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Machine learning enables the extraction of knowledge from data and decision-making 

without explicit programming, achieving great success and revolutionizing many fields. These 

successes can be attributed to the continuous advancements in machine learning software 

and hardware, which have expanded the boundaries and facilitated breakthroughs in diverse 

applications.

The machine learning software stack is a comprehensive collection of components 

used to solve problems with machine learning algorithms. It encompasses problem defi-

nitions, data processing, model and method designs, software frameworks, libraries, code 

optimization, and system management. This stack supports the entire life cycle of a ma-

chine learning project. The software stack allows the community to stand on the shoulders 

of previous great work and push the limit of machine learning, fostering innovation and 

enabling broader adoption of machine learning techniques in academia and industry.

The software stack is usually divided into algorithm and compilation with distinct 

design principles. Algorithm design prioritizes task-related performance, while compilation
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focuses on execution time and resource consumption on hardware devices. Maintaining arith-

metic equivalence is optional in algorithm design, but compulsory in compilation to ensure

consistent results. The compilation is closer to hardware than algorithm design. Compila-

tion engineers optimize for hardware specifications, while algorithm developers usually do

not prioritize hardware-friendliness. Opportunities to enhance hardware efficiency exist in

algorithm and compilation designs, as well as their interplay.

Despite extensive innovations and improvements, efficiency in the machine learning

software stack is a continuing challenge. Algorithm design proposes efficient model archi-

tectures and learning algorithms, while compilation design optimizes computation graphs

and simplifies operations. However, there is still a gap between the demand for efficiency

and the current solutions, driven by rapidly growing workloads, limited resources in spe-

cific machine learning applications, and the need for cross-layer design. Addressing these

challenges requires interdisciplinary research and collaboration. Improving efficiency in the

machine learning software stack will optimize performance and enhance the accessibility and

applicability of machine learning technologies.

In this dissertation, we focus on addressing these efficiency challenges from the per-

spectives of machine learning algorithms and compilation.

We introduce three novel improvements that enhance the efficiency of mainstream

machine learning algorithms. Firstly, effective gradient matching for dataset condensation

generates a small insightful dataset, accelerating training and other related tasks. Addi-

tionally, NormSoftmax proposes to append a normalization layer to achieve fast and stable

training in Transformers and classification models. Lastly, mixed precision hardware-aware

neural architecture search combines mixed-precision quantization, neural architecture search,
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and hardware energy efficiency, resulting in significantly more efficient neural networks than

using a single method.

However, algorithmic efficiency alone is insufficient to fully exploit the potential in the

machine learning software stack. We delve into and optimize the compilation processes with

three techniques. Firstly, we simplify the layer normalization in the influential Transformers,

obtaining two equivalent and efficient Transformer variants with alternative normalization

types. Our proposed variants enable efficient training and inference of popular models like

GPT and ViT. Secondly, we formulate and solve the scheduling problem for reversible neural

architectures, finding the optimal training schedule that fully leverages the computation

and memory resources on hardware accelerators. Lastly, optimizer fusion allows users to

accelerate the training process in the eager execution mode of machine learning frameworks.

It leverages the better locality on hardware and parallelism in the computation graphs.

Throughout the dissertation, we emphasize the integration of efficient algorithms and

compilation into a cohesive machine learning software stack. We also consider hardware

properties to provide hardware-friendly software designs.

We demonstrate the effectiveness of the proposed methods in algorithm and compila-

tion through extensive experiments. Our approaches effectively reduce the time and energy

required for both training and inference. Ultimately, our methods have the potential to

empower machine learning practitioners and researchers to build more efficient, powerful,

robust, scalable, and accessible machine learning solutions.
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Chapter 1

Introduction

Machine learning, an ever-evolving field of artificial intelligence, is dedicated to the

extraction of knowledge from data and the ability to make predictions or decisions without

explicit programming. Its emergence as a versatile and potent methodology has captivated

widespread attention, particularly through the advancements in deep learning, thereby rev-

olutionizing how we analyze data and derive meaningful insights [104].

At its core, machine learning harnesses statistical techniques and computational power

to enable machines to learn. By analyzing and discovering patterns in extensive datasets,

machine learning can unveil valuable insights [21, 148], achieve remarkable prediction accu-

racy [63,183], and automate decision-making processes [166].

The success of machine learning can be attributed to the continuous development and

innovation in both software and hardware technologies, as well as their synergistic evolution.

The continuous development of machine learning software and the availability of powerful

hardware accelerators have allowed researchers and practitioners to push the boundaries

of what is achievable in the realm of machine learning. As these technologies continue

to advance in tandem, we can expect even more remarkable breakthroughs and broader

applications of machine learning in various domains.

17



6

Layer Example Stratum Equivalence

ML Problems Machine Translation

ML Algorithm Unnecessary
ML Datasets Wikipedia

ML Models Transformer

ML Methods Pretraining and Finetuning

ML Frameworks TensorFlow

ML Compilation Guaranteed
ML Compilers XLA

ML Libraries CUDA

Operating Systems Linux

Figure 1.1: Machine learning (ML) software stack, adapted from [60].

1.1 Machine Learning Software Stack

The machine learning software stack encompasses the entire software pipeline used

to solve problems with machine learning techniques. It consists of a comprehensive collec-

tion of components, including problem definitions, data processing and engineering, model

and method designs, software frameworks and tools, libraries, code generation and optimiza-

tion, and system management. These components are utilized throughout the development,

training, evaluation, and deployment of machine learning models, as depicted in Figure 1.1.

The machine learning software stack comprises multiple layers, which can be illus-

trated using an example. Suppose we aim to address the machine translation problem [41]

using machine learning. Initially, we formulate it as a sequence-to-sequence problem and

utilize Wikipedia pages as our corpus. We then employ self-supervised pre-training and su-

pervised fine-tuning on Transformer-based models [183]. The algorithm is implemented in

the TensorFlow framework [1], described as a computation graph. The computation graph

is then compiled using the XLA compiler [159] and linked to the CUDA library [50]. Lastly,
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the workload and related hardware resources are managed by the Linux operating system.

A well-designed machine learning software stack provides a robust and efficient work-

flow that supports the entire life cycle of a machine learning project. This enables researchers

and practitioners to experiment with different algorithms, optimize model performance, han-

dle large-scale datasets, and seamlessly deploy models into production systems.

Furthermore, the machine learning software stack promotes collaboration and knowl-

edge sharing within the community. Researchers and practitioners can leverage existing

libraries and tools, build upon each other’s work, and actively contribute to open-source

projects. This fosters innovation and accelerates advancements in the field. Additionally,

the availability of comprehensive documentation, tutorials, and online resources facilitates

the learning and adoption of machine learning techniques.

The collective progress across all layers in the software stack is instrumental in the

success of machine learning. An efficient, scalable, and robust machine learning software

stack is fundamental and indispensable for future machine learning solutions. As the field

continues to advance, the machine learning software stack will play a pivotal role in democ-

ratizing access to machine learning, enabling individuals and organizations to harness the

power of data-driven decision-making.

1.2 Machine Learning Algorithms and Compilation

The software stack is typically divided into two categories: algorithm and compilation.

Algorithm design focuses on approaching a problem using machine learning, while compila-

tion involves mapping the workload to various hardware platforms, ranging from CPUs and
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GPUs to specialized accelerators. There are three notable design principles that differentiate

algorithm design from compilation design.

Priority. In algorithm design, the top priority is task-related performance, such as

translation quality and classification accuracy. Researchers strive to improve the quality of

results by formulating the problem, processing the dataset, and proposing new models and

methods. On the other hand, compilation design emphasizes execution time and resource

consumption on real hardware devices. The focus is on the speed and cost of completing a

machine learning workload.

Arithmetic Equivalence. Maintaining arithmetic equivalence is optional when

proposing a new machine learning algorithm since the goal is to achieve higher quality on

specific problems. Guaranteeing equivalence limits the potential for better performance. On

the contrary, machine learning compilation guarantees the same arithmetic functionality of

the workload. A new compilation method must always maintain mathematical equivalence

to ensure consistent results.

Distance to Hardware. In comparison to machine learning algorithms, the compi-

lation is inherently closer to the hardware. While algorithm developers often do not priori-

tize hardware-friendliness, compilation engineers are tasked with considering and optimizing

against hardware specifications. They usually navigate the intricacies of the underlying

hardware architecture to extract maximum performance and efficiency. Both algorithm and

compilation designs offer opportunities to enhance hardware efficiency. Recognizing the mu-

tual influence and interplay between algorithms and compilation allows us to further unlock

the full potential of hardware efficiency.
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Above all, the substantial differences between machine learning algorithms and com-

pilation give rise to distinct design philosophies in these two areas. This is why we address

them in separate chapters in this dissertation.

1.3 Efficiency as a Continuing Challenge in Software Stack

Extensive innovations and improvements are being made to enhance efficiency in

the machine learning software stack. In algorithm design, there are proposals for efficient

model architectures [95, 161, 177] and learning algorithms [92, 121]. In compilation design,

the community works on optimizing computation graphs and simplifying operations [219].

Notably, several efficient machine learning frameworks, such as TensorFlow [1], PyTorch

[142], and MxNet [31], have emerged and matured, becoming critical tools for the community.

However, despite these advancements, there still exists a gap between the demand for

efficiency and the current machine learning solutions. As the need for more sophisticated

machine learning solutions continues to grow, there is an increasing requirement for an

efficient and optimized software stack that covers the entire machine learning workflow,

from algorithmic development to compilation processes. We have identified several critical

challenges in achieving efficiency within this stack.

Scalability to large workloads. The rapidly escalating workloads continuously

challenge the efficiency of machine learning solutions. Model size and data volume have

grown expeditiously [88]. Large models, especially large language models (LLMs) [217]

and vision models [42], have raised higher demands for the entire stack, including data

preprocessing and management, distributed training, model inference, etc.
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Tiny workloads with limited resources. With advancements in technologies such

as the Internet of Things (IoT) and edge computing, it is desirable to incorporate machine

learning techniques into resource-constrained embedded devices for distributed and ubiqui-

tous intelligence [90]. Specific applications, like autonomous vehicles and edge devices, have

strict efficiency, latency, and bandwidth constraints. These applications require the devel-

opment of more efficient machine learning solutions tailored to these resource-constrained

environments.

Cross-layer design. In addition to improving efficiency in each individual layer,

a significant challenge lies in the lack of cross-layer design, where the interplay between

algorithms, compilation, and hardware is not fully exploited. Considering the entire software

stack as a unified system can lead to more efficient and effective solutions.

Addressing these challenges requires interdisciplinary research efforts and collabora-

tion across multiple domains. By developing efficient machine learning solutions, significant

advancements can be made in various fields, enabling the deployment of intelligent systems

in both large-scale systems and resource-constrained environments. Efforts to improve effi-

ciency within the machine learning software stack will optimize performance and expand the

accessibility and applicability of machine learning technologies.

1.4 Contributions and Overview of the Dissertation

This dissertation addresses the challenges associated with developing an efficient ma-

chine learning software stack and exploring innovative techniques to streamline the entire

process. Figure 1.2 provides a visual representation of the hierarchical overview of the dis-

sertation, illustrating the different components and their interconnections. We propose a
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Chapter 2, Algorithm Efficiency

Chapter 3, Compilation Efficiency
Figure 1.2: The overview of the dissertation.

cross-layer synergistic design to enhance machine learning efficiency in the perspectives of

algorithms and compilation. Additionally, we incorporate hardware awareness and friendli-

ness to further improve the efficiency of our proposed methods.

Chapter 2 presents our efficiency improvement in machine learning algorithms. Our

improvements are in various layers, including datasets, models, and methods. This chapter

showcases our representative work, listed below.

• Effective Gradient Matching for Dataset Condensation. We delve into and im-

prove the gradient matching algorithm to condense datasets. We enhance the efficiency

and effectiveness of machine learning datasets.

• NormSoftmax: Normalizing Softmax Input to Accelerate and Stabilize

Training. We propose the addition of a normalization layer to mainstream neural

architectures, such as Transformers or cross-entropy loss. This appended normaliza-

tion improves the efficiency and robustness when training softmax-based models.
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• Mixed Precision Hardware-Aware Neural Architecture Search. We propose

a framework that combines neural architecture search, mixed precision quantization,

and hardware energy efficiency. This integrated approach enhances the efficiency of

models, search algorithms, and hardware deployment.

However, exploiting the full potential of the machine learning software stack requires more

than just algorithmic efficiency.

Chapter 3 delves into the compilation processes of transforming high-level machine

learning models into efficient computation graphs and schedules. By studying advanced

compilation strategies such as computation graph simplification, scheduling, and memory

management, we aim to fully harness the computational capabilities of modern hardware

platforms and achieve significant performance improvements. Our contributions in this chap-

ter are highlighted as follows.

• Pre-RMSNorm and Pre-CRMSNorm Transformers: Equivalent and Effi-

cient Pre-LN Transformers. We unify two widely used normalization types in

Transformers and propose two more equivalent Transformer variants. We improve

the efficiency of computation graphs for Pre-LN Transformers, such as the impactful

GPT [21,148] and ViT [47].

• An Efficient Training Framework for Reversible Neural Architectures. We

formulate the scheduling problem for reversible neural architectures and propose an

algorithm to obtain optimal schedules. We improve memory and computation efficiency

when training on invertible neural networks.
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• Optimizer Fusion: Efficient Training with Better Locality and Parallelism.

We propose to fuse the optimizer with backward or forward computations during the

training process, enhancing the efficiency of machine learning frameworks by improving

locality and parallelism.

Throughout this dissertation, we emphasize the importance of an integrated and

cohesive machine learning software stack by seamlessly incorporating efficient algorithms

and compilation designs. Additionally, we consider hardware properties to provide hardware-

aware and hardware-friendly software designs.

Chapter 4 concludes the dissertation by summarizing the key findings and suggesting

several future directions for further exploration in improving the machine learning software

stack.

This dissertation aims to contribute to developing an efficient machine learning soft-

ware stack by addressing efficiency challenges in both algorithm and compilation designs.

The outcomes of this research are expected to advance the field of machine learning, empow-

ering practitioners and researchers to build more efficient, powerful, robust, scalable, and

accessible machine learning solutions in this rapidly evolving field.
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Chapter 2

Efficient Machine Learning Algorithms

Efficiency in machine learning algorithms refers to the ability of an algorithm to

achieve high performance while minimizing data resources, computational resources, time

requirements, etc. Most algorithms seek a balance between efficiency and task-related per-

formance, such as classification accuracy.

For instance, few-shot learning [169] is a method that achieves this balance by working

with limited data points. It focuses on data efficiency while maintaining satisfactory task-

related performance. Pruning, quantization [113], and other approximation methods can

be employed to trade off task-related performance for reduced computational requirements,

This chapter is based on the following publications.

1. Chengyue Gong*, Zixuan Jiang*, Dilin Wang, Yibo Lin, Qiang Liu, David Z Pan. "Mixed Pre-
cision Neural Architecture Search for Energy Efficient Deep Learning". IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 2019 [57].

2. Zixuan Jiang, Jiaqi Gu, Mingjie Liu, David Z Pan. "Delving into effective gradient matching for
dataset condensation". IEEE International Conference on Omni-layer Intelligent Systems (COINS),
Berlin, Germany, 2023 [83].

3. Zixuan Jiang, Jiaqi Gu, David Z Pan. "NormSoftmax: Normalizing the Input of Softmax to Accelerate
and Stabilize Training". IEEE International Conference on Omni-layer Intelligent Systems (COINS),
Berlin, Germany, 2023 [85].

For the first publication, Chengyue Gong and I shared equal contributions. I took charge of the hardware-
related algorithms and experiments. For the other two publications, I am the main contributor in charge of
problem formulation, algorithm development, and experimental validations.
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making them suitable for scenarios where efficiency is of utmost importance.

In this chapter, we present three methods. The first work, effective gradient matching

for dataset condensation, enables us to achieve higher data efficiency. The second approach,

NormSoftmax, accelerates the training process of softmax-based neural networks. We sim-

plify the training at the expense of little degradation of model representability. The third

method, mixed precision quantization neural architecture search, pushes the Pareto front

for the quantization technique. It makes a trade-off between computational efficiency and

task-related performance.

2.1 Delving into Effective Gradient Matching for Dataset Conden-
sation

Large datasets are critical for the success of deep learning at the cost of computa-

tion and memory. The high cost is unbearable when we train deep learning models with

limited training time or memory budget. For example, quick training is needed when train-

ing is a subtask. When we perform neural architecture search [49], hyper-parameter opti-

mization [11, 52], or training algorithm design and validation, we expect to obtain training

performance quickly. Another example is the training with limited storage space. To over-

come catastrophic forgetting in continual learning, we usually save partial samples for future

training [94]. There is a harsh constraint on the memory space when training on edge de-

vices [187]. Above all, it is a critical problem to achieve data efficiency in deep learning

training.

As a traditional method to reduce the size of the training dataset, coreset construction

defines a criterion for representativeness [3, 26, 51, 153, 163] and then selects samples based
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on the criterion. Coreset construction is used in many efficient and quick training tasks,

e.g., accelerating hyperparameter search [165], continual learning [18]. Unlike the coreset

construction method, dataset synthesis generates a small dataset, which is directly optimized

for the downstream task. Since it does not rely on representative samples, the dataset

synthesis outperforms the coreset construction in the corresponding downstream task.

Wang et al . formulate the network parameters as a function of the synthetic training

set and formulate the dataset condensation task as a bi-level optimization problem [186].

Specifically, the ultimate target is to train deep learning models on the synthetic training

set from scratch such that the trained model can generalize to the original training dataset.

The authors minimize the training loss on the original large training data by optimizing the

synthetic data. Based on the formulation of the bi-level optimization problem, Sucholutsky

and Schonlau extend the method by distilling both input and their soft labels [173]. Such et

al . propose to learn a generative teaching network, which generates synthetic data for train-

ing student networks [172]. Nguyen et al . use kernel ridge-regression to compress training

datasets, enhancing the dataset distillation method [139].

Zhao et al . propose to match gradients w.r.t. parameters when training examples

come from synthetic and original datasets, respectively, to solve the bi-level optimization

problem [216]. This method mimics the first-order loss landscape when the real training set

is used and intuitively maximizes the landscape similarity via gradient matching. By directly

targeting the training dynamics, this optimization-aware methodology achieves the current

state-of-the-art performance on dataset condensation. However, the previous method does

not deeply investigate the working principle in gradient matching, and the current matching

flow has limited effectiveness and learning efficiency.
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2.1.1 Overview

We analyze the gradient matching method from a comprehensive perspective, includ-

ing what, how, and where to match. We enhance the gradient matching algorithm with

three essential techniques to achieve higher efficiency and better task-specific performance.

We highlight our contributions as follows.

• Multi-level matching. We jointly explore intra-class and inter-class gradient matching

to improve performance without extra gradient computation.

• Overfitting delaying. We propose to adopt a new type of gradient matching function

to mitigate the overfitting issue on the synthetic training set to facilitate the optimiza-

tion. We concentrate on the angle between the gradients, considering the magnitude

simultaneously.

• Adaptive learning. We update the synthetic dataset against the parameter where over-

fitting happens. Thus, we can achieve the same performance with fewer parameter

updates, improving the efficiency of the dataset condensation algorithm.

Our implementation is available on GitHub. 1

2.1.2 Background

In this section, we first introduce the background of dataset condensation. Then

we describe the working principle of the gradient matching method as we will analyze and

extend it in Section 2.1.3. Similar to the previous work, we take the classification task with

1https://github.com/ZixuanJiang/improved-dataset-condensation
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balanced class distribution as an example. The algorithm can be easily extended to other

problems.

Dataset condensation. Dataset condensation is a task to generate a small synthetic

training dataset S to mimic the model optimization behavior with the original training set

T . Specifically, the network parameter θ is formulated as a function of the synthetic training

set S [186].

θ(S) = argmin
θ
L(S, θ) (2.1)

L(S, θ) = 1
|S|
∑

(x,y)∈S ℓ(fθ(x), y) is the loss with synthetic dataset S and model parameter

θ. ℓ is the task specific loss function, such as cross entropy loss in the classification task.

fθ represents a deep learning model with parameter θ. Thus, the dataset synthesis problem

can be written as the following bi-level optimization problem.

min
S
L
(
T , θ(S)

)
s.t. θ(S) = argmin

θ
L(S, θ) (2.2)

We train a deep learning model f using the synthetic training set S from scratch and obtain

the optimal parameter θ(S). The objective is to minimize L
(
T , θ(S)

)
, the loss on the original

large training set T . In other words, the original dataset T is the test dataset to verify the

model fθ(S).

Gradient matching algorithm. Among all prior work on dataset condensation, the

state-of-the-art performance has been achieved by gradient matching [216], which directly

encourages the training dynamics on the synthetic set to mimic that on the real training set.

The distance between gradients ∇θtL(St, θt) and ∇θtL(T , θt) is minimized, where t = 0, ..., T

is the time step. If the gradients match, the training trajectories will be the same using

gradient-based optimization methods.
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Figure 2.1: One simplified inner loop iteration of dataset condensation with gradient match-
ing algorithm. We first update S to minimize the gradient distance. Then the network
parameter is updated to imitate the training process.

Algorithm 1 shows the original gradient matching method. For each iteration of the

outer loop, the model parameters θ0 are initialized following the distribution of Pθ0 . Lines 4 ∼

16 correspond one inner loop iteration, which is visualized in Figure 2.1. The mini-batches

are sampled in the same class when calculating the distance between these two gradients

∇θtL(St, θt) and ∇θtL(T , θt). Afterwards, the distances for C classes are accumulated to

update the synthetic set,

St+1 = St − ηS∇StD
(
∇θtL(St, θt),∇θtL(T , θt)

)
(2.3)

where D(a, b) is a function to measure the distance between two tensors, ηS is the learning

rate.

In Lines 11 ∼ 15, the parameter θt is updated for ζθ times to imitate the training

process. The gradient ∇θtL(St+1, θt) instead of ∇θtL(St, θt) or ∇θtL(T , θt) is used to mimic

the real training step to update the synthetic set. The red arrow in Figure 2.1 represents a

gradient descent step.

The gradient matching method has several extensions. Zhao and Bilen extend it

with differentiable data augmentation [215]. Wiewel and Yang propose to learn a weighted

combination of shared components to increase memory efficiency [191]. These extensions are
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orthogonal to our analysis and enhancements so that our method can be easily integrated

into these extensions.

Algorithm 1 Gradient matching algorithm. Our proposed methods are highlighted with
color.
Input: Original training set T
Output: Synthetic training set S
1: Initialize S0 following Gaussian distribution
2: for k = 0, 1, ..., K − 1 do ▷ outer loop: explore with different initialization
3: Initialize model parameters θ0 ∼ Pθ0

4: for t = 0, 1, ..., T − 1 do ▷ inner loop
5: for c = 0, 1, ..., C − 1 do
6: Sample mini-batches BSt

c ∼ St, BT
c ∼ T in the c-th class

7: Compute gradients gSt
c = ∇θtL(BSt

c , θt), g
T
c = ∇θtL(BT

c , θt)
8: end for
9: loss =

∑C−1
c=0 D(gSt

c , gTc ) + λD
(
1
C

∑C−1
c=0 gSt

c , 1
C

∑C−1
c=0 gTc

)
10: St+1 = St − ηS∇Stloss
11: θ0t = θt
12: for i = 0, 1, ..., ζθ(t)− 1 do ▷ update θ with adaptive learning steps
13: θi+1

t = θit − ηθ∇θit
L(St+1, θ

i
t)

14: end for
15: θt+1 = θi+1

t

16: end for
17: end for

2.1.3 Method

In this section, we present our analysis and describe our improvement on the original

algorithm. We answer the following questions. What, how, and where do we match in this

gradient matching algorithm?
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2.1.3.1 What We Match: Multi-Level Gradient Matching

The original algorithm matches gradients of the mini-batch that samples in the same

class. Specifically, we sample mini-batches BS
c ∼ S, BT

c ∼ T in the c-th class and calculate

the gradients gSc = ∇θtL(BS
c , θt), g

T
c = ∇θtL(BT

c , θt), respectively. We minimize the distance

between these intra-class gradients with accumulation.

lossintra =
C−1∑
c=0

D(gSc , g
T
c ) (2.4)

Therefore, only the intra-class gradients are matched by using these intra-class mini-batches,

missing the inter-class gradient information. However, when we use either S or T to train the

model, we usually use mini-batches that sample across different classes. To mimic the realistic

training process, we also need to match the gradients of these inter-class mini-batches. We

propose to match the gradients of these inter-class mini-batches in the following efficient

way.

Since {gSc }C−1
c=0 has already been computed when calculating the intra-gradient dis-

tance, we can directly use them to compute the gradients for the mini-batches
⋃C−1

c=0 BS
c as

follows.

gS∪ = ∇θtL(
C−1⋃
c=0

BS
c , θt) =

∑C−1
c=0 |BS

c |gSc∑C−1
c=0 |BS

c |
(2.5)

If the mini-batch BS
c shares the same size, we can further simplify Equation equation 2.5

and obtain gS∪ = 1
C

∑C−1
c=0 gSc . We can also assign different weights to different mini-batches

BS
c to mimic the original training set T if the class distribution is not balanced in T .

gT∪ = ∇θtL(
⋃C−1

c=0 BT
c , θt) can be computed in the same way. In this way, we do not perform

extra forward and backward computations to calculate gradients for the inter-class mini-

batches
⋃C−1

c=0 BS
c and

⋃C−1
c=0 BT

c .
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With these inter-class gradients, we add a new term in the gradient matching loss as

shown in Equation equation 2.6.
C−1∑
c=0

D(gSt
c , gTc )︸ ︷︷ ︸

lossintra

+λD
( 1
C

C−1∑
c=0

gSt
c ,

1

C

C−1∑
c=0

gTc
)

︸ ︷︷ ︸
lossinter

(2.6)

The first term is the intra-class gradient matching loss lossintra, which is used in the original

method. We add a new term of inter-class gradient matching loss, with λ being the weight

to balance these two terms. In this multi-level gradient matching loss, we consider both

the intra-class and inter-class information. Through experiments, we find that the multi-

level gradient matching has better performance than either the intra-class or inter-class

counterpart. Experimental results are shown in Section 2.1.4.2.

2.1.3.2 How We Match: Angle and Magnitude

In the original gradient matching algorithm [216], the authors propose to decompose

the matching loss layer by layer

D
(
∇θL(S, θ),∇θL(T , θ)

)
=

L∑
l=1

d
(
∇θlL(S, θ),∇θlL(T , θ)

)
(2.7)

where L is the number of layers. For each layer, negative cosine similarity is used as the

distance between two tensors,

d(A,B) =
out∑
i=1

(
1− Ai ·Bi

∥Ai∥∥Bi∥
)
, (2.8)

where out is the number of output channels. For example, the weights and the corresponding

gradients of a 2D convolution layer has the shape of (out, in/groups, h, w) 2. We reshape

2out and in are the number of output channels and input channels. groups is the number of blocked
connections from input channels to output channels. h and w are kernel height and width, respectively.
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Figure 2.2: Optimization trajectories of training from scratch using S and T .

the gradients as (out, in/groups×h×w) and compute the cosine similarity for each output

channels. This distance function considers the layer-wise structure and output channels,

enabling a single learning rate across all layers. By maximizing the cosine similarity between

gradients, the S is expected to lead the parameter in a correct direction.

However, in this distance matching loss, only the angle between gradients is consid-

ered, with the magnitude ignored. This is a critical issue when we train a network f from

scratch for evaluation using the resultant S. Figure 2.2 visualizes the training process using

S and T respectively. Since |S| is usually very small, it is a severe challenge that the deep

learning model can easily remember the samples, which induces overfitting and a bad gener-

alization. The norm of gradient ∥∇θL(S, θ)∥ degrades quickly during the training process.

In few gradient descent steps, we will be stuck in a local minimum, where ∇θL(S, θ) = 0.

It is meaningless to match the angle when either of the gradient norm are small. The

right direction cannot help us escape the local minimum. Thus, we have to consider the

magnitude of the gradient vectors in this distance function. For example, we can consider

the Euclidean distance between two vectors Ai and Bi,

d(A,B) =
out∑
i=1

(
1− Ai ·Bi

∥Ai∥∥Bi∥
+ ∥Ai −Bi∥

)
(2.9)
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We also try other distance functions that consider the magnitude and show the results in

Section 2.1.4.3.

2.1.3.3 Where We Match: Adaptive Learning Steps

In the t-th iteration of the inner loop, θt is used to update St, and St+1 is used to

update θt. Here comes the question in this sequential update. When we update St, how

many gradient descent steps do we perform such that St+1 is a good training set for θt?

Similarly, how many gradient descent steps do we conduct when we update θt such that θt+1

is a good point for St+1?

In the original algorithm, the authors provide their answers by setting the number of

gradient descent steps ζS , ζθ empirically. Namely, we have the following update flows.

St = S0
t → S1

t → S2
t → ...→ SζS

t = St+1 (2.10)

θt = θ0t → θ1t → θ2t → ...→ θζθt = θt+1 (2.11)

We present our understanding of these two hyper-parameters. A change on S may

induce a non-negligible update in the gradient ∇θL(S, θ), which is large enough for a update

in the parameter. Moreover, S should not be updated many times at one parameter θ to

avoid overfitting. Hence, the original setting of ζS = 1 is a good choice.

Updating θt is an imitation of the training process. The synthetic dataset S is the

training dataset, while the original training dataset T serves as the validation dataset.

In particular, after one update from θit to θi+1
t , we usually have a smaller training loss

L(St+1, θ
i
t) > L(St+1, θ

i+1
t ). However, it is unknown how the validation loss change. The

relationship between L(T , θit) and L(T , θi+1
t ) is uncertain. We can check if there exists
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overfitting after updating θt. The naive method of detecting overfitting is making compar-

ison between L(T , θit) and L(T , θi+1
t ). We can also check the gap between two loss terms

L(T , θi+1
t )− L(St+1, θ

i+1
t ) to decide whether if overfitting happens.

Ideally, we should update network parameters θ until overfitting happens. If there is

no overfitting, the S leads the parameter as T does, which means S is a good approximation

of T in the perspective of gradient matching. We do not need to update S in this case.

If overfitting happens, the S needs to be updated against the current parameter since the

S has divergence from T . Hence, it is better to use dynamic and adaptive learning steps,

which help us locate where we need to update S and improve the algorithm efficiency.

Nevertheless, there is an overhead to detect the overfitting in real implementation. For

instance, we have to compute the loss term L(T , θi+1
t ) as the extra computation. Therefore,

we propose to run preliminary experiments and find when overfitting usually happens. With

the preliminary results, we make a schedule for ζθ. In other words, let ζθ be a function of

the index of the current inner loop t and we define this function from preliminary results to

avoid the extra computation on overfitting detection. This ζθ(t) could help us locate where

overfitting happens approximately. Figure 2.3 shows this improvement.

2.1.3.4 Improved Gradient Matching Flow

Algorithm 1 shows our improvement on the gradient matching algorithm, with changes

highlighted. We match the multi-level gradients to consider both intra-class and inter-class

information without extra gradient computation, as shown in Line 8. We apply the new

distance function, which considers magnitude, to avoid small gradients, which delays the

overfitting. We use a dynamic number of steps in Line 11 to improve the algorithm effi-
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Figure 2.3: Left. The original method updates S after updating network parameter θ for a
fixed number of steps ζθ [216]. Middle. Ideally, S should be updated right after the model
overfits. Right. To avoid overhead on detecting overfitting, we propose to use adaptive
learning steps ζθ(t).

ciency. Ideally, the θ should be updated until overfitting happens where S diverges from T .

We use a schedule ζθ(t) to help us approximate when overfitting occurs.

2.1.4 Experiments

In this section, we show an ablation study on our proposed techniques to validate

their superiority to other variants and compare the test accuracy with prior arts.

2.1.4.1 Settings

We follow the same settings with the original work for all the experiments. Specifically,

we use the same network architectures, datasets, and hyperparameters. The difference is

the improvement highlighted in Algorithm 1. We use five image classification datasets,

MNIST [40], FashionMNIST [198], SVHN [138], CIFAR-10 [98] and CIFAR-100. These

datasets have a balanced class distribution. There are 100 classes in the CIFAR-100 dataset,
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while other datasets have 10 classes.

We refer to the original work [216] and implementation 3 for more details regarding

experimental settings. The results of the baseline method are from the original paper.

There are two phases in every single experiment. We first use our algorithm to obtain

a small synthetic training set S with a source model. In the second phase, we train a target

model with S from scratch and test the trained model on the original testing dataset. For

every experiment, we generate 2 sets of synthetic images and train 50 target networks. The

average and standard deviation of the test accuracy over these 100 evaluations are reported.

We run all our experiments on a server with Intel Core i9-7900X CPU at 3.30GHz

and two NVIDIA Titan Xp GPUs (the CUDA version is 11.1.).

2.1.4.2 Different Gradient Matching Methods

Our first improvement is to match the multi-level gradients, which combines the intra-

class gradient matching and inter-class gradient matching as discussed in Section 2.1.3.1. To

demonstrate the efficacy of our proposed method, we make comparisons on the following four

settings: (1) intra-class gradient matching, (2) inter-class gradient matching, (3) matching

these two gradients in an interleaved way4, and (4) multi-level gradient matching. We use the

same hyperparameters in these experiments, with λ being the number of classes C, disabling

the new distance function and adaptive learning steps.

Table 2.1 lists the results on four datasets. In most cases, the multi-level gradient

matching achieves the best results. Focusing on either intra-class gradient matching or inter-

3Link to the implementation
4We match intra-class gradients in one iteration, and match inter-class gradients in the next iteration.
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Dataset #Image/Class intra-class inter-class interleaved multi-level

MNIST 1 91.7±0.5 88.8±0.7 91.7±0.4 90.9±0.5
10 97.4±0.2 96.9±0.1 97.1±0.1 97.6±0.1

FashionMNIST 1 70.5±0.6 70.2±0.7 70.6±0.6 70.6±0.7
10 82.3±0.4 82.4±0.3 83.1±0.3 84.4±0.3

SVHN 1 31.2±1.4 29.8±0.7 30.8±1.6 32.9±1.2
10 76.1±0.6 72.7±1.0 75.4±0.7 75.5±0.7

CIFAR-10 1 28.3±0.5 29.7±0.7 28.6±0.7 29.7±0.7
10 44.9±0.5 46.7±0.5 45.9±0.6 48.6±0.5

Table 2.1: Test accuracy (%) with matching different gradients. New distance function and
adaptive learning steps are disabled.

class gradient matching misses the other information. Compared with minimizing the two

matching losses in an interleaved way, the multi-level gradient matching is much more stable.

2.1.4.3 Different Distance Functions

Our second improvement is to use a new distance function. Instead of only focusing

on the angle between gradients, we also match the magnitude. Here, we make comparisons

on the following distance functions, with multi-level gradients enabled. (1) Negative cosine

similarity d1(a, b) = 1− (a · b)/(∥a∥∥b∥), (2) Euclidean distance d2(a, b) = ∥a− b∥, (3) sum

of the squared error d3(a, b) = ∥a − b∥2, (4) mean squared error d4(a, b) = d3(a, b)/len(a),

Note that the d1 focuses on the angle only, while the other functions consider angle and

magnitude simultaneously.

We take the SVHN dataset with 1 image per class as an example. Table 2.2 lists the

test accuracy when using these distance functions to generate synthetic sets. We directly

assign the same weight to these distance functions except that we set the weight of 100 for

d4.
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Distance Function Test Accuracy
d1(a, b) = 1− (a · b)/(∥a∥∥b∥) 32.9±1.2

d2(a, b) = ∥a− b∥ 23.6±2.1
d3(a, b) = ∥a− b∥2 24.3±1.8

100d4(a, b) = 100d3(a, b)/len(a) 23.5±1.4
d1 + d2 34.5±1.9
d1 + d3 34.1±2.0

d1 + 100d4 34.0±1.4

Table 2.2: Test accuracy (%) with different distance functions.

We find that when using only one of these distance functions, the test accuracy with

d1 is the highest. Our explanation is that the angle of the gradient is much more important

than the magnitude when (stochastic) gradient descent and its variants are used. However,

when we combine d1 and other magnitude-related distance functions, we get improvement

compared with pure d1. Namely, we concentrate on the gradient direction while considering

the magnitude to avoid being stuck in traps where the gradient norm is small.

2.1.4.4 Adaptive Learning Steps

Ideally, we should update S when it is no longer a good approximation of T in terms

of gradient matching. Thus, a criterion to detect overfitting is needed. We try the naive

overfitting criterion L(T , θit) < L(T , θi+1
t ). In other words, if the validation loss increases, we

will stop the parameter update and proceed to update S. With this setting, we have improved

the test accuracy from 44.9% to 45.7% for 10 images per class of CIFAR-10. However, we

notice that this improvement is at the cost of overfitting detection, which is nontrivial in

real implementation. Therefore, we define a pre-defined schedule ζθ(t) by observing when
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overfitting happens in the CIFAR-10 experiment above.

ζθ(t) =


50− 10t, t < 4

10, 4 ≤ t < 10

5, t ≥ 10

(2.12)

The reason ζθ(t) is non-increasing is that we may encounter overfitting issues more frequently

as training proceeds. Hence, we need to update S at shorter intervals.

With this schedule, we can first proceed to where overfitting happens and then stay

in this area. Another advantage of this schedule is that it reduces the number of model

parameter updates. In the baseline method, the authors set T = 1, 10, 50, ζθ = 1, 50, 10 for

synthesizing 1, 10, 50 images per class. Taking T = 10 as an example, the original algorithm

updates θ 450 times in one iteration of the outer loop, while we only update it 190 times.

2.1.4.5 Comparison with Prior Work

In Table 2.3, we perform an ablation study on our methods with four settings to

demonstrate the effectiveness of our proposed enhancement. We name the four settings as

Ours-M, Ours-MD, Ours-MDO, and Ours-MDA, where M , D, O, A stand for multi-level

gradient matching, new distance function, updating θ until overfitting, and adaptive steps,

respectively. We also add two coreset selection methods for comparison. Random means

that samples are randomly selected as the coreset. Herding [9, 34] selects samples whose

center is close to the distribution center. For a fair comparison, we evaluate our method on

the same ConvNet model [55] as used in the original work [216]. Both the source network

and the target network are the ConvNet model.

For our method, we use the settings mentioned above. We match the multi-level

gradients as shown in Equation equation 2.6 with λ = C, the number of classes. We use
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Dataset IPC Random Herding DC Baseline Ours-M Ours-MD Ours-MDO Ours-MDA Whole Training Set

MNIST
1 64.9±3.5 89.2±1.6 91.7±0.5 90.9±0.5 91.9±0.4 - -

99.6±0.010 95.1±0.9 93.7±0.3 97.4±0.2 97.6±0.1 97.9±0.1 97.9±0.1 97.9±0.2
50 97.9±0.2 94.8±0.2 98.8±0.2 98.0±0.1 98.6±0.1 98.6±0.1 98.5±0.1

FashionMNIST
1 51.4±3.8 67.0±1.9 70.5±0.6 70.6±0.7 71.4±0.6 - -

93.5±0.110 73.8±0.7 71.1±0.7 82.3±0.4 84.4±0.3 85.4±0.3 84.6±0.3 84.2±0.3
50 82.5±0.7 71.9±0.8 83.6±0.4 87.8±0.2 87.4±0.2 87.9±0.2 87.9±0.2

SVHN
1 14.6±1.6 20.9±1.3 31.2±1.4 32.9±1.2 34.5±1.9 - -

95.4±0.110 35.1±4.1 50.5±3.3 76.1±0.6 75.5±0.7 75.9±0.7 76.2±0.7 75.9±0.7
50 70.9±0.9 72.6±0.8 82.3±0.3 82.2±0.2 82.9±0.2 83.8±0.3 83.2±0.3

CIFAR-10
1 14.4±2.0 21.5±1.2 28.3±0.5 29.5±0.7 30.0±0.6 - -

84.8±0.110 26.0±1.2 31.6±0.7 44.9±0.5 48.6±0.5 49.5±0.5 49.9±0.6 50.2±0.6
50 43.4±1.0 40.4±0.6 53.9±0.5 58.5±0.5 58.6±0.4 60.0±0.4 58.3±0.5

CIFAR-100 1 4.2±0.3 8.4±0.3 12.8±0.3 12.4±0.3 12.7±0.4 - - 56.2±0.310 14.6±0.5 17.3±0.3 25.2±0.3 30.8±0.3 28.0±0.4 29.5±0.3 31.1±0.3

Table 2.3: Ablation study in terms of the test accuracy (%). IPC is the number of image
per class in S. Random means that samples are randomly selected as the coreset. Herding
selects samples whose center is close to the distribution center. DC baseline refers to the
original work on dataset condensation. M , D, O, A represent multi-level gradient matching,
new distance function, updating θ until overfitting, and adaptive steps, respectively. O and
A are not applicable when IPC is 1.

the distance in Equation equation 2.9, the overfitting criterion L(T , θit) < L(T , θi+1
t ), and

the adaptive learning step in Equation equation 2.12. 5 We use the same settings for all the

benchmarks without further tuning 6. It is expected that we can achieve better results with

better hyperparameters tuned for each benchmark. For instance, we can tune the distance

function and the learning steps ζθ(t).

Since the algorithm only runs a single inner loop, i.e., T = 1, when the condensed

dataset contains one image per class, the method of adaptive step has no impact in this

setting. In terms of test accuracy, our proposed multi-level gradient matching and angle-

magnitude distance function outperform the baseline gradient matching method [216] in

5Equation equation 2.12 is from the observation on a CIFAR-10 experiment and we generalize the setting
to other benchmarks.

6An exception is that we use d = d1 + 0.1d2 = 1 − (a · b)/(∥a∥∥b∥) + 0.1∥a − b∥ for 50 images per class
with CIFAR-10.
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most benchmarks. Our proposed adaptive learning step technique is a good approximation

of overfitting detector since the results of Ours-MDO and Ours-MDA are similar. With

Ours-MDA, we cut down unnecessary steps in the later optimization stage, leading to higher

learning efficiency while maintaining our advantages in test accuracy.

Regarding the algorithm efficiency, the usage of multi-level gradients and new distance

functions introduces less than 1% extra computation time. The adaptive learning step can

reduce the computation time by 25% ∼ 30% for the experiments with 10 images per class.

Although training on condensed datasets has a performance degradation, we argue

that condensed datasets are usually used for quick training and training with limited re-

sources. If final training performance is the only objective, we have to conduct training

on the whole dataset. For reference, the baseline method achieves 64%, 67%, 71%, 77%, 83%

relative accuracy (the ratio compared to training on full dataset) with 50, 100, 200, 500,

1000 images per class on CIFAR-10 dataset. We achieve 71%, 74%, 78%, 84%, 89% relative

accuracy in these settings.

One of the limitations is that we do not conduct experiments on large datasets for two

reasons. First, the exploration is quite computationally intensive so that we cannot handle

these experiments. Second, most of the previous work focuses on these benchmarks and

we directly follow the same settings. Moreover, we conduct experiments on tiny ImageNet

(200 classes, image size 64 × 64, 1 image per class) with the same experiment settings as

CIFAR-10/100. The test accuracy (%) of the baseline is 4.65±0.20, while ours is 4.93±0.23.
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source\target MLP ConvNet LeNet AlexNet VGG ResNet
MLP 67.3±1.1 71.2±1.6 70.5±8.5 45.1±12.4 46.9±4.2 83.2±2.1

ConvNet 72.7±1.6 91.9±0.4 84.1±2.2 84.1±2.4 84.3±1.5 90.4±0.4
LeNet 62.8±1.6 87.2±0.7 81.8±1.9 80.8±3.6 75.1±2.5 88.1±1.1

AlexNet 61.3±1.6 87.6±0.8 81.4±2.5 81.2±3.3 77.7±2.1 87.9±1.0
VGG 63.8±2.3 89.3±0.7 82.4±2.4 82.5±2.8 81.1±2.2 89.4±0.8

ResNet 62.2±1.8 82.3±2.3 80.4±3.2 80.1±2.5 75.7±3.2 87.4±1.0

Table 2.4: Cross-generalization test accuracy (%). We condense the training set on one
source network and test the resultant synthetic set on other target networks.

2.1.4.6 Cross-Architecture Generalization

Following the same setting as the original work, we present our experiments on the

cross-architecture generalization with Ours-MD. We use the network architecture of multi-

layer perceptron (MLP), ConvNet [55], LeNet [105], AlexNet [99], VGG-11 [167], and ResNet-

18 [63].

Table 2.4 shows the results when the source and target networks are different for 1

image per class of the MNIST dataset condensation. We obtain a similar result to the original

work [216]. The datasets learned from the convolutional neural architectures (ConvNet,

LeNet, AlexNet, VGG, and ResNet) generalize to the other convolutional networks. Since

the hyperparameters are searched based on the ConvNet, all the target networks achieve the

highest test accuracy when trained from the dataset learned from ConvNet. Moreover, the

learned dataset can be used to validate the neural architectures. For instance, we find that

whatever the source network is, ResNet achieves one of the highest test accuracies among

all target networks.
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2.1.5 Discussion

In this section, we present our qualitative analysis of the gradient matching method

and our improvement. When training a neural network using gradient descent or its variants,

there is a reachable region in the parameter space. We explore and enlarge this space from

the initialization point throughout the training process. Finally, we will select the best

parameters in this region. The gradient matching algorithm matches the first-order loss

landscape of this reachable region, ignoring the unachievable parameter space.

We hypothesize that the gradient matching algorithm is actually the following opti-

mization problem.

max
S

min
θ,θ0

∥θ − θ0∥ (2.13)

s.t. ∥∇θL(S, θ)∥ < ϵ (2.14)

θ0 ∼ Pθ0 (2.15)

Here ϵ is a threshold such that the parameter satisfying ∥∇θL(S, θ)∥ < ϵ cannot escape

this point with gradient descent method. We maximize the distance between any pairs

of the local minimum (Equation 2.14) and the initialization point (Equation 2.15). Using

gradient matching, we attempt to eliminate these reachable local minimums by updating

the synthetic set S. Thus, we can proceed further and explore this reachable region when

training with S. Each iteration of the outer loop of the Algorithm 1 is a depth-first search

of this region. We update S to escape from the traps in this region and update θ to explore

and enlarge the reachable region. We try different initialization to mimic the minimization

in Equation equation 2.13.
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Our three improvement can be interpreted with this hypothesis. The multi-level

gradients consider both intra-class and inter-class information. Matching inter-class gradients

can help us synthesize images concentrating on the reachable region since we use inter-class

mini-batches when using the resultant S. The intra-class gradient matching can accelerate

the convergence. With the distance function considering the magnitude, we can mitigate

the internal local minimum and enlarge the reachable area. The adaptive learning step can

help us proceed to the internal local minimum or the boundary of this region to do updates

efficiently. Above all, our proposed techniques are used to remove the local minimum in the

reachable region of the parameter space.

2.1.6 Summary

We present our analysis of the gradient matching method for the dataset condensa-

tion problem. Based on our analysis, we further extend the original algorithm. We provide

our answers to the question of what, how, and where we match in this gradient matching

algorithm. We match the multi-level gradients to involve both intra-class and inter-class gra-

dient information. A new distance function is proposed to mitigate the overfitting issue. We

use adaptive learning steps to improve algorithm efficiency. The effectiveness and efficiency

of our proposed improvements are shown in the experiments.

We notice that the dataset condensation and distillation are getting more and more at-

tention. There are standard benchmarks [39] and comprehensive surveys [54], which present

several future directions, such as improving the computational efficiency and extending to

large datasets. Other than that, we are interested in extending the dataset condensation

into semi-supervised learning. It is worth exploring if we can compress the huge corpus to
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train large language models more efficiently.

2.2 NormSoftmax: Normalizing the Input of Softmax to Accelerate
and Stabilize Training

Softmax is a critical and widely used function in machine learning algorithms, which

takes a vector as input and generate a standard simplex. It is usually used to generate a cate-

gorical probability distribution. The most notable applications of softmax are cross-entropy

loss function for classification tasks and attention map generation in dot product atten-

tion operations. By importing the temperature in softmax, we can control the information

entropy and sharpness of its output.

However, gradient-based optimization of softmax-based models often suffers from slow

and unstable convergence and is sensitive to optimization hyperparameters. Transformer-

based models [183] are known to be hard to optimize. A lot of efforts have been devoted

to solving this optimization difficulty [117]. For instance, Bolya et al . [15] reports that

softmax attention may crash with too many heads and proposes new attention functions.

Chen et al . [33] show that the Vision Transformer’s [47] loss landscape is very sharp, and

it requires advanced optimizers to facilitate its training [53]. Huang et al . [74] propose a

better initialization to improve the Transformer optimization. Xiong et al . [201] show that

the location of layer normalization (LN) has a remarkable impact on the gradients and claim

that the Pre-LN Transformer has better training stability.

Among comprehensive reasons for the optimization difficulty of Transformers, cas-

caded softmax functions are one of them that leads to the training instability. However,

limited prior work has discussed the impacts of softmax on optimization. Based on our
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experimentation, we find that the training difficulty can be attributed to the rapid change

in the variance of the softmax inputs and the information entropy of its outputs. In dot-

product attention, where the softmax is used to generate weight distribution for key-value

pairs, we observe significant statistical fluctuation in softmax inputs. The rapid and exten-

sive variance change in the initial learning stage can lead to unstable training. Moreover, for

the softmax used in cross-entropy loss for classification problems, the input of the softmax

usually has a lower variance at the initial training stage since the model has less knowledge

of the problem [188]. The model is likely to stay in the low-confidence zone, implying that

it is challenging to train [143]. We need a specially designed mechanism to push the model

out of this low-confidence zone for stable and fast learning.

2.2.1 Overview

In the two cases above, the significant change in the softmax input variance is one of

the reasons for optimization difficulty. In this section, we propose NormSoftmax to stabilize

and accelerate training by simply re-scaling the softmax inputs, especially in the early-stage

optimization.

With NormSoftmax, we dynamically calculate vector-specific factors to scale the in-

puts before being fed to the standard softmax. Specifically, when the input variance is too

small, Softmax will generate small gradients that hinder the learning process. In contrast,

our proposed NormSoftmax can help re-scale the input distribution such that the informa-

tion entropy of the output becomes stable without fluctuation during the training process,

which boosts and stabilizes the early-stage training.

NormSoftmax shares similar properties with the existing normalization techniques in
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machine learning. We summarize its advantages below.

• NormSoftmax can re-scale gradients to stabilize the training process, making the train-

ing robust to model architectures and optimization recipes (such as optimizers and

weight decay schedules).

• NormSoftmax can accelerate the early training stage without hurting the model rep-

resentability.

• NormSoftmax is an easy-to-use and low-cost module to replace standard softmax. The

induced computation and memory cost overhead is negligible.

• NormSoftmax has a regularization effect since the re-scaling can slightly restrict the

representation space of the input vectors.

In this section, we focus on two applications of the softmax functions: (1) the ac-

tivation function in dot-product attention, and (2) cross-entropy loss of the classification

problem. ViT-B with our NormSoftmax shows significantly higher robustness to different

head settings, showing an average of +4.63% higher test accuracy on CIFAR-10 than its

softmax-based counterpart. When training for 100 epochs on ImageNet-1K, ViT with our

NormSoftmax can achieve +0.91% higher test accuracy over its softmax baseline.

2.2.2 Background

We briefly introduce the softmax function and normalization in machine learning.

Then we discuss the two cases we focus on in this section: softmax in dot product attention

and cross entropy loss. We use µ(a), σ(a) to represent the mean and standard deviation

(square root of the variance) of a vector a.
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Figure 2.4: The standard softmax and proposed NormSoftmax.

2.2.2.1 Softmax

The standard softmax function [20] z = softmax(x), where x, z ∈ Rn is defined by

Equation 2.16.

zi =
exi∑n
j=1 e

xj
, for i = 1, 2, ..., n (2.16)

The output of softmax can be seen as a categorical probability distribution since 0 < zi < 1

and
∑

i zi = 1. Instead of e, we can also use a different base in softmax. A temperature

parameter T > 0 is imported to adjust the base.

softmaxT (x) = softmax
(x
T

)
(2.17)

Given the same input vector x, the higher temperature smooths the difference of the in-

put vector and generates a probability distribution with high information entropy H(z) =

−
∑

i zi log(zi). On the contrary, the lower temperature sharpens the output distribution

with low entropy. Agarwala et al . [2] claim that the temperature has a crucial impact on

the initial learning process.
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2.2.2.2 Normalization

Normalization layers [5,76,182,197] usually normalize the input tensor such that the

result has a zero-mean and unit-variance along specific dimensions. We can optionally scale

and shift the normalized tensor further. Normalization can accelerate and stabilize the op-

timization by smoothing the loss landscape [13, 162, 202]. Hence, normalization allows for a

larger learning rate and increases the robustness against hyperparameters. Also, normaliza-

tion helps generalization since the sharpness of the loss surface is decreased effectively [124].

However, we find that normalization is usually used in the intermediate linear transformation

layers, and it is rarely applied to the input of softmax functions.

2.2.2.3 Dot Product Attention

The scaled dot product attention [6, 183] is defined by the following equation, where

Q,K,V are query, key, and value matrices and d is the dimension of the key vector.

Attention(Q,K,V ) = softmax
(
QKT

√
d

)
V (2.18)

For every query vector, the softmax function calculates the weight for all key-value pairs.

The scaling factor of d−1/2 is proposed to attempt the normalize the dot product qTk, whose

variance is d if the components of q,k are independent random variables with a variance

of 0. 7 The scaling factor is applied to address the issue that the variance of dot product

qTk will likely increase as the length of the vector d increases. The large variance makes the

gradient of softmax extremely small, thus making the attention-based model hard to train.

7Please refer to Footnote 4 of the original paper [183].
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Based on self-attention, Transformer has achieved great success in many areas, especially

natural language processing [45] and computer vision [91].

2.2.2.4 Cross Entropy Loss

Another important application of softmax is in classification problems, where mini-

mizing the cross-entropy loss is equivalent to maximizing the likelihood. The cross-entropy

function takes the estimated probability distribution q = softmax(x) and the true proba-

bility distribution p as input and computes the result by H(p, q) = −
∑

i pi log qi. x is the

predicted logits, usually generated by a classification model. x can be any vector in RK

without restrictions, where K is the number of classes.

2.2.3 Method

In this section, we first analyze the behavior of the softmax input during the training

process. Further, we define NormSoftmax and discuss its advantage in the two cases.

2.2.3.1 Softmax in Different Training Stages

We split the whole training process into three stages.

• Initial stage. Starting from scratch, we usually need a careful design for initialization

and hyperparameters. The training may fail due to exploding or vanishing gradients.

For example, we usually apply learning rate warmup during this stage.

• Intermediate stage. Once the parameters are sufficiently warmed up, it is relatively

easy and stable to explore the solution space with a higher learning rate.

53



Distraction Concentration Distraction

Rapid statistic
change

La
ye

r I
nd

ex

 wrongly
estimates the std.

a Softmax in Attention of an 8-layer ViT

Stuck in low-confidence region

Rapid variance change

Learning slowly in the early stage

b Softmax for the cross entropy loss in ResNet1202
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• Final stage. The model attempts to converge to a local minimum with a lower

learning rate.

The initial stage is the most unstable one among these three stages. If we do not encounter

severe issues in the initial stage, it is likely that we can proceed to the final results.

Figure 2.5 illustrates two cases where we observe a significant change in the softmax

input variance throughout the training process. We discuss the behavior of the softmax

function in these two cases.

Softmax in dot product attention. The input variance of softmax is related to

the attended region of this attention layer. With a high variance on the input, the output

of softmax has a low information entropy, meaning that only few keys are attended. On the

contrary, the smaller input variance implies that much more keys are attended. Figure 2.5a

demonstrates that the standard deviation of softmax input (before scaled with
√
d) increases

rapidly at the initial stage and then decreases gradually during the intermediate and final

stages. In the beginning, the vision Transformer [47] attempts to attend to almost all the

keys since the initialized model has not learned how to extract features and is still in the

exploration stage. During training, different keys are learned at different paces. Keys with

smaller semantic distances from nearby queries are much easier to learn. This imbalanced

learning pace among keys drives the model to shrink its receptive field and focus on a small

region. That is why the variance of softmax input increases rapidly at the initial stage.

Afterwards, as training proceeds, Transformer will explore the query-key pairs with longer

semantic distance, implied by a gradual reduction in the variance of softmax input. We

name the effect "distraction-concentration-distraction".
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Further, different layers have different input variances. Except for the first layer (L1),

the lower layer has a high variance than the deeper layers. In the early layers, only a small

region is attended to. As depth grows, the model attends to a larger region, which is similar

to the trend of receptive fields in convolutional neural networks. We also draw the line of
√
d as a reference in Figure 2.5a, which is the scaling factor used to normalize the softmax

input. Since the input variance has a significant change across different layers and training

steps, this constant scaling factor of
√
d might not be the most suitable value to normalize

the softmax input [107].

Softmax in the cross-entropy loss function. For classification model training,

the softmax may only appear in the cross-entropy loss function, e.g., ResNet. However, the

gradients through softmax can have a large impact on the model training. To verify this

claim, we train a deep ResNet1202 [63] on the CIFAR10 dataset [98] and plot the standard

deviation of the softmax input in Figure 2.5b. At the initial stage, the standard deviation

is relatively low since the model is less confident, and the predicted distribution is similar

to a uniform distribution. There is a leap at the 15-th epoch, where the standard deviation

increases from 0.14 to 1.31. Afterward, the standard deviation of the softmax input gradually

increases, and the information entropy of the softmax output becomes smaller since the model

becomes more confident in predictions as training continues. Hence, we conclude that the

variance of softmax input experiences rapid and huge change during training, especially in

the initial stage, which explains why training from scratch is difficult.

Moreover, the observed trend in Figure 2.5 is averaged on all the data points. Different

data points or training examples are in different learning stages. For instance, in the image

classification problem, a clear image can easily escape the less-confident zone quickly and
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stably, while a vague image may be stuck in this zone where the softmax output has a high

information entropy. Therefore, this training difficulty needs to be tackled in a data-specific

fashion.

2.2.3.2 The Proposed NormSoftmax

We propose NormSoftmax as a substitution for softmax, as defined below,

NormSoftmax(x, γ) = softmax
(

x− µ(x)1

min(σ(x), γ)

)
(2.19)

= softmax
(

x

min(σ(x), γ)

)
(2.20)

= softmax
(

x/γ

min(σ(x/γ), 1)

)
(2.21)

where γ > 0 is a pre-defined scalar. Namely, we define the temperature T = min(σ(x), γ)

in NormSoftmax. Since softmax is invariant under translation by the same value, Equations

2.19 and 2.20 are equivalent. We do not need to shift the input vector to zero-mean. If the

standard derivation is smaller than the threshold σ(x) ≤ γ, NormSoftmax will normalize the

input vector to obtain a unit-variance vector before applying the standard softmax function.

If σ(x) > γ, we use the temperature T = γ. If γ = +∞, then we will always normalize the

input vector. The temperature is dynamically calculated per vector. For a batch of vectors,

each one has its individual temperature.
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Lemma 2.2.1 Given y = x
σ(x)

, z = softmax(y), ∂l
∂z
∈ Rn, we have

µ

(
∂l

∂x

)
= µ

(
∂l

∂y

)
= 0, (2.22)

σ

(
∂l

∂x

)
≤

σ
(

∂l
∂y

)
σ(x)

, (2.23)

∥∥∥∥ ∂l

∂x

∥∥∥∥
2

≤

∥∥∥ ∂l
∂y

∥∥∥
2

σ(x)
(2.24)

Lemma 2.2.2 Given x2 = kx1, z1 = softmax(x1/σ(x1)), z2 = softmax(x2/σ(x2)), l1 =

f(z1), l2 = f(z2), we have z1 = z2, l1 = l2,
∂l1
∂z1

= ∂l2
∂z2

, ∂l2
∂x2

= 1
k

∂l1
∂x1

.

Similar to the theorem in [202], we refer to gradient re-centering and re-scaling as gra-

dient normalization. Similar to Theorem 4.1 in [162], we demonstrate that the normalization

improves the Lipschitz continuity, indicated by the gradient magnitudes. Specifically,
∥∥ ∂l
∂x

∥∥
2

and
∥∥∥ ∂l
∂y

∥∥∥
2

can be treated as the continuity of the loss function. Given two input vectors

x1,x2 and σ(x1) < σ(x2) < γ, NormSoftmax apply a different temperature on them, paying

much attention to the low-variance vector x1. In Lemma 2.2.2, if σ(x1) = 1, then k = σ(x2),

it is clear that the gradients are rescaled by its variance ∂l
∂x2

= 1
σ(x2)

∂l
∂x1

.

Logit Normalization (LogitNorm) [96, 188] uses the ℓ2 norm to normalize the input

vector, as shown in the equation below, where τ is the temperature parameter modulating

the magnitude of the logits.

LogitNorm(x, τ) = softmax
(

x

τ∥x∥2

)
(2.25)

LogitNorm is proposed to mitigate overconfidence when cross entropy loss is used. It is

questionable that LogitNorm does not shift the input vector to zero-mean, since the mean
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has an impact on the ℓ2 norm. Unlike the standard softmax function, LogitNorm is not

invariant under translation LogitNorm(x, τ) ̸= LogitNorm(x+ c1, τ), where c is a constant.

We demonstrate the relationship between LogitNorm and NormSoftmax in the fol-

lowing equation.

NormSoftmax(x, γ = +∞) = LogitNorm(x− µ(x)1, τ = n−1/2) (2.26)

NormSoftmax first shifts the input vector to zero-mean and normalizes the shifted vector by

its ℓ2 norm. Hence, NormSoftmax keeps the invariance under translation and can be reduced

to LogitNorm with input shifting.

2.2.3.3 Effects of NormSoftmax in Three Stages

NormSoftmax can accelerate and stabilize training in the initial stage. With

NormSoftmax, the standard deviation of the softmax input is at least 1 since σ
(

x
min(σ(x),γ)

)
≥

1. If the softmax input has low variance, which is common in the initial stage for both two

applications, we use a self-adapted low temperature to magnify the slight difference. The

normalization can help the model escape the zone with high information entropy quickly

and stably since we normalize the gradients as demonstrated in Theorem 2.2.1. Specifi-

cally, for attention layers, NormSoftmax can accelerate the transition from distraction to

concentration.

NormSoftmax can regularize training in the intermediate and final stages.

For cross entropy loss, NormSoftmax increases the temperature of the softmax in the training

process since the variance of the softmax input will increase gradually. The high temperature

can regularize the training. For attention layers, NormSoftmax regularizes the softmax input,
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thus restricting the attentive areas. NormSoftmax encourages the attention to have a slight

change on the attended regions, which can be treated as an inductive bias we add.

However, we find that by simply normalizing inputs to unit-variance vectors, i.e.,

x/σ(x), the training process can be impeded due to overly restricted representation space.

Our variance clipping technique can effectively solve this issue with a pre-defined threshold

γ.

2.2.4 Experiments

Detailed experiment settings can be found in Appendix. Since we primarily use the

cosine annealing learning rate scheduler, we train from scratch when the total number of

epochs is different. Namely, the learning rate schedule is updated according to the number

of epochs.

2.2.4.1 Dot-Product Attention

baseline f1 f2, γ =
√
d nsm-1 nsm-

√
d/2 nsm-

√
d nsm-2

√
d nsm-∞ logitnorm

87.96 87.97 86.99 81.04 87.16 88.13 88.21 88.01 87.72

Table 2.5: Train a ViT on CIFAR10 with different NormSoftmax variants.

Settings. We train the vision transformer (ViT) on the CIFAR10 dataset from

scratch with AdamW [121] optimizer for 100 epochs (50,000 iterations with 100 mini-batch

size). The resolution of an input image is 3 × 32 × 32, and the patch size is 4. The hidden

size, MLP size, number of heads, and the dimension of heads are 256, 1024, 8, and 32,

respectively. We discard the original scaling factor
√
d and replace the standard softmax

with NormSoftmax, setting γ =
√
d or γ = +∞. The learning rate is linearly increased
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with 5 warmup epochs and then decays with the cosine annealing scheduler [120]. Following

the original ViT paper [47], the learning rate is 1e − 3, and a strong weight decay 1e − 1

is applied. We also enable label smoothing [175] and strong data augmentation (random

erasing [218], mixup [211], cutmix [206], and TrivialAugment [135]). Figure 2.6 shows the

detailed results.

epoch

te
st

 a
cc

ur
ac

y 
(%

)

60
65
70
75
80
85
90
95

10 50 100 500

sm nsm-sqrtd nsm-inf

a Results with different training epochs

te
st

 a
cc

ur
ac

y 
(%

)

80

82

84

86

88

90

baseline

w/o warmup

w/o weight decay

w/o label sm
oothing

w/o data augmentation
SGDM

sm nsm-sqrtd nsm-inf

b Results with different training recipes

# layers

te
st

 a
cc

ur
ac

y 
(%

)

78

80

82

84

86

88

90

2 4 6 8 10 20

sm nsm-sqrtd nsm-inf

c Results on ViT with different depths

te
st

 a
cc

ur
ac

y 
(%

)

65

70

75

80

85

90

128, 
4, 32

128, 
8, 16

128, 
16, 8

256, 
4, 64

256, 
8, 32

256, 
16, 16

512, 
4, 128

512, 
8, 64

512, 
16, 32

sm nsm-sqrtd nsm-inf

hidden size, # heads, head dimension

d ViT with different dimensions and heads

Figure 2.6: The test accuracy of a ViT on CIFAR10 dataset with different settings. sm
and nsm are short for softmax and NormSoftmax. sqrtd and inf are the value of γ in
NormSoftmax.

Acceleration. Figure 2.6a demonstrates the result with different training epochs.
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When the number of epochs is small, NormSoftmax can achieve a better test accuracy than

the standard softmax function. When we train with more iterations, NormSoftmax performs

similarly to the baseline. The larger pre-defined threshold γ may translate into a higher

acceleration, which pushes the model to escape the initial distraction stage more quickly.

That is why NSM-inf performs better than NSM-sqrtd when the number of epochs is small.

However, the normalization has a strict regularization effect on the softmax input, which

impedes the training in the intermediate and final stages. Hence, the NSM-inf is exceeded

by NSM-sqrtd when the number of training iterations is large. In short, NormSoftmax

can accelerate the training process without sacrificing the representation ability, similar to

curriculum learning [196].

Stabilization. We investigate the role of each component in the training recipe,

with results listed in Figure 2.6b. We conduct ablation studies by removing (1) learning rate

warmup, (2) weight decay, (3) label smoothing, and (4) strong data augmentation (random

erasing, mixup, cutmix, and TrivialAugment) separately. We also replace the default AdamW

optimizer with stochastic gradient descent with momentum (SGDM). The results indicate

that the techniques above are critical to Transformer no matter what softmax function we

use. However, Transformer with standard softmax and scaling factor d−1/2 is more sensitive

to the training techniques that are related to optimization. Without weight decay, the test

accuracy of the baseline degrades from 87.96% to 84.15%, while the NSM-inf has a small

drop from 88.01% to 87.46%. They share the same robustness against the training recipe

for data augmentation.

We also alter the hyperparameters of the ViT and list the results in Figures 2.6c and

2.6d. The three methods share similar results when the depth or the hidden dimension is
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small. However, large depth and hidden dimension impose a challenge for training. NSM-inf

is more robust and provides much better results than the standard softmax.
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Figure 2.7: NormSoftmax reduces the information entropy of softmax output in the 8-layer
ViT.

We plot the information entropy of softmax output in this ViT in Figure 2.7. In

baseline, the large standard deviation of softmax input induces small information entropy in

the softmax output. The "distraction-concentration-distraction" effect is visualized in Figure

2.7a. The attended areas of Transformer undergo significant change during the training

process. On the other extreme, NSM-inf generates the output, whose information entropy

only slightly fluctuates since the input variance is always 1. The small change in the entropy

of the output contributes to the acceleration and stability of the initial training process. The

NSM-sqrtd is an interpolation between these two extremes.

Variants of NormSoftmax. We define several variants of NormSoftmax. (1)

Adding learnable parameters for affine transformation defined by f1(x) = softmax (wx/σ(x)),
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where w ∈ R is a learnable parameter; (2) Inverting the NormSoftmax defined by f2(x, γ) =

softmax
(

x
max(σ(x),γ)

)
; (3) NormSoftmax with different γ values; and (4) Logit Normalization.

For the first variant f1, we find that the learnable parameter is not necessary. As

indicated by [202], the learnable weight may induce the risk of overfitting. The second

variant f2 has an inverse clipping and is worse than our proposed NormSoftmax. It cannot

accelerate the training since it encourages distraction in the Vision Transformer. In the third

variant, the γ is a critical hyperparameter. γ = 1,
√
d/2 is too small, and the input vector

is not effectively scaled. γ =
√
d, 2
√
d obtains similar result. For Logit Normalization, we

sweep the parameter of temperature τ , and find that τ = n−1/2 is almost the best one. With

this temperature, the only difference between LogitNorm and NormSoftmax is whether the

input is shifted to zero-mean, as shown in Equation equation 2.26. The accuracy with this

temperature is 87.72%, which is even worse than the baseline, demonstrating the importance

of shifting.

Scaling factors in attention The default scaling factor in attention is d−1/2. We

sweep the scaling factors for the standard softmax. We apply the corresponding γ in Norm-

Softmax.

scaling factor for sm 1 2d−1/2 d−1/2 d−1/2/2 d−1

test accuracy for sm 80.98 86.38 87.96 87.97 86.98

γ for nsm 1 d1/2/2 d1/2 2d1/2 d ∞

test accuracy for nsm 81.04 87.16 88.13 88.21 87.1 88.01

Table 2.6: Results for (1) the standard softmax (sm) with different scaling factors and (2)
NormSoftmax (nsm) with different γ

Table 2.6 shows that scaling factors of d−1/2/2 and d−1/2 achieve the best performance
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for the standard softmax, similar to [107]. NormSoftmax shares the same trend with the

standard softmax, achieving the best performance with γ of 2d1/2 and d1/2. NormSoftmax

achieves better results than the standard softmax with the corresponding pair of scaling

factor and γ.

Temperature after normalization in NormSoftmax. We add a temperature

parameter τ in NormSoftmax.

NormSoftmax(x, γ, τ) = softmax
(

x

τ min(σ(x), γ)

)
(2.27)

If γ = +∞, the input of softmax will always have a standard deviation of τ−1. For a finite

γ, we have σ
(

x
τ min(σ(x),γ)

)
≥ τ−1

Figure 2.8 illustrates the results with different temperature parameters. τ = 1 is the

best choice for both NSM-inf and NSM-sqrtd. When τ < 1, NSM-inf is much more stable

than NSM-sqrtd since the softmax input may have a high variance for NSM-sqrtd. On the

contrary, when τ > 1, NSM-sqrtd is better than NSM-inf. The softmax input of NSM-inf

has a low standard deviation, restricting the performance.

Other benchmarks. We follow the reference implementation provided by PyTorch

[142] to train different ViTs on ImageNet [43] from scratch. Strong data augmentations and

many techniques are adopted. 8 Results are listed in Table 2.6. NormSoftmax can achieve

better performance with a small number of epochs and similar performance with 300-epoch

training.

We conduct experiments on machine translation with Transformers following the

settings in [202]. The benchmarks are WMT English-German Translation (en-de), IWSLT

8The implementation is at this link.
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Figure 2.8: Test accuracy of a ViT with different temperatures after normalization.

100 epochs 300 epochs

sm nsm-sqrtd nsm-inf sm nsm-sqrtd nsm-inf

ViT-B-32 71.40 72.01 72.64 75.91 75.92 75.95

ViT-L-32 72.54 73.49 73.46 76.97 77.01 76.92

ViT-B-16 76.52 77.01 77.10 81.07 81.05 81.09

Swin-T 76.91 77.50 77.42 81.41 81.52 81.45

Table 2.7: Test accuracy of three ViT variants trained on ImageNet-1K from scratch.

2014 German-English Translation (de-en), and IWSLT 2015 English-Vietmanese Translation

(en-vi) [27]. We replace the standard softmax function in both encoder and decoder with

our proposed NormSoftmax. The evaluation metric is BLEU [141]. Similar to the results in

computer vision, NormSoftmax can also accelerate the learning process in natural language

processing.
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45k steps 90k steps

sm nsm-sqrtd nsm-inf sm nsm-sqrtd nsm-inf

en-de 24.2 25.6 25.5 28.3 28.3 28.2

de-en 30.1 30.9 31.5 35.4 35.5 35.4

en-vi 26.7 27.1 27.2 31.2 31.3 31.4

Table 2.8: The BLEU on three machine translation benchmarks with Transformers.

2.2.4.2 Cross Entropy Loss of the Classification Problem

We follow the example in the JAX framework [19] to train ResNets [63] on ImageNet,

which has 1,000 classes and about 1.3 million training images. 9 We use SGDM with linear

warmup and cosine annealing learning rate scheduler, accompanied by a large mini-batch

size of 8,192 and a large learning rate of 3.2. We only enable the horizontal flip and input

normalization as data augmentation techniques. We set γ as 1 and +∞ in NormSoftmax

for the cross entropy loss since 1 is the temperature in the baseline. We also apply Logit

Normalization and compare it with our proposed method. For Logit Normalization, we

conduct a grid search to find the optimal hyperparameter of temperature.

Figure 2.9 and Table 2.9 show that the NormSoftmax can boost the initial training.

With 20 epochs, NSM-inf can achieve the test accuracy of 71.42% while the baseline with

standard softmax obtains 69.18%. With sufficiently long epochs, SM and NSM achieve similar

test accuracy, implying that NSM does not impede the representation learning ability of the

models. With larger pre-defined threshold γ, NSM-inf is faster than NSM-1. NormSoftmax

achieves better results than Logit Normalization, demonstrating that it is necessary to shift

9The implementation is available at this link.
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the input vector before applying Logit Normalization.
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Figure 2.9: Test accuracy of ResNet50 ImageNet-1K with different training epochs

Training performance of a deep ResNet.

We train a ResNet1202, which is investigated in the original ResNet paper [63]. Figure

2.10 compares the test accuracy during the training process. NormSoftmax can significantly

accelerate the training process and achieve better test accuracy than the standard softmax.

With standard softmax, the model is stuck in the low confidence zone in the initial stage.
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Figure 2.10: Test accuracy of a ResNet1202 on CIFAR-10
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# epochs 20 45 90 180

R50

sm 69.18 74.71 76.26 76.88
nsm-1 70.18 74.83 76.41 76.91
nsm-inf 71.42 75.32 76.64 77.17
lognorm 69.70 74.79 76.42 76.92

R101

sm 72.44 76.21 77.79 77.99
nsm-1 72.48 76.18 77.80 78.08
nsm-inf 72.69 76.56 78.00 78.13
lognorm 72.50 76.19 77.82 78.01

R152

sm 72.79 76.78 78.18 78.51
nsm-1 72.80 76.85 78.32 78.50
nsm-inf 72.60 76.73 78.17 78.44
lognorm 72.75 76.81 78.15 78.40

Table 2.9: Test accuracy on ImageNet with ResNets. lognorm is short for Logit Normaliza-
tion.

2.2.5 Summary

We investigate the behavior of softmax in neural network training and discuss its

impacts on training stability and convergence. We find that one of the reasons for the

optimization difficulty is the significant change in the variance of softmax input during the

early training process. To remedy the optimization difficulty of softmax, we propose a simple

yet effective substitution, named NormSoftmax, where the input vectors are first re-scaled by

dynamically calculated vector-specific factors and then fed to the standard softmax function.

Similar to other existing normalization layers in machine learning models, NormSoftmax can

stabilize and accelerate the training process and also increase the robustness of the training

procedure to hyperparameters. Experiments on Transformers in computer vision and natural

language processing benchmarks validate that our proposed NormSoftmax is an effective
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plug-and-play module to stabilize and speed up the optimization of neural networks with

cross-entropy loss or dot-product attention operations.

Limitations. Transformer-based models require large amounts of data, and their

performance is constrained when trained on small or intermediate datasets. The full repre-

sentation potential of these models can be realized with larger datasets. In this study, we

only present results obtained from small or medium-sized datasets. The training behavior

on larger datasets may differ from our observations on smaller ones. Additionally, we find

that NormSoftmax may have a minor impact on the final performance, primarily aiding in

the acceleration and stabilization of the training process.

2.3 Mixed Precision Neural Architecture Search for Energy Effi-
cient Deep Learning

While most of the inferences currently reside in the cloud, it is increasingly desirable

to deploy the trained DNNs to edge devices, such as mobile phones and wearable devices, due

to privacy, security, and latency concerns or limitations in communication bandwidth. The

increasing gaps between complicated DNNs and hardware implementations deteriorate the

edge inference [203]. Hence, the growing demand for small-size and energy-efficient DNNs is

motivated to meet the limited area and energy budget of edge applications.

Model quantization. Research has shown that there are redundancies in both the

number of weights and the number of bit representations (or precisions) of weights and

Arithmetic in DNNs [155]. Neural networks can be compressed using weight clustering and

quantization to reduce the computation complexity with negligible loss of accuracy. In the

quantization approach, full precision floating point representation is replaced by lower fixed
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point precision or even binary representation to achieve a significant reduction in compu-

tation as well as energy consumption. Learning layer-wise bitwidths has been proposed

recently [185,194] to explore the search space of layer-wise quantization policies.

Neural Architecture Search (NAS). Another major approach to learning energy

efficient deep networks is by designing efficiency-friendly neural architectures [24,28,200,221].

Recently, researches show that automatically designing neural architectures by efficiency-

aware NAS [24, 61, 193] can bring more benefits than hand-crafted design. Following NAS

framework, compact and efficient architectures are found by either searching from scratch

[24,193], or pruning or distilling from well trained large neural networks [46,155,189].

However, the existing works focus on either of the two methods aforementioned while

neglecting the potential of their interaction and joint optimization for further improvement.

Intuitively, the optimal choices of bit-widths and architectures are correlated. For instance,

in MobileNets [161], one should retain more bits for the bottleneck layers (the expansion and

projection layer) which encode the model’s intermediate inputs and outputs using small 1×1

convolutional filters; on the other hand, one may consider using fewer bits in the depthwise

convolution layers because empirically, they are often over-parameterized, memory bounded

and are less sensitive than bottleneck layers. The combination of NAS and quantization

contributes to the final accuracy and energy efficiency of neural architectures in a complex

and interleaved manner. Therefore, a synergistic co-optimization of NAS and quantization

is likely to allow us to achieve more hardware efficient solutions.
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2.3.1 Overview

We propose to learn more hardware-efficient deep networks by co-optimizing both

precision and NAS. Compared with the hand-crafted heuristic design which often falls in

sub-optimal results, our method can achieve better solutions. Our algorithm leverages a

differentiable neural architecture search method with Gumbel-Softmax to directly search

the optimal combinations of precision and architectures, to minimize both the accuracy and

the energy cost, estimated from a physical simulator. We conduct extensive studies on two

widely-adopted image classification benchmarks, CIFAR-100 [98] and ImageNet2012 [158], on

which significant improvements are obtained. The contributions of this work are highlighted

as below.

• Our approach yields more energy efficient deep learning by co-optimizing the neural

network architectures and quantization policies that assign different precision to differ-

ent blocks of the network. To our best knowledge, this work is the first one to explore

the end-to-end co-optimization of NAS and mixed precision quantization.

• We develop a framework to effectively search the new solution space. We train a

quantized DNN during the search, and adopt the REINFORCE algorithm for the non-

differentiable energy oracle from hardware simulators.

• Our experimental results show that the co-optimized architectures and the bitwidths

settings can achieve lower error rate and less energy consumption on CIFAR-100 and

ImageNet2012 tasks than strong baseline approaches. Specifically, in ImageNet2012,

we can reduce 63% energy with almost no loss of top-1 accuracy, compared with 8-bit

MobileNetV2.
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2.3.2 Related Work

In this section, we first introduce a general topic, hardware-aware machine learning.

Then we discuss two related topics: searching hardware-friendly neural network architectures

and quantization.

2.3.2.1 Hardware-Aware Machine Learning

With the huge success of deep learning, there is an increasing demand for pushing

it to the edge. However, DNNs are quickly evolving towards deeper and more complicated

architectures for higher accuracy [203]. Hence, it is energy hungry and less run-time efficient

on the edge inference, raising the necessity of hardware-aware machine learning design.

Besides the hardware-aware compression and quantization, researchers also pay atten-

tion to the design of efficient neural architectures for hardware-aware machine learning [128].

Some efficient neural architectures have been designed hand-crafted, e.g. MobileNet [161],

ShuffleNet [213]. Others are developed automatically by neural architecture search meth-

ods [24,193].

2.3.2.2 Neural Architecture Search (NAS)

NAS [49] has demonstrated superior performance on many challenging applications,

such as image classification [221], object detection [193], natural language processing [28],

to name a few. Most pioneer works in NAS [28, 122, 171, 200, 221] focused on searching

novel architectures such that the task-oriented performance (usually accuracy) is optimized

without taking hardware performance into consideration. Some of the previous works [61,

171,184] try to find efficient network architectures, but mainly focus on the latency on GPU
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and CPU.

Some NAS related works have also been done on searching efficient neural networks

for edge devices. FBNet [193] focuses on NAS with less latency on mobile devices, which

relaxes the non-differentiable discrete space to differentiable continuous space using Gumbel-

Softmax [80]. ProxylessNAS [24] also focuses on NAS for given mobile devices, where the

binarized parameters are trained based on BinaryConnect [37]. Both works use MobileNetV2

block [161] as the base search unit, which is proved energy efficient and low-latency on edge

devices.

Weight pruning can be viewed as a type of NAS, which discovers a small neural

network from an over-parameterized neural network [119]. Weight pruning leverages the

inherent redundancy in the number of weights, thereby achieving effective model compres-

sion with negligible accuracy loss. However, its irregular sparsity and complicated index-

ing scheme may induce overhead in hardware implementation and require careful optimiza-

tion [46,155,189]. In this work, we focus on other schemes that are more friendly to hardware

implementation, but our methodology can be extended to include pruning as well.

2.3.2.3 Quantization

Model quantization methods remove the redundancies in the neural networks and

bit representations, and they are able to reduce the computational complexity significantly.

The quantized models offer the potential of remarkable memory and computation efficiency,

while achieving the accuracy of their full-precision counterparts [62, 97]. Moreover, weight

quantization, especially equal-distance quantization, is more hardware friendly than weight

pruning methods.
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The critical point for quantization is to keep the balance of task-specific performance

and hardware-related metrics.

Some work tries to train a binary neural network, which can extremely save energy,

latency, and other hardware-related metrics at the cost of severe degradation on accuracy.

BinaryConnect and XNOR Net binarize all the weights and activations [37, 152]. However,

it causes an extreme loss on accuracy. For instance, applying XNOR Net on AlexNet [99]

achieves 44.27% top-1 accuracy on ImageNet2012, which is far worse than the full-precision

accuracy 56.6%. Other works focus on training low-precision neural networks, which can

keep the balance between efficiency and accuracy better than binary neural networks. Deep

Compression quantizes the network weights to reduce the model size by rule-based strate-

gies [62]. Jacob et al. and Banner et al. train neural networks with 8-bit precision [7, 77],

with straight through estimator and range batch normalization.

However, once the neural network becomes deeper, the search space of layer-wise

bitwidth increases exponentially, which makes it infeasible to rely on hand-crafted strate-

gies. The heuristic layer-wise bitwidths are believed to be sub-optimal [185], and cannot

keep the balance between accuracy and efficiency. Recent works try to search layer-wise

bitwidths for a pre-trained model with a particular architecture. HAQ [185] searches layer-

wise bitwidths for MobileNet using DDPG [114], and adds a fine-tune process with few iter-

ations after quantization. Guo et al. develops a evolutionary algorithm to search layer-wise

bitwidths [61]. Mixed Precision Quantization [194] and Stochastic Layer-Wise Precision [102]

search with Gumbel-Softmax [80] are not tested on some efficient neural architectures, e.g.

MobileNet [161], ShuffleNet [213]. Applied on a pre-trained model, all these works can

achieve better accuracy than one single bit-width and heuristic layer-wise bitwidths. These
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empirical results show that automatically searching the layer-wise bitwidth is helpful for

deep neural network quantization.

2.3.3 Algorithm

In this section, we introduce the general form of our algorithm and present our joint

NAS and mixed precision quantization framework.

2.3.3.1 Energy Constrained NAS

Figure 2.11 shows the overall flow of our model. We aim at searching novel energy

efficient neural architectures. Our method can be viewed as a controller that interacts with a

task environment (e.g. image classification task) and a hardware environment (e.g. physical

energy simulator). The goal of the controller is to discover novel neural architectures that

minimize the task-related loss while satisfying some energy constraints. To be concrete, our

training objective can be written as follows,

min
θ

Eα∼πθ

[
L(fw∗(α); Dval)

]
, (2.28)

s.t. w∗ = argmin
w
L(fw(α); Dtrn, α),

Eα∼πθ
J(α) < c.

The NAS controller πθ generates samples {α} that are different configurations of neu-

ral networks. Given a network configuration α, fw(α) defines a deep neural network model

associated with model weights w(α). In the case of image classification, network fw could

be the AlexNet [99] that maps an image to a probability distribution over predicted output

classes. L(·) stands for the task-dependent loss (e.g., cross entropy for image classification)
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and J(α) measures the energy cost of the network initialized by a configuration α. The

controller is trained to find the best internal parameters θ so that it will generate architec-

tures that achieve the minimum expected task-specific loss L(fw∗(α);Dval) evaluated on a

validation set Dval, where the network weights w∗(α) are obtained by minimizing the loss

function on a training set Dtrn. Meanwhile, the expected energy consumption is constrained

to be smaller than a threshold c to promote energy efficient architecture search.

We first relax the energy constrained objective equation 2.28 as follows,

min
θ

Eα∼πθ

[
L(fw∗(α); Dval)

]
+ λ

[
Eα∼πθ

[J(α)]− c

]
+

(2.29)

s.t. w∗ = argmin
w
L(fw(α); Dtrn, α), (2.30)

with [x]+ = max(x, 0) and λ a hyper-parameter, which only penalizes the objective function

when the energy constraint is violated.

However, it is still infeasible to solve the optimization problem equation 2.29 correctly.

The computational difficulties arise in two-fold. First, the optimal model weights w∗(α)

depend on model configuration α, an inner loop minimization is required whenever the

control parameter θ is changed. Second, in general, energy-based objectives J(α) are non-

differentiable, which prohibits the use of efficient back-propagation.

To solve the aforementioned challenges, motivated by DARTS [116], we approximate

w∗(α) with one step gradient descent, specifically,

w′(α) = w(α)− ϵ∇wL(fw(α);Dtrn, α), (2.31)

with ϵ as the step size. Without considering the energy related terms, our objective function
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is reduced to

min
θ

Eα∼πθ

[
L(fw′(α); Dval)

]
.

We then apply gradient descent for optimization, such that the model parameters θ are

updated as follows:

θ ← θ − β∇θEα∼πθ

[
L(fw′(α); Dval)

]
(2.32)

where β is the step size. In practice, the expected gradient is approximated using Monte Carlo

samples {αi}mi=1 drawn from πθ, combining with Equation equation 2.31, we can approximate

Equation equation 2.32 as follows,

θ ← θ − β∇θ

[
1

m

m∑
i=1

L(fw−ϵ∇wL(fw(αi);Dtrn);Dval)

]
. (2.33)

To deal with the non-differentiable energy measures, we use the REINFORCE algo-

rithm [192]. The expected gradient can be computed as follows

∇θEα∼πθ
J(α) = ∇θ

∫
J(α)πθ(α)dα

=

∫
J(α)∇θπθ(α)dα =

∫
J(α)πθ(α)∇θ log πθdα

= Eα∼πθ

[
J(α)∇θ log πθ

]
≈ 1

k

k∑
i=1

J(αi)∇θ log πθ(αi). (2.34)

The full algorithm is outlined in Algorithm 2.

2.3.3.2 Mixed Precision Architecture Search Space

In order to search an energy efficient neural architecture and have a fair comparison

with previous NAS algorithms [61, 193], we adopt the commonly used MobileNetV2 (MB)
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Figure 2.11: Illustration of our energy aware neural architecture search framework.

Algorithm 2 Energy aware neural architecture search
1: repeat
2: Sample minibatch of network configurations {αi}ki=1 from the controller πθ

3: Update network models {w(αi)} by minimizing the training loss following Eqn. 2.31.
4: Update the controller parameters θ following Eqn. equation 2.33 and equation 2.34.
5: until Converge

block [161] as the base search unit, which is demonstrated in Figure 2.12. Each MB block

consists of two bottleneck layers (expansion and projection layer) and one depthwise convo-

lution layer. First, the 1 × 1 expansion convolution layer expands the number of channels

by a factor of m before the data goes into the depthwise convolution. Second, the depthwise

convolution applies k×k filters to its input while keeping the number of output channels the

same. Finally, a 1 × 1 projection convolution layer squeezes the network in order to match

the initial number of channels. We allow each MB block with a filter size k ∈ {3, 5, 7} and

an expansion ratio m ∈ {1, 3, 6}.

We assume the final neural network architecture is hierarchical that stacks of a certain
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Figure 2.12: An illustration of the structure of a MB search unit. m denotes the expand
ratio, k denotes the kernel size, s denotes whether skipping this block, and b1, b2 denotes the
layer-wise bitwidths.

number of MB blocks. In order to search the number of MB blocks, we add a zero operation

(skip connection, marked as s in Figure 2.12.) into the search space. The entire MB block

will be skipped if the skip operation is selected (s: true).

In addition, we augment our NAS search space to allow each MB block to choose the

quantization precision adaptively. Note that in a MB block the depthwise convolution layer

normally contains more parameters than the bottleneck layers, and thus more energy hungry.

We propose to assign two different bitwidths for each MB block, and search the optimal

precision choices for the bottleneck layers (b1) and the depthwise layer (b2), respectively.

And b1, b2 ∈ {2, 4, 6, 8} bits. Table 2.10 shows the macro-architecture of our search space.

2.3.3.3 Search Algorithm

We are now ready to show the representation of the network configuration α. Let

ηℓ = [sℓ,mℓ, kℓ, bℓ1, b
ℓ
2] be the discrete variables that associated with the MB block in the ℓ-th

layer. A network configuration α is a stack of N MB blocks as a vector of [η1, ..., ηN ] ∈ R5N ,

where N denotes the number of MB blocks. Each element in α can be considered as a specific

operation. Without loss of generality, denote o(x) as one of the operator defined in α, which

80



Input Shape Block and Bit-width #channels stride n
224× 224× 3 Conv3× 3, 8bit 32 2 1
112× 112× 32

MB(s,m, k, b1, b2)

16 2 1
56× 56× 16 24 1 2
56× 56× 24 32 2 4
28× 28× 32 64 2 4
14× 14× 64 128 1 4
14× 14× 128 160 2 5
7× 7× 160 256 1 2
7× 7× 256 Conv1× 1, 8bit 1280 1 1
7× 7× 1280 Pooling & FC, 8bit - 1 1

Table 2.10: This table shows the macro-architecture of the search space. and n denotes the
number of repeated MB layers with the same number of channels. (s,m, k, b1, b2) stands for
MB block configurations.

takes K possible values. E.g., o(x) could be a depthwise convolution layer, in this case, all

possible filter size choices are {3× 3, 5× 5, 7× 7} and K = 3. Given the input x, o(x) maps

x to its corresponding output.

To learn the controller, it remains to show the representation of πθ and the gradient

of the validation loss ∇θEα∼πθ
[L(fw′(α),Dval)] w.r.t. θ defined in Eqn. 2.33. For each

operator o(x), we represent discrete valued architecture choices as a one-hot vector d ∈ RK ,

such that dj ∈ {0, 1} and
∑K

j=1 dj = 1. In this way, the corresponding output of applying

operator o with representation d is
∑K

j=1 djoj(x), where oj(x) denotes the forward operation

with j-th candidate in the search space (e.g., o1 could be 3 × 3 depthwise convolution).

We parametrize p(dj = 1) = exp(ϕj)/
∑K

i=1 exp(ϕi), where {ϕj} are trainable parameters

that belongs to the controller parameters θ. It is problematic to calculate the gradients

directly due to the inability to back-propagate through categorical samples. We thus replace
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the non-differentiable network configuration samples with continuous differentiable samples

from a Gumbel-Softmax distribution [80]. That is, we replace one-hot representation d as

a continuous vector such that dj ≥ 0,
∑K

j=1 dj = 1, which can be trained using standard

back-propagation. For the rest, we follow the settings for Gumbel-softmax sampling used in

FBNet [193].

Training with Quantized Weights. In our approach, only the quantized values of

the weights and activations are used in all forward operations. In order to learn quantized

weights, we follow the linear quantization schemes suggested by [155, 185]. Specifically, for

a layer with n × d dimensional input xxx = (x1, ..., xn), xi ∈ Rd, we quantize each xi linearly

into b bits:

Quantize(xi, b) = round(clamp(xi, c)/s)× s,

where clamp truncates all values into the range of [−c, c], with c = max{|xi|}. And the

scaling factor s is defined as s = c/(2b−1 − 1).

2.3.4 Experimental Results

We search architectures and mixed quantization precision for each layer on a proxy

task, tiny ImageNet 10. Next, we train the discovered architectures on two image classification

benchmarks (CIFAR-100 and ImageNet) from scratch. We show that our method achieves

competitive (or better) accuracy compared with state-of-the-art deep neural architectures

and simultaneously yields significant smaller model size and lower energy consumption.

Low precision neural network baselines are quantized and then finetuned using the

10https://tiny-imagenet.herokuapp.com/
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standard compression methods proposed in [62] unless otherwise specified.

2.3.4.1 NAS

Energy Modeling. We use the simulator for Bit Fusion 11 [164] to obtain the

hardware-related performance metrics. Bit Fusion employs a 2D systolic array of bit-level

processing elements that dynamically fuse to match the bitwidth of every single layer. For a

fair comparison, we exactly follow the setting described in HAQ [185] for energy estimation.

All the energy consumption discussed below are for the inference with a batch of 16 images.

Settings. The tiny ImageNet dataset consists of 200 classes. Each class contains 500

training images, 50 validation images, and 50 test images, respectively. For preprocessing, we

resize the image to the size of 224×224. We use a batch size of 64 and adopt label smoothing

for training. Our algorithm is trained for a fixed 60 epochs during the architecture search

process. We run our search program on one NVIDIA Tesla P100 GPU, which takes five days.

Results. Note that we jointly optimize the task-oriented loss and energy constrains,

the trade-off between these two terms are controlled by a hyperparameter λ (defined in

Equation 2.29). Large λ values lead to smaller energy efficient models while less accurate

on the prediction task; vice versa. We evaluate two different settings λ = 0.1, 0.01, which

result in one smaller and one bigger neural architecture (see Figure 2.13), respectively. We

can see from Figure 2.13 that depthwise convolution layers (more parameters) are allocated

with fewer bitwidths than bottleneck convolution layers (fewer parameters), as also observed

in HAQ [185]. In addition, we notice that bottleneck layers with small expand ratios (fewer

11https://github.com/hsharma35/bitfusion
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Figure 2.13: Two energy efficient deep neural architectures found by our method. “MB
m k × k [b1, b2] ” represents a mobile inverted bottleneck convolution layer, for which m
stands for the expansion ratio, k × k is the filter size for the the depthwise convolution
layer, b1 and b2 represents the bit-width precision for the bottleneck layers (expansion and
projection convolution layers) and the depthwise layer, respectively.
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parameters) tend to have larger bitwidths to preserve good accuracy.

2.3.4.2 Experiments on ImageNet

Dataset. The ILSVRC 2012 classification dataset [43] consists of 1.2 million training

images and 50,000 validation images, with 1,000 classes. We resize the image size to 224×224,

and adopt the standard data augment scheme (mirroring and shifting) for training images.

Settings. For ImageNet, we set the batch size to be 64, and fix the number of the

filters in the first convolution layer to be 32. We use stochastic gradient descent with an

initial learning rate 10−4 and apply cosine learning rate annealing scheduling [64]. We also

use label smoothing [175] (α = 0.1 ), mixup [211] (α = 0.2 ) for data augmentation, and clip

the gradient to the range of [−5, 5]. We replace the vanilla batch normalization layer with

8-bit range normalization following [7], and train our discovered neural architectures for 120

epochs on the training set.

Model Precision Top-1 Error (%) Top-5 Error (%) Model Size (Bytes) Energy (mJ) Latency (ms)
VGG-16 [167] 8-bit 29.10 7.40 138.00M 753.11 838.03
ResNet-50 [63] 8-bit 24.70 5.30 25.50M 557.46 591.17
MobileNetV2 [185] 8-bit 28.19 9.75 3.40M 29.01 73.85
FBNet-B [193] 8-bit 26.84 8.97 4.50M 34.65 83.91
FBNet-B [193] 3-bit 36.29 15.38 1.68M 13.47 27.93
HAQ-small [185] mixed 33.01 12.67 1.70M 12.85 32.10
ours-small mixed 31.62 11.56 1.44M 8.91 21.19
HAQ-base [185] mixed 29.10 10.09 2.12M 16.31 40.21
Ours-base mixed 28.23 9.94 2.06M 10.85 24.71

Table 2.11: Results on the ImageNet2012 dataset.

Results. The performance of our models (denoted as ours-small and ours-base) is

reported in Table 2.11 along with other state-of-the-art approaches. We report the top-1 and

top-5 classification error on the validation set. In addition to the energy consumption, we also
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show the latency and model size off all evaluated approaches. As shown in Table 2.11, our

discovered models can extremely reduce the energy while achieving on par (better) accuracy

compared to strong baseline approaches.

In the first block, we can see that classic DNNs are most energy hungry. For example,

VGG-16 [167] costs 753.11mJ energy along with 838.03ms latency, ResNet-50 [63] costs

557.46mJ energy along with 591.17ms latency. The energy consumption of these two models

is about 50× higher than our models. To have a fair comparison with HAQ [185] with similar

level of energy consumption, we compare with two variants of HAQ, HAQ-small and HAQ-

base: HAQ-small denotes the energy-conserving setting with more aggressive quantization

strategies; HAQ-base denotes the setting favors better accuracy and thus larger models.

Compared to HAQ-small, ours-small reduces the top-1 error rate from 33.01% to 31.62% and

reduces energy by 3.94mJ. Ours-base also achieves lower top-1 error rate (30.60%→ 28.23%)

and leads to about 3× lower energy consumption (30.60mJ→ 10.85mJ) than HAQ-Base.

Compared to 8-bit MobileNetV2, ours-base achieves 35% reduction on model size

and 63% reduction on energy, respectively. Compared with 3-bit FBNet-B [193], which has

similar energy cost to ours-base, we can improve the top-1 error rate from 36.29% to 28.23%.

Besides, our discovered models can be fitted into on-chip SRAM cache (5pJ per access under

45nm CMOS technology) rather than off-chip DRAM memory (640pJ per access under 45nm

CMOS technology). Shown in Table 2.11, the model size of ours-small is 1.44MB, which

could be accommodated into on-chip SRAM cache.
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2.3.4.3 Experiments on CIFAR-100

Dataset. CIFAR-100 12 consists of images drawn from 100 classes. The training

and test sets contain 50,000 and 10,000 images respectively. We adopt a standard data

argumentation scheme (mirroring and shifting) that is widely used for this dataset.

Settings. We set the batch size to be 128, set the learning rate to be 0.1, remove

label smoothing and remove the first two down-sample convolutions in the architecture. We

follow the other settings in the ImageNet task.

Model Precision Model Size (Bytes) Error (%) Energy (mJ) Latency (ms)
DenseNet-BC-190 + Mixup [211] 8-bit 26.0M 17.02 125.74 247.21
ENAS + Cutout [145] 8-bit 4.6M 16.58 25.93 49.78
NAO + Cutout [122] 8-bit 10.8M 15.87 37.20 75.92
MobileNetV2 8-bit 2.5M 21.85 5.09 13.13
FBNet-B [193] 8-bit 2.8M 21.36 8.27 17.48
HAQ-small [185] mixed 0.6M 22.93 1.17 2.75
ours-small mixed 0.6M 22.16 1.00 2.53
HAQ-base [185] mixed 0.8M 21.89 1.53 3.31
ours-base mixed 0.8M 21.27 1.21 2.98

Table 2.12: Results on the CIFAR-100 dataset.

Results. The main results on CIFAR-100 are shown in table 2.12, we can see that

pioneer state-of-the-art architectures, e.g. 8-bit DenseNet [71], lead to significant energy and

memory cost, which is 125.74mJ and 26.0MB respectively. Recent NAS frameworks only

focus on accuracy optimization that also results in architectures with notable energy con-

sumption. For instance, 8-bit NAO [122] uses 37.20mJ; 8-bit ENAS [145] costs 25.93mJ. On

the other hand, ours-small achieves ×5 reduction in model size and more than ×5 reduction

12https://www.cs.toronto.edu/~kriz/cifar.html
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in energy consumption while achieving better accuracy compared to the 8-bit MobileNetV2.

Compared to HAQ, ours-small costs less energy than HAQ-small, meanwhile, improves the

error rate from 22.93% to 22.16%. Ours-base can achieve 0.32mJ energy reduction than

HAQ-base, and improve the error rate from 21.89% to 21.27%.

Optimization Model Size (Bytes) Error(%) Energy (mJ)
NAS+Quantization (Small) 0.5M 22.34 1.04
ours-small 0.5M 22.16 1.00
NAS+Quantization (Base) 0.9M 21.58 1.28
Ours-base 0.8M 21.27 1.21

Table 2.13: Comparison of stepwise NAS and model quantization v.s. our joint-optimizing
framework. The models are evaluated on the CIFAR-100 dataset.
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Figure 2.14: Comparison of mixed precision quantization (denoted as ‘mixed’) v.s. constant
precision quantization (denoted as ‘fixed’). The dashed line shows the results for {8, 4, 2}
bitwidths (left to right), respectively.

2.3.4.4 Joint NAS and Adaptive Mixed Precision Quantization

We further study the importance of joint NAS and mixed precision quantization.

On the CIFAR-100 dataset, we study a baseline approach by performing NAS and model
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quantization stepwisely. Specifically, we use DARTS [116] 13 for architecture search with the

same search space defined in Table 2.10 while using 8-bits precision for all layers. Next, we

perform layer-wise model quantization following HAQ. In a way similar to our approach, we

set λ = 0.1, 0.01, respectively, and discover two neural models (NAS+Quantization (small)

and NAS+Quantization (base)) with similar model size compared to ours-small and ours-

base.

As we can see from Table 2.13, compared to NAS+Quantization (small), ours-small

reduces the error rate from 22.34% to 22.16% and also reduce the energy cost by around

0.05mJ. Compared to NAS+Qunatization (base), Ours-base reduces the error rate from

21.58% to 21.27% and achieves a 5% reduction on energy consumption. These results high-

lights the benefits of joint NAS and mixed precision quantization as suggested by our ap-

proach.

In Figure 2.14, we show the advantage of adaptive mixed precision quantization versus

constant precision quantization. In Figure 2.14, the dashed line shows the performance

(latency v.s. classification error rate) of different baseline architectures with a constant 8-

bit, 4-bit, and 2-bit precision, respectively. The star points show the results of HAQ and

our method, that both allow flexible layer-wise bitwidths. With mixed layer-wise precision

searching, both HAQ and our method discovers neural architectures yields good trade-off

between accuracy and latency, and our method outperforms HAQ.

13https://github.com/quark0/darts
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2.3.5 Summary

We propose a new methodology to perform NAS and mixed precision quantization in

the extended search space with hardware performance involved in the objective function. Ex-

perimental results demonstrate that our proposed approach achieves better energy efficiency

than advanced quantization approaches on CIFAR-100 and ImageNet. Our methodology

facilitates the end-to-end design automation flow of neural network design and deployment,

especially for edge inference. As future directions, we may extend this work to other neu-

ral architecture search methods, quantization techniques, and backbone machine learning

models.

2.4 Summary of the Chapter

We present three methods to improve the efficiency of machine learning algorithms,

including (1) effective gradient matching for dataset condensation, which enhances data

efficiency; (2) NormSoftmax, improving training efficiency for softmax-based models; and

(3) mixed precision NAS, which allows us to seek more efficient models and mixed precision

quantization settings in a larger search space. These algorithm designs prioritize task-related

performance, considering the performance-efficiency trade-off to some extent.

Algorithmic efficiency alone is insufficient to exploit the potential in the machine

learning software stack. In the next chapter, we move to machine learning compilation,

which has different design principles from machine learning algorithms.
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Chapter 3

Efficient Machine Learning Compilation

Given a machine learning workload, the compiler transforms high-level computation

graphs into low-level optimized executable instructions that can run efficiently on target

hardware platforms. Aimed at maximizing the efficiency of completing machine learning

workloads, it involves a series of steps, including graph analysis and simplification, code

generation and optimization, system management, etc. The compilation bridges the gap

between algorithms and real execution on the hardware platforms. As the complexity and

scale of machine learning workloads continue to grow, there is a pressing need for efficient

machine learning compilation that can optimize execution time and resource utilization.

This chapter is based on the following publications.

1. Zixuan Jiang, Keren Zhu, Mingjie Liu, Jiaqi Gu, David Z Pan. "An Efficient Training Framework for
Reversible Neural Architectures". European Conference on Computer Vision (ECCV), 2020 [87].

2. Zixuan Jiang, Jiaqi Gu, Mingjie Liu, Keren Zhu, David Z Pan. "Optimizer Fusion: Efficient Train-
ing with Better Locality and Parallelism". Hardware Aware Efficient Training (HAET) workshop,
International Conference on Learning Representations (ICLR), 2021 [84].

3. Zixuan Jiang, Jiaqi Gu, Hanqing Zhu, David Z. Pan. "Pre-RMSNorm and Pre-CRMSNorm Trans-
formers: Equivalent and Efficient Pre-LN Transformers". This paper is under review at the Conference
on Neural Information Processing Systems (NeurIPS), 2023. Its preprint version is public on arXiv
(arXiv:2305.14858) [86].

I am the main contributor in charge of problem formulation, algorithm development, and experimental
validations.
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The compilation is closer to the target hardware compared to machine learning algo-

rithms. For example, one of the critical challenges in machine learning compilation is leverag-

ing the inherent parallelism and hardware-specific features of modern computing platforms.

Efficient compilation techniques optimize for platform-specific characteristics to unlock the

full potential of hardware accelerators, resulting in significant speedups and improved energy

efficiency. Furthermore, these techniques consider the specific constraints and characteris-

tics of the target hardware platforms, including memory hierarchies, storage capacities, and

parallelism capabilities. The resulting executable code can fully utilize available hardware

resources by tailoring the compilation process to exploit these platform-specific features,

leading to more efficient computations.

In this chapter, we present three efficient compilation methods, which ensure arith-

metic equivalence. In the first method, we remove the inherent redundancy in Pre-LN Trans-

formers to obtain more efficient Pre-RMSNorm and Pre-CRMSNorm Transformers. These

Transformer variants are arithmetically equivalent. Thus, as a free lunch, we may directly

replace Pre-LN Transformers (e.g., GPT and ViT) with our proposed variants to achieve

higher efficiency. The second one defines and solves the scheduling problem for reversible

neural networks. The optimal scheduling enables us to achieve the fasted training through-

put. We improve the efficiency of the computation and memory resource utilization. The

third approach, optimizer fusion, accelerates the training process by considering the locality

in memory hierarchy and parallelism in the algorithm. It is an enhancement of scheduling

the computation graphs in eager execution.
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3.1 Pre-RMSNorm and Pre-CRMSNorm Transformers: Equivalent
and Efficient Pre-LN Transformers

Transformers have become a successful architecture for a wide range of machine learn-

ing applications, including natural language [183], computer vision [47], and reinforcement

learning [29]. It is one of the foundation models [16], and pretrained Transformers [147]

demonstrated impressive generalization results. Among the components of Transformers,

normalization plays a critical role in accelerating and stabilizing the training process [117].

Layer Normalization (LayerNorm, LN) [5] and Root Mean Square Normalization (RM-

SNorm) [210] are two common normalization layers in Transformers. LayerNorm is in the

original Transformer architecture [183], recentering and rescaling the input vector in Rd to

obtain a zero-mean and unit-variance output. RMSNorm only rescales the input vector with

its RMS value, offering greater computational efficiency than LayerNorm.

The machine learning community does not reach a consensus regarding the preferred

normalization technique for Transformers. LayerNorm demonstrates remarkable success in

the milestone Transformers, such as GPT [21,148] and ViT [47]. It is still the default normal-

ization layer when building a new Transformer. On the contrary, RMSNorm is reported to

accelerate the training and inference with similar performance as LayerNorm in Transform-

ers. It has gained popularity in recent large language models, such as T5 [150], Gopher [149],

Chinchilla [68], and LLaMA [181]. However, concerns persist regarding the potential nega-

tive impact of RMSNorm on the representation ability of Transformers. It remains an open

question to determine the preferred normalization type for Transformers, requiring further

theoretical and empirical investigation.
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3.1.1 Overview

In this work, we aim to mitigate the discrepancy between LayerNorm and RMSNorm

in Transformers. When delving into the prevalent Transformer architectures, Pre-LN and

Pre-RMSNorm Transformers, we identify an opportunity to unify them by removing the

inherent redundancy in Pre-LN models. In particular, the main branch vectors in the Pre-LN

Transformers are always normalized before they are used, implying that the mean information

is redundant. We can recenter the main branch without impact on the functionality of the

models, which allows us to reduce LayerNorm to RMSNorm.

We further propose Compressed RMSNorm (CRMSNorm), which takes a vector in

Rd−1 as input, decompresses it to a zero-mean vector in Rd, and applies the RMSNorm on the

decompressed vector. Building upon this new normalization, we propose Pre-CRMSNorm

Transformer that employs lossless compression on the zero-mean vectors. We apply such

compression to zero-mean activations and parameters in Pre-RMSNorm Transformers, en-

hancing the efficiency of Pre-RMSNorm Transformers while preserving the equivalent arith-

metic functionality.

We formally claim that Pre-LN, Pre-RMSNorm, and Pre-CRMSNorm Transformer

variants are equivalent for both training and inference. Figure 3.1 visualizes the overview

of their equivalence. Such equivalence directly enables more efficient training and deploy-

ment of Pre-LN Transformers. We can translate a Pre-LN model into an equivalent Pre-

(C)RMSNorm model, which can be readily deployed or adapted to downstream tasks. The

conversion process incurs minimal costs. We can also train a Pre-(C)RMSNorm model di-

rectly as if we train an equivalent Pre-LN Transformer counterpart.
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Figure 3.1: Overview of the three equivalent Transformer variants.

We highlight our contributions as follows.

• We achieve the first-ever unification of LayerNorm and RMSNorm in pre-normalization

Transformers with proven arithmetic equivalence.

• We propose two variants: Pre-RMSNorm and Pre-CRMSNorm Transformers. The

original Pre-LN Transformer and our proposed two variants are equivalent and can

seamlessly interchange without affecting functionality.

• Our proposed architectures are 1%∼10% more efficient than the original Pre-LN

Transformer for both training and inference. Such efficiency gains are effortlessly ob-

tained without the need for fine-tuning or calibration. Our methods are orthogonal

and complementary to most work improving Transformer efficiency.

Our implementation is available on GitHub. 1

1https://github.com/zixuanjiang/pre-rmsnorm-transformer
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3.1.2 Background

We introduce LayerNorm, RMSNorm, and their usage in Transformers. We provide

an abstraction for Pre-LN Transformers.

3.1.2.1 LayerNorm and RMSNorm

Layer Normalization (LayerNorm, LN) [5] is a technique to normalize the ac-

tivations of intermediate layers of neural networks. Given a vector x ∈ Rd, LayerNorm

normalizes it to obtain a zero-mean unit-variance vector,

LayerNorm(x) =
x− µ(x)1√

∥x∥22 /d− µ2(x) + ϵ
,where µ(x) =

1Tx

d
, ϵ > 0. (3.1)

LayerNorm recenters and rescales the activations and gradients in the forward and backward

computations [202], which enables fast and robust training of neural networks.

Root Mean Square Normalization (RMSNorm) [210] is another technique used

for normalizing the activations. It is similar to LayerNorm in that it aims to accelerate and

stabilize the training but uses a different normalization approach. Instead of normalizing the

inputs based on their mean and variance, RMSNorm normalizes them based on their root

mean square (RMS) value. It is defined in the following equation,

RMSNorm(x) =
x√

∥x∥22 /d+ ϵ
,where ϵ > 0. (3.2)

RMSNorm only rescales the input vector and the corresponding gradients, discarding the

recentering process. As shown in their definitions, RMSNorm is computationally simpler and

more efficient than LayerNorm. It is reported that replacing LayerNorm with RMSNorm

can achieve comparable performance and save training and inference time by 7− 64% [210].
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Given a zero-mean vector x, these two kinds of normalization are equivalent. For-

mally, if µ(x) = 0, then LayerNorm(x) = RMSNorm(x). We may optionally introduce

learnable parameters and apply an element-wise affine transformation on the output of Lay-

erNorm and RMSNorm.

3.1.2.2 Normalization in Transformers

Normalization plays a crucial role and has many variants in Transformers [183]. Lay-

erNorm is widely used in Transformer architectures to address this issue. The position of

LN within the architecture is essential for the final performance. While the initial Trans-

former uses Post-LN, most Transformers employ Pre-LN to achieve more stable training,

even though this can result in decreased performance [201]. Pre-LN is the mainstream nor-

malization in Transformers, especially the large models, such as ViT [42,47], PaLM [36], and

GPT-series models [21,148].

RMSNorm is proposed as an alternative normalization technique in Transformers.

Several large language models, such as Chinchilla [68] and LLaMA [181], use Pre-RMSNorm

in their blocks [217]. RMSNorm can help accelerate the training and inference with sim-

ilar performance in these large models. Specifically, the experiments in [136] show that

RMSNorm improves the pre-training speed by 5% compared with the LayerNorm baseline.

It is challenging to convert Transformers with one normalization to the other type.

It is not clear which version of normalization is more suitable for Transformers.
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3.1.2.3 Pre-LN Transformer

Figure 3.2.a illustrates the Pre-LN Transformer architecture, which consists of three

parts, preprocessing, a stack of L blocks, and postprocessing.

Preprocessing. We preprocess the raw inputs, which range from paragraphs in nat-

ural language [183], images [47], to state-action-reward trajectories in reinforcement learning

problems [29]. We import special tokens (such as the classification token) and embeddings

(such as positional embeddings), ultimately obtaining a sequence of token embeddings x0.

Transformer blocks. The main body of Pre-LN Transformer [201] is a stack of

residual blocks

xl+1 = xl + Fl(xl), l = 0, 1, ..., L− 1, (3.3)

where xl is the input of the l-th block, Fl is a sequence of operators LayerNorm → Linear

→ gl → Linear. We name xl as the vectors on the main branch and Fl as the residual

branch [63]. The block Fl is usually an attention or a multi-layer perceptron (MLP) module.

If gl is an activation function, such as GELU [65], then the block Fl is a two-layer MLP.

If gl is a (masked) multi-head scaled dot product attention, then the block is the (casual)

attention module [183]. These two linear layers are usually explicitly defined. Taking the

attention module as an example, the input linear projection generates the query, key, and

value vectors, while the output projection is applied to the concatenated results of all heads.

If they are not explicitly defined, we can add an identity mapping, a special linear layer.

Most of the learnable parameters of Transformers are in these two linear layers. 2

2The elementwise affine transformation of LayerNorm or RMSNorm is also a linear transformation. Thus,
it can be fused with the input linear projection. We disable this transformation in the normalization layers
to simplify the analysis.

98



𝒙𝒙𝐿𝐿 ∈ ℝ𝑑𝑑

LayerNorm

Linear in

ℊ𝑙𝑙

Linear out

𝒙𝒙𝑙𝑙

𝒙𝒙𝑙𝑙+1

Preprocess

Block 1

Block L

Postprocess

LayerNorm

𝒙𝒙0 ∈ ℝ𝑑𝑑

Residual ℱ𝑙𝑙

(a) Pre-LN Transformer

𝜇𝜇 ≠ 0

ℝ𝑑𝑑

ℝ𝑑𝑑

ℝ𝑑𝑑𝑖𝑖

ℝ𝑑𝑑𝑜𝑜

ℝ𝑑𝑑

𝒙𝒙𝑙𝑙 ∈ ℝ𝑑𝑑

𝜇𝜇 ≠ 0

𝒙𝒙𝐿𝐿 ∈ ℝ𝑑𝑑

RMSNorm

Linear in

ℊ𝑙𝑙

Linear out

𝒙𝒙𝑙𝑙

𝒙𝒙𝑙𝑙+1

Preprocess

Block 1

Block L

Postprocess

RMSNorm

𝒙𝒙0 ∈ ℝ𝑑𝑑

Residual ℱ𝑙𝑙

(b) Our Pre-RMSNorm Transformer

𝝁𝝁 = 𝟎𝟎

ℝ𝑑𝑑

ℝ𝑑𝑑

ℝ𝑑𝑑𝑖𝑖

ℝ𝑑𝑑𝑜𝑜

ℝ𝑑𝑑

𝒙𝒙𝑙𝑙 ∈ ℝ𝑑𝑑

𝝁𝝁 = 𝟎𝟎

Recenter CRMSNorm

Linear in

ℊ𝑙𝑙

Linear out

𝒙𝒙𝑙𝑙

𝒙𝒙𝑙𝑙+1

Preprocess

Block 1

Block L

CRMSNorm

𝒙𝒙0 ∈ ℝ𝑑𝑑−1

Residual ℱ𝑙𝑙

(c) Our Pre-CRMSNorm Transformer

ℝ𝑑𝑑−1

ℝ𝑑𝑑−1

ℝ𝑑𝑑𝑖𝑖

ℝ𝑑𝑑𝑜𝑜

ℝ𝑑𝑑−1

𝒙𝒙𝑙𝑙 ∈ ℝ𝑑𝑑−1

𝒙𝒙𝐿𝐿 ∈ ℝ𝑑𝑑−1

(a) = (b) = (c) Equivalence; (a) < (b) < (c) Efficiency 
Postprocess

Figure 3.2: Left. The original Pre-LN Transformer architecture. Middle and Right.
Our proposed Pre-RMSNorm and Pre-CRMSNorm Transformer architectures. These three
architectures are equivalent. The differences are highlighted in bold and green blocks.

LayerNorm and postprocessing. We finally process the result LN(xL) to obtain

the task-related results, such as classification probabilities. We apply the layer normalization

on xL since it usually has a high variance because it is the accumulation of all the Transformer

blocks.

3.1.3 Method

We propose Pre-RMSNorm and Pre-CRMSNorm Transformer variants, shown in Fig-

ure 3.2, and claim that Pre-LN, Pre-RMSNorm, and Pre-CRMSNorm Transformers are

arithmetically equivalent.

Pre-LN Transformer = Pre-RMSNorm Transformer = Pre-CRMSNorm Transformer.

(3.4)

We will show the equivalence of these three architectures and then analyze the computational

efficiency improvement by our proposed model variants. We discuss the Post-LN in Appendix
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B.2.

3.1.3.1 Pre-LN Transformer = Pre-RMSNorm Transformer

LayerNorm is invariant to the shifting LN(x + k1) = LN(x),∀k ∈ R. We observe

that LayerNorm is applied to the main branch vectors before they are used in either residual

branches or the final postprocessing. Therefore, we can replace the main branch vectors xl

with xl + kl1,∀kl ∈ R without impact on the functionality of the Pre-LN Transformer. If

kl = −µ(xl), we replace the main branch vectors with its recentered version xl−µ(xl)1. We

can explicitly maintain zero-mean main branches with the same arithmetic functionality.

We propose three modifications to the original Pre-LN Transformer to obtain an

equivalent Pre-RMSNorm Transformer.

1. Recenter the x0 before the first Transformer block, where Recenter(x) = x− µ(x)1.

2. For the output projection in residual branches, replace the weight Ao and bias bo with

Âo = Ao − 1
d
11TAo, b̂o = bo − µ(bo)1o, where d is the dimension of x0.

3. Replace LayerNorm with RMSNorm at the beginning of residual blocks and before

postprocessing.

Since µ(xl+1) = µ(xl)+µ(Fl(xl)), we can keep zero-mean on the main branch if and

only if the input of the first block x0 and the output of each residual branch Fl are re-centered

with zero-mean. The first modification is to recenter x0, while the second modification is

to recenter the output of residual branches. For the residual branch Fl, the ending linear

transformation enables us to recenter its output without extra computation, implied by

Lemma 3.1.1. We can recenter the weight and bias of a linear layer to recenter its output.
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Lemma 3.1.1 Given a linear transformation y = Ax + b,x ∈ Rn,A ∈ Rm×n, b,y ∈ Rm,

we can decompose the output with two parts y = Âx+ b̂+ µ(y)1. The first part Âx+ b̂ =

y − µ(y)1, with zero mean, is another linear transformation with Â = A − 1
m
11TA, b̂ =

b− µ(b)1.

The first two modifications ensure that we maintain zero mean on the main branch

vectors. Given a zero-mean input, LayerNorm is equivalent to RMSNorm, which implies

that the third modification has no impact on the functionality. With these modifications,

we demonstrate that Pre-LN and Pre-RMSNorm Transformers are equivalent.

3.1.3.2 Pre-RMSNorm Transformer = Pre-CRMSNorm Transformer

For a zero-mean vector x ∈ Rd, we can compress it losslessly by discarding its last

element. In the decompression, we recover the discarded element with xd = −
∑d−1

i=0 xi. The

decompression has an extra cost, while the compression does not induce extra computation.

The space-saving ratio of this compression method is 1/d.

We define Compressed Root Mean Square Normalization (CRMSNorm), which

takes a vector x ∈ Rd−1 as input. CRMSNorm first decompresses the vector x to obtain a

zero-mean vector in Rd, then applies RMSNorm on the zero-mean vector. It can generate

the normalized zero-mean results in either Rd−1 or Rd. Its formal definition is in Equation

3.5.

CRMSNorm(x) =
x√

(
∑d−1

i=1 x
2
i + (

∑d−1
i=1 xi)2)/d+ ϵ

, where x ∈ Rd−1. (3.5)

We simplify the Pre-RMSNorm Transformers to obtain the Pre-CRMSNorm Trans-

formers with the following modifications.
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1. Compress the zero-mean main-branch vectors from Rd to Rd−1. Preprocessing and

postprocessing handle compressed vectors in Rd−1.

2. Replace RMSNorm with CRMSNorm.

3. Simplify the weight Ai in the input projection layer. Let ad be the last column vector

of Ai. Âi = Ai − ad1
T is the compressed weight matrix.

4. Simplify the weight and bias in the output projection layer. We discard the last row

of the weight matrix Âo and the last element of the bias b̂o since they are used to

generate the redundant last element.

We compress the zero-mean activations in our proposed Pre-RMSNorm Transformers and

correspondingly simplify the two linear layers in residual branches.

We can fuse preprocessing, recentering, and compression. The fused preprocessing

generates compressed vectors in Rd−1 to represent zero-mean vectors in Rd. Taking language

models as an example, we can recenter and compress (discard the last element) the word

and position embeddings.

For the input linear projection, its input is the output of RMSNorm, whose mean

is zero. We compress the output of the RMSNorm and the weight of the linear layer.

Specifically, if the linear layer takes a zero-mean vector as input, then

Linear(x) = Aix+ bi = (Ai − ad1
T )x+ b. (3.6)

Âi = Ai − ad1
T is the compressed weight matrix since its last column is a zero vector. The

simplified linear layer only needs the compressed zero-mean vectors in Rd−1 as input.
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For the output linear projection, we only need to calculate the first (d− 1) elements

for the vectors in Rd. Thus, we can compress the weight Âo and bias b̂o. As shown in Figure

3.2, the shape of Âo is (d, do), we can compress it directly to (d − 1, do) by discarding its

last row. Similarly, we can compress b̂o ∈ Rd by discarding its last element. This weight

compression also reflects their redundancy. As shown in Section 3.1.3.1, b̂o and all column

vectors of Âo are zero-mean.

Figure 3.2 demonstrates the difference in vector dimension. We demonstrate the

equivalence between Pre-RMSNorm and Pre-CRMSNorm Transformers.

3.1.3.3 Pre-LN Transformer = Pre-CRMSNorm Transformer

To translate a pre-trained Pre-LN Transformer to a Pre-CRMSNorm Transformer,

we can convert it into a Pre-RMSNorm model and then finish the conversion. For the model

implementation, we need two steps to convert a Pre-LN Transformer to Pre-CRMSNorm

Transformer.

1. Reduce the hidden dimension from d to d− 1. 3

2. Replace LayerNorm with CRMSNorm.

Namely, Pre-LN Transformers with the main branch vectors in Rd are equivalent to Pre-

CRMSNorm Transformers in Rd−1, which further echoes the redundancy in the Pre-LN

Transformers.

3We reduce the hidden dimension in the preprocessing, main branch, two linear layers in residual branches,
and postprocessing. We keep the di, do in residual branches. For instance, we maintain the MLP dimension
and head dimension (dimension of query, key, and value vectors).
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3.1.3.4 Training and Inference Efficiency

We show how to make conversions between the three variants. The conversions only

consist of one-time parameter adjustments without expensive fine-tuning or calibration, sim-

ilar to operator fusion [140]. We qualitatively analyze the efficiency improvement of our

proposed Pre-(C)RMSNorm Transformers compared with equivalent Pre-LN models.

Pre-RMSNorm Transformer We discuss the impact of three modifications on training

and inference, as shown in Table 3.1.

Recenter Zero-Mean Linear RMSNorm
Training a little increase a little increase decreaseInference same same

Table 3.1: The computation workload of our Pre-RMSNorm model compared with the orig-
inal Pre-LN Transformer.

The linear layer with zero-mean output. The modified linear layer will not

induce extra computation for inference since we can replace the weight and bias in advance.

During inference, we can treat it as a standard linear layer with equivalently transformed

parameters.

We have to pay the extra cost for training for the parameter change. The parameter

optimizer manages Ao, bo, but we use their recentered version Âo, b̂o during training. The

induced cost is small for several reasons. (1) The size of parameters Ao, bo is relatively

small since they do not depend on the batch size and sequence length. For reference, the

computation cost of LayerNorm in the original Pre-LN Transformer is proportional to the

batch size and the sequence length. (2) Obtaining Âo, b̂o can be done ahead of time since
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it does not depend on the input. We may leverage the idle time of accelerators to compute

them. (3) In data-parallel distributed training, the parameter server [110] manages the

parameters. Each worker will receive Âo, b̂o from the server and then pass the gradients

of loss to Âo, b̂o to the server. Only the server needs to maintain and update the original

Ao, bo. In short, it is much easier to process the model parameters than the intermediate

activations.

Recentering. It is possible to fuse the recentering with the preprocessing, which

usually handles the sum of several kinds of embeddings. For example, the input embeddings

of the BERT model [45] are the accumulation of the token embeddings, the segmentation em-

beddings, and the position embeddings. Since Recenter(x+y) = Recenter(x)+Recenter(y),

recentering the input is equivalent to recentering each embedding before the addition. We

can recenter the accumulated embeddings or each embedding separately before the accumu-

lation. Suppose an embedding is from a linear layer. In that case, we can modify the linear

layer such that it generates the zero-mean output, similar to how we edit the output linear

projection.

For inference, we can recenter the related embeddings or linear layers in advance such

that no extra computation is induced. For training, recentering induces extra cost since it

is on the fly.

Replacing LayerNorm with RMSNorm. Section 3.1.2.1 introduces that RM-

SNorm can achieve speedup compared with LayerNorm, as demonstrated by the previous

models. This replacement can help us accelerate the training and inference of the Pre-LN

Transformer.
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Pre-CRMSNorm Transformer CRMSNorm, an extension of RMSNorm, saves execu-

tion time as it is more computationally efficient than LayerNorm. Additionally, CRMSNorm

further reduces the hidden dimension from d to d − 1, which can reduce the model size,

computation, communication, and memory consumption by 1/d in theory. However, most

accelerators can not efficiently handle the vectors in Rd−1 when d is a large even number,

especially a power of two (e.g., 1024, 4096). This limitation arises because these accelerators

are typically optimized for arithmetic with even dimensions. In some cases, handling Rd−1

vectors may take much more time than Rd vectors. Thus, we need to examine if the accel-

erators can support Rd−1 vectors efficiently. If not, we have the following alternatives. For

inference, we may either (1) add zero embeddings, or (2) decompress the vectors and trans-

late the model into the Pre-RMSNorm variant. For training, we suggest keeping the hidden

dimension d, which is equivalent to a Pre-LN model with the hidden dimension d + 1. In

this way, the CRMSNorm can help us increase the model representability and computation

efficiency at the same time.

3.1.4 Experiments

We claim that our major contributions are the unification and equivalence of the three

Transformer variants. The efficiency is a free lunch accompanying the equivalence. Also, the

efficiency of RMSNorm over LayerNorm has been shown in the previous work [136,210]. We

focus on analyzing the efficiency of each component of our method in this section.

We conduct experiments on ViT [47, 179] and GPT3 [21] since they represent two

mainstream architectures of Transformers, encoder-only and casual decoder. Other Trans-

former variants can be treated as an extension of these two architectures, such as encoder-
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decoder [183], and non-causal decoder [209]. Also, ViT and GPT cover the areas of computer

vision and natural language, where Transformers have been popular and achieved great suc-

cess.

We use PyTorch 2.0 [142] to build the training and inference pipeline. We run itera-

tions at least 100 times and report the 25th, 50th (median), and 75th percentile since these

quartiles are more robust than the mean. We use the automatic mixed precision [133] for

both training and inference. We provide more results for different machine learning frame-

works (JAX [19]), precision and datatype, and computation platforms. Please see Appendix

B.3 for more details.

3.1.4.1 Experiments on ViT

The ViT takes images with 3 channels and a resolution of 224 × 224 and generates

a classification over 1000 classes, which is the standard setting for ImageNet training and

inference.

In the training recipe of ViT [47], dropout [170] is added at the end of each resid-

ual branch, which breaks the zero-mean property of the residual output. Hence, in Pre-

RMSNorm Transformers, we need to recenter the output vectors explicitly at the end of the

residual branch. 4 The Pre-CRMSNorm Transformers are compatible with dropout since it

uses vectors in Rd−1 to represent the compressed zero-mean vectors in Rd. On the contrary,

DeiT [179] disables the dropout and can guarantee the zero-mean output, in spite that the

stochastic depth [72] and LayerScale [180] are applied. We follow the settings in DeiT [179]

4Dropout only impacts training and has no impact on inference. Thus, the Pre-RMSNorm variant can
also be used for inference.
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Figure 3.3: Normalized inference time on ViT with different model sizes and batch sizes.

in this section.

Inference. Figure 3.3 illustrates the inference time with different batch sizes and

model sizes on a single A100 GPU. Taking the Pre-LN Transformer as the baseline, our

proposed Pre-RMSNorm Transformer can reduce the inference time by 1% − 9%. This

reduction takes effect for ViTs with different models and various mini-batch sizes. The left

subfigure demonstrates the inference latency, which is the inference time when the batch size

is 1.

The proportion of LayerNorm in the total computation is 12%− 18% in these exper-

iments. As discussed in Sections 3.1.2.1 and 3.1.3.4, replacing LayerNorm with RMSNorm

can help us accelerate the inference. RMSNorm can reduce the inference time of LayerNorm

by 20%− 60%, thus helping us achieves a stale faster inference for Pre-RMSNorm models.

For Pre-CRMSNorm, the GPU cannot efficiently handle vectors in Rd−1 in some

cases. We add zero padding for these cases to obtain vectors in Rd. With zero padding,

Pre-CRMSNorm models are less efficient than Pre-RMSNorm ones due to the extra decom-
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pression. However, for the cases where Rd−1 vectors can be accelerated efficiently, we can

achieve an even 10% time reduction.

We also conduct experiments (1) with other precisions, (2) on CPUs, (3) with JAX [19]

and observe similar performance. For these ViT variants, we have achieved an average of

3.0% inference time reduction.

Training. We train ViTs on a single workstation with 4 A100s with data parallel

training [111], following the DeiT training recipe. Each training iteration consists of forward

and backward computation on all the workers, gradient all-reduce, parameters update with

an optimizer, and broadcasting the new parameters. Figure 3.4a visualizes the breakdown

of the related components. In the Pre-LN Transformer, the layer normalization accounts for

12.6% of total training time. For the Pre-RMSNorm variant, we have to modify the output

projection and recenter the input, which induces the 0.89% and 0.09% extra computation

time. Then LayerNorm is reduced to RMSNorm, whose computation cost is 9.27%. Overall,

the Pre-RMSNorm reduces the training time by 2.36%.
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We train the Pre-CRMSNorm Transformers with d as the hidden dimension since we

do not obtain a speedup from the compressed dimension since the GPUs cannot handle Rd−1

vectors efficiently. The CRMSNorm is more computationally expensive than the RMSNorm

given the same input but takes less time than LayerNorm. The Pre-CRMSNorm Transformer

does not need the recentering and special linear layers to generate zero-mean results at the

end of residual branches. Above all, training the Pre-CRMSNorm variant is 1.74% faster

than the Pre-LN model.

Figure 3.4b illustrates the training time of different ViTs. We have achieved a speedup

of 1%−2.5%, which is smaller than the inference speedup. Considering only the forward and

backward computation, the speedup is similar between training and inference. Nevertheless,

the training needs extra time on gradient all-reduce, optimizer update, and parameters

broadcast, which shrinks the percentage of normalizations in the whole computation. For

reference, the percentage is 10− 15% for training these ViTs.

3.1.4.2 Experiments on GPT
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Figure 3.5: GPT3 inference performance
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We measure the inference time on the GPT3 [21] variants with batch size 1 and

sequence length 512. The results are shown in Figure 3.5. In small GPT3 models, layer

normalization takes considerable time. Hence, replacing the LayerNorm with (C)RMSNorm

can reduce the inference time by up to 10%. However, as the model grows, the attention

and MLP take charge of the main part of the computation [109]. The normalization takes

< 1% of the inference time for GPT3 XL and larger models, which is the upper bound of

the speedup with our methods.

We discuss the reason that the normalization takes less percentage of the computation.

Let L be the input sequence length and d be the dimension of embedding vectors. The

computation complexity of either LayerNorm or RMSNorm is O(Ld), which is smaller than

the attention and MLP modules, whose complexities are O(L2d) and O(Ld2). As L and d

increase, the attention and MLP have a larger portion of the total computation.

Applying quantization can mitigate this issue. By applying int8 matrix multiplication

[44], the percentage of the layer normalization increases to 10% for GPT3 XL and 2.7B.

Therefore, our Pre-RMSNorm can reduce the inference time by 4% for them.

Training performance is similar to the ViT one. We have achieved 1.5% and 1.8%

time reduction for GPT3 Small and Medium, respectively.

3.1.4.3 Discussions

Although our relative improvement in the training and inference efficiency seems not

large (up to 10% time reduction), we have the following arguments to support its significance.

Our proposed method can guarantee arithmetic equivalence and is a free lunch for

Pre-LN Transformers. The efficiency improvement originates from removing the inherent
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redundancy in Pre-LN Transformers without introducing any fine-tuning or calibration. Our

work can strictly push the performance-efficiency Pareto frontier of Pre-LN Transformers.

The modest relative improvement can be translated into significant absolute improve-

ment given that Pre-LN Transformers are foundation models for the current and future data-

centric [208] and generative [25] artificial intelligence. For instance, reducing the ChatGPT

inference cost by 1% may save $7, 000 per day [134].

Our method is orthogonal and complementary to most work improving efficiency,

such as efficient Transformer variants [177], quantization [17,118], and distillation to smaller

models [176].

3.1.5 Summary

We propose two equivalent and efficient variants for the widely used Pre-LN Trans-

formers. We point out the inherent redundancy in the Pre-LN Transformer. By maintaining

zero-mean on the main branch vectors and thus simplifying LayerNorm, we obtain the Pre-

RMSNorm architecture. We further apply a lossless compression on the zero-mean vectors to

obtain the Pre-CRMSNorm model. For the first time, We unify these normalization variants

within the Transformer model.

We enable the more efficient utilization of Pre-LN Transformers, allowing for seamless

transitions between normalization techniques with minimal overhead. We can replace a Pre-

LN Transformer with an equivalent Pre-(C)RMSNorm Transformer with better training and

inference efficiency, which is a free lunch. We strictly push the performance-efficiency Pareto

frontier of foundational Pre-LN Transformers. As a result, pre-trained Pre-LN Transformers

(such as ViT and GPT) can be deployed more efficiently, and new equivalent or superior
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models can be trained with higher throughput.

Extensions. We believe that our proposed CRMSNorm technique has the potential

for application in other neural architectures. Further exploration of its usage in different

contexts would be beneficial. Additionally, while our focus has been on pre-normalization

Transformers, it would be valuable to investigate the application of our methods to other

related architectures, especially the foundation models. Finally, integrating our proposed

method into machine learning compilers could directly enable the generation of equivalent

and simplified computation graphs.

Limitations. Detailed implementations and specific optimizations will play a cru-

cial role in achieving practical performance gains. It is necessary to focus on developing

highly optimized implementations of (C)RMSNorm to bridge the gap between theoretical

and practical efficiency improvements. By addressing these challenges, we can fully lever-

age the potential benefits of (C)RMSNorm and enable more efficient utilization of Pre-LN

Transformers.

3.2 An Efficient Training Framework for Reversible Neural Archi-
tectures

The backpropagation [157] mechanism is widely used in training neural networks.

However, since intermediate results need to be saved for backward computations, the back-

propagation requires considerable memory footprint. As neural networks become larger and

deeper, the increasing memory footprint is forcing the usage of smaller mini-batch sizes. In

extreme cases, deep networks have to be trained with a mini-batch size of 1 [220]. The

issue of memory consumption impedes the explorations of desirable deep learning models,
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especially in the field of large language models.

Researchers have proposed several methods to address the challenge of inflating mem-

ory footprint [168]. Chen et al. [32] propose the gradient checkpoint mechanism to store

partial intermediate results. The discarded activations will be recovered through recompu-

tations in the backward pass. The memory swapping method [156, 212] moves intermediate

activations to other devices to reduce the memory footprint of the current device. The extra

memory transfer imposes overhead on training efficiency. Reversible operators [56] allow

recovering the intermediate feature maps in backward pass through the corresponding in-

verse functions. All these three methods reduce the memory footprint at the cost of extra

computation or memory transfer. They do not affect the model accuracy as the training

process is numerically unchanged.

Specifically, reversible neural architectures have been successfully adopted in com-

puter vision research, e.g., the reversible U-net for volumetric image segmentation [22], and

the reversible architecture for 3D high-resolution medical image processing [14]. The lower

memory footprint allows deeper models to be trained, inducing more predictive capability

and higher accuracy.

Figure 3.6 shows two extremes in neural network training. Standard backpropaga-

tion achieves the extreme of computation efficiency at the expense of the highest memory

footprint, such that it does not contain any redundant computations. On the other extreme,

the fully reversible strategy has the lowest memory footprint with imposing the greatest

computation overhead. However, The design space between the two extremes is less studied.

Existing research regarding reversible neural networks mainly focuses on saving memory

consumption. All the reversible layers are executed in the memory-efficient mode. The
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Figure 3.6: Two extremes when training neural networks. The lower right extreme stands for
the standard backpropagation method, which does not contain any redundant computations.
The upper left extreme can achieve the lowest memory footprint by fully leveraging the
reversibility of the neural network.

computation overhead of their inverse functions is overlooked. In other words, most imple-

mentations of reversible neural networks do not explore the intermediate design space by

considering the trade-off between computation cost and memory footprint.

3.2.1 Overview

We explore the design space by considering the trade-off between computation and

memory footprint. We derive the mathematical formulation of the decision problem for

reversible neural architectures. We formulate the training time as the objective function

with memory usage as an optimization constraint. By showing that it is a standard 0/1

knapsack problem in essence, we use a dynamic programming algorithm to find the optimal

solution. We also discuss the relationship between mini-batch size and training throughput.
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Our contributions are highlighted as follows.

• New Perspective. We explore the design space for reversible neural architectures

from a novel perspective of joint optimization.

• Optimality. Our framework guarantees to obtain the maximum training throughput

for reversible neural architectures under given memory constraints.

• Automation. Our framework provides a fully automated solution, enabling more

efficient development and training for reversible neural networks.

3.2.2 Background

In this section, we discuss the background of reversible neural architectures and the

scheduling framework for the training process.

3.2.2.1 Reversible Neural Architectures

Figure 3.7a demonstrates a conventional non-reversible neural architecture. The layer

y = f(x) is non-reversible if and only if there is no inverse computation x = f−1(y) for the

original function f . For a non-reversible layer, we often need to store its original input x

during forward computation so that we can compute gradients during backpropagation. As

an example, for a linear layer y = f(x) = θTx, where θ represents the weight vector, its

backward computation ∂y/∂θ = x depends on the original input x.

Traditional neural networks are mostly based on these non-reversible layers. The

memory consumed by the feature maps dominates the total memory utilization, especially
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Figure 3.7: (a) non-reversible and (b) reversible neural architectures. For a non-reversible
layer, we often need to save its original input x for backward computations. For a reversible
layer, the original input x can be calculated via its inverse function x = f−1(y).

in deep neural networks [156]. Therefore, the memory footprint can decrease significantly

by discarding those feature maps.

Figure 3.7b illustrates a reversible operator. When using the reversible layer y =

f(x), it is possible to recover x in the backward computation by calling its inverse function

x = f−1(y). Therefore the memory consumption can be saved by discarding the intermediate

feature map x.

Some of the commonly used operators in neural networks are implicitly reversible,

such as convolution layers with a stride of 1 [93], and fully connected layers with invertible

weight matrix. Inplace Activated Batch Normalization (ABN) [23] leverages the reversibility

of the batch normalization [76] and some activation functions (such as leaky ReLU). Neural

ordinary differential equations [30] can achieve constant memory usage through reversibility
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in backpropagation.

Researchers also propose many variations of explicit reversible neural architectures [78].

The reversible residual architecture [56] does computations on a pair of inputs (x1, x2) as

shown in Equation 3.7.

y1 = x1 + F (x2), y2 = x2 +G(y1) (3.7)

It is reversible since the inputs can be recovered from output pairs as demonstrated in

Equation 3.8.

x2 = y2 −G(y1), x1 = y1 − F (x2) (3.8)

This technique can be combined with traditional recurrent neural networks to get reversible

RNNs [125]. Kitaev et al. apply the above architecture to the Transformer [183] and obtain

Reformer [95] as shown in Equations 3.9 and 3.10.

y1 = x1 + Attention(x2), y2 = x2 + FeedForward(y1) (3.9)

x2 = y2 − FeedForward(y1), x1 = y1 − Attention(x2) (3.10)

Moreover, reversible vision Transformers [127] decouples the memory requirement

from the depth of the model. RevBiFPN [35] is a fully reversible bidirectional feature

pyramid network.

Although the computation overhead is considered and discussed, these prior studies

mainly focus on memory footprint reduction. They do not explore the space between the

two extremes illustrated in Figure 3.6.
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3.2.2.2 Scheduling for Training

For most developers, the primary concern regarding the training process is how to

maximize the training throughput given existing machines, especially GPUs. Specifically,

there is a need for a framework to automate the training process to fully utilize the compu-

tation capability and memory capacity of specific machines.

Frameworks for the scheduling problem with gradient checkpoints are great examples.

The scheduling problem seeks the minimum computation overhead with a memory footprint

constraint. Researchers propose many algorithms to find optimal solutions for gradient

checkpoint selection. Kusumoto et al . provide a dynamic programming algorithm from the

perspective of computation graphs [101]. Jain et al . formulate the scheduling problem as

a mixed integer linear program and solve it via standard solvers [79]. However, a similar

problem for reversible neural architectures does not get much attention. We formulate and

solve this problem in this work.

There are also work focused on the scheduling for distributed training. Jia et al .

optimize how each layer is parallelized in distributed and parallel training [81]. However,

they do not consider the reversibility in operators. Our framework can be used directly in

every single machine in the distributed training scenario.

3.2.3 Method

In this section, we first describe two modes for reversible neural architectures. We

denote them M-Mode and C-Mode, respectively. We then formulate the decision problem, and

propose an algorithm and our framework. We also discuss the problem when mini-batch

sizes are not fixed.
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mode forward backward computation cost memory cost
M-Mode discard x recover x from y x = f−1(y) 0
C-Mode save x use x directly 0 size of x

Table 3.2: Comparisons of two modes.

3.2.3.1 Memory Centric and Computation Centric Modes

Each reversible layer y = f(x) can be computed in two modes during the training

process. First, we can leverage its reversibility. We denote it M-Mode, which represents

memory centric mode. Precisely, we discard the activation x in forward computations, then

recover it in the backward pass. This mode saves the memory consumed by x at the cost

of inverse computation of x = f−1(y). Another mode is treating the reversible layer as a

conventional non-reversible layer, which is denoted C-Mode representing computation centric

mode. In this mode, we save the feature map x in the forward pass, then use it directly

in the backward computation. This mode does not involve redundant computations but

requires an extra memory footprint. Table 3.2 summarizes these two modes.

3.2.3.2 Formulation

Let f be a neural network with (k+n) layers, among which there are n reversible layers

{fi}ni=1. For each of these n reversible layers, we can decide to do forward and backward

computation following one of the modes above. Let x ∈ {0, 1}n be the decision variable.

xi = 0(1) means that the reversible layer fi follows the M-Mode (C-Mode). Thus, for n

reversible layers, the 2n choices constitute the whole solution space.

The two extremes in Figure 3.6 can be written as x = 0 and x = 1. x = 0 represents
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that we discard all the intermediate results to achieve the lowest memory footprint. We treat

it as baseline-M. We denote the other extreme without redundant computations (x = 1)

as baseline-C. Currently, most of the implementations of reversible neural networks use

baseline-M directly.

Let tf1, tb1(tf2, tb2) ∈ Rn
++ be the execution time vector of forward and backward pass

in the M-Mode (C-Mode) respectively. Compared with the C-Mode, the extra execution time

consumed by the M-Mode is te = (tf1 + tb1)− (tf2 + tb2). The total execution time of forward

and backward computation of all these reversible layers {fi}ni=1 are

(1− x)T (tf1 + tb1) + xT (tf2 + tb2) = 1T (tf1 + tb1)− tTe x

Similarly, let m ∈ Zn
++ be the extra memory footprint of C-Mode compared with

M-Mode, i.e., the size of corresponding intermediate activations. The total extra memory

footprint of these feature maps is mTx.

Finally, the time centric optimization problem can be written as Problem 3.11.

min
x

1T (tf1 + tb1)− tTe x

s.t. mTx+mo ≤M

xi ∈ {0, 1}, i = 1, ..., n

(3.11)

where M is the memory capacity of the machine, mo represents the memory allocated for

other tensors (such as feature maps of non-reversible layers, and neural network parameters)

when we achieve peak memory in a training iteration. Users can also specify the memory

capacity M explicitly.

For other parts of the training process, such as the optimizer, the computation of

non-reversible layers, their execution time is constant and independent of our decisions.

121



Reversibility 
Analysis Profiling Decision via 

DP
Efficient 
Training

Figure 3.8: Four stages in our framework

Therefore, we can minimize the training time by minimizing the total wall-clock time of all

these reversible layers.

3.2.3.3 Algorithm and Framework

Problem 3.11 can be rewritten as Problem 3.12.

max
x

tTe x

s.t. mTx ≤M −mo

xi ∈ {0, 1}, i = 1, ..., n

(3.12)

Problem 3.12 can be interpreted as follows. We take the baseline-M (x = 0) as the reference.

The object function tTe x is the execution time reduction when we apply the decision x. The

remaining memory capacity for these reversible layers is M −mo.

Problem 3.12 is a standard 0/1 knapsack problem in essence [130]. Note that the

memory-related variables and parameters m,M,mo are all positive integers since all of them

are in the unit of bytes. Therefore, it can be solved by dynamic programming, as shown in

Algorithm 3.

Based on the algorithm, we propose a framework to automate the decision process.

Figure 3.8 shows the four stages of our framework. Initially, we verify the reversibility of each

operator. The correctness of the original and inverse functions will be verified. In the second

stage, we will obtain parameters te and m from realistic measurements. Our framework is
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Algorithm 3 Dynamic programming algorithm for 0/1 knapsack problem
Input: te,m,M −mo, n ▷ Indices of vectors te and m start from 1.

Define saved[n,M−mo] and initialize all entries as −1, which means the entry is undefined.
▷ The entry saved[i, j] records the maximum saved time under the condition that we
consider first i items with total memory limit of j.
foo(i, j) ▷ This recursive function calculates saved[i, j].

if i == 0 or j ≤ 0 then
return ▷ No time saved under this condition

end if
if saved[i− 1, j] == −1 then

saved[i− 1, j] = foo(i− 1, j)
end if
if m[i] > j then

saved[i, j] = saved[i− 1, j]
else

if saved[i− 1, j −m[i]] == −1 then
saved[i− 1, j −m[i]] = foo(i− 1, j −m[i])

end if
saved[i, j] = max{saved[i− 1, j], saved[i− 1, j −m[i]] + te[i]}

end if
return saved[i, j]

end foo
saved[n,M −mo] = foo(n,M −mo)
Initialize decision variables x = 0 ▷ Do backtracking to find the optimal solution.
j = M −mo

for i = n, n− 1, ..., 1 do
if saved[i, j] ̸= saved[i− 1, j] then

x[i] = 1
j = j −m[i]

end if
end for
return saved[n,M −mo], x ▷ Return optimal values and solutions.
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hardware-aware since we use realistic profiling data from specific machines. Then we use

Algorithm 3 to get the optimal solution. Finally, we can train the network with maximum

throughput. The dynamic programming algorithm will only be executed once to obtain the

optimal schedule. After that, this schedule can be used in all the training iterations. Thus,

the added complexity is negligible compared with the training process.

3.2.3.4 Various Mini-batch Size

The above discussions are based on the assumption that the mini-batch size is fixed.

When we have many choices on the mini-batch size (denoted b), the optimization problem

will be more complicated.

We assume that for each layer, its execution time is linear to the batch size, whether

it is reversible or not. Namely, the execution time satisfies that t(b) = t(0) + bt(1). The total

execution time of all the non-reversible layers is t
(0)
n + bt

(1)
n . The total execution time of all

the reversible layers is

1T (tf1 + tb1)− tTe x = 1T (t
(0)
f1 + t

(0)
b1 ) + b1T (t

(1)
f1 + t

(1)
b1 )− t(0)

T

e x− bt(1)
T

e x

The execution time of the optimizer, scheduler, and control are independent of mini-batch

size, denoted by to. The execution time per sample is

t(1)n + 1T (t
(1)
f1 + t

(1)
b1 )− t(1)

T

e x+
to + t

(0)
n + 1T (t

(0)
f1 + t

(0)
b1 )− t

(0)T

e x

b

The memory footprint is also linear to the mini-batch size. The size of network

parameters is independent of the mini-batch size. The size of the feature maps of the non-

reversible layers is proportional to the mini-batch size. Thus, the memory constraint can be

rewritten as bmTx+m
(0)
o + bm

(1)
o ≤M .
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The optimization problem is now

min
x,b

t(1)n + 1T (t
(1)
f1 + t

(1)
b1 )− t(1)

T

e x+
to + t

(0)
n + 1T (t

(0)
f1 + t

(0)
b1 )− t

(0)T

e x

b

s.t. bmTx+m(0)
o + bm(1)

o ≤M

xi ∈ {0, 1}, i = 1, ..., n

b ∈ [bl, bu], b ∈ Z

(3.13)

where bl, bu are lower and upper bounds of the mini-batch size.

Rewrite the problem as Problem 3.14.

max
x,b

f(x, b) = t(1)
T

e x− C − t
(0)T

e x

b

s.t. bmTx+m(0)
o + bm(1)

o ≤M

xi ∈ {0, 1}, i = 1, ..., n

b ∈ [bl, bu], b ∈ Z

(3.14)

where C = to + t
(0)
n + 1T (t

(0)
f1 + t

(0)
b1 ) is a constant.

Problem 3.14 is a non-linear integer programming optimization problem, which is

hard to get the optimal solution. A simple method is to sweep the mini-batch size in the

range of [bl, bu] with our framework. Empirically the Problem 3.12 is fast to solve using

Algorithm 3. Thus, it is affordable to apply the simple method of sweeping the mini-batch

size. We further discuss various mini-batch size in in Section 3.2.4.6. We leave Problem 3.14

as an open problem for future research.

3.2.4 Experiments

In this section, we provide the experimental settings initially. Then we discuss the

details of profiling. We analyze three reversible neural architectures: RevNet-104, ResNeXt-
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101 with inplace ABN, and Reformer. We further discuss the results in terms of various

mini-batch sizes.

3.2.4.1 Settings

We adapt source codes from MemCNN5 [108], Inplace ABN6 [23], and Reformer7 [95].

We follow their original settings and hyperparameters except that we can decide what modes

each reversible layer will use.

Unless otherwise stated, we use PyTorch [142] 1.4.0. The training process runs on a

Linux server with Intel Core i9-7900X CPU and 1 NVIDIA TITAN Xp GPU, whose memory

capacity is 12,196 MiB. All the tensor operations are on the GPU. We report the mean of

100 training iterations.

3.2.4.2 Profiling

To ensure hardware-awareness, our framework needs to do profiling on the execution

time and memory allocation to obtain te,m,mo based on realistic measurement. It is easy

to collect memory-related terms m,mo since the memory footprint is stable throughout a

whole training process.

For the execution time te, the most accurate way to obtain it is running the model in

two modes respectively and collect all the four corresponding vectors (tf1, tb1, tf2, tb2). We

can also directly compare these two modes and conclude their difference. For the feature

maps in the C-Mode, it takes extra time for the memory writes in the forward computation,

5https://github.com/silvandeleemput/memcnn
6https://github.com/mapillary/inplace_abn
7https://github.com/lucidrains/reformer-pytorch
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and memory read in the backward pass. In the M-Mode, there is overhead in reading y from

memory and the inverse computation.

It is complicated to analyze the memory behaviour, and the analysis is beyond dis-

cussions of this dissertation. Fortunately, we observe that tf1 ≈ tf2 ≈ tb1− tb2. For instance,

the average execution time of the RevNet-104 [56] with mini-batch size of 64 on ImageNet

is tf1 = 10.425ms, tf2 = 10.404ms, tb1 = 29.276ms, and tb2 = 18.865ms. This observation

is prevalent in current machine learning frameworks, since memory accesses are hidden by

computations [1,142]. Thus, we can only take computation into account when analyzing the

difference in execution time. In short, te = (tf1+tb1)−(tf2+tb2) ≈ tf1 ≈ tf2 The assumption

is verified for all the following experiments. We use te = tf1 in the optimization problem

directly.

3.2.4.3 RevNet

We apply our framework on RevNet-104 [56] for image classification on ImageNet.

By sweeping the mini-batch sizes, we can obtain various memory budgets and computation

overhead. Figure 3.9 illustrates our decision for different mini-batch sizes. When the mini-

batch size is smaller than 65, the GPU memory capacity is large enough to contain all the

intermediate activations. Thus, the optimal decision is saving all of them to achieve maxi-

mum training throughput. Starting from a mini-batch size of 65, we have to use the M-Mode

in partial reversible layers due to the limited memory budget. Our dynamic programming

solver will obtain the optimal decision for each setting. If the mini-batch size is larger than

117, we will encounter the issue of out of memory even if we use baseline-M, the most

memory-efficient decision. As shown in Figure 3.9, the optimal decision is non-trivial across
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Figure 3.9: The heat map of the optimal solutions throughout different mini-batch sizes on
RevNet-104 with 13 reversible layers. The horizontal and vertical axes represent the mini-
batch size and the layer index, respectively.

different mini-batch sizes.

Figure 3.10a shows the training time per iteration of baseline-M, baseline-C and

our optimal solution. The solid red line and the green dashed line represents the baseline-M

and optimal settings provided by our framework. The baseline-C is highlighted in the lower

left corner, since it is limited by the device’s memory capacity and cannot contain a large

batch size. Our optimal solution overlaps with the baseline-C when baseline-C is feasible,

i.e., mini-batch size smaller than 65. When baseline-C is not available, our framework

approach the baseline-M gradually. The reason is that as the mini-batch size grows, the

harsh memory constraint pushes us forward to the extreme of memory efficiency. The gap

between the two curves (baseline-M and optimal) demonstrates the absolute time saved by

applying our method.

Figure 3.10b compares the training time per sample. We can use this metric to com-

pare the training throughput (which is the multiplicative inverse of the training time per
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Figure 3.10: Training time and speedup comparison of RevNet-104 and ResNeXt-101 with
Inplace ABN on ImageNet. Training time per iteration is the time of one complete iteration
(forward, backward, and optimizer updating). Training time per sample is the multiplicative
inverse of training throughput. The curves of baseline-C are truncated due to device
memory limitation.
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sample) for different mini-batch sizes. Before applying our framework, the training speed

increases as the mini-batch size grows for two reasons. First, we leverage the parallelism

across batches. Second, the execution time of the optimizer, scheduler, and control is inde-

pendent of the mini-batch size. This part of execution is amortized by the large mini-batch

size. After using our framework, the trend is different. The training throughput decreases

as the mini-batch size grows, because the computation overhead of inverse functions is much

larger than the benefit from large mini-batch size. We also show the relative speedup of our

optimal execution time compared with baseline-M. We can achieve up to 1.15× speedup

for this benchmark.

3.2.4.4 Inplace ABN

We follow the settings in the paper of Inplace ABN [23] and use our framework to train

ResNeXt-101 [199] for image classification on ImageNet. Figures 3.10c and 3.10d compares

the training time per iteration across different mini-batch sizes. The results are similar to

those of RevNet-104 except the relative speedup.

The computation overhead of the Inplace ABN is relatively low compared with

RevNet-104 in the previous section. The execution time of baseline-C is only 0.8 − 2%

smaller than that of baseline-M. Therefore, the relative speedup using our method is not

as significant as the experiments on RevNet-104. The reason is that the maximum training

throughput of our framework is bounded by baseline-C. However, the advantage of our

method is that we can find the optimal point across two baselines.
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mini-batch
size

baseline-C
TPI

baseline-M
TPI

optimal
TPI

baseline-C
TPS

baseline-M
TPS

optimal
TPS speedup

1 0.951 1.321 0.949 0.951 1.321 0.949 1.392
2 1.738 2.533 1.738 0.869 1.266 0.869 1.457
3 OOM 3.603 2.752 OOM 1.201 0.917 1.310
4 OOM 4.792 4.175 OOM 1.198 1.044 1.148
5 OOM 6.020 5.236 OOM 1.204 1.047 1.150
6 OOM 7.210 6.692 OOM 1.202 1.115 1.077
7 OOM 8.420 7.670 OOM 1.203 1.096 1.098
8 OOM 9.490 9.044 OOM 1.186 1.130 1.049
9 OOM 10.603 10.123 OOM 1.178 1.125 1.047
10 OOM 11.873 11.295 OOM 1.187 1.129 1.051

Table 3.3: Results of Reformer on enwik8 task. TPI and TPS are abbreviations for training
time per iteration and training time per sample. OOM stands for out of memory. All the
execution time is in the unit of seconds.

3.2.4.5 Reformer

We also do experiments on the enwik8 task with Reformer. Specifically, there are 8

heads in our 12-layer model. The maximum sequence length is 4,096, and the number of

tokens is 256. For each iteration, we call the optimizer to update the trainable parameters

after accumulating gradients for 4 steps. Table 3.3 shows the training time in different modes.

Due to the large memory footprint, the baseline-C can only run with a mini-batch

size of 2. The reversibility enables us to train the model with a mini-batch size up to 10.

Our framework provides a smooth transition from baseline-C to baseline-M. We achieve

1.3× relative speedup when the mini-batch size is 3.
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3.2.4.6 Various Mini-Batch Sizes

For this section, we discuss the optimal mini-batch size from the perspective of train-

ing throughput. In the above experiments, the lowest execution time per sample (TPS)

is approximately obtained at the largest mini-batch size when baseline-C is feasible. For

example, the Reformer get the lowest TPS 0.869s at the mini-batch size of 2. The reason is

that the computation overhead of inverse functions is much larger than the benefit from large

mini-batch size. In other words, we cannot accelerate the training process via reversible neu-

ral architectures. From the perspective of Problem 3.14, the TPS f(x, b) = t
(1)T

e x− C−t
(0)T

e x
b

is dominated by the first term t
(1)T

e x.

3.2.5 Summary

We present the framework to train reversible neural architectures in the most efficient

schedule. We formulate the decision problem for reversible operators. The training time is

the objective function with memory usage as a constraint. By solving this problem, we

can maximize the training speed for any reversible neural architectures. Our framework

automates this decision process, empowering researchers to develop and train reversible

networks more efficiently.

For future directions, we may integrate gradient checkpoints and reversible neural

architectures to enlarge the search space, since gradient checkpoints allow non-reversible

layers to follow M-Mode by doing recomputation. The optimal mini-batch size in terms of

training throughput is another critical issue.
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3.3 Optimizer Fusion: Efficient Training with Better Locality and
Parallelism

Iterative methods, such as stochastic gradient descent (SGD) and its variants, are

the mainstream optimization algorithms for training machine learning models. In the opti-

mization process of those algorithms, learnable parameters are updated step by step until

the stopping criterion is met. Many commonly used iterative optimization methods are

implemented in popular machine learning frameworks, e.g. PyTorch [142], TensorFlow [1],

MXNet [31], and Chainer [178].

One critical component of these machine learning frameworks is automatic differen-

tiation, which computes the gradients for all operations on tensors. The smooth integration

between the optimization kernel and automatic differentiation makes the training more acces-

sible and boosts the popularization of these frameworks in the machine learning community.

Eager execution is widely adopted in the machine learning frameworks for its flexibil-

ity. It usually decouples the forward propagation, gradient computation, and parameter up-

dating into three separate stages. In each iteration, forward computation is first performed.

Gradients respective to the loss function are then calculated for all learnable parameters.

Finally, learnable parameters are updated by a specified optimizer. Although this imple-

mentation has an intuitive and transparent procedure, the learnable parameters and their

gradients are read and written several times throughout one training iteration, such that

these data are not efficiently reused. Moreover, gradient updating is enforced to be after the

gradient computation based on the implicit control dependency, leading to lower parallelism

in the program execution. In short, there is potential for higher training efficiency with

better locality and parallelism in the eager execution.
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3.3.1 Overview

We propose two methods forward-fusion and backward-fusion, which reorder the

forward computation, gradient calculation, and parameter updating to accelerate the training

process in eager execution. Our proposed methods fuse the optimizer with forward or back-

ward computation to better leverage the locality and parallelism. The backward-fusion

method, motivated by the static computational graph compilation, where the optimizer

is fused with gradient computation, updates the parameters as early as possible. 8 The

forward-fusion method fuses the parameter updates with the next forward computation

such that learnable parameters are updated as late as possible. Like back-propagation

through time (BPTT) [190], the forward-fusion method expands the training process

through iterations and uncovers a novel perspective of acceleration.

We summarize the advantages of our methods as follows.

• Efficient. Our framework can increase the training speed by 15% on average.

• General. Our methods are orthogonal to other optimization methods and do not affect

the training results. Thus, they can be applied in the training process of various

machine learning tasks with different optimizers. We keep all the features of the eager

execution.

• Simple. It is easy to replace the old training routines with our new methods. Users

can accelerate their imperative training with little engineering effort.

8For example, the optimizer in TensorFlow supports different gating gradients configurations. https:
//www.tensorflow.org/api_docs/python/tf/compat/v1/train/Optimizer#gating_gradients
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3.3.2 Background

In this section, we present the general structure of iterative optimization methods.

Moreover, we discuss how locality and parallelism are considered to accelerate the training

process. Finally, we review two machine learning programming paradigms: symbolic and

imperative programs.

3.3.2.1 Iterative Optimization Methods

An iterative optimization algorithm starts from an initial guess and derives a se-

quence of improving approximate solutions. Algorithm 4 is the general structure of iterative

optimization methods for unconstrained problems. The step vector ∆θ is computed from

the optimizer policy π. The policy π is the only difference across different optimization

algorithms. The commonly used gradient-based methods use policies that depend on the

first-order derivative information.

For instance, the policies demonstrated in Equations equation 3.15, equation 3.16,

and equation 3.17 are used in the gradient descent, gradient descent with momentum, New-

ton’s method, respectively,

π1 = −η∇f(θ(t−1)) (3.15)

π2 = −η
t−1∑
τ=0

αt−τ−1∇f(θ(τ)) (3.16)

π3 = −η∇2f(θ(t−1))−1∇f(θ(t−1)) (3.17)

where η represents the step size, α denotes the momentum decay factor.
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Algorithm 4 Optimization algorithms in general form
Input: objective function f
Initialize the starting point θ(0)

for t = 1, 2, ... do
if stopping criterion is met then

return θ(t−1)

end if
∆θ = π(f, θ(0), θ(1), ..., θ(t−1))
θ(t) = θ(t−1) +∆θ

end for

3.3.2.2 Locality and Parallelism

Fruitful hardware-aware techniques in machine learning have been proposed to ac-

celerate the training process, especially on graphics processing units (GPUs). Generally

speaking, common approaches include accelerating the kernel computations [112], mixed

precision training [133] , fusing kernels and operations [195], and exploring efficient net-

work architecture [57]. Data locality and computation parallelism are two critical aspects of

performance optimization.

The work of fused-layer CNN accelerators [4] proposes a new architecture for inference

by fusing the convolution layers. It decomposes the inputs to the convolution layers into tiles

and propagates one tile through multiple layers. With reduced memory access and better

cache utilization, the inference speed is improved. Lym et al. [123] design a new scheme to

eliminate most memory accesses in neural network training by reordering the computation

within a mini-batch for better data locality. Apex for PyTorch 9 uses fused optimizers, which

launch one kernel for the element-wise operations.

9https://github.com/NVIDIA/apex
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From a perspective different from the aforementioned previous works, we explore the

parallelism and locality across the gradient computation and the optimizer. We also uncover

the potential of acceleration across iterations.

3.3.2.3 Static and Dynamic Computational Graphs

The training process can be viewed as a computational graph. Figure 3.11(a) demon-

strates the corresponding computation dependency for a three-layer neural network, where

nodes represent tensor computations, and directed edges stand for data dependencies. Any

topological order of this graph is a valid computation order.

Generally, there are two paradigms for tensor computations in machine learning

frameworks. The first category of framework compiles a machine learning model as a static

(symbolic) computational graph and executes the graph with all the neural network infor-

mation. For example, TensorFlow 1.X follows this routine by default [1], which requires a

pre-compiled graph before execution. The other category of framework works in the eager

(imperative) mode, which immediately executes the newly-encountered computation node

and incrementally builds a dynamic computational graph with that node. At each step,

a computation node will be appended to the current computational graph. PyTorch [142]

and TensorFlow 2.X [1] both run in eager mode by default, enabling users to develop ma-

chine learning models more easily and quickly. The eager mode also enables the efficient

development of non-stationary neural architectures.

These two categories of frameworks are both widely used in the machine learning

community. For example, in the MLPerf training benchmark [132], both static and eager

modes are used and achieve the state of the art performance.
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Engineers and practitioners in machine learning frameworks have proposed and im-

plemented many graph optimizers, such as TensorFlow’s Grappler [103] and TASO [82].

The backward-fusion method has been considered in some of them. However, to our best

knowledge, existing graph optimizers need the information of the whole computation graph,

which means the optimizer fusion can only be used for (1) the static computation or (2) the

mixture of static and dynamic execution. In most machine learning frameworks, the purely

eager mode still separates forward computation, backward pass, and parameter updating

into three stages, with the topological order shown in Figure 3.11(b). The framework will

first execute the forward and backward computation to obtain gradients. Then learnable

parameters will be updated following the optimizer. This imperative nature allows users to

monitor the training process at the cost of low efficiency. For instance, the TensorFlow eager

execution follows this routine. 10

We enable the backward-fusion method in purely eager mode. The forward-fusion

method also uncovers a novel perspective, where graphs can be optimized across iterations.

3.3.3 Methods

We first analyze the baseline in terms of locality and parallelism. Then, to improve the

training efficiency, we propose two methods, denoted forward-fusion and backward-fusion.

Both methods reorder the original computation graph to better leverage data locality and

computation parallelism.

10https://www.tensorflow.org/api_docs/python/tf/compat/v1/train/Optimizer#minimize
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Figure 3.11: (a) Data dependency graph. (b) Baseline method. (c) Forward-fusion. (d)
Backward-fusion. θi represents the trainable parameters in the layer fi.

3.3.3.1 Baseline

Figure 3.12 illustrates the memory transactions and the locality that can be leveraged

in the training process. Trainable parameters are read during forward and backward com-

putations and updated by the optimizer. Gradients are accumulated during the backward

pass. Finally, they are read and reset by the optimizer. History represents the parameter

history, such as momentum. The optimizer records and updates the parameter history.

In the baseline method, all these memory reads and writes are separated by forward,

backward, and optimizer stages. The memory capacity is usually not large enough to hold

all the data through the training iteration. The data locality between the optimizer and

its adjacent forward or backward computations is lost. If we access the same set of data

repetitively before the data is flushed, we can shorten the time of memory access and thus

accelerate the training process.

Also, the baseline method does not take advantage of the parallelism between back-

ward computations and parameter updating. While updating a group of parameters, we can
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Figure 3.12: Memory transactions and data locality in the training process. R and W
represent memory read and write, respectively. History means parameter history needed in
the optimizer, e.g., momentum. Red and purple frames represent locality improvement in
backward-fusion and forward-fusion, respectively.

continue the back-propagation to compute gradients for other independent parameters at the

same time, which offers another opportunity for better parallelism in the training process.

3.3.3.2 Forward-Fusion

One approach is to fuse the optimizer with the forward computation in the next

iteration. The next forward pass can occur in either a training or an evaluation process.

Each trainable parameter will be updated as late as possible. This lazy update strategy is

named forward-fusion. The proposed method can be applied in all the iterative methods,

including the optimizer that needs global information.

Figure 3.11(c) and Algorithm 5 shows the pipeline of this method. It is possible that

a layer is used many times, i.e., fi = fj, i ̸= j in Algorithm 5. We use a flag updated to

ensure that the parameter is updated only once no matter how many times the corresponding

layer is used. This method can also be applied when we need to manipulate the gradients
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based on global information [154]. For instance, this method is suitable when we would like

to clip the gradients by their global norm.

Algorithm 5 Forward-fusion
Input: topologically sorted operator array {fi}ni=1

for i = 1, 2, ..., n do
if fi.updated is False then

for each trainable parameters θ in fi do
execute optimizer of θ

end for
fi.updated ← True

end if
execute fi

end for
for i = n, n− 1, ..., 1 do

execute backward pass of fi
accumulate gradients for all trainable parameters
fi.updated ← False

end for

The memory write operation during parameter updating can be merged with the

next read, such that in the next forward computation, the cached parameter can be quickly

accessed with low latency. The purple frame in Figure 3.12 illustrates this improvement.

Unlike current machine learning frameworks, which ignore the optimization potential

across different iterations, we find the opportunity between adjacent training steps. Similar

to back-propagation through time [190], the training process of a feed-forward neural network

training can also be expanded through iterations. This perspective is a new direction for

accelerating the machine learning models embracing both static and dynamic computational

graphs.
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3.3.3.3 Backward-Fusion

Another approach is to fuse the optimization computation with gradient computation

in the backward pass. Figure 3.11(d) and Algorithm 6 demonstrates the computational flow.

After calculating the gradient of θi, we apply the gradient in the optimizer directly. At the

same time, we resume the backward computation for node fi−1. For each parameter θi, we

record the number of its usage in the forward pass as θi.count. Correspondingly, we will

update it until its gradient is accumulated for all its usage in the forward pass.

Algorithm 6 Backward-fusion
Input: topologically sorted operator array {fi}ni=1

for i = 1, 2, ..., n do
execute fi
for each trainable parameters θ in fi do

θ.count ← θ.count +1
end for

end for
for i = n, n− 1, ..., 1 do

execute backward pass of fi
for each trainable parameters θ in fi do

accumulate gradient of θ
θ.count ← θ.count −1
if θ.count is 0 then

execute optimizer of θ
end if

end for
end for

Applying gradients directly on the parameters may induce race conditions. For in-

stance, for a multiplication operator f(θ, x) = θx, ∂f/∂θ = x, ∂f/∂x = θ. ∂f/∂x depends

on the original parameter θ(t), instead of the updated parameter θ(t+1). Therefore, we must

carefully tackle this dependency. Specifically, for a trainable parameter θ, we will update it
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Method Locality Parallelism Global Info.
baseline × × ✓

forward-fusion ✓ × ✓
backward-fusion ✓ ✓ ×

Table 3.4: Comparison among three methods: locality, parallelism, and global information.

in-place to obtain θ(t+1) when the following two conditions are both satisfied: (1) its gradient

∂L/∂θ is calculated, and (2) there is no other dependency on the old value θ(t).

This method applies gradients to parameters as early as possible, so that the memory

access can be merged to increase the locality, as shown in the red frame in Figure 3.12.

Specifically, two consecutive parameter reads in the backward pass and optimizer can be

merged, such that the second read during the optimization step can be accelerated as it can

be cached in the local storage. Gradient accumulation in the backward computation can

be merged with the memory read in the optimizer. Thus, the updated gradients can be

efficiently accessed in the local storage to shorten the memory access time.

Moreover, this method improves training efficiency as it parallelizes the parameter

updating and gradient back-propagation. This method applies to most optimizers that do

not require global information of trainable parameters, as this fusion strategy assumes the

update of θi is decoupled with other parameters θj(i ̸= j).

In the view of the computational graph, the depths of the directed graphs shown in

Figures 3.11(b), (d) are 3n and 2n + 1, respectively, where n is the number of layers in the

neural network. Thus, the backward-fusion method also provides extra parallelism.

Table 3.4 summarizes the characteristics of our proposed methods.
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3.3.4 Experiments

We evaluate the effectiveness and efficiency of our proposed methods with various

mini-batch sizes, optimizers, machine learning models and benchmarks, machines (GPUs)

and frameworks.

3.3.4.1 Experimental Settings

Unless stated otherwise, we conduct experiments on the eager execution in PyTorch

1.6.0. We implement the proposed methods in the PyTorch front-end using hooks. A toy

example is provided in the supplementary file. The training process runs on a Linux server

with Intel Core i9-7900X CPU and a NVIDIA TITAN Xp GPU based on Pascal architecture.

We use Adam [92] with weight decay to do the training on image classification using the

ImageNet dataset [43]. All the tensor computations occur on 1 GPU with single-precision

floating-point (float32) datatype. We report the mean of 100 training iterations.

3.3.4.2 Runtime Breakdown

Figure 3.13 shows the execution time breakdown of one training iteration of Mo-

bileNetV2 with a mini-batch size of 32. After we fuse the optimizer with backward com-

putation, the execution time of backward increases by 3.32 ms, much smaller than the

original optimizer execution time (16.70 ms). In this example, our forward-fusion and

backward-fusion improve the training throughput by 12% and 16%, respectively, which

demonstrates the effectiveness of our methods.
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Figure 3.13: Training time breakdown of MobileNetV2 with mini-batch size 32. Our
forward-fusion and backward-fusion methods improve the training throughput by 12%
and 16%, respectively.

3.3.4.3 Various Mini-batch Sizes

Compared with the baseline method, our two methods have the overhead of control

as shown in Algorithms 5 and 6. When a small mini-batch size is used, the overhead of

the control flow will exceed the benefits of better locality and parallelism, which makes our

framework slower than the baseline. As the mini-batch size increases, the overhead becomes

negligible compared with the computation time. The effectiveness of our proposed methods

requires this overhead to be amortized by an appropriate mini-batch size.

When the mini-batch size is large enough such that we reach the performance roofline

of the GPUs, the computation time of forward and backward pass is approximately linear to

the mini-batch size. On the other hand, the optimizer execution time is independent of the

mini-batch size. Therefore, the absolute training time saved by our methods is independent
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Figure 3.14: The absolute execution time saved by our methods on MobileNetV2 with dif-
ferent mini-batch sizes.

of the mini-batch size, as shown in Figure 3.14. The relative speedup will decrease as the

mini-batch size grows, as demonstrated in Figure 3.15.

The discussion above can also be formulated in the following equation. The theoretical

speedup of the training process is

s =
btgrad + topt

btgrad + topt − tsaved

where b represents the mini-batch size, tgrad is the time of forward and backward computation

per mini-batch size, topt is the execution time of optimizer, and tsaved stands for the absolute

saved time on the optimizer with our methods.

Both forward-fusion and backward-fusion methods leverage the locality of the

trainable parameters. However, only the backward-fusion method takes advantage of the

parallelism between the gradient computation and optimizer. When the mini-batch size is

small, the GPU is not fully utilized. Thus, the parallelism exploited by backward-fusion

will accelerate the training significantly compared with forward-fusion. As mini-batch sizes

grow, the gradient computation dominates the GPU utilization. Therefore, the execution
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Figure 3.15: Training speedup with various mini-batch sizes on different benchmarks.
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time of these two methods converges at large mini-batch sizes, as illustrated in Figure 3.15.

3.3.4.4 Various Models and Optimizers

We sweep the mini-batch size for different models [63, 71, 76, 161, 167] as shown in

Figure 3.15. Figure 3.16 demonstrates the relationship between the parameter size and

speedup across different models. The smaller the average number of parameters per layer, the

more locality we can leverage so that our methods can achieve higher training speed. This

explains why the VGG19_BN is hardly accelerated while the MobileNetV2 has the most

significant improvement. Currently, the models targeting at edge devices usually contain

fewer parameters, whose training will benefit more from our methods.
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Figure 3.16: The speedup trend among different models with a mini-batch size of 32. On
average, fewer parameters per layer leads to higher speedup.

Various optimizers used in machine learning frameworks can benefit from our pro-

posed methods. Figure 3.17 shows an increasing trend between speedup and the runtime
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Figure 3.17: Comparison among various optimizers on MobileNetV2 with a mini-batch size
of 32. Weight decay is applied in all these methods unless specified. The horizontal axis
represents the ratio of the optimizer time to a whole iteration time.

ratio of different optimizers [48, 92, 207]. The horizontal axis is the ratio of the optimizer

runtime to a whole iteration runtime. The more runtime-costly the optimizer, the higher

speedup we can achieve.

3.3.4.5 Various Machines and Benchmarks

CPU GPU baseline forward-fusion backward-fusion forward-fusion backward-fusion
runtime (ms) runtime (ms) runtime (ms) speedup speedup

Core i9-7900X TITAN Xp 98.77 84.52 82.99 1.17 1.19
Core i7-3770 GTX 1080 163.60 145.80 129.71 1.12 1.26

Core i7-8750H GTX 1070 maxQ 174.43 157.27 158.89 1.11 1.10

Table 3.5: Training results on MobileNetV2 with a mini-batch size of 32 across various
machines.

Our methods are practical and efficient on various machine configurations, as shown

in Table 3.5. The speedup depends on the cache size, the floating point operations per
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second (FLOPS), memory bandwidth, etc. Although the relationship is very complicated

and beyond our discussion, our methods stay effective on various GPUs.

Our methods can be used in all the iterative optimization problems. Thus it can

be used in almost all machine learning problems. For example, we train the Transformer

(base) [183] on the WMT English-German dataset. With a min-batch size of 256, we

can achieve the speedup of 1.030 and 1.019 respectively using our forward-fusion and

backward-fusion methods.

3.3.5 Summary

Conventional eager execution in machine learning frameworks separates the updating

of trainable parameters from forward and backward computations. We propose two meth-

ods forward-fusion and backward-fusion to better leverage the locality and parallelism

during training. We reorder the forward computation, gradient calculation, and parame-

ter updating so that our proposed methods improve the efficiency of iterative optimizers.

Experimental results demonstrate the effectiveness and efficiency of our methods across var-

ious configurations. Our forward-fusion method opens a new perspective of performance

optimization for machine learning frameworks.

For future directions, we plan to extend our methods to distributed training [111],

where there is parallelism across different machines. The gradient computation, reduction,

and parameter updating can be merged to save time.
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3.4 Summary of the Chapter

Three efficient compilation methods are presented: removing redundancy in Pre-LN

Transformers, solving the scheduling problem for reversible neural networks, and employ-

ing optimizer fusion to consider memory hierarchy locality and algorithm parallelism. These

methods enhance efficiency in terms of computation graphs, memory management, and train-

ing schedules. Since arithmetic equivalence is guaranteed in these proposed methods, we do

not sacrifice task-related performance, strictly pushing the performance-efficiency Pareto

frontier.
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Chapter 4

Conclusions

The machine learning software stack plays a critical role in the machine learning com-

munity and serves as the foundation for future artificial intelligence. However, ensuring its

efficiency has been and will continue to be a significant challenge. In this dissertation, we

propose strategies to address this issue by enhancing the efficiency of the machine learn-

ing software stack through algorithm and compilation designs. We summarize our major

contributions below.

In Chapter 2, we present efficient machine learning algorithms, highlighting the fol-

lowing key advancements. We improve the efficiency of machine learning datasets, models,

and methods.

• We thoroughly investigate the gradient matching method, addressing crucial questions

about what, how, and where to match gradients. Our proposal involves matching multi-

level gradients, encompassing both intra-class and inter-class gradient information.

Furthermore, we demonstrate that the distance function should focus on the angle

while considering the magnitude to delay overfitting. Additionally, we introduce an

overfitting-aware adaptive learning step strategy to enhance algorithmic efficiency by

eliminating unnecessary optimization steps.
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• We introduce NormSoftmax, a technique where the input vector is first normalized to

unit variance and then processed through the standard softmax function. NormSoft-

max effectively resolves the optimization challenges associated with softmax, leading

to fast and stable training. We validate the efficacy of NormSoftmax through exper-

iments on Transformer-based models and convolutional neural networks, confirming

its effectiveness in stabilizing and speeding up the training process of neural networks

utilizing cross-entropy loss or dot-product attention operations.

• We identify limitations in previous work, which often focus on a single layer of the

machine learning stack. To overcome this, we propose a new methodology that en-

ables end-to-end joint optimization of neural architecture search and mixed precision

quantization. Our approach searches for optimal combinations of architectures and

precisions, directly optimizing prediction accuracy and hardware energy consumption.

We streamline the process from neural architecture design to hardware deployment,

improving efficiency and automation.

In Chapter 3, we present efficient machine learning compilation techniques featuring

the following advancements. We improve the efficiency of computation graphs, memory and

computation management, and scheduling for training workloads.

• We propose a solution to unify two popular Transformer architectures, Pre-LN and

Pre-RMSNorm Transformers. Additionally, we introduce the Pre-CRMSNorm Trans-

former, which leverages lossless compression on zero-mean vectors. We formally es-

tablish the equivalence of Pre-LN, Pre-RMSNorm, and Pre-CRMSNorm Transformer

variants in both training and inference, demonstrating that Pre-LN Transformers can
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be replaced with Pre-(C)RMSNorm counterparts at a minimal cost. This substitution

offers the same arithmetic functionality while providing free efficiency improvements.

• We formulate the decision problem for reversible operators, with training time as the

objective function and memory usage as the constraint. By solving this problem, we

can maximize training throughput for reversible neural architectures. Our proposed

framework automates the decision process, empowering researchers to develop and

train reversible neural networks more efficiently.

• We propose optimizer fusion, a technique that combines the optimizer with forward or

backward computation. By reordering the forward computation, gradient calculation,

and parameter updating, our method improves the efficiency of iterative optimizers.

Optimizer fusion, as a general "plug-in" technique, can be applied to the training

process without altering the optimizer algorithm, leveraging better hardware locality

and computation graph parallelism.

Through the explorations and discussions presented in this dissertation, we have high-

lighted major challenges in achieving efficiency in the machine learning software stack and

provided effective solutions. Nonetheless, there are still opportunities for further improve-

ments, since we have not reached the theoretical computation capabilities of machine learning

accelerators. The emergence of new machine learning applications introduces novel efficiency

challenges. Therefore, it is worthwhile to delve into the following future research directions

and open problems, which hold promise for further exploration.

• Large models, especially large language models, are poised to become the foundation of

next-generation data-centric [208] and generative [25] artificial intelligence. However,
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training and deploying such massive models remain costly and challenging. Managing

large computation resources, including up to 10k accelerators across the data centers

[8], is an ongoing challenge that requires further investigation.

• Machine learning workloads extend beyond dense matrix multiplication-based neu-

ral networks and backpropagation-based optimization methods. Other categories of

machine learning workloads have received less attention but may require additional

optimization efforts.

• The mainstream machine learning hardware accelerators are based on Von Neumann

architecture and electronic computers. However, emerging architectures and computa-

tion platforms, such as quantum computing [205] and optical computing [131], present

new opportunities for machine learning applications. Bridging the gap between prob-

lem specifications and computation platforms will be essential for the machine learning

software stack to evolve accordingly.

Artificial intelligence, particularly machine learning, is widely recognized as a critical

area for the next-generation industrial revolution. Improving efficiency in this domain is an

ongoing challenge that demands continuous human intelligence and effort.
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Appendix A

Appendices for Section 2.2

A.1 Proof of Lemmas
A.1.1 Lemma 2.2.1

Let y = x
σ(x)

, z = softmax(y). Following the chain rules, we have

∂l

∂y
= (diag(z)− zzT )

∂l

∂z
(A.1)

∂l

∂x
=

1

σ(x)

(
I − xxT − µ(x)1xT

nσ2(x)

)
∂l

∂y
=

1

σ(x)

(
I − yyT − µ(y)1yT

n

)
∂l

∂y
(A.2)

With 1Tz = 1, we can verify that

1T ∂l

∂y
= (1Tdiag(z)− 1TzzT )

∂l

∂z
(A.3)

= (zT − zT )
∂l

∂z
(A.4)

= 0 (A.5)

With nµ(x) = 1Tx, we can prove that

1T ∂l

∂x
=

1

σ(x)

(
1TI − 1TxxT − µ(x)1T1xT

nσ2(x)

)
∂l

∂y
(A.6)

=
1

σ(x)

(
1T − nµ(x)xT − nµ(x)xT

nσ2(x)

)
∂l

∂y
(A.7)

=
1

σ(x)
1T ∂l

∂y
(A.8)

= 0 (A.9)
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Hence, we prove that µ
(

∂l
∂x

)
= µ

(
∂l
∂y

)
= 0. We then prove the scaling for L2 norm by

leveraging the definition of variance σ2(a) = ∥a∥22/n− µ2(a).∥∥∥∥ ∂l

∂x

∥∥∥∥2
2

=

(
∂l

∂x

)T
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(A.10)
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1

σ2(x)
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)T (
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nσ2(x)

)(
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nσ2(x)

)
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=
1
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≤ 1

σ2(x)
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(A.16)

From the definition of variance, we obtain that

σ2

(
∂l

∂x

)
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∥∥∥∥ ∂l

∂x

∥∥∥∥2
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(A.17)

Above all, we prove that ∥∥∥∥ ∂l

∂x

∥∥∥∥
2

≤

∥∥∥ ∂l
∂y

∥∥∥
2

σ(x)
, σ

(
∂l

∂x

)
≤

σ
(

∂l
∂y

)
σ(x)

(A.18)

A.1.2 Lemma 2.2.2

Given x2 = kx1, we have x1/σ(x1) = x2/σ(x2). Thus, we obtain that z1 =

softmax(x1/σ(x1)) = z2 = softmax(x2/σ(x2)). Now that z1 = z2, we can obtain the
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same loss f(z1) = f(z2) and generate the same gradient ∂l1
∂z1

= ∂l2
∂z2

. Based on Equation

equation A.2, we conclude that ∂l2
∂x2

= 1
k

∂l1
∂x1

.

A.2 Experimental Details
A.2.1 Vision Transformers on CIFAR10

We train from scratch with AdamW optimizer for 100 epochs (50,000 iterations with

100 mini-batch size) in mixed precision. The resolution of an input image is 3×32×32, and

the patch size is 4. The hidden size, MLP size, number of heads, dimension of heads, and

number of layers are 256, 1024, 8, 32, and 8, respectively. We use the following attention

function,

Attention(Q,K,V ) = softmax
(

QKT

min(σ(QKT ), γ)

)
V (A.19)

where the softmax and the standard deviation are calculated along the same axes. We set

γ =
√
d and +∞. The learning rate is 1e-3, and a strong weight decay 1e-1 is applied. The

learning rate linearly increases from 2e-4 with 5 warmup epochs and then decays to 0 with

the cosine annealing scheduler. We also enable label smoothing (0.1), random erasing with

the probability of 0.1, mixup with α = 0.2, cutmix with α = 1.0, and TrivialAugment. The

code is attached in the supplementary material.

A.2.2 Vision Transformers on ImageNet

We follow the torchvision’s reference implementation. The batch size is 512×8 = 4096.

We train from scratch with AdamW optimizer in mixed precision. The learning rate is 3e-3,

and the weight decay is 3e-1. The learning rate is linearly increased from 3e−3×0.033 with

30 warmup epochs and then decays to 0 with the cosine annealing scheduler. We also enable
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label smoothing (0.1), mixup with α = 0.2, cutmix with α = 1.0, clipping gradient norm

with 1, RandAugment [38], repeated augmentation with 3 repetitions, exponential moving

average for model parameters.

A.2.3 ResNet on ImageNet

We follow the example in the JAX framework. We only enable horizontal flip data

augmentation. We use SGDM with a mini-batch size of 8,192, a learning rate of 3.2, a

momentum of 0.9, and a weight decay of 1e-4. The learning rate is warmup in 5 epochs.

A.2.4 Machine Translation

We use exactly the same settings as [202]. Please refer to the original paper for

reference.

A.3 Cost Analysis of NormSoftmax

Since we import normalization in the softmax, we inevitably introduce the extra

computation and memory cost of NormSoftmax. However, we show that the overhead of the

proposed lightweight NormSoftmax is negligible for large machine learning models.

Memory cost. Equation 2.21 indicates that we can preprocess the input vector x and

pass it to NormSoftmax. We can fuse the γ factor with the ascending layer of NormSoftmax

if possible during inference. For a linear layer x = Ay + b, we can always fuse the γ with

A and b, as we do not need to save γ during inference. For training, we need to pay the

extra memory cost for normalization since we have to save intermediate results for gradient

computation.
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Computation cost. For training, we have to pay the cost of calculating the variance

and the corresponding gradients. For inference, we may discard the normalization if the

softmax is in the last layer. In a classification model with cross entropy loss, we can discard

the normalization since the normalization has no impact on the classification result.

In our experiments on Transformer, NormSoftmax induces 0.2%−1% extra execution

time. For the experiments for cross-entropy loss, the extra execution time is less than 0.05%

since we only add one normalization layer.
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Appendix B

Appendices for Section 3.1

B.1 Proof for Lemma 3.1.1

Given a linear transformation y = Ax+ b,x ∈ Rn,A ∈ Rm×n, b,y ∈ Rm, we have

y = Ax+ b (B.1)

= (A− k11TA)x+ k11TAx+ (b− µ(b)1) + µ(b)1 (B.2)

= (A− k11TA)x+ (b− µ(b)1) + k(1TAx)1+ µ(b)1 (B.3)

= (A− k11TA)x+ (b− µ(b)1) + (k1TAx+ µ(b))1 (B.4)

= Âx+ b̂+ f(x, k)1 (B.5)

where Â = A− k11TA, b̂ = b− µ(b)1, f(x, k) = k1TAx+ µ(b).

If k = 1/m, then we obtain

µ(Âx) =
1

m
1T (A− 1

m
11TA)x =

1

m
(1TA− 1TA)x = 0 (B.6)

µ(y) = µ(Âx) + µ(b̂) + µ(f(x, k = 1/m)1) (B.7)

= 0 + 0 + f(x, k = 1/m) (B.8)

=
1

m
1TAx+ µ(b) (B.9)

The Â is the recentered matrix of A, and all its column vectors have zero-mean. We

decompose the output into two parts.
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• The first part Âx + b̂ = y − µ(y)1, with zero mean, is another linear transformation

with Â = A− 1
m
11TA, b̂ = b− µ(b)1.

• The second part corresponds to the mean information µ(y)1 = ( 1
m
1TAx+ µ(b))1.

B.2 Post-LN Transformers

Different from the Pre-LN Transformers, the Post-LN Transformers have the following

blocks.

xl+1 = LN(xl + Fl(xl)), l = 0, 1, ..., L− 1, (B.10)

Layer normalization is on the main branch instead of the beginning of residual branches. We

can keep a zero-mean branch on the main branch without impact on the functionality.

xl+1 = LN(xl + Fl(xl)) (B.11)

= LN((xl − µ(xl)1) + (Fl(xl)− µ(Fl(xl))1)) (B.12)

= LN(x̂l + F̂l(xl)) (B.13)

= RMSNorm(x̂l + F̂l(xl)) (B.14)

For the residual branch Fl, we can apply the same method in Pre-LN Transformer. We can

modify the output linear projection to obtain F̂l, which will generate the zero-mean part of

the original result.

The recentering operation x̂l = xl−µ(xl)1 requires extra computation. If elementwise

affine transformation is disabled in LayerNorm, xl is the output of a normalization such that

µ(xl) = 0 and x̂l = xl. If the transformation is enabled, xl is not guaranteed zero-mean

such that the explicit recentering is necessary.
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B.3 Experiments
B.3.1 Implementation of Normalization

We have provided our implementation with JAX and PyTorch in the supplementary

material. The reported results are based on the following implementations.

For JAX, we use the APIs of LayerNorm and RMSNorm in the flax library. For

PyTorch, we use the implementations of LayerNorm and RMSNorm from NVIDIA’s apex

extension 1. For CRMSNorm, we use our own customized implementations. We also provide

our customized implementation of LayerNorm, RMSNorm.

We notice that there are lots of APIs for the standard LayerNorm and RMSNorm. For

example, PyTorch has provided the official LayerNorm API but lacks of RMSNorm imple-

mentation. These different implementations are mixed. We do not find one implementation

that is dominant over others for all the cases. For instance, torch.nn.LayerNorm is usually

faster than apex’s one when the input vectors are small in inference, while it is slower than

the apex’s one when the input vectors are large. PyTorch’s official implementation is also

slower than apex’s for training.

B.3.2 Extended Experiments in ViT

Table B.1 list the architecture parameters of Vision Transformer. We first measure

the inference time. We sweep these 6 ViTs with 6 batch sizes (1, 4, 16, 64, 256, 1024) and

collect the medians of these 36 data points. We report the average of these 36 experiments

in Table B.2. We conduct inference on a single A100 with automatic mixed precision (amp)

1https://github.com/NVIDIA/apex

164



Name Dimension Depth Heads MLP Dimension
Tiny-16 192 12 3 192 × 4
Small-16 384 12 6 384 × 4
Base-16 768 12 12 768 × 4
Large-16 1024 24 16 1024 × 4
Huge-14 1280 32 16 1280 × 4
Giant-14 1664 48 16 8192

Table B.1: ViTs with different sizes. The number in the model name is the patch size.

no norm Pre-LN Pre-RMS Pre-CRMS
PyTorch, single A100, amp 0.8567 1.000 0.9699 0.9783

amp → float32 0.9353 1.000 0.9850 0.9951
single A100 → 16-thread CPU 0.8697 1.000 0.9012 0.8857

PyTorch → JAX 0.9610 1.000 0.9873 1.0005

Table B.2: Normalized inference time of ViT.

in PyTorch. We further change the precision (disabling the amp), computation platforms

(16 threads in AMD EPYC 7742 CPUs), and machine learning frameworks (JAX).

B.3.3 Numerical Issue

The theoretical arithmetic equivalence cannot be fully translated into equality in the

practical numerical computation if we use floating numbers. An intuitive example is that

µ(x+y) = µ(x)+µ(vy) always holds for any vectors x,y. However, if these two vectors are

represented as (low precision) floating numbers, this equality is not guaranteed in real-world

numerical computation. It is possible that these small discrepancies may be accumulated

and enlarged in the large models, further degrading the numerical stability. In our proposed

method, we cannot ensure the exactly zero-mean in the main branch numerically.

The numerical issue is a common problem in machine learning. A typical example
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is operator reordering and layer fusion. PyTorch provides a related API officially, named

torch.ao.quantization.fuse_modules. We can fuse the convolution layer and its follow-

ing batch normalization layer to simplify the computation. These two layers are separate in

training and can be fused to accelerate the inference. The fusion does not break the arith-

metic equivalence but changes the numerical results. In spite of the numerical difference,

the fusion usually has a neutral impact on task-related performance, such as classification

accuracy, even in large models. Fine-tuning or calibration may be helpful in case there is

severe performance degradation.

Our proposed methods encounter a similar issue as layer fusion since we modify

partial parameters. In our experiments, we can convert the pre-trained Pre-LN ViT-H/14

into Pre-(C)RMS variants without any accuracy change on the ImageNet validation dataset.

Actually, we observe that replacing PyTorch’s official LayerNorm implementation with the

apex’s one may have a larger impact on the model performance.
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