A Parametric Study of Oxygen Ion Cyclotron Harmonic Waves by an Oxygen Ring Distribution

Xu Liu¹(xu.liu1@utdallas.edu), Lunjin Chen¹, Jicheng Sun², Xueyi Wang², and Maria E. Usanova³

¹Department of physics, University of Texas at Dallas, Richardson, TX, USA ²Department of Physics, Auburn University, Auburn, Alabama, USA ³Laboratory for Atmospheric and Space Physics, University of Colorado Boulder,Boulder, CO, USA

Introduction	Wave Properti	es With Frequency Below Pro	oton Gyrofrequency f _{ch}
Earth's magnetosphere is full of collisionless magnetized plasma composed of e ⁻ , H ⁺ , He ⁺ , and O ⁺ ions with energy from several eV to hundreds MeV.	 Plasma temperature: Cold e⁻: 2 eV Cold H⁺: 2eV 	Dispersion relation and linear growth rate (LGR) first peak of $J_n^2(\frac{k_{\perp}v_r}{\Omega_o})$	PIC for validation by TACC
The plasma waves can resonate and scatter the ions and electrons in space and lead a precipitation of the charged particles into Earth's ionosphere.	 Cold O⁺: 2 eV O⁺ ring: 1.5 keV, v_r/V_A=1 No helium 	$= \underbrace{\operatorname{MS}}_{10} = \underbrace{\operatorname{MS}}_{$	-7 -7 -8 -9 -10 -10

- Oxygen (ion) cyclotron harmonic (OCH) waves are electromagnetic emissions with the wave frequency at or near the harmonics of the oxygen ion cyclotron frequency.
- The wave normal angle (WNA) of OCH waves is nearly 90 degrees (perpendicular to the ambient magnetic field; WNA is defined as the angle between the wave vector and ambient magnetic field)
- OCH waves can be excited by energetic (~keV) oxygen ions of a ring-like distribution in a gyrotropic plasma.

Bi-Maxwellian ring-like distribution

$$f_{r}(\mathbf{v}_{\parallel},\mathbf{v}_{\perp}) = \frac{n_{r}}{\pi^{1.5}a_{\parallel}a_{\perp}^{2}C_{r}}\exp\left(-\frac{v_{\parallel}^{2}}{a_{\parallel}^{2}}\right)\exp\left(-\frac{(v_{\perp}-v_{r})^{2}}{a_{\perp}^{2}}\right)$$
$$C_{r} = \exp\left(-\frac{V_{r}^{2}}{a_{\perp}^{2}}\right) + \sqrt{\pi}\frac{V_{r}}{a_{\perp}}\operatorname{erfc}\left(-\frac{V_{r}}{a_{\perp}}\right)$$

In this study, we perform a parametric study of OCH waves by an oxygen ring distribution. We investigate the effects of the concentration (η_{ho} , i.e., n_r), velocity (v_r) and temperature (T_r , i.e., a_{\perp}^2) of the oxygen ring, total oxygen ion concentration (η_o), and wave normal angles (WNA).

OCH Wave Observation

Ion mass (reduced): • $m_o/m_h=16$, $m_h/m_e=100$

Ion concentration: • $\eta_{ho} = n_{ho}/n_o = 0.5$ • $\eta_o = n_o/n_e = 0.05$

Other conditions:

c/V_A=10
WNA=87 deg (B_x<<B_z)

Coordinates:

- Z: parallel direction (along ambient magnetic field)
- Y: perpendicular to wave vector **k** and Z-axis
- X: k is inside XZ plane

- 4 wave modes are related to OCH wave
- Large growth rates follow the first peak of $J_n^2(\frac{k_{\perp}v_r}{\Omega_0})$
- Results of Instability analysis and Particle-in-cell (PIC) are consistent

 $\eta_{ro} = 1$

Fig. 5

Conclusions

Dependences on ring temperature and WNA are not shown here due to poster limitation. Please check our paper for these results. Below is the principal conclusions of the paper.

- Growth rates increase and frequency extends to higher O⁺ harmonics as O⁺ ring and total O⁺ concentrations increase or ring temperature decrease.
- OCH waves shift from the H⁺-EMIC mode to the MS mode as the O⁺ ring velocity increases. Thus, the

• LGR increases with η_{ho}

- OIBM extends to wider k and higher frequencies
- 1st harmonic mode is excited and mode conversion occur when cold O⁺ is absent (η_{ho}=1)

elsewhere

Total Oxygen Ion Concentration η_0 Dependence

Energetic Oxygen Ion Ring Concentration η_{ho} Dependence

frequency can extend to higher O⁺ harmonics. Correspondingly, polarization shifts from B_y (transverse) dominance to B_z (compressional) dominance.

As WNAs increase, the OIBM wave becomes stronger and extends to a wider frequency range, while H⁺-EMIC mode is weaker and limited to a narrower frequency range.

The growth rates increase as k corresponding to O⁺ ring and cold plasma wave mode become closer. Peak growth rates follow first peak of J_n^2 when $k_{J_n^2} > k_{cwm}$, and then, shift to cold plasma wave mode when $k_{J_n^2} < k_{cwm}$, which can explain the O⁺ ring velocity and WNA dependences.

Publication

Liu, X. et al., (2022). A parametric study of oxygen ion cyclotron harmonic wave excitation and polarization by an oxygen ring distribution. JGR: Space Physics, doi.org/10.1029/2022JA030828

Large LGRs follow the first peak of $J_n^2 \left(\frac{k_{\perp} v_r}{\Omega_o}\right)$ when $k_{J_n^2} > k_{cwm}$. Here $k_{J_n^2}$ and k_{cwm} are wavenumber corresponding to J_n^2 and any of the wave mode, respectively. Thus, peak LGRs shifts from H⁺-EMIC mode to MS mode and OIBM becomes stronger with increasing v_r.

As v_r increases more, peak LGRs are along MS mode due to large damping from cold O⁺ once wave is away from cold wave modes and considerable growth due to other J_n^2 peaks (small squares and triangles in panel (e)).