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Multi-view Hybrid Graph Convolutional Network
for Volume-to-mesh Reconstruction in

Cardiovascular MRI
Nicolás Gaggion, Benjamin A. Matheson, Yan Xia, Rodrigo Bonazzola, Nishant Ravikumar, Zeike A.

Taylor, Diego H. Milone, Alejandro F. Frangi, Enzo Ferrante

Abstract— Cardiovascular magnetic resonance imaging
is emerging as a crucial tool to examine cardiac morphol-
ogy and function. Essential to this endeavour are anatom-
ical 3D surface and volumetric meshes derived from CMR
images, which facilitate computational anatomy studies,
biomarker discovery, and in-silico simulations. However,
conventional surface mesh generation methods, such as
active shape models and multi-atlas segmentation, are
highly time-consuming and require complex processing
pipelines to generate simulation-ready 3D meshes. In re-
sponse, we introduce HybridVNet, a novel architecture
for direct image-to-mesh extraction seamlessly integrating
standard convolutional neural networks with graph convo-
lutions, which we prove can efficiently handle surface and
volumetric meshes by encoding them as graph structures.
To further enhance accuracy, we propose a multiview Hy-
bridVNet architecture which processes both long axis and
short axis CMR, showing that it can increase the perfor-
mance of cardiac MR mesh generation. Our model com-
bines traditional convolutional networks with variational
graph generative models, deep supervision and mesh-
specific regularisation. Experiments on a comprehensive
dataset from the UK Biobank confirm the potential of Hy-
bridVNet to significantly advance cardiac imaging and com-
putational cardiology by efficiently generating high-fidelity
and simulation ready meshes from CMR images.

Index Terms— Cardiac Imaging, Geometric Deep Learn-
ing, Hybrid Graph Convolutional Neural Network, Volume-
to-Mesh
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I. INTRODUCTION

Cardiac imaging has undergone significant advances in
recent years, becoming an indispensable tool in the diagnosis,
treatment planning, and management of various cardiovascular
diseases. One of the critical components of such advancements
is the extraction of accurate 3D meshes from cardiovascular
magnetic resonance (CMR) images, which serve as the basis
for computational simulations [1], discovery of biomarkers [2],
and analysis of hearth deformation and dynamics [3].

Despite the undeniable importance of cardiac mesh extrac-
tion, the task is fraught with challenges. Traditional methods,
such as active shape models [4] and multi-atlas segmentation
[5], often require extensive computational resources and can
be time-consuming. The variability in heart shapes, sizes,
and pathologies further complicates the extraction process,
necessitating a robust and adaptable method.

Furthermore, transitioning from 2D image slices to a co-
hesive 3D representation demands a seamless integration
of spatial information, especially when modelling tetrahe-
dral meshes. Current methodologies often require intricate
post-processing steps to refine the meshes [1], [6], making
them suitable for simulations, which can introduce additional
sources of error and prolong the overall processing time.
In light of these challenges, there is a pressing need for
innovative approaches that can streamline the cardiac mesh
extraction process, improve accuracy, and reduce time and
computational overhead. This paper introduces a novel method
for generating high-quality surface and volumetric meshes,
immediately suitable for computational models, directly from
CMR imaging.

Generating detailed and anatomically plausible ventricular
meshes from CMR images is challenging and time-consuming
if performed manually. Automatic methods for mesh extraction
are primarily dependent on the concatenation of several stages,
usually including segmentation at the voxel level, surface mesh
extraction, and a final step of volumetric mesh generation [1],
[6]. One of the main limitations of these approaches is that
voxel-level segmentation techniques (usually deep learning
models such as the U-Net [7] or the volumetric V-Net [8])
are prone to introduce errors due to the local support of the
convolutional models, resulting in unrealistic masks with holes
or spurious segmentations [9]. Other approaches are based on
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deforming an initial template. In that regard, previous studies
have proposed to estimate the displacements of the mesh
nodes [10], [11] or directly deform the space that surrounds
a simulation-ready whole heart template [12]. However, the
accuracy of these approaches is bounded by the quality of the
estimated deformations.

Closer to our work, in [13], [14], a neural network is trained
end-to-end to estimate parameterised shapes directly from
images. These methods use convolutional neural networks to
infer the parameters of a Principal Component Analysis (PCA)
shape model. Despite the utility of PCA-based models in
mesh extraction from volumetric images, their expressiveness
is inherently limited by the linearity of PCA. To address
this limitation, we enhance the expressiveness of parametric
shapes by leveraging a graph-convolutional decoder capable
of handling both surface and volumetric meshes. Previous
studies have used generative models based on geometric
deep learning [15], [16] to extract contours from 2D images.
Our contribution builds on this foundation, introducing the
HybridVNet architecture and its multiview variant. It combines
standard 3D convolutions for volumetric image encoding with
a decoder based on spectral graph convolutions for cardiac
mesh generation.
Contributions: Our primary contributions encompass the de-
velopment of a multiview volumetric hybrid graph convolu-
tional model capable of seamlessly integrating multiple CMR
views within a jointly learnt latent space, directly producing
meshes from images. Our model exhibits a natural ability to
create both cardiac surfaces and tetrahedral meshes, suited
for finite element simulations. We further explore classic
regularisation techniques for surface meshes and introduce
a novel differentiable regularisation term specifically tailored
for tetrahedral meshes, markedly enhancing element quality.
Notably, while previous works often relied on cropped regions
of volumetric images, our model demonstrates exceptional
performance in both cropped areas and complete images. The
performance of the model is rigorously evaluated using the
UK Biobank CMR data set [17] ground truth annotations.

II. VOLUME-TO-MESH EXTRACTION IN
CARDIOVASCULAR MR

A. Reference CMR meshes and images

The reference cohort of 3D surface meshes used in this
study was introduced in Xia et al. (2022) [14]. It was created
by registering a high-resolution atlas of the human heart [18]
to manually delineate 2D contours at end-diastole (ED) and
end-systole (ES). The rationale behind selecting the subjects
chosen for manual segmentation and the methodology fol-
lowed can be found in [19]. This atlas consists of a mesh
that includes six separate structures: the left ventricle (LV),
the right ventricle (RV), the left atrium (LA), the right atrium
(RA), and the ascending aorta. Since the cohort was obtained
by registering an atlas, note that each of the final ground-truth
meshes has the same number of nodes and set of faces, giving
the same adjacency matrix. More details about the image and
surface mesh dataset are provided in Section III-A.

Volumetric mesh dataset generation: We derived volumetric
mesh ground-truth annotations from the surface meshes. We
used the one-to-one correspondence between surface nodes to
register a volumetric atlas to the cardiac surface mesh dataset.
The Simpleware software (Version Medical T-2022.03, Syn-
opsys Inc., Mountain View, USA) [20] was used to construct
the volumetric atlas mesh. We imported heart structures from
the human heart atlas [18] as individual closed surface meshes
of triangular elements. Then, we populated the hollow surface
meshes with tetrahedral elements, setting the elements at the
interfaces between different cardiac structures to share nodes.
This resulted in a mesh of 408,764 elements. We registered
the volumetric atlas on the entire surface dataset using mesh-
to-mesh thin plate spline warping, using the Vedo library [21].

B. HybridVNet formulation

As shown in Figure 1, our HybridVNet model receives
multiple CMR views as input: the short-axis view (SAX),
which is a 3D cross-sectional view of the heart acquired
perpendicular to the long axis, and three different 2D long-axis
views (LAX), for two, three and four chambers of the heart
(LAX 2CH, LAX 3CH and LAX 4CH, respectively), providing
2D cross-sectional views acquired parallel to the long axis.
Given these four images (one volumetric and three 2D), we
aim to generate a (surface or tetrahedral) mesh representing
the structures of interest.

Consider a dataset D = {(I,G)n}0<n≤N , com-
posed of N samples of multi-view CMR images I =
(ILAX 2CH, ILAX 3CH, ILAX 4CH, ISAX), and their associated car-
diac meshes as graphs G = ⟨V,A,X⟩, where V is the set
of M nodes or vertices (|V | = M ), A ∈ {0, 1}M×M is the
adjacency matrix indicating the connectivity between pairs of
nodes (aij = 1 indicates an edge connecting vertices i and
j, and aij = 0 otherwise), and X ∈ RM×s is a function
(represented as a matrix) assigning a feature vector to every
node. It assigns a 3-dimensional spatial coordinate (the mesh
vertex position, s = 3). Since our dataset includes meshes
with the same number of nodes and the same connectivity by
construction, we can use spectral graph convolutions to decode
meshes from a latent space [22], [2].

The proposed model consists of a hybrid variational
encoder-decoder architecture with multiple inputs. An image
convolutional encoder, learns a latent representation of the
input images, and a spectral graph convolutional decodergen-
erates a graph representation of the organ. Since our input
consists of four images with varying shapes and views, we
use a multiview encoder to handle it. To this end, independent
encoder branches are defined for each image view, and a joint
latent space is constructed by concatenating their outputs. For
all types of LAX images, we use 2D convolutional encoders,
fLAX 2CH
e , fLAX 3CH

e and fLAX 4CH
e , with residual convolutions

[23]. For the 3D SAX image, we use a 3D convolutional
encoder, fSAX

e , consisting of 3D residual blocks interleaved
by max-pooling operations.

Consequently, our model uses a variational encoder-decoder
architecture to generate a graph representation of a de-
sired organ from multiview input images. The encoder
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Fig. 1: Multiview HybridVNet model architecture: The proposed model uses a variational encoder-decoder architecture to
generate a graph representation of a desired organ from multiview input images. The encoder consists of independent branches
for each input view, concatenated to obtain a joint latent space. The latent code is then passed through a fully connected layer
and reshaped to obtain the initial node features for the graph convolutional decoder. This decoder uses the initial node features
to generate a final graph representation of the organ.

maps the input to a lower-dimensional embedding which
represents the parameters of a latent distribution, z =
f I
e (I

LAX 2CH, ILAX 3CH, ILAX 4CH, ISAX). This latent distribution
is then sampled using the reparametrisation trick [24], passed
through a fully connected layer, and reshaped to obtain initial
node features for the graph convolutional decoder, fG

d . Follow-
ing the variational autoencoder formulation, the latent code is
assumed to be sampled from a multivariate Gaussian posterior,
Q(z|I) = N (µ, diag(σ)). The distribution is parameterised by
the concatenation of outputs from the joint multiview encoder,
(µ,σ) = f I

e (I). Given a sample of the latent code, z, the
graph representation of the organ can be obtained through the
decoder fG

d (z).
The model is trained by minimising a loss function defined

as

L = Lr(fd(fe(I)),G) + λKL LKL (Q(z|I)||N (0, 1)) , (1)

where the first term is the reconstruction loss based on the
mean squared error (MSE) of the vertex positions, the second
term imposes a unit Gaussian prior N (0, 1) for the latent
posteriors via the KL divergence loss (LKL) and λKL is a
weighting factor.

Deeply-supervised spectral graph decoder: To generate the
graph representation of the target organ, we employed a

decoder constructed using spectral graph convolutional neural
networks (GCNN). Spectral convolutions are based on the
eigendecomposition of the graph Laplacian matrix. In this
context, we adopt the spectral convolutions introduced by
Defferrard et al. (2016) [25], which constrain the filters to
polynomial filters. This constraint arises from the observation
that polynomial filters exhibit strict localisation in the vertex
domain, consequently reducing the computational complexity
of the convolutional operation. For an in-depth understanding
of spectral convolutions, please refer to [25].

A spectral convolutional layer operates as standard convo-
lutions applied to images and feature maps. It takes an input
feature matrix Xℓ and produces filtered versions Xℓ+1 as
output. Our spectral decoder architecture comprises five graph-
convolutional layers, each complemented by ReLU nonlinear-
ities with previous Layer Normalisation [26]. These layers are
strategically interleaved with four fixed graph unpooling lay-
ers, allowing the network to learn representations at multiple
resolutions.

We implement the technique outlined by Ranjan et al.
(2018) [22] to obtain these multiple resolutions to construct
pairs of pooling and unpooling layers. The process begins by
estimating the pooling matrix, achieved through an iterative
contraction of vertex pairs while maintaining precise surface
error approximations using quadric matrices into the atlas
surface mesh. Simultaneously, the unpooling matrix is derived
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to enable the reversal of the pooling transformation. This
process is repeated four times (in the previously pooled version
of the atlas), resulting in four sets of pooling and unpooling
layers, each reducing and increasing the number of nodes by
a factor of two, respectively. Importantly, these pooling and
unpooling matrices remain fixed during training, as they are
estimated only once for the atlas surface mesh.

To increase our model’s performance, we apply the con-
cept of deep supervision [27], which involves supervising
the network at various resolution levels. During training, we
utilise the estimated pooling operation to obtain down-sampled
versions of the ground-truth meshes, enabling us to minimise
the reconstruction error at each resolution level. Ultimately,
we employ a final graph-convolutional layer, without bias
and identity activation function, to predict the final vertex
positions.

The incorporation of deep supervision terms leads to the
following loss function:

L = Lr + λKLLKL + λDS

4∑
i=1

Li
r, (2)

where LKL is the previously defined KL term, λDS is a
weighting factor, and the index i indicates the resolution level
of the graph.

Mesh regularisation loss functions: To ensure smooth
meshes, state-of-the-art approaches to surface mesh gener-
ation often use regularisers such as normal regularisation,
edge length regularisation, and Laplacian smoothing (Llap),
as introduced in [28], which we also incorporate. However,
these existing metrics were initially designed for triangular
surface meshes and, therefore, do not consider the structure of
tetrahedral elements in a volumetric mesh [11]. We propose a
new regularisation loss function designed to generate tetrahe-
dral volumetric meshes to address this limitation directly. We
introduce our new tetrahedral element regularisation loss,

Lter =
1

Nt

Nt∑
i=1

1

6

6∑
j=1

(
||eij ||2 −

1

6
(

6∑
k=1

||eik||2)

)2

, (3)

where Nt is the number of tetrahedra, i represents the ith tetra-
hedron and eij and eik represent the edges of that tetrahedron.
This term encourages tetrahedron regularity by penalising
elements with edge lengths too different from the average edge
length for each tetrahedron. Thus, the final loss function used
to train the model results in

L = Lr + λKLLKL + λDS

4∑
i=1

Li
r + λregLreg, (4)

where Lreg can be any of the regularisation losses mentioned
above: Llap for the surface case or Lter for the volumetric
case, and λreg is the corresponding weighting factor.

III. EXPERIMENTAL SETUP

A. Data and annotations

Data for this study were collected from the UK Biobank
(UKB) under access applications 2,964 and 11,350. The
study adhered to the guidelines outlined in the Declaration
of Helsinki and received ethical approval from the National
Research Ethics Service of the National Health Service on 17
June 2011 (Ref 11/NW/0382) and extended on 10 May 2016
(Ref 16/NW/0274). Informed consent was obtained from all
participants. The UKB resource is available for researchers to
use for public-interest health-related research. The rationale
behind the UKB imaging study is explained in Petersen et al.
(2013) [29], and the CMR acquisition protocol is detailed in
Petersen et al. (2015)[17].

We performed our experiments on train/test splits from 4525
UKB subjects. To ensure a fair comparison with previous work
and facilitate the reproducibility of our results, we used the
same train/test splits as Xia et al. [14], in which 600 subjects
were reserved as a separate test split. This allowed us to
consistently evaluate and compare the model’s performance
with previous studies.

Image and mesh pre-processing: CMR images were pre-
processed by normalising intensities to the range [0, 1]. SAX
images had dimensions ranging from (100, 100, 6) to (200,
200, 16) and a voxel spacing of [1.82, 1.82, 10] mm, while
LAX images had varying dimensions depending on the asso-
ciated SAX image. To handle different sizes of SAX images
between subjects, we evaluated our model in two settings: (1)
Full image input, where we padded all SAX images to (210,
210, 16), and (2) Cut input, where we followed previous work
[30], [14] and cropped SAX images to (100, 100, 16), padding
slices as needed. In all cases, the LAX images were zero-
padded to have a square shape of size (224, 224).

Inspired by classic object detection approaches, we align
the vertex positions of the mesh with their relative position
inside the SAX image, which is effective when using graph
generative models for landmark detection [15]. We first re-
move the origin of the SAX image and divide each direction
by the corresponding voxel spacing to obtain the positions
in the voxel space. For the full-image pipeline, we add the
padding applied to the positions and divide by the image size.
For the cropped-image pipeline, we subtract the origin of the
bounding box and divide it by the image size. With this, we
obtain a relative positional space for training the models, with
a value of (0.5, 0.5, 0.5) indicating a node in the centre of the
SAX image. To evaluate the results, we reversed this operation
and recovered the original positions in millimetres.

Data augmentation: All models were trained using online
data enhancement, including intensity enhancement, random
rotations of the SAX images (between -10 and 10 degrees), and
arbitrary scaling on the x and y axes. The LAX images were
scaled to match the scaling performed in the associated SAX
image using each LAX image’s respective direction vector.
We added a step to randomly choose the cropping centre for
the cropped model, ensuring that the entire heart is always
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Metrics MCSI-Net SAX HybridVNet MCSI-Net SAX-LAX MV-HybridVNet
Cropped Full Image Cropped Cropped Full Image Cropped

LV Endo
DC ↑ 0.87 (0.05) 0.89 (0.05) 0.90 (0.04) 0.88 (0.05) 0.90 (0.04) 0.91 (0.04)
HD ↓ 5.13 (1.97) 4.48 (1.32) 4.08 (1.22) 4.74 (1.75) 4.22 (1.22) 3.89 (1.18)

MCD ↓ 1.93 (0.83) 1.67 (0.55) 1.49 (0.49) 1.86 (0.79) 1.55 (0.51) 1.39 (0.46)

LV Myo
DC ↑ 0.76 (0.09) 0.80 (0.06) 0.83 (0.05) 0.78 (0.08) 0.81 (0.05) 0.84 (0.04)
HD ↓ 5.31 (1.98) 4.71 (1.36) 4.23 (1.27) 4.75 (1.76) 4.40 (1.26) 3.96 (1.23)

MCD ↓ 1.97 (0.95) 1.71 (0.56) 1.49 (0.51) 1.86 (0.82) 1.57 (0.52) 1.35 (0.46)

RV Endo
DC ↑ 0.85 (0.06) 0.85 (0.05) 0.86 (0.05) 0.85 (0.06) 0.86 (0.05) 0.87 (0.05)
HD ↓ 7.11 (2.78) 6.97 (2.31) 6.44 (2.19) 7.06 (2.64) 6.79 (2.23) 6.13 (2.23)

MCD ↓ 2.34 (0.98) 2.10 (0.64) 1.90 (0.57) 2.27 (0.95) 1.99 (0.59) 1.76 (0.59)

TABLE I: Quantitative ventricle segmentation results for surface meshes. An up arrow (↑) indicates that higher values are
better, while a down arrow (↓) indicates that lower values are better.

inside the region. This helps the model avoid dependence on
a perfectly centred crop and is an extra data augmentation step.

B. Model implementation and training details
All models were implemented in Python using the PyTorch

framework [31]. The PyTorch Geometric library [32] was
used for the spectral graph convolutional neural network
(GCNN) layers. Hyperparameters were selected through grid
search, with the k hop neighbourhood parameter [25] set to
6. We conducted training for 600 epochs using the Adam
optimiser with a learning rate of 10−4. The batch size was
set to 4, and the weight decay was applied at 10−5. A KL
divergence weight factor of λKL = 10−5 was introduced, and
a learning rate decline with a factor of 0.99 occurred after
each epoch. The 2D and 3D Convolutional Neural Network
(CNN) encoders consisted of six residual blocks [33]. In 2D
encoders, the maxpooling layers were interleaved with these
blocks. In 3D encoders, max-pooling was applied on the X
and Y axes between each residual block, with Z-axis max-
pooling at the third layer. After a grid search hyperparameter
selection, the latent representations were obtained using fully
connected layers in the encoders, with a dimension of 32 for
the 3D encoder and 8 for all 2D encoders. GCNN decoders,
in both 2D and 3D models, comprised six layers of Cheby-
shev convolutions with Layer Normalisation [26] and ReLU
nonlinearities. Classic surface regularisation losses from the
PyTorch3D library [34] were used. These losses included edge
length, normal vector, and Laplacian regularisation terms.

C. Model comparison
We implemented different single- and multiview variants of

the HybridVNet architecture. We also compared our approach
with the results obtained by the Multi-Cue Shape Inference
Network (MCSI-Net) [14] for the dense segmentation task
of the ventricle, which constitutes the state-of-the-art point
distribution models in this particular data set. MCSI-Net com-
bines two different networks. The first is a position-inference
network that predicts the central coordinates of the mesh and
a rotation vector. The second is a shape-inference network that
uses CNN layers to infer the parameters of a point distribution
model (PDM) based on PCA. This model uses the same SAX

and multiple LAX views as ours, but also incorporates patient
metadata information into the PDM learning process. On the
contrary, our model does not require patient metadata.

IV. RESULTS AND DISCUSSION

We conducted a comprehensive series of experiments to
evaluate the performance of the proposed HybridVNet model
alongside the baseline models and their various configurations.
These experiments covered surface and tetrahedral volumetric
mesh scenarios, including a sensitivity analysis of the proposed
regularisation losses. All evaluations were carried out on the
same test dataset comprising 600 subjects, as presented in Xia
et al. 2022 [14], for the ground truth meshes associated with
this dataset.

A. Surface mesh extraction

To evaluate the quality of cardiac meshes, we used mesh
metrics (II) and mask-based metrics (Table I). First, to enable
a direct comparison MCSI-Net, which was evaluated directly
on the segmentation masks generated by the model in the
SAX image space, we derived dense segmentation masks from
the surface meshes. Then, we evaluated classic segmentation
metrics such as Dice coefficient, Hausdorff distance, and the
average distance between the reference and predicted contours
in each slice.

In our initial comparison, we evaluated our HybridVNet
against the SAX-only MCSI-Net with full images and cropped
versions centred on the structure of interest (Table I). Re-
markably, HybridVNet outperforms SAX MCSI-Net for all
metrics and structures. Next, we compare our MV-HybridVNet
with the standard MCSI-Net, which also incorporates multiple
views and is the current state of the art for this data set. The
results demonstrate the superiority of our MV-HybridVNet, as
it outperforms the standard MCSI-Net across all segmentation
metrics for both the left and right ventricle segmentation tasks.

Our full image variant of the model achieves better results
compared to the baselines, all while eliminating the need for
an additional step to detect the region of interest (ROI) during
the segmentation process. Furthermore, the MV-HybridVNet
model on cropped images beats the results with significant
differences relative to the full image.
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Subpart Metric Full SAX Image Cropped SAX Image
HybridVNet MV-HybridVNet HybridVNet MV-HybridVNet

Full Mesh
MAE ↓ 2.56 (0.62) 2.26 (0.55) 2.43 (0.59) 2.18 (0.54)
MSE ↓ 12.20 (7.11) 9.29 (5.48) 11.27 (6.69) 8.80 (5.31)

RMSE ↓ 3.38 (0.89) 2.95 (0.76) 3.25 (0.86) 2.87 (0.76)

LV
MAE ↓ 1.90 (0.57) 1.79 (0.55) 1.75 (0.54) 1.70 (0.54)
MSE ↓ 6.23 (4.28) 5.60 (4.03) 5.35 (3.83) 5.11 (3.67)

RMSE ↓ 2.39 (0.73) 2.26 (0.71) 2.21 (0.70) 2.15 (0.70)

RV
MAE ↓ 2.18 (0.64) 2.08 (0.60) 2.00 (0.58) 1.97 (0.59)
MSE ↓ 8.39 (5.64) 7.69 (4.93) 7.12 (4.84) 7.04 (4.72)

RMSE ↓ 2.78 (0.82) 2.66 (0.78) 2.56 (0.76) 2.54 (0.78)

LA
MAE ↓ 2.90 (1.00) 2.37 (0.78) 2.84 (0.99) 2.30 (0.77)
MSE ↓ 15.40 (13.73) 10.07 (9.74) 14.88 (13.29) 9.58 (9.24)

RMSE ↓ 3.69 (1.33) 3.00 (1.02) 3.63 (1.31) 2.92 (1.02)

RA
MAE ↓ 3.07 (0.96) 2.57 (0.76) 2.98 (0.93) 2.51 (0.80)
MSE ↓ 17.46 (13.65) 12.00 (9.42) 16.67 (13.13) 11.75 (10.16)

RMSE ↓ 3.97 (1.32) 3.30 (1.05) 3.87 (1.30) 3.24 (1.11)

AORTA
MAE ↓ 2.66 (0.93) 2.37 (0.84) 2.56 (0.89) 2.34 (0.83)
MSE ↓ 13.17 (11.05) 10.24 (8.71) 12.38 (10.52) 10.04 (8.43)

RMSE ↓ 3.41 (1.23) 3.01 (1.09) 3.31 (1.20) 2.97 (1.09)

TABLE II: Quantitative mesh evaluation results for surface meshes. An up arrow (↑) indicates that higher values are better,
while a down arrow (↓) indicates that lower values are better.

To account for structures that may not be visible in SAX
images and to provide more insight into how the incorporation
of long-axis views in our model helps the model learn more
details about the complete heart structure, we conducted a thor-
ough evaluation of our proposed models directly on various
subparts of the output mesh. Standard mesh evaluation metrics,
including vertex mean squared error (MSE), mean average
error (MAE) and root mean squared error (RMSE), were
calculated in millimetres. Table II summarises the results in
our models, comparing HybridVNet with its multiview version
for cropped images and full images versions independently.
Evaluation was performed at the nodes of the left ventricle
(LV), right ventricle (RV), left atrium (LA), right atrium (RA)
and aorta.

Comparing the performance of the HybridVNet with and
without the inclusion of LAX images, we observed a signifi-
cant improvement in accuracy for all parts of the mesh. This
improvement is particularly pronounced for the left and right
atria (LA and RA) and the aorta, which are not fully visible in
SAX images. The base HybridVNet model demonstrates the
ability to approximate the positions of these structures, with
further refinement achieved through the integration of LAX
images.

Surface mesh regularisation effect: In the context of the
surface mesh experiment, we performed a comprehensive eval-
uation of various surface regularisation loss functions to en-
hance the performance of our HybridVNet model. Specifically,
we investigated the efficacy of three distinct regularisation
approaches: normal regularisation, edge-length regularisation,
and Laplacian smoothing. For more information on these
regularisers, see [28].

Notably, while commonly employed in mesh regularisation

Fig. 2: Qualitative analysis of the impact of Laplacian regular-
isation term on surface mesh smoothness. It demonstrates the
influence of adjusting the regularisation parameter on mesh
quality. The best quantitative results regarding MSE for the
validation split were achieved when λlap = 0.01.

tasks, normal regularisation, and edge length regularisation
did not yield significant improvements in our model’s per-
formance. This observation aligns with the intuitive under-
standing that these metrics are better suited for meshes with
varying node counts and highly irregular target shapes. This
is not the case in our dataset. In contrast, the incorporation
of Laplacian smoothing produced notably smoother surface
meshes. This can be visually appreciated in Figure 2, which
presents a qualitative analysis of the meshes obtained as
the regularisation parameter for the Laplacian regularisation
loss was increased. Figures clearly illustrate the enhanced
smoothness and quality of the meshes as the regularisation
strength is adjusted.

To assess the impact of different loss terms during the
training process, we refer to Figure 3. This figure provides
a comparison of the MSE values throughout both the training
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Metrics MV-HybridVNet
λter = 0 λter = 1E-4 λter = 1E-3 λter = 1E-2

Mesh
MAE ↓ 2.08 (0.63) 2.07 (0.64) 2.04 (0.61) 2.11 (0.61)
MSE ↓ 8.25 (6.14) 8.22 (6.12) 7.93 (5.63) 8.39 (6.00)

RMSE ↓ 2.74 (0.88) 2.73 (0.88) 2.69 (0.84) 2.77 (0.84)

LV Endo
DC ↑ 0.90 (0.04) 0.90 (0.04) 0.90 (0.05) 0.88 (0.05)
HD ↓ 4.36 (1.22) 4.32 (1.24) 4.41 (1.35) 5.21 (1.42)

MCD ↓ 1.52 (0.46) 1.51 (0.49) 1.58 (0.54) 1.89 (0.62)

LV Myo
DC ↑ 0.78 (0.04) 0.78 (0.04) 0.76 (0.05) 0.74 (0.06)
HD ↓ 5.27 (1.47) 4.98 (1.40) 5.17 (1.50) 5.30 (1.57)

MCD ↓ 1.86 (0.61) 1.81 (0.64) 1.95 (0.72) 1.96 (0.77)

RV Endo
DC ↑ 0.85 (0.06) 0.86 (0.05) 0.85 (0.05) 0.85 (0.06)
HD ↓ 7.22 (2.76) 6.97 (2.54) 7.38 (2.67) 7.55 (2.80)

MCD ↓ 2.05 (0.64) 2.02 (0.63) 2.09 (0.64) 2.13 (0.69)

TABLE III: Quantitative results for segmentation metrics in volumetric meshes. (↑) indicates that higher results are better, while
(↓) indicates that lower results are better. Bold results in two columns indicate there are no significant differences between
these two.

Fig. 3: MSE values throughout training and validation for
different configurations of hyperparameters, measured in the
relative positional space. The red curve highlights the sig-
nificant impact of combining deep supervision and Laplacian
regularisation losses on model performance. Smaller intervals
were used for loss recording as training progressed.

and validation phases. Notably, due to the resource-intensive
nature of the validation process, we adjusted the intervals when
recording loss values, with smaller intervals as more training
time elapsed.

Significantly, the red curve in Figure 3 illustrates that the
best performance is achieved when combining both deep
supervision and Laplacian regularisation losses. This combi-
nation eases the training process and leads to improved model
performance. The optimal regularisation strength for Laplacian
smoothing, resulting in the best MSE for the entire image
and cropped models, was determined to be λlap = 0.01. This
finding was consistent with both qualitative and quantitative

Fig. 4: MSE values throughout training and validation for
volumetric meshes, exploring different configurations of λter,
with values measured in the relative positional space. Notice-
ably, λter = 1E-2 (Yellow) shows a high-performance decay
for both train and validation curves. Smaller intervals were
used for loss recording as training progressed.

evaluations, as over-smoothed meshes appeared when using
high values of the regularisation term.

B. Towards simulation-ready tetrahedral meshes

Our second experiment focused on the creation of
simulation-ready tetrahedral meshes. We evaluated various
weighting factors (λter) for the term of regularisation of the
tetrahedral element defined in (3), to understand its influence
on both the quality of the mesh and the performance of
ventricle segmentation. Table III presents the results, includ-
ing metrics for mesh quality and ventricle segmentation, in
different λter values.
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Mean Std Min Max 1% 5% 25% 50% 75%

Reference Meshes
Atlas 0.491 0.174 0.092 0.984 0.115 0.194 0.367 0.494 0.617

Ground Truth 0.355 0.156 -0.207 0.838 0.04 0.103 0.238 0.353 0.47
Simpleware 0.524 0.185 0.064 0.992 0.128 0.202 0.387 0.535 0.667

MV-HybridGNet3D

λter = 0 0.222 0.225 -0.759 0.876 -0.327 -0.144 0.065 0.219 0.384
λter = 1E-4 0.229 0.23 -0.771 0.871 -0.337 -0.151 0.068 0.231 0.397
λter = 1E-3 0.433 0.206 -0.719 0.904 -0.138 0.059 0.307 0.457 0.585
λter = 1E-2 0.501 0.309 -0.931 0.943 -0.681 -0.298 0.434 0.577 0.688

TABLE IV: Quantitative results for the quality of elements in volumetric meshes. The values correspond to the scaled Jacobian,
and higher values imply a better quality of the tetrahedra.

Our exploration reveals a nuanced relationship between λter

and the model’s performance. In particular, the best outcomes
emerge for segmentation metrics when λter = 1E-4. In this
configuration, the results closely resemble the non-regularised
model, especially concerning the LV Endo metrics. However,
for metrics related to mesh prediction performance, the optimal
choice changes slightly, with λter = 1E-3 yielding the best
outcomes. Although this setting leads to a minor drop in
ventricle segmentation performance, it significantly reduces
the mesh error.

A closer examination of the training dynamics, as illustrated
in Figure 4, reinforces the benefits of using small values of
λter. These values result in improved validation performance
without substantial fluctuations in the training curves. On the
contrary, the highest regularisation strength (λter = 1E-2)
leads to decreased performance in both training and validation.
Note that the impact of the regularisation term on the ventricle
segmentation metrics reported is not drastic. However, as
demonstrated in Figure 5 and elaborated in the following
paragraphs, it substantially increases the quality of tetrahedral
elements, a critical consideration for simulations.

We used the widely adopted scaled Jacobian metric to
validate the quality of tetrahedral elements. The Jacobian of a
tetrahedron is a matrix that describes how the tetrahedron’s
shape changes under deformation. The scaled Jacobian is
a quantitative measure of regularity and symmetry, falling
within the range [-1, 1] and not affected by scale or units.
A high-scaled Jacobian value implies high regularity, low
distortion, and therefore high quality [35]. Table IV provides
a comprehensive overview of element quality under different
λter conditions. The table includes statistics such as the
average, standard deviation, minimum, maximum, and various
percentiles of the quality of tetrahedron in all test subjects.
We compare our approaches with volumetric atlases, ground
truth meshes, and a subset of surface meshes converted to
volumetric meshes using Simpleware’s ScanIP [20].

Importantly, these findings demonstrate that our regularised
models surpass ground-truth elements in terms of quality,
beginning from the 25% quartile and onwards, for λter = 1E-3
and higher. This observation underscores our hypothesis that
the regularisation loss significantly enhances the mesh quality.
Figure 5 visually summarises this improvement, positioning
our method competitively with Simpleware meshes, except for
a small number of elements, potentially due to the original low
quality of the ground truth.
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Fig. 5: Histogram of tetrahedral mesh quality using scaled
Jacobian values. The x-axis represents the scaled Jacobian
values, and the y-axis shows the percentage of tetrahedral
elements within each range.

Overall, our model demonstrates competitive results com-
pared to the conventional approach of directly converting sur-
face to volumetric meshes. Moreover, it addresses a challenge
posed by direct conversion, where degenerate triangles can
obstruct the creation of volumetric meshes, affecting approxi-
mately 10% of cases in our experiments. When comparing the
time required for generating a volumetric mesh, Simpleware’s
ScanIP procedure consumes approximately 6 minutes on aver-
age for each mesh, employing the same configuration as used
in the atlas generation procedure. In contrast, our approach
requires less time for generating the vertex set of volumetric
meshes. When executed on an NVIDIA A100-SXM4 GPU,
it accomplishes this task in just 0.04 seconds for each set of
CMR images during the forward pass, resulting in a substantial
speed improvement. Even in cases where GPU computing is
unavailable, when running on an Intel(R) Core(TM) i7-7700
CPU operating at 3.60GHz, the forward pass requires only 5
seconds on average, providing a significant acceleration.
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V. CONCLUSIONS

This study introduces HybridVNet, a novel method for di-
rectly generating surface and tetrahedral meshes from images.
Our comprehensive experiments and evaluations reveal that
HybridVNet significantly enhances mesh accuracy and ver-
satility compared to state-of-the-art point distribution models
that depend on linear PCA component decoding. In particular,
integrating short- and long-axis views has yielded improved
results, capturing finer details of the complete cardiac struc-
ture. HybridVNet stands out for its efficiency and speed,
substantially reducing vertex set generation time compared
to conventional approaches, a precious trait for large-scale
processing such as in studies on the UK Biobank. The generic
nature of HybridVNet opens doors to broader applications
in medical image analysis, with potential extensions to tasks
such as cortical surface reconstruction from brain magnetic
resonance images. Future work will direct efforts toward
enhancing the element quality of the tetrahedral ground truth
used for model training, ensuring more accurate evaluations of
our method’s potential for in-silico simulation-based studies.
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