δ for any a ∈ A, the robot proceeds to learn without

asking for attention, as it is confident that it knows at least one action that

the teacher has approved in state s. For this work, δ = 1, so that as long as

one action has received more positive than negative feedback in state s, the

robot will no longer ask for attention in state s.

If ∆s,a < δ ∀ a ∈ A, the robot can ask for attention. In this case, no

action has received more positive than negative feedback in state s. Therefore,

the robot does not know any actions to take that have been approved by the

teacher. After attention has been requested in such a state, I assume in this

work that the robot receives attention from the teacher. During attention

(Attt,n = 1), like AMPS, the robot attempts to take actions in Aunseen or Agood

with equal probability.

There is also a time threshold t, which limits how often the robot can

ask for the human teacher’s attention. After each request for attention, the

robot must wait for at least t actions before asking for attention again. This

51

time threshold allows teachers to take predetermined breaks from teaching the

robot, so they do not have the robot asking for feedback and interrupting them

too often. In this work, t constant action count in order to space attention

requests evenly over the length of time that the robot learns. In future work,

the variable t could also be non-constant. For example, t could increase over

time in order to concentrate feedback at the beginning of the learning curve.

4.2.2 AAMPS Simulation Experiment: Testing performance with
attention requests

In simulation, I compared AAMPS to several baselines: Q-learning,

Policy Shaping, and a simulated variant of AMPS denoted “AMPS Interval”.

AMPS Interval is equivalent to AMPS with a simulated teacher giving feedback

every t rounds. This is more frequent feedback than a person would likely give

over 100 episodes of learning. I hypothesized that because AAMPS chooses

informative states for feedback, the robot will learn more quickly per unit of

feedback. C, the Policy Shaping parameter indicating trust in the received

feedback, is 0.9 in all experiments. C is held constant across all algorithms,

so even if feedback is accurate more or less than 90% of the time, the setting

of C does not affect algorithm comparison.

The robot learned a sorting task with four cups, half one color (k1) and

half another (k2), in which the robot must sort the cups by color into boxes b1

and b2, in which k1 goes in b1 and k2 goes in b2. The state set S consists of all

possible placements of the cups in and out of boxes. The set A of the robot’s

52

Algorithm 2: AAMPS

S,A = states,actions;
Aunseen = unseen state-action pairs;
Agood = state-action pairs with positive feedback;
t = time threshold;
while learning do

s = current state;
if time since last attention request > t then

if ∃a′ ∈ A s.t. ∆s,a′ ≥ δ then
request attention();
p = random var;
if p ¡ 0.5 then

action choices = all ai ∈ Aunseen;
else

action choices = all ai ∈ Agood;
end
if action choices = ∅ then

action choices = all ai;
end
a = choose Policy Shaping action from action choices;

end

else
action choices = all ai ∈ Agood;
if action choices = ∅ then

action choices = all ai;
end
a = choose Policy Shaping action from action choices;

end
take action(a);
f = get feedback();
update policy shaping(f);

end

53

action choices includes:

• ”Place”: place a cup (color k1 or k2) in box b1 or b2

• ”Remove”: remove a cup (color k1 or k2) from box b1 or b2

• ”Restart”: pronounce cups sorted and restart the task (can be done at

any stage of sorting)

Each episode of the task is only finished when the robot chooses the

action ”restart”, not when the blocks are physically sorted. Therefore the

robot learns to sort and then restart. Small negative rewards of -1 are given

at each action to encourage reaching the goal state quickly. A reward of 100 is

given when the blocks are sorted correctly and the robot chooses to ”restart”.

If the robot chooses to restart but the blocks are not correctly sorted, a reward

of -10 is given to discourage incorrect restarts.

I created an oracle to use instead of human feedback in simulation.

This oracle gives feedback as follows:

• Positive: if placing cup of color k1 in b1 or of color k2 in b2

• Positive: if removing cup of color k1 from b2 or of color k2 from b1

• Positive: if restarting and blocks are correctly sorted

• Negative: otherwise

54

I compared AAMPS to AMPS Interval, Q-learning, and Policy Shaping.

The parameter t = 2 for AAMPS and AMPS Interval, so that the robot can at

most ask for attention in one out of 3 states. Policy shaping receives attention

once every three actions to fairly compare to AAMPS and AMPS Interval.

Q-learning does not receive feedback.

For each algorithm, the area under the learning curve is calculated.

Each learning episode ends when the robot chooses the ”restart” action. The

highest reward the robot can receive in a single episode is 96 when the robot

places all four cups correctly, receiving a reward of -1 each time, then chooses

to restart the task, receiving a reward of 100. The lowest reward the robot

could possibly receive in a single episode is negative infinity, as it could take

any number of bad actions and then choose to restart, receiving a reward of -

10. I hypothesize that AAMPS will learn more quickly than AMPS and AMPS

Interval, as it chooses more informative actions for feedback. Each algorithm

learns for 100 episodes of the task. These results are averaged over 1000 trials

for 100 task episodes each to smooth out random variations in learning speed.

4.2.3 AAMPS Simulation Results: AAMPS learns more quickly
and with less feedback than baselines

I compared AAMPS, AMPS Interval, Policy Shaping, and Q-learning.

The resulting graph of rewards received per task episode is shown in Figure

4.9. The area under each curve (AUC) of total reward over episodes 0-99

was calculated using the composite trapezoidal rule. I found that AAMPS

55

received more reward on average than AMPS Interval, Policy Shaping, and

Q-learning. AAMPS had an average area of 8880.6 under the learning curve,

AMPS Interval had an average area of 7999.7, Policy Shaping had an av-

erage area of 6987.1, and Q-learning had an average area of 5738.0. Thus

AAMPS had an increase in area under the learning curve of 11.0% compared

to AMPS Interval, 27.1% compared to Policy Shaping, and 54.8% compared to

Q-learning. I found the differences between these algorithms to be statistically

significant (F (3, 3996) = 10641.7, p < 0.0001) using a one-way ANOVA. Post-

hoc tests using Welch’s t-test show statistically significant differences between

AAMPS and AMPS Interval (t(1917.7) = 65.4, p < 0.0001), AAMPS and

Policy Shaping (t(1544.5) = 108.2, p < 0.0001), and AAMPS and Q-learning

(t(1480.8) = 169.2, p < 0.0001).

I also compared the amount of feedback each algorithm received on

average. While each algorithm learned for exactly 100 episodes, the number

of total actions per episode varies. AAMPS received attention on 18.7 actions

on average, AMPS Interval received attention on 184.7 actions on average,

and Policy Shaping received attention on 203.1 actions on average. Q-learning

received no feedback. Policy Shaping receiving more attention implies that

even though all algorithms learned for the same number of episodes, Policy

Shaping took more actions overall than AMPS Interval.

AAMPS had an decrease in feedback of 89.9% compared to AMPS In-

terval and 90.8% compared to Policy Shaping. I found the differences between

these algorithms to be statistically significant (F(2,2997)=117794.3, p¡0.0001)

56

Figure 4.9: Simulated algorithm comparison of rewards gathered over each
episode. All algorithms were run for 100 episodes.

using a one-way ANOVA. Post-hoc tests using Welch’s t-test show statisti-

cally significant differences between AAMPS and AMPS Interval (t(1982.1) =

−595.2, p < 0.0001) and AAMPS and Policy Shaping (t(1433.8) = −386.8, p <

0.0001).

4.2.4 AAMPS Robot Experiment: Testing attention requests and
human response

I ran a within-subject human study on twelve participants with a phys-

ical robot to test human aspects of AAMPS. Three algorithms were tested:

AAMPS, AMPS, and AMPS Interval. As in the simulation experiments,

AMPS Interval receives attention from the participants after every t rounds.

The robot learned for twelve actions in each algorithm, beginning with the

57

State [], [] [], [k2] [k1, k2], [] [k1] , [k2, k2] [k1, k1], [k2] [k1, k1], [k2, k2]
Action k2 in b2 k1 in b1 k1 in b1 k1 in b1 k2 in b2 restart

Table 4.1: Pretrained state-action pairs in Agood. The first set of state brackets
represents box b1, and the second represents box b2.

same Q values, Agood, and Aseen each time. Fifteen total state-action pairs

were in Aseen, with six in Agood. The state-action pairs in Agood are shown in

Table 4.1. Note that each algorithm learns for twelve actions in the human

study, not episodes. All simulation learning was done over 100 full episodes,

for which each episode is multiple (potentially over twelve) actions.

The robot completed the same sorting task as it did in simulation. The

cups were kept in a holding area at the back of the table and placed on one

side or another for sorting. These sides were labeled with the correct color.

Pre-recorded actions using kinesthetic teaching were used to pick up and place

cups. If the robot failed to pick up a cup during the study but continued the

placing or removing motion, its gripper still pointed to the goal location of

the cup at the end of the motion. The researchers placed the cup in the goal

location in these scenarios, telling the participants to judge the action as if

the robot had placed the cup there. Each action took slightly over a minute

depending on the position in which the cup was placed.

The real-world “restart” action was executed by the the experimenter

after the robot stopped moving, signaling that it thought the cups were sorted.

This decision was made to allow sufficient rounds of learning to occur within

the one hour long study. The restart action took a variable amount of time, up

58

to about one minute and eighteen seconds. After each action that the robot

took while a participant was watching, it said “Done with action” to signify

that it was waiting for feedback.

This study was run with twelve participants from ages 18-30. Five

participants identified as female, six as male, and one as agender. The three

algorithms (AAMPS, AMPS Interval, and AMPS) were counterbalanced over

participants, with the list of all six possible orderings randomized in order

over every six participants, so all six orderings were completed after each six

participants. The robot and study setup are shown in Figure 4.10.

First, each participant gave informed consent. Then, they were told

to balance their time between a distractor task of copying a list of words by

hand and teaching the robot to sort the cups. They were given instructions

on using the feedback system, giving positive or negative feedback to the last

action the robot took, and told that we would count the words they were able

to copy. Each participant was told that they would complete three rounds of

trying to complete both tasks, and would be given different instructions before

each round. Each round corresponded to a different algorithm that the robot

was running. After each round, each participant completed a short survey. I

describe these steps in greater detail below.

Each algorithm was pretrained using AMPS Interval for 47 actions,

which asks for feedback every t actions. This was done to bring AAMPS to a

point where the number of feedback asked for per round diverged from AMPS

Interval, as eventually AAMPS asks for less and less feedback until it stops

59

Figure 4.10: Robot performing sorting task used in human study

as described in Section 4.2. In Figure 4.11, we see the number of times the

robot asks for attention using AAMPS versus AMPS Interval on one run-

through of learning for twenty episodes, which was used for pretraining the

algorithms for the human study. AAMPS started asking for attention less

often at action 21, when AMPS Interval asked for attention and AAMPS

waited, as it had received positive feedback for its current state-action pair.

AAMPS fully stopped asking for attention from the teacher at action 73. I

used the Q-values, Aseen, and Agood learned after action 47 of AMPS Interval,

as this is halfway through the divergence period of the attention requests.

Pretraining minimizes the burden to participants by reducing the time needed

from them during the study, and focuses the study on the part of the learning

process where the frequency of question-asking in AAMPS drops.

The participants divided their time between a distractor task at one

60

Figure 4.11: Divergence of attention requests between AAMPS and AMPS
Interval for one learning run. Requests for attention diminish over time using
AAMPS.

work station and teaching the robot at another. The distractor task was

structured so that we can measure how much of the task is completed, with

participants copying pages of eight-letter words taken from the NLTK corpus

[11] printed in order, using pages ”airproof-anophyte”, ”outmount-oxidator”,

and ”labordom-lionizer”. These pages were given in the same order to each

participant, so that ”airproof-anophyte” was the sheet of words to copy for

the first algorithm, and so on.

At the start of each ”round” (start of new learning algorithm), a new

word sheet and blank copying paper were given. Participants were told that

each round would take approximately 15 minutes to complete and to balance

the two tasks of teaching the robot and writing down words. Participants were

61

told that their progress teaching the robot and copying words in one round

would not carry over to any future rounds. The word copying work states was

faced away from the robot, but participants were allowed to glance over at

the robot while copying words. In order to not attract undue attention from

participants while they were completing the distractor task, the robot did not

speak during these times. However, the sound of cups being placed on the

table could be heard from the word copying work station.

Since the robot was beginning with the same ”sorting knowledge” (Q-

values) at the beginning of each algorithm, the participants were told that

the robot would be learning to sort differently colored cups each round (red-

green, green-blue, red-blue) to visually show the robot starting over at each

round. The participants were instructed that the goal of the robot was have

all four cups sorted and have the robot say ”I believe the cups are sorted.

My action is leaving the cups here.” Participants gave feedback by clicking a

green and red buttons with ”Good” and ”Bad” text respectively on a computer

screen. During AMPS, since the participant could give feedback to the robot

for multiple actions in a row, the robot asked after each action if the participant

would like to stay and watch another action. If so, the participant clicked a

button saying they wanted to stay. Otherwise, they clicked a button saying

they wanted to leave. This button enabled the robot to continue learning

without checking for attention on the next action, giving the participants time

to leave the teaching station.

After allowing participants to practice giving feedback on a few cup

62

sorting scenarios, the experimenter gave the following instructions before each

algorithm, asking the participants to stand in between the robot and the word

copying task area until the round began in order to avoid biasing them towards

starting at the robot or word copying station.

AMPS: For this round, you can choose when to watch the robot

and give feedback, and when to copy words. Feel free to spend as

long at each task as you feel fit. You can switch tasks as often as

you would like. After each action that you watch, you can press

the button to say that you would like to stay and watch another

action, or you would like to leave.

AMPS Interval and AAMPS: For this round, the robot will tell

you when to give feedback by saying ”Please give me feedback,”

and when to go back to the word copying task by saying ”I will

learn on my own now.” Please listen to the robot’s instructions.

The robot detected attention from participants by checking if they were

standing in front of the sorting table. Participants wore a red jacket for the

duration of this study, and the robot detected red objects within a bounded

rectangle in front of the robot’s table using an overhead camera. The robot

only checked for attention before starting each action, so it did not detect

attention if the participant walked up to the robot in the middle of an action.

This most closely follows the AMPS algorithm, as it assumes that the robot

knows whether attention is present for an action before choosing it. The robot

63

also used this method to determine when to start actions when asking for

attention; after requesting attention, the robot waits until it detects a red

object to begin the action. When attention was detected, the robot said ”I

see you are here to give feedback.”

After each algorithm ran, participants answered the following survey

questions. Each question could be assigned a number from 1 (low) to 4 (high).

1. How well did the robot learn the task?

2. How quickly did the robot learn the task?

3. How annoying was the robot during the task?

These questions compared the algorithms’ performance from the participants’

perspectives. As AAMPS and AMPS Interval rely on interruptions, I measure

how annoying each algorithm is perceived, hypothesizing that a robot that asks

for less attention is perceived as less annoying. After all three algorithm rounds

were completed, the participants gave their age, gender, robotics experience

(1 low, 3 high), and answered two free-answer questions:

1. How would you improve the interface to make the interaction with the

robot more effective?

2. How would you change the training process to make it easier to use or

more effective?

64

The question regarding the interface was collected for future research on this

topic, to determine whether the ”good” and ”bad” feedback buttons and verbal

calls to the participant could be improved. This question is not meant for

comparison between algorithms, rather to inform the methods that I used to

collect feedback and alert people that the robot wants feedback.

4.2.5 AAMPS Robot Results: People have more break time with
AAMPS

Participants self-reported a robotics background average of 1.5 out of 3,

with two participants reporting at 3, so most of the users were inexperienced

with robotics.

I measured the number of actions that received feedback from partici-

pants over each algorithm. Participants gave feedback on fewer actions during

AAMPS (M = 3.0, SD = 0.58) than AMPS (M = 5.83, SD = 2.11) and

AMPS Interval (M = 4.0, SD = 0.00). During AAMPS, participants gave

48.5% less feedback than AMPS, and 25% less feedback than AMPS Inter-

val. The differences between these algorithms were statistically significant

(F (2, 31) = 3.38, p < 0.05) using a repeated measures ANOVA. Post-hoc tests

using a dependent t-test show that the difference between AAMPS and AMPS

was statistically significant (t(11) = −4.44, p < 0.001), as were the differences

between AAMPS and AMPS Interval (t(11) = −5.74, p < 0.001) and AMPS

and AMPS Interval (t(11) = 2.88, p < 0.05). The amount of feedback per

algorithm is shown in Figure 4.12.

65

Figure 4.12: Amount of feedback given during each algorithm.

I measured the number of words written by participants over each

algorithm. Words that were crossed out and rewritten were only counted

once. Participants were able to copy more words during AAMPS (M =

136.25, SD = 35.4) than AMPS (M = 76.75, SD = 36.5) and AMPS In-

terval (M = 120.17, SD = 29.0). During AAMPS, participants completed

77.5% more work than AMPS, and 13.4% more work than AMPS Inter-

val. The differences between these algorithms were statistically significant

(F (2, 31) = 3.55, p < 0.05) using a repeated measures ANOVA. Post-hoc tests

using a dependent t-test show that the difference between AAMPS and AMPS

was statistically significant (t(11) = 4.57, p < 0.001), as were the differences

between AAMPS and AMPS Interval (t(11) = 2.65, p < 0.05) and AMPS and

66

Figure 4.13: Amount of words written during each algorithm.

AMPS Interval (t(11) = −4.26, p < 0.005). The amount of words copied per

algorithm is shown in Figure 4.13.

The participants were asked to report their annoyance with the robot,

how well the robot learned, and how quickly the robot learned. All scores

were on a scale from 1-4 (1 low, 4 high). Participants reported slightly less an-

noyance with AAMPS (M = 1.33, SD = 0.47) than AMPS (M = 1.83, SD =

0.99), but these differences were not statistically significant (Z = 6.0, p = 0.16)

using the Wilcoxon Signed-Rank test. Similarly, they reported slightly less an-

noyance with AAMPS than with AMPS Interval (M = 1.5, SD = 0.76), but

these differences were not statistically significant (Z = 1.5, p = 0.41). Ten out

of twelve participants rated AAMPS as equally or less annoying than AMPS,

67

and eleven out of twelve participants rated AAMPS as equally or less annoying

than AMPS Interval. The annoyance scores for each algorithm are shown in

Figure 4.14a.

Participants reported that AAMPS (M = 2.83, SD = 1.21) learned

better than AMPS Interval (M = 2.67, SD = 1.11), but these differences

were not statistically significant using the Wilcoxon Signed-Rank test (Z =

16.0, p = 0.78). AAMPS was scored as not learning as well as AMPS (M =

2.92, SD = 0.95), but these differences were also not statistically significant

(Z = 12.0, p = 0.73). The reported scores for each algorithm are shown in

Figure 4.14b.

Participants reported that alg (M = 2.0, SD = 1.0) did not learn as

quickly as AMPS (M = 2.42, SD = 1.11), but was not statistically significant

using the Wilcoxon Signed-Rank test (Z = 5.0, p = 0.24). AAMPS was also

reported to not learn as quickly as AMPS Interval (M = 2.25, SD = 0.83),

but these differences were also not statistically significant (Z = 13.5, p = 0.52).

The reported scores for each algorithm are shown in Figure 4.14c.

The answers to “How would you improve the interface to make the

interaction with the robot more effective?” and “How would you change the

training process to make it easier to use or more effective?” had several com-

mon themes. Participants suggested some technical improvements such as

speeding up the robot or allowing feedback on partially observed actions. Five

participants suggested more nuanced feedback techniques. For example, the

ability to “rate...from 1 to 3 instead of good and bad” or to “help the robot

68

(a) How annoying was the robot? (b) How well did the robot learn?

(c) How quickly did the robot learn?

Figure 4.14: Participant perceptions of the robot

69

Figure 4.15: Simulated learning from human study data for each algorithm.
The three algorithms learned at approximately the same rate.

know where to go, or prevent it from making an incorrect action.” Three par-

ticipants suggested ways to make it easier to multitask from the word copying

station, including the ability to give feedback remotely so that they did not

have to switch task stations. One participant suggested that the robot “make a

sound when the action is completed” to help keep tabs on the robot’s learning.

After the study, the final Q-values learned from each participant and

algorithm were passed to the simulation, continuing learning in each algorithm

without any feedback. The simulation averaged over 1000 trials of learning for

10 episodes from each participant’s final Q-values for each algorithm. I found

no statistically significant difference in the areas under these learning curves

using Welch’s t-test, between AAMPS (M = 761.8, SD = 118.8), AMPS

Interval (M = 761.0, SD = 119.5), and AMPS (M = 761.4, SD = 119.1).

The learning curves after the human study are shown in Figure 4.15.

70

4.3 Summary: AMPS and AAMPS improve the per-
formance of HRL with inattentive teachers

My AMPS results suggest that the average area under the AMPS learn-

ing curve is consistently higher than the average area under the PS learning

curve. Therefore, after the person stops paying attention to the robot and

leaves the room, the robot can be expected to perform better on average us-

ing AMPS over PS. The lower variance in the average area under the AMPS

curve may allow more trust in the learning algorithm overall, as it provides

more consistent performance.

In Figure 4.6b, AMPS and PS perform similarly during both attention

and inattention. One would only expect AMPS to outperform PS on average

during inattention during early rounds, as shown in simulation, and the first

period of inattention is short. The difference between the two algorithms can

be seen in Figure 4.6a, which shows the second longer period of inattention.

Figure 4.7 suggests we would see better performance from both AMPS and PS

given more feedback from users. AMPS may also be sensitive to the amount

of feedback given, as the more positive feedback it has received, the longer the

robot will be able to act without trying new and unseen actions.

AMPS may more closely match people’s expectations of how the learn-

ing process should proceed. The robot prioritizes actions that add and confirm

task knowledge while the human teacher is present, and prioritizes listening

to prior positive feedback while no teacher is present. This behavior is similar

to social referencing, which serves a role in human development by allowing

71

infants to explore new actions while looking to a trusted authority for feed-

back [25].

In the AAMPS study, although I did not find significant results for

how annoying participants found the robot during the different algorithms, the

participants wrote fewer words and gave more feedback to the robot during

AMPS and AMPS Interval. This shows that people spent more time with

the robot than necessary when they chose how to divide their time or when

the robot asked for attention at regular intervals. Thus even if people do

not find the other algorithms annoying, AAMPS is able to better manage the

participants’ time. Although no algorithm learned significantly faster than the

others in the human study, I attribute this to the short amount of time people

interacted with the robot (twelve actions per algorithm).

Furthermore, note that the reported annoyance scores skewed towards

low numbers. There are a variety of possible reasons for this result, including

the short time period of the study, low experience with robots, and that none of

the algorithms were extremely annoying. Thus differences in annoyance levels

may be difficult to detect in a short-term study, but might be detected when

people teach robots over long periods of time. I did not find significant results

for how well and quickly the robot learned the task, suggesting that asking for

feedback more or less often does not affect how intelligent the robot seems.

How well or quickly the robot seems to learn could hinge on the random choice

between taking a ”good” or an ”unseen” action while a teacher is watching.

The open-ended requests to make multi-tasking easier add to the evi-

72

dence supporting the benefits of the robot choosing when the teacher should

pay attention. In addition to the increase in words copied and decrease in

attention to the robot shown in AAMPS, the open-ended feedback suggests

that people find multi-tasking while teaching a robot difficult.

The results for AMPS and AAMPS suggest that using these algorithms

will allow robots to learn effectively from human teachers who need to take

breaks. They may more closely match people’s expectations of how the learn-

ing process should proceed, by adding and confirming task knowledge while

the human teacher is present, and listening to prior positive feedback while no

teacher is present, much like social referencing behavior in infants [25]. AMPS

learns more quickly than Policy Shaping by effectively directing human atten-

tion to useful states. AAMPS allows robots to learn more quickly than AMPS

with less burden on human teachers, using significantly less feedback and faster

learning. Applying AAMPS to long-term learning will enable human teachers

to be more productive, and allow robots to learn tasks more quickly by receiv-

ing feedback on important states, with less burden on teachers to determine

which states are important.

73

Chapter 5

Learning from Incorrect Teachers

“I am at a rough estimate thirty billion times more intelligent
than you. Let me give you an example. Think of a number, any
number.” ... “Wrong. You see?”

—Marvin the Paranoid Android (Douglas Adams, The
Hitchhiker’s Guide to the Galaxy)

As introduced previously, input from external sources is not always cor-

rect. Sensors can intermittently fail, and teachers can be wrong. It is difficult

for robots to predict ahead of time exactly how often, and in what ways, ad-

vice or feedback will be incorrect. Often, the human teacher or other source of

incoming feedback is unmodeled. If robots can use task information to model

when and how feedback is incorrect, they can ignore incorrect feedback and

learn from correct feedback.

Human-in-the-loop Reinforcement Learning (HRL) enables agents to

learn from two sources: rewards taken from observations of the environment,

and feedback or advice from a secondary critic source, such as human teachers

or sensor feedback. The research in this chapter is based on the insight that

the quality of the feedback can depend on the state-action pair. For example,

consider a vision system that loses sight of objects outside a certain range, or

a human teacher who gets confused about what the goal of the task is. There

74

are many situations in which incorrect feedback is structured, not random,

and these algorithms exploit this structure. The result is algorithms that are

robust to a wide variety of feedback correctness, and do not require prior

knowledge of the teacher.

1

5.1 Revision Estimation from Partially Incorrect Re-
sources

In this work, I present an algorithm, Revision Estimation from Partially

Incorrect Resources (REPaIR), which can learn from incorrect teachers as

defined in Section 3. REPaIR estimates corrections to imperfect feedback over

time, acting as a feedback filter for RL algorithms with a reward function

and additional environmental feedback, so that the quality of feedback does

not need to be known ahead of time. REPaIR takes advantage of problem

formulations in which the robot has access to a correct reward function, which

is important since it has been shown that without some kind of additional

information there is no way to recover from an incorrect reward signal [23].

REPaIR uses the cumulative reward at the end of each learning episode

to determine whether the feedback received was correct or incorrect. If feed-

back received reflects the cumulative reward received (positive feedback leads

to higher total reward, negative feedback leads to lower total reward), the

1Parts of this chapter have been submitted for publication at the time of writing.

75

robot has a higher trust in the feedback. Otherwise, the robot has lower trust

in the feedback. REPaIR then either keeps, discards, or changes the feedback

based on the trust. REPaIR can be used to estimate feedback correctness for

feedback-utilizing HRL algorithms.

I test REPaIR with three baseline algorithms: Policy Shaping (PS) [30],

and two versions of TAMER+RL (TAMER-P, TAMER-W) [38], which all

have trust parameters to handle varying feedback quality. I show that adding

REPaIR to these baselines matched or exceeded performance for 83.33%

(TAMER-P), 83.33% (TAMER-W), and 100% (PS) of tested feedback quality

settings in simulation. The average performance with REPaIR in these set-

tings exceeded or matched more than half of mismatched trust parameters,

which implies that REPaIR matches or improves expected performance on

these baselines when they do not have prior information on feedback quality.

I also demonstrate REPaIR on a manipulation task with a physical robot in

which the robot must grasp a cup, with feedback provided by a noisy ob-

ject detector. I found the differences in means consistent with the results in

simulations. 2

5.1.1 REPaIR Methodology: Incorporating feedback filtering into
HRL

In this work, the algorithm takes advantage of a correct reward function

R. Otherwise, with an imperfect teacher and without additional information,

2Parts of this section have been previously published under Interactive Reinforcement
Learning with Inaccurate Feedback [35] ©2020 IEEE.

76

Figure 5.1: REPaIR Framework

it is impossible for the agent to tell what behavior is actually desired, as shown

in [23]. I use sparse reward functions, as consistent feedback is most helpful

when the reward function is not meticulously shaped to guide the agent to

the goal. R has positive rewards only on goal states and low negative re-

wards only on states to be avoided, potentially with small negative rewards on

all other state-action pairs if fast travel to goal states should be encouraged.

Such reward functions are easy for people to define, compared to dense reward

functions. However, they are also more difficult for agents to learn from than

well-populated rewards, as high-magnitude rewards will take longer to propa-

gate through the large areas of small negative reward. Thus F ∗ acts as a dense

representation of R, as the agent can receive meaningful ranked feedback on

each state-action pair, even in early learning when information has not yet

propagated through the value function.

REPaIR leverages a correct reward function R to compensate for in-

correct feedback. To do so, I observe that the current state and action has

some impact on the correctness of the feedback. Some prior work has assumed

77

that feedback either improves or worsens over time, or that feedback is ran-

domly incorrect some percentage of the time [30, 38]. In practice, the current

state-action pair often has an effect on the correctness of feedback. For exam-

ple, consider a human teacher that does not understand the joint limits of a

robotic arm. In this case, states and actions near the limits can receive incor-

rect feedback, as the teacher may give feedback that suggests an efficient path

that takes the robotic arm into unsafe or impossible joint positions. However,

other states and actions receive correct feedback. Another example is a vision

system that can reliably detect distinct objects, but not if two such objects are

too close to each other. In this case, states in which two or more objects are

close may receive incorrect feedback on actions intended to grasp one object.

I present Revision Estimation from Partially Incorrect Resources (RE-

PaIR) in Algorithm 3. REPaIR gives an estimation of the inverse of the

corruption function, Γ (as defined in Section 3), to an HRL algorithm to com-

pensate for bad feedback. I will refer to this estimation as Γ′, where the input

to Γ′ is F (s, a), a state-action pair (s, a) with feedback f . The output of Γ′

is an estimated revision f ′, an attempt to recreate F ∗. Γ cannot be directly

measured, as there is no ground truth for correct feedback until the value func-

tion is learned, at which point revisions to feedback are unnecessary. Γ′ gives

corrected feedback to a learning algorithm.

To update Γ′ (and thus its estimate of the inverse of Γ), the agent uses

the only ground-truth feedback, the reward function R. Since immediate high

rewards do not always indicate the highest cumulative reward when the goal

78

is reached, especially in sparse reward functions, cumulative rewards collected

at the end of each episode are used as ground-truth information.

As the agent learns, it saves the state-action trajectory ξ that it takes

in each learning episode, with feedback/advice fi for each (si, ai). At the end

of each episode, it saves its final total reward, Rξ. For (si, ai, fi) ∈ ξ, if a

higher Rξ has not been seen for (si, ai, fi), it is saved in the highest rewards:

Rmax[(si, ai, fi)] = Rξ. The feedback on (si, ai, fi) is assigned a trust ti in the

range [0, 1]:

t(si,ai,fi) =

{
Rmax[(si,ai)]−min(Rmax)
max(Rmax)−min(Rmax)

fiis positive

1− Rmax[(si,ai)]−min(Rmax)
max(Rmax)−min(Rmax)

fiis negative
(5.1)

The intuition behind this trust assignment is that an action should

not be catastrophic if it results in one of the higher seen cumulative rewards.

REPaIR determines whether to invert, keep, or discard feedback as follows,

where tmin and tmax are threshold parameters. If t(si,ai,fi) ≥ tmax , REPaIR

keeps the feedback: fi = fi. If t(si,ai,fi) ≤ tmin, REPaIR inverts the feedback:

fi = −fi. Otherwise, REPaIR discards the feedback: fi = 0.

5.1.2 REPaIR Simulation Experiment: Comparing average reward
gathered against baselines

In these experiments, I compare against three baselines and Q-Learning

[84] (RL without feedback): two versions of TAMER+RL [38], and Policy

Shaping (PS) [30]. REPaIR is used to supplement the two TAMER+RL

79

Algorithm 3: REPaIR

Γ′ = feedback revision estimator;
Rmax = −∞ = maximum total rewards seen; tmin, tmax =
thresholds for inverting and keeping feedback;
while learning do

Rξ = 0;
ξ = [];
while episode not over do

si, ai = current state, action;
Rξ = Rξ + reward;
fi = feedback;
ξ.append([si, ai, fi])

end
for (si, ai, fi) ∈ ξ do

Rmax[(si, ai, fi)] = max(Rmax[(si, ai, fi)], Rξ);

t(si,ai,fi) =

{
Rmax[(si,ai)]−min(Rmax)
max(Rmax)−min(Rmax)

fiis positive

1− Rmax[(si,ai)]−min(Rmax)
max(Rmax)−min(Rmax)

fiis negative
;

if t(si,ai,fi) ≤ tmin then
Γ′(fi) = −fi;

else if t(si,ai,fi) ≥ tmax then
Γ′(fi) = fi;

else
Γ′(fi) = 0;

end

end

end

80

methods and PS. I chose these baseline algorithms because they take addi-

tional environmental feedback but do not use it to modify their reward or value

functions, which can cause changes to the final optimal policy [55]. Thus the

reward function will remain correct, which is a requirement for REPaIR. I ex-

pect REPaIR to improve the performance of these baselines because REPaIR

estimates feedback quality based on the current state and action, rather than

assuming a static trust [30] or simply decreasing trust over time [38]. Thus,

the trust parameters for these baselines do not need to be varied to match the

feedback quality, which may not be known in advance in a real-world scenario.

I implemented all algorithms in Python 2.7.

For an RL baseline, I use Q-learning with Boltzmann exploration [83,

84]. More details can be found in Section 2.1.1. All of the following baselines

are implemented with Q-Learning as the underlying RL algorithm. I compare

REPaIR to TAMER+RL (detailed in Section 2.1.3) and Policy Shaping (de-

tailed in Section 2.1.2). For TAMER+RL, p and w are annealed over time, as

in [38]. They are decreased by 0.01% at the end of each learning episode.

I run experiments in simulation to compare the performance of HRL

algorithms with and without REPaIR. I use a task in simulation for which

it is straightforward to modify the feedback performance. The agent learns

to place six objects into two bins, with four objects in bin one (b1) and two

objects in bin two (b2). The agent has sixteen objects total, and can place or

remove one object at a time from the bins. The agent can also choose to end

the task at any time, and must do so to end the learning episode. The MDP

81

is as follows:

• S : [b1 contents, b2 contents]

• A : [”place one object into b1”, ”place one object into b2”, ”remove one

object from b1”, ”remove one object from b2”, ”end task”]

• T (s, a, s′) : deterministic transition function

• R(s, a) : +100 if a = ”end task” at goal state, -10 if a = ”end task” not

at goal state, -1 otherwise.

I define perfect feedback (F ∗) for this task as follows. The critic gives

positive rewards for ending the task when there are four objects in b1 and two

objects in b2, for adding objects to b1 or b2 when there are less than 4 and 2

respectively, and for removing objects from b1 or b2 when there are more than

4 and 2 respectively. The critic gives negative feedback otherwise.

For this task, I averaged over 50 trials of Q-Learning to optimize the

parameters for area under the learning curve (the cumulative reward over all

100 episodes): τ = 0.5, α = 0.8, γ = 0.8. If the robot does not end the task

before 100 actions, the episode ends with -10 reward.

I ran experiments adding REPaIR to three different algorithms in sim-

ulation: Policy Shaping (PS) [16, 30] and the top two performing algorithms

from TAMER + RL [38] (TAMER-P, TAMER-W). The feedback quality is

varied as follows. Some percent of states are chosen at random to receive cor-

rect feedback. The correct percentage is varied from 0 to 100, in increments

82

of 20. I compare the algorithm (PS, TAMER-P, TAMER-W) to Q-Learning

and the algorithm with all feedback first given to REPaIR. All feedback is

binary good/bad (1,-1) to maintain consistency across all algorithms. Thus

in the TAMER feedback predictor (for state-action pairs where no feedback

has been received), all positive feedback predictions are mapped to +1 and

negative predictions to -1. All experiments are run over 100 learning episodes

and averaged over 30 trials of each type of teacher. The results show the aver-

age area under the learning curve (the total reward over all 100 episodes) for

each level of feedback correctness. This area is calculated using the composite

trapezoidal rule.

One advantage of REPaIR is that it allows a single trust/weight pa-

rameter to be used across a wide variety of feedback reliability, rather than

requiring tuning to a specific source of feedback. Therefore, all trust/weight

parameters (C,w,p) are set to 0.8 for the experiments. I chose 0.8, as this

value weights feedback positively but does not trust it fully. The trust param-

eters are varied for the baseline algorithms. This tests whether the addition

of REPaIR outperforms the baseline algorithms if the quality of the teacher is

not known ahead of time. Trust parameters are varied from 0.0 to 1.0 in in-

crements of 0.1 for all baselines, with minor exceptions. For TAMER, w = 0.0

and p = 0.0 are equivalent to Q-Learning, so these are not tested. For PS,

C = 0.5 is equivalent to Q-Learning, and C cannot be exactly 0 or 1 as these

lead to dividing by zero. Thus C is set between 0.01 and 0.99, excluding 0.5.

The results measure the percentage of trust settings (out of 10 total) that

83

perform differently than the baseline plus REPaIR.

I set tmin and tmax for each baseline algorithm. Recall that feedback

is inverted when the trust is less than or equal to tmin, and kept when the

trust is great than or equal to tmax. While these parameters are task- and

algorithm-specific, they are not specific to the amount of incorrect feedback.

For TAMER-P, TAMER-W, and PS, tmin and tmax are [0.05,0.85], [0.0,0.95],

and [0.05,0.35] respectively.

5.1.3 REPaIR Simulation Results: REPaIR performs more de-
pendably than baselines

In all results discussed, +REPaIR indicates that an algorithm was run

with the feedback run through Γ′. All significance values are calculated using

a one-way ANOVA and a Tukey post-hoc test, with p < 0.05 required for

significance. In Figs. 5.2, 5.3, and 5.4, the two lines show performance for

baseline+REPaIR and Q-Learning. The baseline algorithm is represented as a

gradient of points, each of which represents one run (100 episodes long), where

the color represents the trust parameter setting for that run (darker is higher).

Results for TAMER-P and TAMER-P+REPaIR are shown in Fig. 5.2.

The percentage of p settings for which TAMER-P+REPaIR significantly out-

performs or underperforms the average TAMER-P is shown in Table 5.1.

Across all feedback quality levels, adding REPaIR matched or exceeded base-

line performance over the majority of p settings in 83.33% of cases (starred

in Table 5.1). TAMER-P+REPaIR also outperforms Q-Learning at 80% and

84

Figure 5.2: TAMER-P compared to TAMER-P+REPaIR and Q-Learning.
The variable p varies for TAMER-P as shown by the varied dots, and p = 0.8
for TAMER-P+REPaIR

p=0.0* p=0.2* p=0.4* p=0.6* p=0.8* p=1.0
Significantly Higher 70% 70% 80% 0% 0% 30%
Similar 10% 10% 20% 60% 60% 20%
Significantly Lower 20% 20% 0% 40% 40% 50%

Table 5.1: Changes in performance from adding REPaIR to TAMER-P out of
10 different p settings

100% correct state feedback.

Results for TAMER-W and TAMER-W+REPaIR are shown in Fig.

5.3. The percentage of w settings for which TAMER-W+REPaIR significantly

outperforms or under performs the average TAMER-W is shown in Table 5.2.

Over all feedback quality levels, adding REPaIR matched or exceeded baseline

85

Figure 5.3: TAMER-W compared to TAMER-W+REPaIR and Q-Learning.
The variable w varies for TAMER-W as shown by the varied dots, and w = 0.8
for TAMER-W+REPaIR

w=0.0* w=0.2* w=0.4* w=0.6* w=0.8* w=1.0

Significantly Higher 70% 70% 100% 30% 30% 10%
Similar 10% 20% 0% 30% 40% 30%
Significantly Lower 20% 10% 0% 40% 30% 60%

Table 5.2: Changes in performance from adding REPaIR to TAMER-W out
of 10 different w settings

performance over the majority of w settings in 83.33% of cases (starred in

Table 5.2). TAMER-W+REPaIR also outperforms Q-Learning at 60%, 80%

and 100% correct state feedback.

Results for PS and PS+REPaIR are shown in Fig. 5.4. The percentage

of C settings for which PS+REPaIR significantly outperforms or under per-

86

Figure 5.4: PS compared to PS+REPaIR and Q-Learning. The variable C
varies for PS as shown by the varied dots, and C = 0.8 for PS+REPaIR

C=0.0* C=0.2* C=0.4* C=0.6* C=0.8* C=1.0*

Significantly Higher 50% 60% 100% 50% 50% 60%
Similar 10% 40% 0% 20% 30% 10%
Significantly Lower 40% 0% 0% 30% 20% 30%

Table 5.3: Changes in performance from adding REPaIR to PS out of 10
different C settings

forms the average PS is shown in Table 5.3. Over all feedback quality levels,

adding REPaIR adding REPaIR matched or exceeded baseline performance

over the majority of C settings in 100.00% of cases (starred in Table 5.3).

PS+REPaIR also outperforms Q-Learning at 60%, 80% and 100% correct

state feedback.

87

5.1.4 REPaIR Robot Experiment

As a proof of concept, I also run experiments on a physical robot with

a Kinova Jaco 7-dof arm and Robotiq gripper to compare the performance of

Policy Shaping (PS) and PS+REPaIR. The agent learns to grasp a cup on a

table by moving its gripper above the table in cardinal directions on a 4 by

4 grid, and reaching down to grasp when it is over the cup. The MDP is as

follows:

• S : x, y location of gripper in 4 by 4 grid

• A : all four cardinal directions, and attempt a grasp

• R(s, a) : +100 if robot successfully attempts grasp, -10 if robot unsuc-

cessfully attempts grasp or after 16 actions, -1 otherwise.

The robot receives a reliable reward function from detecting whether its

gripper is fully closed after attempting a grasp. If the gripper is not fully closed

(blocked by the cup), the cup has been successfully grasped. The episode ends

if the robot attempts a grasp or after a maximum of 16 actions. All experiments

are 40 episodes long and averaged over 5 runs of each algorithm.

Feedback is given using the ORP object recognition and pose estimation

system [5] to locate the position of the cup relative to the robot’s gripper. If

the gripper moves closer to the cup, the robot receives positive feedback, and

receives negative feedback otherwise. When the arm gets in between the cup

and the camera, the visual system may not perceive the cup and thus give

88

Figure 5.5: Robot vision using ORP [5] and Gazebo [39]

negative feedback, as the gripper is not getting closer to any perceived cup

position. Other situations (such as the gripper intersecting the cup view)

may give incorrect positions for the cup’s location. When initially tested, the

gripper fully blocked the cup in 25% of states, and partially blocked the cup

in another 12.5%. Additional noise came from changes over time, such as

changing indoor lights, movement, and arm positions. An image of the vision

system is shown in Figure 5.5.

I optimized Q-Learning in simulation to optimize the parameters for

area under the learning curve: τ = 0.1, α = 1.0, γ = 0.9. The experiment

tests C = 0.2 (PS−0.2) and C = 0.8 (PS−0.8) as the midpoint performance

of trusting or discounting all feedback. I set tmin and tmax to [0.0,0.95].

89

Figure 5.6: Performance of PS and PS+REPaIR on a robot

5.1.5 REPaIR Robot Results: Robot learns a task using REPaIR

Results are shown in Fig. 5.6. The addition of REPaIR, with an average

of 1788.3 area under the learning curve, outperforms PS with C = 0.8, with

an average of 1680.2 area under the learning curve, and PS with C = 0.2,

with an average of 1026.7 area under the learning curve. These results are not

significant (p = 0.44) using Welch’s Anova, but show that a physical robot can

learn a task using feedback filtered through REPaIR, and suggests that using

REPaIR may improve performance.

90

5.2 Classification for Learning Erroneous Assessments
using Rewards

This work focuses on extending the REPaIR algorithm to larger and

potentially continuous state spaces. REPaIR was created for state spaces

where every visited state-action pair can easily be stored in memory with the

corresponding maximum cumulative reward. I present an algorithm, Classi-

fication for Learning Erroneous Assessments using Rewards (CLEAR), that,

similar to the work by REPaIR, also uses achieved cumulative rewards to learn

whether feedback is correct or incorrect over time. However, while REPaIR

requires storing each observed state-action pair with an associated reward,

which requires too much space and time for large state spaces, this work uses

a classifier to store predictions of the slope of the learning curve based on

observed state-action pairs, so each individual state-action pair does not need

to be stored. CLEAR also adds in additional feedback as a supplement to the

feedback from the human teacher.

Feedback is filtered through the CLEAR algorithm to a learning robot,

and the performance of the feedback is explored in the beginning of the learning

process. I test this algorithm against Policy Shaping [30] and Q-Learning with

varying scenarios of human misunderstandings of a robot. The results suggest

that using CLEAR as a feedback filter matches or exceeds the performance

of Q-Learning over many levels of feedback quality, while the performance

of Policy Shaping varies greatly based on feedback quality. This shows that

CLEAR can help robots learn more dependably than baseline HRL methods.

91

5.2.1 CLEAR Methodology: Improving REPaIR with the use of
machine learning

CLEAR uses an online learning classifier, CCLEAR, to predict whether

the RL learning curve is predicted to rise or fall based on state-action pairs.

This information is combined with the environmental reward function R, which

is assumed to be correct, to filter feedback. The predictions from CCLEAR are

used to determine whether to keep, invert, or discard feedback, giving output

similar to REPaIR. However, the method of choosing when to keep, invert, or

discard feedback is different, and is achieved without thresholds that need to

be set by an expert.

CCLEAR
3 takes in state features and actions, and outputs a prediction

on whether the RL learning curve will rise, fall, or stay the same after the

current trajectory. In general, a rising RL learning curve is a positive result,

as the goal is to find the highest performing policy. Falling RL learning curves,

in the absence of local minima, suggests a decrease in performance. CLEAR

learns to predict the sign of the slope of the learning curve rather than learning

the resulting scalar cumulative reward as is done in REPaIR. This problem

would require regression and is a difficult problem to solve in larger and more

complex state spaces.

CLEAR saves the state action pairs of the current episode’s trajectory,

traje, and the trajectory that has received the highest cumulative reward,

3In this specific work, CCLEAR is implemented as the multinomial Naive Bayes classifier
from scikit-learn [58], with the training updates performed by the partial fit() function.

92

Figure 5.7: CLEAR algorithm: classifier for predicting learning slope

trajm. The cumulative reward for episode e is Re =
∑T

t=0 rt where T is the

total number of time steps in an episode and rt is the reward received at each

time step. The trajectories are composed of (st, at) tuples, where st is the

state at time t, and a is the action taken at time t. The current and maximum

cumulative rewards are also saved: Re, Rmax. This information is used to

preprocess data and determine whether the classifier should predict a rising,

falling, or stagnating learning curve, as shown in Figure 5.7. CCLEAR takes

as input the features of the state expected to influence the quality of human

feedback (e.g. x-y gripper position, joint configuration, etc.) along with the

action being taken. The output is one of three choices: rise, stagnate, or fall.

At the end of each trajectory, CLEAR trains CCLEAR. Each training

sample is given with a weight equal to the current episode count squared,

weighting samples more heavily as learning continues and observed total re-

wards are more likely to be incorrect. CCLEAR as follows for each (s, a) ∈ traje,

93

where featst is the features of state st:

• If Re > Rmax

CCLEAR[(featst , at)] = rise

• Else if Re ≤ Rmax−(episode count/max count)∗|(Rmax −Rmin))

CCLEAR[(featst , at)] = fall

• Else

CCLEAR[(featst , at)] = stagnate if (st, at) ̸∈ trajm

A quick note that CCLEAR is trained with a “fall” label only if Re ≤

Rmax−(episode count/max count)∗|(Rmax −Rmin)), not simply Re < Rmax. I

found this setting to work best in practice, to give a small but widening range

to define stagnation, as the current episode count gets closer to the maximum

number of episodes that the experimenter is running.

The feedback is then kept, discarded, inverted, or supplemented based

on the predicted learning slope. That is, feedback is either directly passed

through to the learning algorithm, not passed through at all, inverted by

calculating −∆s,a as used in Policy Shaping (Section 2.1.2) [16,30], or added by

CLEAR. When an HRL algorithm requests feedback, CLEAR is passed state-

action pairs. CLEAR filters feedback by predicting the upcoming slope of the

learning curve, preds. Using the predicted probabilities of C 4, where probs =

4These probabilities were predicted using the predict proba() function [58]

94

C.predict proba([s, a]), Pr[preds = fall] = probs[fall], Pr[preds = stagnate] =

probs[stagnate], Pr[preds = rise] = probs[rise]. The current feedback input

is defined as f , and the total feedback received for a state is ∆s,a. Recall

that Policy Shaping measures ∆s,a as the difference in positive and negative

feedback, so that a negative ∆s,a means that the teacher disapproves of the

state-action pair, and a positive ∆s,a means that the teachers approves of the

state-action pair. If there is no feedback (∆s,a == 0), CLEAR supplements

feedback f proportional to the probability of the slope direction: f = probs[rise]
2

if preds == rise, and f = −probs[fall]
2

if preds == fall. Specifically, CLEAR

returns feedback as follows (assuming feedback is input to a Policy Shaping

baseline algorithm):

• If ∆s,a < 0 and preds == fall, or ∆s,a > 0 and preds == rise, KEEP:

return ∆s,a

• Else if preds = rise and ∆s,a < 0, or preds = fall and ∆s,a > 0, INVERT:

return −∆s,a

• Else if ∆s,a == 0 and preds == rise, ADD: return probs[rise]
2

• Else if ∆s,a == 0 and preds == fall, ADD: return −probs[fall]
2

• Else, DISCARD: return 0.

If the baseline algorithm is not Policy Shaping, replace ∆s,a with the

feedback function for the baseline HRL algorithm.

95

5.2.2 CLEAR Simulation Experiment: Testing performance with
simulated feedback

For these experiments, I compare CLEAR to baseline RL with no feed-

back, and to Policy Shaping with varying settings of the trust setting C ∈ [0, 1].

C is set to 0.1, 0.25, 0.75, 0.9, and the true percentage of correct feedback p∗.

In the graphs, C = p∗ is denoted by PS-1. For CLEAR, C = 0.8. For these

experiments, the baseline algorithms use Q-Learning with Boltzmann explo-

ration, with α, γ, τ = 0.9. The parameter τ is annealed by multiplying by

0.999 at the end of each episode. Each algorithm is run 100 times for a length

of 750 episodes, with each episode ending after 2 ∗
√
|S|, where |S| gives the

total number of states. The state features are the x and y coordinates of the

robot gripper. A simulated teacher gives feedback to 80% of the robot’s ac-

tions, chosen at random. The results are analyzed using a one-way ANOVA

and Tukey post-hoc test.

The simulation task is a robot moving its gripper to touch a goal object

on a flat surface. The discretized state space is 15x15 (|S| = 225, with the true

goal at (
√
|S| − 1,

√
|S| − 1). The robot arm can take cardinal and diagonal

actions, one square at a time, or choose to not move. The robot arm starts at

a random location at the beginning of each episode. There is also a distractor

goal. In this task, the human confusion is pertaining to the goal; that is, out of

two possible goals (the true and distractor), the teacher believes the distractor

goal to be the true goal. As shown in 5.8, the distractor goal is placed at

1. (0,0)

96

Figure 5.8: Distractor goal placements for |S| = 225

2. (0,
√
|S| − 1)

3. (
√

|S| − 1,0)

4. (
√

|S| − 2,
√

|S| − 1)

5. (
√

|S| − 1,
√

|S| − 2)

6. (
√

|S| − 1,
√

|S| − 1)

The robot gripper starts at a random, non-goal and non-distractor-goal

state at the beginning of each episode. The goal and distractor goal remain

the same over each iteration. The simulated human feedback is modeled as an

oracle that gives perfect feedback to the distractor goal. When the distractor

goal is on the same space as the true goal, the simulated human gives perfect

97

feedback to the true goal. The simulated human gives feedback 80% of the

time. The sparse reward function is:

• True goal: 10

• Distractor goal: 0.1

• All other states: -0.1

There is a reward placed on the distractor goal to show that even if there is a

local maximum on the human’s incorrect goal, CLEAR can recover.

5.2.3 CLEAR Simulation Results: CLEAR performs dependably
over multiple levels of feedback correctness

The results of the simulation study are shown in Figure 5.9 and Table

5.4. I measured the AUC using the composite trapezoidal rule for CLEAR,

Q-Learning, the C value that produces the minimum performing PS, and the

C value that produces the maximum performing PS, averaged over all 100

iterations. The average AUC shows us the total rewards gather over time on

average for each algorithm. Higher AUCs indicate that an algorithm achieved

higher total rewards on average. Using a one-way ANOVA and a Tukey post-

hoc test, CLEAR performs significantly better than Q-Learning (p < 0.05)

for distractor placements (|S| − 1,0) and (|S| − 1,|S| − 2). However, the PS

performance varies by large amounts based on the C parameter. Since the

simulated teacher gives feedback to an incorrect goal, without a model of how

well the teacher performs, PS is subject to wide variances in performance.

98

This is likely due to the fact that the C parameter, if matched properly to

feedback quality, enables the robot to weight incoming feedback against state

values appropriately. However, if the C parameter and feedback quality are

mismatched, PS will discount correct feedback too much, or put too much

weight on incorrect feedback.

These results suggest that CLEAR performs more dependably than

Policy Shaping with simulated human feedback. However, this does not test

its performance with real people and messy feedback. I hypothesize that,

even if trained on simulated human feedback, CLEAR could determine what

feedback from real human teachers was correct or incorrect.

DISTRACTOR CLEAR Q-LEARNING PS-min PS-max

(0,0) 65290 59076 3015 70708
(|S| − 1,0) 64528 53131 18426 42057

(|S| − 1,|S| − 2) 67682 56605 18970 44423
(0,|S| − 1) 65626 5780 1376 88052

(|S| − 2,|S| − 1) 57267 53706 1415 481616
(|S| − 1,|S| − 1) 58851 52618 1211 124943

Table 5.4: The mean AUC for each algorithm.

5.2.4 CLEAR Human Study: Testing how CLEAR responds to real
human feedback

The human study for this work was run on Amazon Mechanical Turk

with 10 participants. I used a simulated Fetch robot to run a modified version

of the FetchReach-v1 task [12] that spans a 6x6 space over a table. This task is

equivalent to the reach task used in the full simulation studies, except that the

99

(a) Distractor goal (0,0)

(b) Distractor goal (|S| − 1,0)

Figure 5.9: CLEAR simulation results with varied feedback correctness

100

(c) Distractor goal (|S| − 1,|S| − 2)

(d) Distractor goal (0,|S| − 1)

Figure 5.9: Continued

101

(e) Distractor goal (|S| − 2,|S| − 1)

(f) Distractor goal (|S| − 1,|S| − 1)

Figure 5.9: Continued

102

robot begins at state (0,2) every time rather than a random starting location.

The reward function is as follows:

• Goal state: +10

• Distractor state: +0.1

• Else: -0.1

The state features are the x and y coordinates of the robot gripper. The

task still requires the robot to reach towards a goal object, with a distractor

object present. This study began with a robot pretrained on simulated human

feedback with a single true (2,1) and distractor goal object location (2,3).

The Amazon Mechanical Turk participants viewed four videos of the robot

reaching towards the different objects, taking the following paths (shown in

Figure 5.10).

1. (0,2),(0,1),(1,1),(2,1)

2. (0,2),(0,3),(1,3),(2,3)

3. (0,2),(1,2),(2,2),(2,1)

4. (0.2),(1,2),(2,2),(2,3)

Each participant recorded their feedback for each action.

103

Figure 5.10: Videos in simulated robot environment, created using HIPPO
Gym [77], MuJoCo [79], and OpenAI Gym [12]. Each row shows a video clip
of the robot reaching to each goal (true and distractor) using two different
trajectories.

104

5.2.5 CLEAR Human Study Results: CLEAR can filter messy hu-
man feedback

I obtained 100 classifier instances from running the CLEAR algorithm

on the human study task with a simulated teacher, giving feedback to a blue

distractor object. After obtaining the trained classifiers, I found the average

performance of classifying the human data collected on Amazon Mechanical

Turk. Each CLEAR episode ends after 7 actions. Although the participants

were instructed to give correct feedback to the blue distractor object, the

feedback was not clean, with some participants giving incorrect feedback to

both the true and distractor object. Before filtering, the human data was

57.5% correct. After training, 65% of the kept feedback was classified correctly

by CLEAR showing that, even trained on simulated incorrect data, CLEAR

can improve human data through filtering.

The algorithm did discard some feedback, determining that it is of

unknown quality. There were a total of 120 instances of feedback collected

on Amazon Mechanical Turk. For each one of ten participants, we test over

all 100 runs, and all 12 states visited in the human study. Thus we overall

examine 1200 feedback instances. For these states over 100 runs, 3420 feedback

instances were discarded, while 8580 were kept. CLEAR is able to learn more

quickly than Policy Shaping and Q-Learning, as shown in Figure 5.11, which

shows the pretraining in simulation to achieve fully trained classifiers before

testing the human data. Furthermore, CLEAR keeps learning after PS and

Q-Learning have settled on a sub-optimal policy, despite all the algorithms all

105

Figure 5.11: Simulated performance prior to Amazon Mechanical Turk data.

having the same learning rate parameter settings.

5.3 Summary: REPaIR and CLEAR perform more de-
pendably than baselines

My results show that when HRL algorithms do not have prior knowl-

edge on the correctness of a feedback source, using REPaIR to estimate better

quality feedback improves performance. In practice, a robot will rarely know

the quality of a feedback source in advance. A human teacher might have

a wide range of understanding of a task, or they may act as an adversary.

Sensor feedback might be highly useful for guiding learning, but might also

be inconsistent in unpredictable ways. While REPaIR does have parameters

that affect its performance, tmin and tmax, these parameters can be set for a

certain task and baseline RL algorithm, and do not rely on the correctness

of the feedback. Furthermore, CLEAR does not require these parameter set-

106

tings, and can even add feedback to give to a learning robot. Thus REPaIR

and CLEAR can be used to improve HRL performance when the quality of a

feedback source is unknown.

The results for REPaIR and CLEAR suggest that using these algo-

rithms will allow robots to learn effectively from human teachers who misun-

derstand a task and give incorrect feedback. These algorithms enable HRL to

perform stably over varied human feedback. Both REPaIR and CLEAR per-

form similarly over different levels of feedback quality, while Policy Shaping

and TAMER+RL are quite sensitive to the feedback quality. Applying these

feedback filtering algorithms can improve the dependability of a learning robot

when it does not know the quality of feedback ahead of time, which is likely

to happen in the wild.

107

Chapter 6

Scalability of Presented Methods

“Upgrading is compulsory”

—Cyberman (Doctor Who: Series 2, Episode 5)

In this dissertation, I have presented four algorithms from learning

from imperfect human teachers. All four algorithms were implemented and

tested with Q-Learning as a baseline reinforcement learning algorithm. While

Q-Learning works well on the kinds of tasks that I have studied throughout

this thesis research, there are newer state-of-the-art reinforcement learning

algorithms that can perform better on robots and with complex tasks, learning

more quickly and robustly. In this chapter, I address the scalability of the

methods I have proposed to more complex robotics tasks with state-of-the-art

reinforcement learning methods. I first provide a brief background on some

state-of-the-art reinforcement learning (RL) methods for robotics, covering

Model-Based RL, Hierarchical RL, and Deep RL. These method are able to

solve tasks to which basic Q-Learning does not scale well, such as continuous

states and actions, large state spaces, and real-world robotics tasks.

Function approximation is one method of scaling RL to complex tasks

[89], which enables agents to learn in continuous state and action spaces by

108

learning approximations of state and action spaces rather than storing all

information directly. Neural Networks, modeled off of human brain function,

are one such function approximation method that can be used with RL in

continuous state and action spaces [1,47]. Deep Learning is the current state-

of-the-art use of neural networks [60], which can also be applied to RL [3,8,81].

Given these developments in function approximation, there is a considerable

body of HRL work that has expanded into deep learning. The baselines I work

with in this dissertation have been expanded to deep learning: we created

a Deep Policy Shaping (DPS) algorithm to learn in continuous spaces with

discrete actions [85], and one of the methods of integrating TAMER signal with

RL tested in [38] was extended to a Deep Q Network [6]. Several other HRL

algorithms have also been implemented with deep reinforcement learning, such

as Deep TAMER [82], Deep COACH [9], among others [45,72,87]. While these

works extend HRL to Deep RL well, a potential downside of using Deep RL

with human teachers is the amount of data needed for learning. Furthermore,

when looking at continuous states and actions, human teachers may find it

difficult to distinguish good actions from bad ones. For example, a teacher

observing small changes in robot joint torques may find it difficult to provide

feedback along the way.

Model-based RL is another approach to realistic RL on robotic tasks.

Q-Learning, among other algorithms, falls under the umbrella of Model-free

RL, which learns a policy directly from interacting with the environment.

Model-based RL, on the other hand, uses a model of the world to predict what

109

might happen in future steps, and uses these predictions to explore and learn

a policy [50,90]. Model-based RL can lead to faster learning and less required

robotics actions in the real world, as long as the model of the environment is

accurate, making Model-based RL quite effective for robotics [59]. However,

forming a model of a human teacher may be difficult. People can behave

differently than expected and even change their behavior over time [78].

One other RL method that I will cover here is Hierarchical RL. Hi-

erarchical RL enables scaling up to difficult tasks by dividing problems into

subtasks, which also enables better task generalization [10, 57]. Hierarchical

RL can divide large, complex tasks into manageable subtasks; for example,

consider the task of setting a full table. While this may be a large task for

a robot to learn with RL, Hierarchical RL can divide this task into placing

plates, placing cups, placing silverware, and more. Those subtasks can be

even further divided, into object grasping, placing, and the like. This subtask

division can also improve transfer learning, or the ability to apply previously

learned information to new tasks. If, after learning to set a table, you would

like the robot to learn how to put away dishes, the robot can use previously

learned subtasks, such as “pick up cup” and “place fork”, and apply them to

this new task.

My work on inattentive teachers – the AMPS and Active AMPS al-

gorithms – can be extended to Deep RL, Model-Based RL, and Hierarchical

RL in a fairly straightforward manner. While the baseline Policy Shaping

method would need to change, the AMPS and Active AMPS algorithms focus

110

on changing the exploration of a robot using RL to learn. While there are

many differences between state-of-the art RL algorithms, all of them use ex-

ploration in some way. Thus AMPS and Active AMPS can be used to guide

the robot to explore more during attention and less during inattention. AMPS

or Active AMPS may even lower the amount of feedback needed from users,

potentially mitigating some of the concern over data requirements for deep

learning. However, if using a non-Markovian RL method [28,54,69,86], which

could be designed as Deep, Model-Based, or Hierarchical RL, AMPS and Ac-

tive AMPS may run into difficulties. In a Markovian task, teachers can become

attentive, look at the current state of the robot, and be fully prepared to give

feedback on future actions.

However, with non-Markovian tasks, previous actions may affect the

future, no matter what the current state is. Thus, robots would have to bring

teachers up-to-speed with the current state based on what they missed while

being inattentive to the robot. There is work in swarm robotics on keeping

human understanding current with the whole swarm at once, despite being

distracted [66], how to make sure drivers and pilots are aware of the state

when autopilot intervention is needed [29, 46], and how to ensure that people

know enough about a robot’s state to answer questions [64]. One of these

methods could be integrated with AMPS and Active AMPS in order to apply

them to a non-Markovian task.

My work in inaccurate teachers poses more difficulties when expanding

to RL methods more complex than Q-Learning. REPaIR cannot extend di-

111

rectly to large, continuous state, or continuous action spaces, as the algorithm

requires a memory of each observed state-action pair. Thus, extending directly

to any learning method that performs well on complex tasks may be infeasible.

REPaIR could potentially be applied to a Hierarchical RL method if only used

for macro-actions (composed of multiple subtasks). However, CLEAR would

likely still be a better choice than REPaIR.

CLEAR lends itself more easily to scalability. This algorithm could

be applied to a Deep RL algorithm in a straightforward manner. To make

CLEAR even more scalable, the CCLEAR classifier could be a neural net (or

any other classifier). However, given the large amount of data required for deep

learning, Deep RL may not be the best choice for HRL tasks with inexpert

teachers. Model-based RL may be more feasible for extending CLEAR to

complex tasks. Since the classifier can be used to get slope predictions even

in previously unobserved states, CCLEAR could be used to provide a model of

human feedback to supplement the environmental model. Observed feedback

could still be used to update CCLEAR. However, this extension would need

to be tested, as CLEAR may receive less feedback given that Model-based

RL enables robots to take fewer real-world actions. Finally, Hierarchical RL

may also be a good state-of-the-art method for extending CLEAR. CCLEAR

could be used to learn slope predictions for the entire task or for subtasks, and

CLEAR would apply well to transfer learning as long as there are similar state

features and action choices between each task. Since the state features and

actions are the input to CCLEAR, CLEAR could be used to predict feedback

112

on different tasks.

For all extensions, simply inverting the feedback as is done in CLEAR

may not be the best option when feedback is distrusted. In more complex

tasks, performance may be improved by instead simply decreasing the feedback

applied to the algorithm; for example, ∆s,a in Policy Shaping could be brought

closer to 0, rather than starting by fully inverting to −∆s,a when the feedback

is not trusted. Or, using learned information about the other actions, another

action’s ∆s,a2 could be increased when feedback ∆s,a1 cannot be trusted. What

other forms inversions might take depend largely on the structure of the task

and HRL algorithm as well as different kinds of inputs from teachers.

In this chapter, I have presented some ways in which my thesis could be

expanded from using Q-Learning as a base algorithm to using newer, state-of-

the-art RL methods. AMPS, Active AMPS, and CLEAR are the most scalable.

Given that many HRL algorithms are Model-free or Deep RL algorithms, and

my algorithms function by modulating exploration and filtering feedback to

a baseline HRL algorithm, some modifications and future research may be

needed to fully utilize my algorithms on complex robotics tasks. This chapter

provides a road map for possible future extensions.

113

Chapter 7

Summary and Conclusions

“Taking one last look, sir...at my friends.”

—C-3PO (Star Wars: Episode IX - The Rise of Skywalker)

In this dissertation, I have proposed that robots using HRL should

change the way they explore and learn based on human attention and errors

when teaching. People can be effective robot teachers, but human behavior

and performance is far from perfect; distractions, lack of time, and misunder-

standings of the task or robot can impact human performance. Thus, the goal

of this dissertation has been to show that:

Actively modifying which states receive feedback from imperfect,

unmodeled human teachers can improve the speed and

dependability of Human-In-the-loop Reinforcement Learning

(HRL).

I presented my algorithms towards learning from inattentive teachers,

Attention-Modified Policy Shaping (AMPS) and Active Attention-Modified

Policy Shaping (AAMPS). While robots can still learn without attention,

AMPS and AMPS allow robots to take advantage of human attention while

114

attempting to behave more optimally while unattended. The results suggest

that modifying the state-action pairs observed by human teachers enables a

robot to learn faster than when using a baseline HRL method. Furthermore,

this change in learning based on human attention can allow for more breaks in

teaching for human teachers, enabling a more natural and less tiring workflow

than prior work.

Using AMPS, the average area under the learning curve is consistently

higher than the average area under the PS learning curve. Therefore, after

the person stops paying attention to the robot and leaves the room, the robot

can be expected to perform better on average using AMPS over PS. The lower

variance in the average area under the AMPS curve may allow more trust in

the learning algorithm overall, as it provides more consistent performance.

I hypothesized that AAMPS would allow robots to learn as quickly

as AMPS with less burden on human teachers, and that people would prefer

being interrupted less often. The results suggest that AAMPS does learn more

quickly than AMPS. Furthermore, AAMPS uses significantly less feedback

than AMPS and Policy Shaping, showing that less feedback still results in fast

learning when using AAMPS.

Secondly, I presented my work on learning from incorrect teachers, the

algorithms Revision Estimation from Partially Incorrect Resources (REPaIR)

and Classification for Learning about Erroneous Assessments using Rewards

(CLEAR). My results suggest that when HRL algorithms do not have prior

knowledge on the correctness of a feedback source, using REPaIR or CLEAR to

115

estimate better quality feedback improves performance. In practice, a robot

will rarely know the quality of a feedback source in advance. REPaIR and

CLEAR, by filtering the feedback that state-action pairs receive, enable robots

to learn more dependably than baselines. Thus this work will allow for a

wider range of skilled human teachers to successfully teach robots skills using

HRL.

The average performance with REPaIR over different feedback qual-

ities shows that REPaIR can improve performance when feedback quality is

unknown. For TAMER-P and TAMER-W, REPaIR can decrease performance

when feedback is perfect, but this is balanced by the substantial performance

gains for imperfect feedback. This is because over-trusting feedback lets the

robot take full advantage of correct feedback, but can lead to bad performance

when feedback is bad. As shown by the color gradient of baseline points in Figs.

5.2, 5.3, and 5.4, the best performance comes from matching trust to actual

feedback quality. In contrast, REPaIR can perform well with one trust set-

ting, thus improving learning when the quality of feedback is not fully known

in advance. I demonstrated the performance of REPaIR in a real-world robot

experiment, which suggested that a robot can use REPaIR to filter feedback

while learning.

The CLEAR results suggest that this algorithm performs more depend-

ably than a baseline HRL algorithm in a medium size (225 state) space. While

Policy Shaping can outperform CLEAR with the right parameters, there is of-

ten no way to model human teachers before the teaching process begins. Thus,

116

if you are picking a C parameter before beginning, Policy Shaping may take

quite some time to learn the task (much longer than RL with no feedback),

whereas CLEAR does not perform significantly worse than RL in any of these

results. This suggests that CLEAR is robust to a wide variety of inputs.

Together, this thesis lays the groundwork for an easier teaching ex-

perience for imperfect human teachers. The completed algorithms are steps

towards enabling any person, unknown and unmodeled by the robot, to teach

a new task in a comparable or shorter amount of time than prior algorithms,

without needing to spend long consecutive hours watching the robot or be

skilled at completing or teaching the desired task.

7.1 Contributions

To summarize, this thesis has provided the following contributions:

1. A HRL algorithm (AMPS) that changes RL exploration in order to learn

significantly faster than a baseline with 44% higher area under the learn-

ing curve (Speed) [24] (Chapter 4)

2. A HRL algorithm (AAMPS) that enables robots to ask for attention from

inattentive teachers when needed, performing significantly faster than

baselines with ≥ 11% higher area under the learning curve (Speed) [34]

(Chapter 4)

3. A framework for Markov Decision Processes with incorrect feedback [35]

(Chapter 3)

117

4. An algorithm (REPaIR) that filters imperfect feedback to various HRL

algorithms, enabling the expected performance to match or exceed base-

line when the robot has no prior model of expected human feedback

correctness (Dependability) [35] (Chapter 5)

5. An algorithm (CLEAR) that filters imperfect feedback to a HRL algo-

rithm in a large state space, as well as adding supplemental feedback,

matching or exceeding the performance of an RL baseline, outperforming

an HRL baseline when the robot has no prior model of expected human

feedback correctness (Dependability)

118

Bibliography

[1] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Vic-

toria Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad, State-

of-the-art in artificial neural network applications: A survey, Heliyon 4

(2018), no. 11, e00938.

[2] Joshua Achiam and Shankar Sastry, Surprise-based intrinsic motivation

for deep reinforcement learning, arXiv e-prints (2017), arXiv–1703.

[3] Forest Agostinelli, Guillaume Hocquet, Sameer Singh, and Pierre Baldi,

From reinforcement learning to deep reinforcement learning: An overview,

Braverman readings in machine learning. key ideas from inception to

current state (2018), 298–328.

[4] Riad Akrour, Marc Schoenauer, and Michèle Sebag, April: Active pref-

erence learning-based reinforcement learning, Joint European Conference

on Machine Learning and Knowledge Discovery in Databases, Springer,

2012, pp. 116–131.

[5] Adam David Allevato et al., An object recognition and pose estimation

library for intelligent industrial automation, Master’s thesis, University

of Texas at Austin, 2016.

119

[6] Riku Arakawa, Sosuke Kobayashi, Yuya Unno, Yuta Tsuboi, and Shin-

ichi Maeda, Dqn-tamer: Human-in-the-loop reinforcement learning with

intractable feedback, arXiv e-prints (2018), arXiv–1810.

[7] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning,

A survey of robot learning from demonstration, Robotics and autonomous

systems 57 (2009), no. 5, 469–483.

[8] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-

thony Bharath, Deep reinforcement learning: A brief survey, IEEE Signal

Processing Magazine 34 (2017), no. 6, 26–38.

[9] Dilip Arumugam, Jun Ki Lee, Sophie Saskin, and Michael L Littman,

Deep reinforcement learning from policy-dependent human feedback, arXiv

e-prints (2019), arXiv–1902.

[10] Andrew G Barto and Sridhar Mahadevan, Recent advances in hierarchical

reinforcement learning, Discrete event dynamic systems 13 (2003), no. 1,

41–77.

[11] Steven Bird, Ewan Klein, and Edward Loper, Natural language processing

with python: analyzing text with the natural language toolkit, ” O’Reilly

Media, Inc.”, 2009.

[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba, Openai gym, 2016.

120

[13] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum,

Extrapolating beyond suboptimal demonstrations via inverse reinforcement

learning from observations, International conference on machine learning,

PMLR, 2019, pp. 783–792.

[14] Allison Bruce, Illah Nourbakhsh, and Reid Simmons, The role of expres-

siveness and attention in human-robot interaction, Robotics and Automa-

tion, 2002. Proceedings. ICRA’02. IEEE International Conference on,

vol. 4, IEEE, 2002, pp. 4138–4142.

[15] Maya Cakmak, Crystal Chao, and Andrea L Thomaz, Designing interac-

tions for robot active learners, IEEE Transactions on Autonomous Mental

Development 2 (2010), no. 2, 108–118.

[16] Thomas Cederborg, Ishaan Grover, Charles L Isbell, and Andrea L

Thomaz, Policy shaping with human teachers, Twenty-Fourth Interna-

tional Joint Conference on Artificial Intelligence, 2015.

[17] Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh, Intrin-

sically motivated reinforcement learning, Advances in neural information

processing systems, 2005, pp. 1281–1288.

[18] Sonia Chernova and Manuela Veloso, Interactive policy learning through

confidence-based autonomy, Journal of Artificial Intelligence Research 34

(2009), 1–25.

121

[19] Jeffery Allen Clouse, On integrating apprentice learning and reinforcement

learning, University of Massachusetts Amherst, 1996.

[20] Finale Doshi-Velez, Joelle Pineau, and Nicholas Roy, Reinforcement learn-

ing with limited reinforcement: Using bayes risk for active learning in

pomdps, Artificial Intelligence 187 (2012), 115–132.

[21] Arkady Epshteyn, Adam Vogel, and Gerald DeJong, Active reinforcement

learning, Proceedings of the 25th international conference on Machine

learning, ACM, 2008, pp. 296–303.

[22] Owain Evans, Andreas Stuhlmüller, and Noah Goodman, Learning the

preferences of ignorant, inconsistent agents, Thirtieth AAAI Conference

on Artificial Intelligence, 2016.

[23] Tom Everitt, Victoria Krakovna, Laurent Orseau, and Shane Legg, Re-

inforcement learning with a corrupted reward channel, Proceedings of

the 26th International Joint Conference on Artificial Intelligence, 2017,

pp. 4705–4713.

[24] Taylor Kessler Faulkner, Elaine Schaertl Short, and Andrea Lockerd

Thomaz, Policy shaping with supervisory attention driven exploration,

2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS), IEEE, 2018, pp. 842–847.

[25] Saul Feinman, Social referencing in infancy, Merrill-Palmer Quarterly

(1982-) (1982), 445–470.

122

[26] Mary Ellen Foster, Andre Gaschler, and Manuel Giuliani, Automatically

classifying user engagement for dynamic multi-party human–robot inter-

action, International Journal of Social Robotics 9 (2017), no. 5, 659–674.

[27] Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor

Darrell, Reinforcement learning from imperfect demonstrations, arXiv e-

prints (2018), arXiv–1802.

[28] Maor Gaon and Ronen Brafman, Reinforcement learning with non-

markovian rewards, Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 34, 2020, pp. 3980–3987.

[29] Jonas Gouraud, Arnaud Delorme, and Bruno Berberian, Autopilot, mind

wandering, and the out of the loop performance problem, Frontiers in neu-

roscience 11 (2017), 541.

[30] Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L Is-

bell, and Andrea L Thomaz, Policy shaping: Integrating human feedback

with reinforcement learning, Advances in neural information processing

systems, 2013, pp. 2625–2633.

[31] Daniel H Grollman and Aude G Billard, Robot learning from failed demon-

strations, International Journal of Social Robotics 4 (2012), no. 4, 331–

342.

[32] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul,

Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband,

123

et al., Deep q-learning from demonstrations, Thirty-Second AAAI Con-

ference on Artificial Intelligence, 2018.

[33] Mingxuan Jing, Xiaojian Ma, Wenbing Huang, Fuchun Sun, Chao Yang,

Bin Fang, and Huaping Liu, Reinforcement learning from imperfect

demonstrations under soft expert guidance, AAAI, 2020.

[34] Taylor Kessler Faulkner, Reymundo A Gutierrez, Elaine Schaertl Short,

Guy Hoffman, and Andrea L Thomaz, Active attention-modified policy

shaping: Socially interactive agents track, Proceedings of the 18th Inter-

national Conference on Autonomous Agents and MultiAgent Systems, In-

ternational Foundation for Autonomous Agents and Multiagent Systems,

2019, pp. 728–736.

[35] Taylor Kessler Faulkner, Elaine Schaertl Short, and Andrea L. Thomaz,

Interactive reinforcement learning with inaccurate feedback, 2020 IEEE

International Conference on Robotics and Automation (ICRA), IEEE,

Submitted for review.

[36] W Bradley Knox and Peter Stone, Tamer: Training an agent manually

via evaluative reinforcement, Development and Learning, 2008. ICDL

2008. 7th IEEE International Conference on, IEEE, 2008, pp. 292–297.

[37] W. Bradley Knox and Peter Stone, Interactively shaping agents via hu-

man reinforcement, Proceedings of the fifth international conference on

Knowledge capture - K-CAP ’09 (New York, New York, USA), ACM

Press, 2009, p. 9.

124

[38] W Bradley Knox and Peter Stone, Combining manual feedback with sub-

sequent mdp reward signals for reinforcement learning, Proceedings of

the 9th International Conference on Autonomous Agents and Multiagent

Systems: volume 1-Volume 1, International Foundation for Autonomous

Agents and Multiagent Systems, 2010, pp. 5–12.

[39] Nathan Koenig and Andrew Howard, Design and use paradigms for

gazebo, an open-source multi-robot simulator, 2004 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS)(IEEE Cat.

No. 04CH37566), vol. 3, IEEE, 2004, pp. 2149–2154.

[40] Samantha Krening and Karen M Feigh, Interaction algorithm effect on

human experience with reinforcement learning, ACM Transactions on

Human-Robot Interaction (THRI) 7 (2018), no. 2, 16.

[41] Samantha Krening and Karen M Feigh, Newtonian action advice: Inte-

grating human verbal instruction with reinforcement learning, Proceedings

of the 18th International Conference on Autonomous Agents and Multi-

Agent Systems, International Foundation for Autonomous Agents and

Multiagent Systems, 2019, pp. 720–727.

[42] Divesh Lala, Koji Inoue, Pierrick Milhorat, and Tatsuya Kawahara, De-

tection of social signals for recognizing engagement in human-robot inter-

action, arXiv e-prints (2017), arXiv–1709.

[43] Guangliang Li, Randy Gomez, Keisuke Nakamura, and Bo He, Human-

125

centered reinforcement learning: A survey, IEEE Transactions on Human-

Machine Systems 49 (2019), no. 4, 337–349.

[44] Guangliang Li, Bo He, Randy Gomez, and Keisuke Nakamura, Inter-

active reinforcement learning from demonstration and human evaluative

feedback, 2018 27th IEEE International Symposium on Robot and Human

Interactive Communication (RO-MAN), IEEE, 2018, pp. 1156–1162.

[45] Zhiyu Lin, Brent Harrison, Aaron Keech, and Mark O Riedl, Explore,

exploit or listen: Combining human feedback and policy model to speed up

deep reinforcement learning in 3d worlds, arXiv e-prints (2017), arXiv–

1709.

[46] Chen Lv, Dongpu Cao, Yifan Zhao, Daniel J Auger, Mark Sullman, Huaji

Wang, Laura Millen Dutka, Lee Skrypchuk, and Alexandros Mouzakitis,

Analysis of autopilot disengagements occurring during autonomous vehicle

testing, IEEE/CAA Journal of Automatica Sinica 5 (2017), no. 1, 58–68.

[47] Warren S McCulloch and Walter Pitts, A logical calculus of the ideas

immanent in nervous activity, The bulletin of mathematical biophysics 5

(1943), no. 4, 115–133.

[48] Marek P Michalowski, Selma Sabanovic, and Reid Simmons, A spatial

model of engagement for a social robot, Advanced Motion Control, 2006.

9th IEEE International Workshop on, IEEE, 2006, pp. 762–767.

126

[49] Volodymyr Mnih and Geoffrey E Hinton, Learning to label aerial images

from noisy data, Proceedings of the 29th International conference on ma-

chine learning (ICML-12), 2012, pp. 567–574.

[50] Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M.

Jonker, Model-based reinforcement learning: A survey, 2022.

[51] Ithan Moreira, Javier Rivas, Francisco Cruz, Richard Dazeley, Angel

Ayala, and Bruno Fernandes, Deep reinforcement learning with interac-

tive feedback in a human–robot environment, Applied Sciences 10 (2020),

no. 16, 5574.

[52] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba,

and Pieter Abbeel, Overcoming exploration in reinforcement learning with

demonstrations, 2018 IEEE International Conference on Robotics and

Automation (ICRA), IEEE, 2018, pp. 6292–6299.

[53] Amal Nanavati, Christoforos Mavrogiannis, Kevin Weatherwax, Leila

Takayama, Maya Cakmak, and Siddhartha S Srinivasa, Modeling hu-

man helpfulness with individual and contextual factors for robot planning,

Robotics: Science and Systems, 2021.

[54] Daniel Neider, Jean-Raphael Gaglione, Ivan Gavran, Ufuk Topcu, Bo Wu,

and Zhe Xu, Advice-guided reinforcement learning in a non-markovian en-

vironment, Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 35, 2021, pp. 9073–9080.

127

[55] Andrew Y Ng, Daishi Harada, and Stuart Russell, Policy invariance un-

der reward transformations: Theory and application to reward shaping,

ICML, vol. 99, 1999, pp. 278–287.

[56] Pierre-Yves Oudeyer et al., Active choice of teachers, learning strategies

and goals for a socially guided intrinsic motivation learner, Paladyn 3

(2012), no. 3, 136–146.

[57] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek,

Hierarchical reinforcement learning: A comprehensive survey, ACM Com-

puting Surveys (CSUR) 54 (2021), no. 5, 1–35.

[58] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-

plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay, Scikit-learn: Machine learning in Python, Journal of Machine

Learning Research 12 (2011), 2825–2830.

[59] Athanasios S Polydoros and Lazaros Nalpantidis, Survey of model-based

reinforcement learning: Applications on robotics, Journal of Intelligent &

Robotic Systems 86 (2017), no. 2, 153–173.

[60] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,

Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and Sundaraja S

Iyengar, A survey on deep learning: Algorithms, techniques, and applica-

tions, ACM Computing Surveys (CSUR) 51 (2018), no. 5, 1–36.

128

[61] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani,

John Schulman, Emanuel Todorov, and Sergey Levine, Learning complex

dexterous manipulation with deep reinforcement learning and demonstra-

tions, arXiv e-prints (2017), arXiv–1709.

[62] Pramila Rani and Nilanjan Sarkar, Operator engagement detection and

robot behavior adaptation in human-robot interaction, Robotics and Au-

tomation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International

Conference on, IEEE, 2005, pp. 2051–2056.

[63] Charles Rich, Brett Ponsler, Aaron Holroyd, and Candace L Sidner, Rec-

ognizing engagement in human-robot interaction, Human-Robot Interac-

tion (HRI), 2010 5th ACM/IEEE International Conference on, IEEE,

2010, pp. 375–382.

[64] Stephanie Rosenthal, Manuela Veloso, and Anind K Dey, Acquiring accu-

rate human responses to robots’ questions, International journal of social

robotics 4 (2012), no. 2, 117–129.

[65] Stephanie Rosenthal, Manuela Veloso, and Anind K Dey, Is someone in

this office available to help me?, Journal of Intelligent & Robotic Systems

66 (2012), no. 1, 205–221.

[66] Karina A Roundtree, Jason R Cody, Jennifer Leaf, H Onan Demirel,

and Julie A Adams, Human-collective visualization transparency, Swarm

Intelligence 15 (2021), no. 3, 237–286.

129

[67] Jyotirmay Sanghvi, Ginevra Castellano, Iolanda Leite, André Pereira,

Peter W McOwan, and Ana Paiva, Automatic analysis of affective pos-

tures and body motion to detect engagement with a game companion, Pro-

ceedings of the 6th international conference on Human-robot interaction,

ACM, 2011, pp. 305–312.

[68] William Saunders, Girish Sastry, Andreas Stuhlmueller, and Owain

Evans, Trial without error: Towards safe reinforcement learning via

human intervention, Proceedings of the 17th International Conference on

Autonomous Agents and MultiAgent Systems, International Foundation

for Autonomous Agents and Multiagent Systems, 2018, pp. 2067–2069.

[69] Jürgen Schmidhuber, Reinforcement learning in markovian and non-

markovian environments, Proceedings of the 3rd International Conference

on Neural Information Processing Systems, 1990, pp. 500–506.

[70] Jürgen Schmidhuber, Formal theory of creativity, fun, and intrinsic mo-

tivation (1990–2010), IEEE Transactions on Autonomous Mental Devel-

opment 2 (2010), no. 3, 230–247.

[71] Emmanuel Senft, Séverin Lemaignan, Paul E Baxter, Tony Belpaeme,

et al., Sparc: an efficient way to combine reinforcement learning and su-

pervised autonomy, Future of Interactive Learning Machines Workshop at

NIPS’16, 12 2016.

[72] Isaac Sheidlower, Elaine Schaertl Short, and Allison Moore, Environment

guided interactive reinforcement learning: Learning from binary feedback

130

in high-dimensional robot task environments, Proceedings of the 21st In-

ternational Conference on Autonomous Agents and Multiagent Systems

(Richland, SC), AAMAS ’22, International Foundation for Autonomous

Agents and Multiagent Systems, 2022, p. 1726–1728.

[73] Candace L Sidner, Christopher Lee, Cory D Kidd, Neal Lesh, and Charles

Rich, Explorations in engagement for humans and robots, Artificial Intel-

ligence 166 (2005), no. 1-2, 140–164.

[74] Mohan Sridharan, Augmented reinforcement learning for interaction with

non-expert humans in agent domains, 2011 10th International Conference

on Machine Learning and Applications and Workshops, vol. 1, IEEE,

2011, pp. 424–429.

[75] Kaushik Subramanian, Charles L Isbell Jr, and Andrea L Thomaz, Ex-

ploration from demonstration for interactive reinforcement learning, Pro-

ceedings of the 2016 International Conference on Autonomous Agents &

Multiagent Systems, International Foundation for Autonomous Agents

and Multiagent Systems, 2016, pp. 447–456.

[76] Richard S Sutton and Andrew G Barto, Introduction to reinforcement

learning, 1998.

[77] Matthew E Taylor, Nicholas Nissen, Yuan Wang, and Neda Navidi, Im-

proving reinforcement learning with human assistance: an argument for

human subject studies with hippo gym, Neural Computing and Applica-

tions (2021), 1–11.

131

[78] Andrea L Thomaz, Guy Hoffman, and Cynthia Breazeal, Reinforcement

learning with human teachers: Understanding how people want to teach

robots, ROMAN 2006-The 15th IEEE International Symposium on Robot

and Human Interactive Communication, IEEE, 2006, pp. 352–357.

[79] E. Todorov, T. Erez, and Y. Tassa, Mujoco: A physics engine for model-

based control, 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2012, pp. 5026–5033.

[80] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier

Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe,

and Martin Riedmiller, Leveraging demonstrations for deep reinforcement

learning on robotics problems with sparse rewards, arXiv e-prints (2017),

arXiv–1707.

[81] Hao-nan Wang, Ning Liu, Yi-yun Zhang, Da-wei Feng, Feng Huang,

Dong-sheng Li, and Yi-ming Zhang, Deep reinforcement learning: a sur-

vey, Frontiers of Information Technology & Electronic Engineering 21

(2020), no. 12, 1726–1744.

[82] Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone,

Deep tamer: Interactive agent shaping in high-dimensional state spaces,

Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[83] Christopher J Watkins, Models of delayed reinforcement learning, Ph.D.

thesis, Ph. D. thesis, Cambridge University, 1989.

132

[84] Christopher JCHWatkins and Peter Dayan, Q-learning, Machine learning

8 (1992), no. 3-4, 279–292.

[85] Thomas Wei, Taylor A Kessler Faulkner, and Andrea L Thomaz, Extend-

ing policy shaping to continuous state spaces (student abstract), Proceed-

ings of the AAAI Conference on Artificial Intelligence, 2021, pp. 15919–

15920.

[86] Steven D Whitehead and Long-Ji Lin, Reinforcement learning of non-

markov decision processes, Artificial intelligence 73 (1995), no. 1-2, 271–

306.

[87] Baicen Xiao, Qifan Lu, Bhaskar Ramasubramanian, Andrew Clark, Linda

Bushnell, and Radha Poovendran, Fresh: Interactive reward shaping in

high-dimensional state spaces using human feedback, Proceedings of the

19th International Conference on Autonomous Agents and MultiAgent

Systems, 2020, pp. 1512–1520.

[88] Qianli Xu, Liyuan Li, and Gang Wang, Designing engagement-aware

agents for multiparty conversations, Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems, ACM, 2013, pp. 2233–

2242.

[89] Xin Xu, Lei Zuo, and Zhenhua Huang, Reinforcement learning algorithms

with function approximation: Recent advances and applications, Informa-

tion Sciences 261 (2014), 1–31.

133

[90] Fengji Yi, Wenlong Fu, and Huan Liang, Model-based reinforcement learn-

ing: A survey, Proceedings of the International Conference on Electronic

Business (ICEB), Guilin, China, 2018, pp. 2–6.

[91] Jiangchuan Zheng, Siyuan Liu, and Lionel M Ni, Robust bayesian inverse

reinforcement learning with sparse behavior noise, Twenty-Eighth AAAI

Conference on Artificial Intelligence, 2014.

134

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Learning from inattentive teachers
	Learning from inaccurate teachers
	Contributions

	Chapter 2. Background and Related Work
	Background
	Reinforcement Learning
	Policy Shaping
	TAMER+RL

	Related Work
	Human-in-the-loop Reinforcement Learning
	Attention from Human Teachers
	Learning from Incorrect Information

	Thesis Motivation

	Chapter 3. MDP Framework for Inattentive and Inaccurate Teachers
	Chapter 4. Learning from Inattentive Teachers
	Attention-Modified Policy Shaping
	AMPS Methodology: Altering Exploration Based on Attention
	AMPS Simulation Experiment: Testing response to attention
	AMPS Simulation Results: AMPS learns faster than baseline
	AMPS Robot Experiment: Testing learning response to human attention with robot study
	AMPS Robot Results: Robot performs faster with AMPS given time

	Active Attention-Modified Policy Shaping
	AAMPS Methodology: Enabling robots to request attention
	AAMPS Simulation Experiment: Testing performance with attention requests
	AAMPS Simulation Results: AAMPS learns more quickly and with less feedback than baselines
	AAMPS Robot Experiment: Testing attention requests and human response
	AAMPS Robot Results: People have more break time with AAMPS

	Summary: AMPS and AAMPS improve the performance of HRL with inattentive teachers

	Chapter 5. Learning from Incorrect Teachers
	Revision Estimation from Partially Incorrect Resources
	REPaIR Methodology: Incorporating feedback filtering into HRL
	REPaIR Simulation Experiment: Comparing average reward gathered against baselines
	REPaIR Simulation Results: REPaIR performs more dependably than baselines
	REPaIR Robot Experiment
	REPaIR Robot Results: Robot learns a task using REPaIR

	Classification for Learning Erroneous Assessments using Rewards
	CLEAR Methodology: Improving REPaIR with the use of machine learning
	CLEAR Simulation Experiment: Testing performance with simulated feedback
	CLEAR Simulation Results: CLEAR performs dependably over multiple levels of feedback correctness
	CLEAR Human Study: Testing how CLEAR responds to real human feedback
	CLEAR Human Study Results: CLEAR can filter messy human feedback

	Summary: REPaIR and CLEAR perform more dependably than baselines

	Chapter 6. Scalability of Presented Methods
	Chapter 7. Summary and Conclusions
	Contributions

	Bibliography

