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Abstract 

Identification of analog resources or items are important during the 

planning and development of new communities because available 
information is usually limited or absent. Conventionally, analogs are made 

by domain experts however, this is not always readily obtainable. 
Coupled with this challenge, most of the available data in socioeconomic 
systems have high dimensionality making interpretation, and visualization 
of these datasets difficult. Hence, it is crucial to adopt a workflow that 
can be used to identify analogs regardless of its existing high 
dimensionality. 

 

To this end, we present a systematic and unbiased measure, group 

similarity score (GCS) and similarity scoring metric (SSM) to support the 
predictive search of missing properties for target communities and 
identification of analogous cities based on available socioeconomic data 
and modeling. Knowing that each Texan community can be 
characterized by its associated properties, the workflow combines both 

spatial and multivariate statistics in a novel manner to determine the GCS 
& SSM whilst visualizing the associated uncertainty space. 

 

The workflow consists of three major steps: 1) key parameter selection via 
feature engineering, 2) multivariate and spatial analysis using 
multidimensional scaling (MDS) and density-based spatial clustering of 
applications with noise (DBSCAN) for clustering analysis, 3) similarity 
ranking using a modified Mahalanobis distance function as a clustering 

basis on preprocessed data. Afterwards, to assess the quality of the 
predicted feature and analog communities obtained, K-nearest neighbor 
algorithm is applied, then the analog cities are found. 

 

The workflow is demonstrated using on high dimensional socio-economic 
data. We find analogs for each community cluster identified with their 
GCS and SSM in relation to 4 randomly selected communities used for 
testing. Thus, it is recommended to apply the integration of this workflow in 

uncertainty exploration, trend-mappings, and community analog 
assignment, and benchmarking to support decision making. 

 
 

1. Introduction 

This section reviews previous and current methods used for analog 

assignment and selection from a petroleum engineering standpoint. The 
appropriate use of analogs is an important factor during resource 
assessment and reserve estimation in oil and gas (Hodgin & Harrell, 2006; 
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Sidle & Lee, 2010). Predominantly, analogs are used to assess economic 
producibility, production decline characteristics, drainage areas, and 

total recoverable resource. Also, analogs are imperative in every asset 
management team to leverage insights that can maximize hydrocarbon 
recovery and inform development decisions (Smalley et al., 2009; Gomes 
et al., 2018, Masoudi et al., 2020). Albeit a crucial component, most 
analog analyses are carried out in a qualitative manner solely dependent 

on human expertise, experience, and conventional statistical methods. 
This results in subjective workflows riddled with bias, lack of repeatability, 
and inhibited insights from best practices and past mistakes. 
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Over the past 25 years, there have been many attempts to develop 

quantitative analog indexing methods for reservoirs using a wide range of 
reservoir and geological input. Dromgoole and Speers (1997) 
spearheaded attempts to describe reservoir complexity using a field 
scoring method for UK North Sea fields. The scoring method was only 
based on “geological complexity” and input parameters requiring high-

level interpretation, resulting in a biased and irreplicable application. A 
more structured method, reservoir complexity index (RCI) was introduced 
by Bygdevoll (2007) using parameters assigned based on a combination 
of objective limits and subjective assessment. Although objectivity is 
infused, RCI has the same limitations as Dromgoole and Speers (1997) 

because non-repeatable assessments are required, and the criteria are 
specific to the basin of interest, therefore limiting generalization. Sun & 
Pollitt (2021) developed a 5-step heuristic approach for analog 
quantification indexes in reservoirs. As the heuristic approach addresses 
the repeatability issue, Simpson’s paradox of mixing populations is 
introduced by creating a global analog in highly heterogeneous 

reservoirs. Also, subjectivity related to parameter selection was reduced 
by using fine sequential filter selection on geologic, fluidic, and 
engineering properties, however, it was not completely mitigated 
because of its rubric- based parameter selection. 

With the 4th paradigm at its peak, data-driven algorithms and similarity 

measures have been combined by researchers to identify analog 
reservoirs. As a result, Bhushan et al. (2002) identifies reservoir analogs 
using the smart reservoir prospector (SRP) – a metric using the nearest 

neighbor algorithm to measure the degree of similarity between reservoirs 
weighted by each reservoir attribute. Although a significant step towards 
statistical analog identification, SRP is flawed because it neglects the 
distortion of distance in a high dimensional space by computing similarity 
from Euclidean distance. In Rodriguez et al. (2013), the effect of distance 

distortion prompted the use of principal components analysis (PCA) for 
dimensionality reduction and co-linearity avoidance between reservoir 
properties. Then, Ward’s hierarchical clustering was used to generate a 
similarity ranking of analogous reservoirs (Rodriguez et al., 2013). Olukoga 
& Feng (2021) applied heuristic algorithms – k-means, k-medians – and 

hierarchical clustering algorithms to find miscible CO2 flooding analogous 

projects. The authors performed PCA for dimensionality reduction and used 
a principal component-weighted Euclidean distance as a similarity 
measure using K-means. 

However, a challenge with such heuristic algorithms is that the number 
of classes (clusters) to be determined is assigned. Moreover, PCA assumes 

a linear relationship between the data and underlying latent variables 
represented as principal components. Meanwhile, the relationships 
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between most variable types in unconventional plays are non- linear, 
hence, the coinage statistical plays. The preceding statements validate 

the need for an alternative clustering algorithm and dimensionality 
reduction method during analog identification that accounts for spatial 
settings. Currently, there is no known objective metric for summarizing high 
dimensional cases of features that group and identify geological analog 
wells while also accounting for their spatial settings. 

 

2. Methodology 

To achieve the project’s objectives, the following phases and corresponding 

steps are followed: 
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1. Dissimilarity matrix calculation 

Distances are distorted in high-dimensional spaces (Köppen, 2000). 

Therefore, there is a need for a distance metric that circumvents 
the distortion given that Euclidean and Manhattan distances are 
not applicable. Hence, Mahalanobis distance is effective because 
it performs well with multivariate, highly dimensional, correlated 
data. However, to introduce a physics-based constraint, a novel 

weighted Mahalanobis distance using scaled mutual information is 
integrated to account for the systems’ spatial settings. Then, the 
dissimilarity matrix is sorted using hierarchical clustering with Ward 
linkage as a diagnostic plot to check if there are inherent clusters in 
the matrix. 

 
2. Multidimensional Scaling (MDS) 

MDS is a nonlinear dimensionality reduction technique used to 
preserve a measure of similarity or dissimilarity between pairs of 
data points by projecting multidimensional data into a lower 
dimensional space (Kruskal, 1964; Cox & Cox, 1994). Knowing that 

non-metric MDS applies to ordinal data, and that classical MDS is 
simply PCA with a Euclidean distance, metric-MDS is chosen as the 
dimension reduction method. Scheidt & Caers (2009) found that 
MDS retains intrinsic information and spatial context of the data. 
Further, Tan et al. (2014) showed MDS can also be used as a 

measure of uncertainty space for various spatial models. MDS uses 
the previously determined dissimilarity matrix as input and then gives 
2D projections. 

 

3. Ordinary kriging on features in original feature space and projection 
space 

The kriged estimate and variance of the response feature are 

computed in both Euclidean feature space and MDS space. Next, 
the kriged response features in both spaces are used as underlying 
spatial maps to identify trends if any. 

 

4. Clustering analysis to identify community/ city groupings/ labels 
Following the derivation by Ester et al. (1996) and guidelines from 

Schubert et al. (2017) on density-based spatial clustering of 
applications with noise (DBSCAN), the MDS projections are 
clustered to identify groupings in the subspace. To ensure the 
optimal number of clusters will be found via DBSCAN, 
hyperparameters– “min. pts” and “eps”–will be tuned. Where “min. 

pts” is the minimum number of samples required to form a cluster, 
and “eps” is the maximum radius of the neighborhood used for 
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expanding clusters. Then, the DBSCAN algorithm will be fitted using 
the tuned hyperparameters. 

 
 

5. Classification-based predictive modeling 

Since the main research objective directly focuses on finding 
similarities between communities, the K-nearest neighbor classifier 
(KNN) is chosen because of its inherent nature to perform local 
optimizations. For this workflow, KNN is a better classifier as it does 
not assume independence between features when compared to 

the Naïve Bayes classifier. The KNN classifier is implemented, and 
the cluster groups found by DBSCAN are used for prediction 
purposes. Next, the optimal K- 
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value is determined via a k-crossfold validation on the training set 

using inverse- distance weighting. Then, the now-trained model 
using prior parameters is used to predict the cluster grouping in the 
test dataset. To check model goodness, a classification report 
consisting of accuracy, precision, and F1-score is generated 
alongside the confusion matrix to determine the fraction of 

misclassified labels and otherwise. Lastly, a probabilistic uncertainty 
scheme will be used to identify communities in a unique cluster, 
and boundary communities with tendencies of belonging to more 
than one cluster to account for grouping uncertainties. 

 
6. Analog identification and similarity scoring 

The centroid of each cluster identified in the MDS space is 
determined as an analog. Then a within-group and between-group 
similarity score called similarity scoring metric (SSM) and group 
consistency score (GCS) is computed in the normalized MDS space. 

These scores were developed using Euclidean distance and can be 
ranked in ascending order with the most similar communities ranked 
first; where 0 indicates complete similarity, and 1 indicates total 
dissimilarity. 

 
 

4. Results & Discussion 

This section discusses the results obtained from the research objectives. 

These outcomes particularly address multivariate spatiotemporal analysis 

and machine learning to support analog community studies in Texas. The 
dataset needed to achieve our objectives should include appropriate 
sociological, economic, and census features of importance after the 
implementation of feature engineering on a normalized scale. Due to the 
unavailability of data at IC2, a synthetic but realistic dataset comprising 4 

socio-economic factors: median household income, population, crime 
rates, and commute time was created using appropriate relationships 
and correlations as found in the literature. Where median household 

income is the response feature, and the remaining factors are predictor 
features. 

 

Identification of analog items or resources is important because 
available information about new areas is usually limited or non-existent. 

Traditionally the search for analogs is done by experienced domain 
experts, but this practice is subject to the availability of this experience 
and the results are heavily dominated by preferences. From a petroleum 
engineering standpoint, most methods in the literature for analog 
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identification and classification are either applied to reservoirs or rock 
facies with no quantitative analog indexing approach using geological 

input data for wells. Consequently, the idea of using knowledge from well-
known comparable reservoirs with fluid and reservoir properties identical 
to an undeveloped target reservoir is extended to “geological well 
typing”. Not only is geological well typing an intrinsically complicated 
multivariate spatiotemporal problem, but its challenges are also 

exacerbated due to its high dimensional nature (Mabadeje & Pyrcz, 
2022b). 

Here, a dataset with high dimensionality is generated using adequate 
relationships and correlations inherent in literature for the following socio-
economic factors on a city level: The response feature: household income 

($K), and the predictor features: crime rates (%), population (K), and 
commute time to work (minutes). To understand the data, a bivariate 
matrix scatter plot is shown in Figure 4–1. 
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Figure 4–1: A matrix scatter plot of all features to understand the bivariate space and 
the relationships between each socio-economic factor. Where population is negatively 

correlated with the median income and commute time. Meanwhile, for crime rates we 

can see clear segmentations and groupings within its relationship to all other factors 
indicating a scenario of mixing populations; if left unattended can lead to the statistical 

Simpson’s paradox. However, there seems to be a strong linear association between 

median income and commute time to work for the 158 communities considered. 

 

Next, the dataset is normalized on [0.01, 1] and statistical outliers are 
checked for if any using the interquartile range method. Demonstrating 
the workflow, we obtain the sorted dissimilarity matrix of normalized 

predictors as the MDS input, which is used to obtain the dataset’s 
projections in the low dimensional space shown in Figures 4–2 and 4– 3 
respectively. 
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Figure 4–2: Sorted dissimilarity matrix 

showing 4 natural groupings between 

communities considered within the 

dataset using agglomerative hierarchical 
clustering with Ward’s linkage. 

Figure 4–3: A kriged spatial map of 

median household income for different 

Texan communities over the equivalent 

area of interest in the subspace/ reduced 
dimension as indicated by 
the projections MDS 1 and MDS 2. 

 

At a glance, Figure 4–3 shows two regions of interest, where the cold 

spots (dark blue) indicate communities that have an aggregated low 
median household income, and the hot spots (yellows & oranges) 
indicate sets of communities with relatively high household income. 
Ocularly, we see a clear divide between the communities that splits the 
data into 2 major groups. Although we can see some obvious trends and 
make evident inferences, we cannot necessarily determine or identify 

clusters from the data without the use of an efficient clustering algorithm. 
Next, the DBSCAN clustering algorithm was implemented with its results 

shown in Figure 4–4 where 4 main community groups highlighted by the 
colors blue, magenta, green, and yellow are identified as clusters 1 
through 4 respectively. Also, the proportion of the clusters to the entire 
dataset is 0.45, 0.30,0.025, and 0.055 for clusters 1 through 4 respectively. 

Meanwhile, the outlier label highlighted in black has a proportion of 0.17 
indicating that 27 communities cannot be classified into the 4 main 
community archetypes found. 
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Figure 4–4: Left to right shows the clustered result of the communities in the MDS space, 

normalized MDS space, and the proportion of clustered groups found in the entire 

dataset respectively. The scatterplot of these communities shows 4 clusters as highlighted 
with the blue, magenta, green, and yellow colors representing cluster labels 1 through 4 

respectively. Note: the cluster label highlighted in black with index 0 represents outlier 

cities as identified by DBSCAN is not statistically recognized as an outlier rather, the 
clustering method identifies these cities as such due to hyperparameter constraints – not 

having enough minimum points (min pts.) within the tuned epsilon (eps) as discussed in 

prior sections. 

 

On finding the clusters, the matrix scatter plot is colored by each 
cluster to verify the initial hypothesis of mixing populations in the data 
(Figure 4–5). Upon close inspection, there is a clear distinction within the 

clusters found for all features alluding to the existence of subgroups in the 
data. An interesting find is that of crime rates (%) against commute time 
(minutes), where we see that erroneous inferences such as a negative 
linear association, can be made in the subgroup located on the top-right 
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as opposed to the actual positive association when clustered. 

Figure 4–5: A matrix scatter plot colored by the 4 clusters found for all features to 

understand the bivariate space and the relationships between each socio-economic 
factor, where K represents thousands. 
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Figure 4–6 shows a prediction model to ascertain the testability of the 

workflow is generated using a KNN classifier having a test size of 0.30 and a 
training size of 0.70 for a dataset consisting of 158 samples. Figure 4–6 has 
a dual value add-on premise: i) the visualization of the test case with an 
accuracy of 0.975 after KNN and an averaged F1- score of 0.94, ii) the 
identification of boundary cities between two or more cluster groups using 

as a form of uncertainty quantification for the classification schemes 
found. 

 

Figure 4–6: Visualization of the KNN predictive model for the test case showing with 

cluster identification to verify the labels found by DBSCAN. The background map 

represents the probability of a sample belonging to a particular cluster where the dark 
and bright colors represent regions ranging from low to high probability per the color bar. 

Also, these maps show the decision boundaries found by KNN for each of the identified 

cluster labels. Based on the subplots in the second column, we can see 3 data points on 
the boundary between clusters 2 and 4 having an approximate probability ranging 

between 0.20 and 0.35 of belonging to cluster 2. 

 

After cluster identification and predictive model building for our Texan 

communities in the low dimensional MDS space, we find our analog 
communities to assist with comparative analysis when limited information 
is available about a particular community of interest. Figure 4–7 shows the 
entire sample size colored by the clusters found inclusive of the DBSCAN 
outlier group in the Euclidean space, which represents the high 

dimensional space with the multiple predictor features underlain by the 
kriged spatial map of median household income on the left. 

Next, the centroid of each cluster in the MDS space is computed 
yielding 4 analogs shown in Figure 4–7 on the right, which serves as a 
global representation of the entire dataset into 4 cities that can be used 
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for dissimilarity or similarity comparisons between individual communities 
based on the predictors. Lastly, the group consistency score (GCS) of 

select cities relative to the individual analogs as shown in Table 4–1, 
showed that communities with similar GCS scores across all clusters belong 
to the dubbed “non- statistical outlier” grouping based on the DBSCAN 
algorithm workings. Hence, we can infer that such results for the GCS 
determined for the specific test communities are considered inconclusive 

as its ranking and grouping may change over time or with more data. 
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Figure 4–7: A similarity-based categorization of the communities and identification of 4 

community clusters with samples colored by the clusters found in the MDS space with no 

evident rationale due to the curse of dimensionality on the left and its analog 
representations encircled in white on the right. Each of these clusters consists of 

communities with similar socio-economic attributes that help understand the feature of 

interest– median household income, in rural Texas. Note that communities classified as 
outliers are not statistical outliers but are samples that did not fit the major clusters based 

on insufficient density in the DBSCAN algorithm. 

 

Table 4–1: Group Consistency Score (GCS) for the 4 Select Communities 

at Random. 

Index 6 Index 54 Index 102 Index 140 
0.16 0.45 0.28 0.29 
0.27 0.42 0.08 0.56 
0.35 0.57 0.20 0.63 

0.47 0.76 0.42 0.66 
0.27 0.35 0.45 0.02 

 

 

 

5. Conclusion 

Overall, one of the key benefits of our workflow is its ability to identify items 

or resources, in this case, Texan communities, and their socio-economic 
attributes as a measure of resilience as clusters, resulting in optimal 
decision-making during funds allocation. Other advantages include: i) 
identifying communities/ cities with similar socio-economic properties, ii) 
Mappings for uncertainty exploration and introduction of a probabilistic 

classification scheme, iii) decision making when faced with limited 
information and high uncertainty, and iv) the ability to provide sufficient 
flexibility to be adapted to different interdisciplinary needs while catering 
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to the statistics and spatial settings of the underlying system. 
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