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Principal component analysis (PCA) is a dimensionality reduction method that is
known for being simple and easy to interpret. Principal components are often
interpreted as low-dimensional patterns in high-dimensional space. However, this
simple interpretation fails for timeseries, spatial maps, and other continuous data. In
these cases, nonoscillatory data may have oscillatory principal components. Here, we
show that two common properties of data cause oscillatory principal components:
smoothness and shifts in time or space. These two properties implicate almost all
neuroscience data. We show how the oscillations produced by PCA, which we call
“phantom oscillations,” impact data analysis. We also show that traditional cross-
validation does not detect phantom oscillations, so we suggest procedures that do. Our
findings are supported by a collection of mathematical proofs. Collectively, our work
demonstrates that patterns which emerge from high-dimensional data analysis may not
faithfully represent the underlying data.

PCA | oscillations | dimensionality reduction | data analysis

In the age of big data, high-dimensional statistics have risen from a novelty to a necessity.
Dimensionality reduction methods aim to summarize high-dimensional data in just a
few dimensions and expose simple low-dimensional patterns embedded within high-
dimensional space. One of the simplest dimensionality reduction methods is principal
component analysis (PCA) (1, 2). PCA is useful because it can be computed quickly
using a compact matrix equation and can be understood without extensive mathematical
training. It has gained popularity in neuroscience because the output can be interpreted as
low-dimensional patterns embedded within high-dimensional data, such as trajectories
through time, or spatial patterns. Interpreting PCA in this way has led to numerous
neuroscientific discoveries about diverse phenomena (3–12).

While many types of low-dimensional patterns are common in neuroscience, one of the
most salient patterns is oscillations. Oscillations in the brain have been studied for over a
century (13). They occur in both time and space and play a crucial role in diverse functions
such as memory, sleep, and development (14–17). While oscillations are important to
understanding brain function, prior work has warned about a complicated relationship
between oscillations and PCA (18–22). Strikingly, these studies reported examples of
nonoscillatory data that had oscillatory principal components. If this phenomenon is
widespread across a variety of data, it could substantially change the interpretation of
PCA. In order to trust the results of PCA, it is urgent to understand what causes these
oscillations.

Here, we show how and why PCA yields oscillations when no oscillations are present in
the data. These “phantom oscillations” are a statistical phenomenon that explains a large
fraction of variance despite having little to no relationship with the underlying data. We
find two distinct properties of data which cause phantom oscillations through different
mechanisms: smoothness and shifts in time or space. For each, we provide mathematical
proofs and examples demonstrating their impact on data analysis. Finally, we show
why traditional cross-validation is ineffective at controlling for phantom oscillations
and propose alternative methods to do so. Collectively, this work illustrates how high-
dimensional data analysis is intrinsically linked to low-level properties of the data.

Results
PhantomOscillations in PCA. Principal component analysis produces a low-dimensional
representation of a high-dimensional dataset (Fig. 1A). It takes as its input a set of
observations, each consisting of several features, in the form of a matrix. For example, an
observation may be a neuron or brain region, a subject, or a trial, and each feature may
be the point in time at which that measurement was made. Each “principal component”
(PC) consists of a) a vector of “loadings” or an “eigenvector,” which correspond to
patterns in the features; b) a vector of “scores,” or “weights,” corresponding to patterns

Significance

Dimensionality reduction
simplifies high-dimensional
data into a small number of
representative patterns. One
dimensionality reduction method,
principal component analysis
(PCA), often selects oscillatory or
U-shaped patterns, even when
such patterns do not exist in the
data. These oscillatory patterns
are a mathematical consequence
of the way PCA is computed
rather than a unique property
of the data. We show how two
common properties of
high-dimensional data can be
misinterpreted when visualized in
a small number of dimensions.

Author affiliations: aUniversity College London (UCL)
Queen Square Institute of Neurology, University College
London, London WC1E 6BT, United Kingdom

Author contributions: M.S. designed research; performed
research; analyzed data; and wrote the paper.

The author declares no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1Email: m.shinn@ucl.ac.uk.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2311420120/-/DCSupplemental.

Published November 21, 2023.

PNAS 2023 Vol. 120 No. 48 e2311420120 https://doi.org/10.1073/pnas.2311420120 1 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 L

IB
R

A
R

Y
-P

E
R

IO
D

IC
A

L
S 

D
E

PT
 o

n 
D

ec
em

be
r 

6,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

19
3.

60
.2

38
.9

9.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2311420120&domain=pdf&date_stamp=2023-11-16
https://orcid.org/0000-0002-7424-4230
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:m.shinn@ucl.ac.uk
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2311420120/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2311420120/-/DCSupplemental


A

B C

D

G H

E F

Fig. 1. Summary of biases in PCA (A) Schematic including terminology we use throughout. (B) Summary of how to compute principal components (PCs). (C)
Summary of how to compute scores. (D–H) Illustrations of (D) nonorthogonality bias, (E) nonlinearity bias, (F ) smooth features leading to oscillatory loadings,
(G) smooth observations leading to oscillatory scores, and (H) time-shifted features leading to oscillatory loadings.

in the observations; and c) the variance explained by the cross
product of these two patterns, also known as the “eigenvalue.”
PCA is computed by finding the eigenvectors and eigenvalues
of the covariance matrix of the data (Fig. 1B). The scores
are computed by multiplying the data matrix by the loadings,
equivalent to a projection of the data onto the eigenvectors
(Fig. 1C ). In what follows, unless otherwise specified, we will
focus on datasets of timeseries, where each observation is a neural
signal, and each feature is a point in time. In SI Appendix, we
also consider the opposite case of the transposed data matrix,

meaning each observation is a point in time and each feature is a
neural signal.

While PCA itself does not make assumptions about the
data, the most popular interpretation of PCA does. This classic
interpretation posits that patterns in the loadings or scores
indicate some latent underlying patterns in the data. This
interpretation relies on four assumptions and may be misleading
if those assumptions are violated. First, the underlying patterns
must exist and be independent of one another. Second, they
must combine linearly to form the observed data. Third, the data
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must contain exclusively these patterns and additive, uncorrelated
noise. Fourth, observations must be independent. When any of
these does not hold, the above interpretation of PCA may not
hold.

What happens if these assumptions are violated? Violations of
the first and second assumptions—independence and linearity
of patterns—are known to impact data analysis (23) and are
discussed at length in statistics textbooks (24). Namely, when
the latent underlying patterns are not independent of each
other, PCA will output components which fail to capture
any of the correlated factors (Fig. 1D), and if the underlying
components are not linear, then PCA will find the best linear
approximation (Fig. 1E). However, less effort has gone into
understanding violations of the final two assumptions: exclusivity
and independence of observations (25).

The third and fourth assumptions are critical to understand
because they are violated by most neuroscience data. There are
multiple ways these assumptions may be violated. For example,
both assumptions are violated by smoothness. Data are smooth
across time, or temporally autocorrelated, if nearby points in
time have similar values (Fig. 1 F, Left). Smoothness across
time is a pattern which cannot be easily expressed as an additive
sum, violating the third assumption. As a result, when PCA is
performed on smooth timeseries, it will not exhibit interpretable
components, because no single pattern can express smoothness
across time. Instead, components will exhibit oscillations in the
loadings (Fig. 1 F, Right) (mathematical explanation and proofs
in SI Appendix). Likewise, smoothness across space, or spatial
autocorrelation, occurs when observations are made at spatial
locations, and nearby locations are more similar to each other than
distant locations. If nearby locations are similar to each other,
they will be correlated, which violates the fourth assumption that
observations are independent. Smoothness across space produces
oscillations in the scores (Fig. 1G).

Another common example in neuroscience which violates both
the third and fourth assumptions is when observations are similar
to each other but shifted in time or space (Fig. 1H, Left). In other
words, there is some underlying pattern in the data; however,
this pattern occurs at a slightly different time or position in
different observations. This might occur if the timing of some
event can vary slightly, or if alignment is imprecise, such as a
video with a shaky camera. When this occurs in time, a linear
combination of features cannot succinctly represent the pattern,
which violates the third assumption. When this occurs in space,
then the observations are no longer independent, which violates
the fourth assumption. These types of nonindependence will
result in loadings that resemble temporally or spatially localized
sinusoids or wavelets (Fig. 1H, Right) (mathematical explanation
and proof in SI Appendix). Smoothness and shifts are ubiquitous
across timeseries and imaging data, and both lead to oscillations
in PCA.

We define “phantom oscillations” as oscillations in the PCs of
data that vary along a continuum. In most cases, the continuum
will be time or space. In one dimension, such as timeseries, phan-
tom oscillations resemble sine waves or localized wavelets. When
plotted against each other, they often take on a characteristic “U”
shape. In multiple dimensions, they resemble modes of vibration
like a stationary or propagating wave, dependent on the spatial
geometry of how they are sampled. Phantom oscillations may
also occur on any continuum, such as a graph or a manifold in
high-dimensional space. In what follows, we explore two distinct
sources of phantom oscillations—smoothness and shifts—and
show how they confound neuroscience data analysis.

PhantomOscillations Caused by Smoothness in Time or Space.
Phantom oscillations arise naturally in smooth data. Almost all
timeseries exhibit some amount of smoothness, so in the absence
of true underlying patterns, PCA will yield oscillations. This
effect can be observed on both simulated and real data. When
we generated synthetic smooth timeseries using low-pass filtered
white noise (Fig. 2A,Top) and then performed PCA, we observed
that the loadings resembled sinusoids (Fig. 2A,Top). The PCs for
these smooth timeseries explain much more variance than the PCs
for independent unsmoothed white noise timeseries, a common
null model for determining the significance of PCs (Fig. 2 C,
Top, solid lines). The same results held when different methods
were used to generate random smooth timeseries (SI Appendix,
Fig. S1) and when the timeseries matrix was transposed before
performing PCA (SI Appendix, Fig. S2). In each of these cases,
the first and second PC approximately formed a “U” shape when
plotted against each other (SI Appendix, Fig. S3). We repeated
this analysis on resting state fMRI data from the Cambridge
Centre for Ageing and Neuroscience (Cam-CAN) (26). To
ensure no temporal structure was present across observations,
we selected random segments from random brain regions and
random subjects, each 118 s long (Fig. 2 A, Bottom). We again
observed sinusoidal principal components (Fig. 2 B, Bottom)
which explained more variance than independent white noise
timeseries (Fig. 2 C, Bottom).

These effects are not the result of overfitting and do not
disappear after traditional cross-validation. To test whether cross-
validation could ameliorate this effect, we generated a new
independent synthetic dataset of equal size and sampled new
random sequences of the Cam-CAN data. Then, we projected
the new data onto the principal components from the original
data. We found that the variance explained on the unseen data
was approximately equal to the amount explained on the original
training set data on both the synthetic and fMRI data (Fig. 2C ).
In other words, the same oscillatory principal components could
explain variance in unseen data, despite the fact that the data
were independent by construction. This paradoxical result can
be explained by the fact that both halves of each dataset were
similarly smooth, so both could be explained by the same
set of oscillatory principal components. This indicates that
cross-validation cannot control for smoothness-driven phantom
oscillations.

In addition to smoothness across time, smoothness across
space can drive phantom oscillations. In smoothness across space,
nearby locations will be more similar to each other, whether or
not there is any smoothness across time. Spatial smoothness is
ubiquitous in data such as EEG, widefield imaging, and fMRI.
We generated spatially smooth noise on the dorsal surface of
the mouse brain, as in widefield imaging (Fig. 2 D), and on
a single hemisphere of the human cortical surface, as in MRI
(Fig. 2 E). In these simulations, the timeseries were not smooth,
but nearby locations in the brain were more similar to each
other than distant locations. Since the spatial dimension, not
the time dimension, is continuous, we will look for phantom
oscillations in the PC scores instead of the loadings. We found
that oscillatory-like patterns emerged in the PC scores across
the surface of the brain (Fig. 2 D and E), reminiscent of
resonant oscillatory modes, like on the surface of a drum (27–32).
Moreover, some of these patterns appeared to be biologically
meaningful—such as splits across the medial-lateral or anterior-
posterior axes, or even segregation into functionally relevant
domains—even though they arose purely from smoothness and
the geometry of the surface. Oscillatory patterns also occur in
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A B C

D E

Fig. 2. Smoothness causes phantom oscillations in PCA (A) Example timeseries for smooth artificially generated data (Top) and randomly selected segments
from a resting-state fMRI scan (Bottom). (B) Loadings of the first four PCs from large populations of the artificial (Top) or fMRI (Bottom) data. (C) Variance
explained by the first 10 PCs for the artificial (Top) or fMRI (Bottom) data. Solid green indicates the data from (A) and (B), and dashed green indicates a second
independent sample of the same size from the same data. Gray indicates the variance explained by the first 10 PCs of an equally sized dataset of independent
white noise. (D and E) Artificially generated white noise was smoothed across the spatial, but not temporal, dimension in the geometry of a widefield image (D)
or a parcellated cortical surface (E). PC scores are plotted on these geometries.

non-Euclidean topologies, such as a branching latent manifold
(SI Appendix, Fig. S4), due to its relationship with the modes of
oscillation (SI Appendix). Therefore, smoothness in many forms
will generate phantom oscillations.

Phantom Oscillations Caused by Shifts in Time or Space. A
second type of phantom oscillation occurs when data are shifted
in time or space. The alignment of a signal in time or space
can have a profound influence on PCA. For example, if a
fixed underlying pattern occurs in each timeseries but occurs
at a slightly different time in each, then the PCs will display
phantom oscillations (Fig. 3A, Left). These phantom oscillations,
shift-driven phantom oscillations, are distinct from those driven
by smoothness. Unlike smoothness-driven phantom oscillations,
shift-driven phantom oscillations are localized in time around the
most prominent peaks and valleys of the signal (Fig. 3 A, Right).
These oscillations approximately resemble the rate of change,
the first- and higher-order derivatives, of the average signal. The
phantom oscillations also occur when the matrix was transposed
before performing PCA (SI Appendix, Fig. S5). For most realistic

signal shapes, shift-driven phantom oscillations will appear in the
form of a spatially localized oscillation.

The underlying shifted signals do not need to be identical.
We simulated a function inspired by the hemodynamic response
function using a difference of gammas with variable time shifts,
scaling parameters, and mixing ratios, as well as added noise
(Fig. 3 B, Left). We likewise found phantom oscillations in the
principal components (Fig. 3 B, Right).

As with smoothness-driven phantom oscillations, traditional
cross-validation does not protect against shift-driven phantom
oscillations. For the two cases above, we generated a second
independent dataset using the same methodology. We projected
these new data onto the PCs derived from the original data.
We found that the variance explained in the two halves was
nearly the same and was substantially higher than white noise
(Fig. 3 C and D).

One important property of shift-driven phantom oscillations
is the relationship of the PC scores with the magnitude of the
shift. Since each observation is shifted in time, we can measure
the magnitude of the shift relative to some reference. In our
simulation where the timeseries are noiseless and where the time

4 of 11 https://doi.org/10.1073/pnas.2311420120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 L

IB
R

A
R

Y
-P

E
R

IO
D

IC
A

L
S 

D
E

PT
 o

n 
D

ec
em

be
r 

6,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

19
3.

60
.2

38
.9

9.

https://www.pnas.org/lookup/doi/10.1073/pnas.2311420120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2311420120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2311420120#supplementary-materials


A

B D F

C E

G H I

Fig. 3. Shifts cause phantom oscillations in PCA (A) A movement-like signal (dotted gray) was shifted in time according to a centered uniform distribution (light
purple). The principal components (PCs) were computed from these artificial data (blue), with the darkest blue indicating PC1 and the lightest PC4. (B) Same as
(A), except with a noisy difference of gammas signal which varied parametrically across both gamma parameters and time delay, with different noise seeds.
(C and D) The scree plot for (A) and (B). (E and F ) The shift in time of each signal is plotted on the x axis against the PC score for the data from (A) and (B). (G,
Top) Four example images of two neurons from two-photon imaging, shifted slightly in the horizontal and vertical directions. (G, Bottom) Examples of these
horizontal and vertical shifts. (H) The PC scores of the shifted images for the first six PCs. (I) The PC loadings of the shifted images for the first six PCs. Since the
loadings are defined across timepoints, and each timepoint is associated with a horizontal and vertical shift, we plot each timepoint at the x and y coordinates
defined by the magnitude of the shift. The loading values are indicated by the color.

shift can be perfectly estimated, the relationship between the PC
scores and the time shift will itself be oscillatory (Fig. 3E). In
more realistic scenarios, the time shift will be estimated noisily
for each observation, so the relationship may be more difficult to
observe. In our noisy simulation, the relationship appears linear
and only present in the first PC (Fig. 3F ). Nevertheless, there is
a clear relationship between the magnitude of the shift and the
PC score.

In addition to shifts across time, shifts across space may
also drive phantom oscillations. We consider a single frame
from a two-photon microscope which we have artificially shifted
horizontally and vertically by a few pixels to simulate differences
in alignment or registration (Fig. 3G). Since the shifts are in
the spatial (observation) dimension rather than the time (feature)
dimension, we should expect to see phantom oscillations in the
PC scores instead of the loadings. Indeed, when we perform PCA
on the shifted frame, we find oscillations in the scores spatially
localized around the sharpest edges of the frame in both the
horizontal and vertical directions (Fig. 3H ). We already saw that,

in the temporal case, the PC scores showed a strong relationship
with the magnitude of the shift. Here, there are two dimensions
to the shift: horizontal and vertical. For each component, we can
examine a scatter plot of the horizontal and vertical shift, where
points are colored by the value of the PC loading for those shifts.
We see a strong oscillatory pattern relating the PC loadings to
the shift (Fig. 3I ). Therefore, shifts across time or space can lead
to phantom oscillations.

Phantom Oscillations in a Decision-Making Experiment. To
show how phantom oscillations manifest in real data, we examine
a classic random dot motion perceptual decision-making experi-
ment with recordings in monkey lateral intraparietal cortex (LIP)
(33). In this experiment, monkeys were trained to discriminate
the apparent direction of motion of dots located centrally in their
visual field. Once they reached a decision, they indicated their
decision by directing their gaze to one of two peripherally located
targets (Fig. 4A). While monkeys were performing this task, a
neuron in LIP was recorded such that one of the saccade targets

PNAS 2023 Vol. 120 No. 48 e2311420120 https://doi.org/10.1073/pnas.2311420120 5 of 11
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A

C D E

F

I

G H

B

Fig. 4. Phantom oscillations in the random dot motion task Roitman and Shadlen (33) recorded from LIP in monkeys performing a decision-making task. (A)
Diagram of the experiment. (B) Mean activity for trials with a long response time (RT) (RT > 800 ms) with a choice in the direction of T-IN (black) or T-OUT (gray).
(C–E) Timeseries during decision-making period for long trials (RT > 800 ms). (C) Two example timeseries during this period, representing individual trials. (D)
PCA was performed on all trials and the PC loadings are shown. (E) PCA was recomputed on 1/2 of the trials. Variance explained is shown in solid green. The
remaining 1/2 of trials were projected onto the loadings, and the variance explained by this projection is dashed green. Gray is the variance explained by the
PCs of an equivalent-sized white noise dataset. (F–I) Timeseries during decision-making period for long trials (RT > 800 ms). (F ) Two example timeseries during
this period, representing individual cells. (G) PCA was performed on all neurons and the PC loadings are shown. (H) PCA was recomputed on 2/3 of the neurons.
Variance explained is shown in solid green. The remaining 1/3 of neurons were projected onto the loadings, and the variance explained by this projection is
dashed green. Gray is the variance explained by the PCs of an equivalent-sized white noise dataset. (I) PC scores are plotted against the estimated peak of each
neuron’s timeseries. LOESS-smoothed lines indicate the trend.

was located in the neuron’s receptive field (target T-IN) and the
other was opposite (target T-OUT). This allowed neural activity
to be compared when the choice was toward T-IN compared to
away from T-IN. Neural activity from different parts of this task
is expected to contain both smoothness-driven and shift-driven
phantom oscillations.

First, the activity of neurons in LIP leads to smoothness-
driven phantom oscillations. Many neurons in LIP are known
to reflect the accumulated information in favor of a choice

toward T-IN (Fig. 4 B, Left) (33), often modeled using diffusion
(34, 35). Diffusion produces smooth timeseries, and simulations
of diffusion show phantom oscillations (SI Appendix, Fig. S1).
Therefore, trial-by-trial neural activity aligned to the onset of the
stimulus should show smoothness-driven phantom oscillations.
We examine the first 700 ms of activity after the stimulus, using
only trials at least 700 ms long (Fig. 4C ). We find that the
principal components of these data closely resemble sinusoidal
oscillations (Fig. 4D). Using cross-validation, we fit data on
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a subset of 66% of the data and project the remaining 33%
onto these PCs. The variance explained on the held-out data is
similar to that of the training data, and much higher than for a
white noise timeseries (Fig. 4E). Therefore, phantom oscillations
are present in neural activity traditionally considered to be
diffusion-like.

Second, bursts of activity in response to eye movements
lead to shift-driven phantom oscillations. Many neurons in
LIP show sharp increases in activity during eye movements
toward T-IN (Fig. 4 B, Right). Furthermore, these bursts of
activity are unlikely to show exactly the same peak timing in
each neuron (Fig. 4F ). Therefore, the mean activity of cells
should show shift-driven phantom oscillations. Indeed, we find
that the principal components resemble the derivatives of the
mean (Fig. 4G). When PCA is performed on 66% of data
and the remaining 33% are projected onto the PCs, a similar
amount of variance is explained in the training and held-out
data, much higher than for a white noise timeseries (Fig. 4H ).
Furthermore, the scores of these first principal components
correlate with the peak of the timeseries, an estimate of the shift
(Fig. 4I ). Therefore, both smoothness-driven and shift-driven
phantom oscillations are present in different aspects of the same
decision-making experiment. This dataset is also relatively small
by modern standards, containing only 54 neurons, demonstrating
that phantom oscillations are not limited to big data.

Detecting True Oscillations in Data. If oscillations are observed
in PCA, how can we determine whether they are true oscillations
or phantom oscillations? In general, PCA is not well suited to
detecting oscillations, so most oscillations tend to be phantom
oscillations. Distinguishing true oscillations from phantom oscil-
lations is not always possible; for example, if only one cycle of the
oscillation is present, true oscillations are impossible to identify
on both on a technical and a conceptual level. Nevertheless, for
cases where true oscillations may exist, we present three strategies
to distinguish them from phantom oscillations.

To demonstrate these strategies, we analyze experimental data
containing true oscillations for comparison to the phantom
oscillations observed above. Ames and Churchland (36) in-
structed monkeys to travel through a linear virtual reality
environment by moving a manipulandum in a cyclic pedaling
motion (Fig. 5A). The distance the monkey needed to travel in
virtual reality was fixed and corresponded to seven pedals on the
manipulandum. While the monkeys performed the task, multiple
neurons in the motor cortex were recorded simultaneously.
Consistent with Ames and Churchland (36), we discarded first
cycle and last two cycles to maintain a steady state cycling motion,
rescaling the remaining four cycles to a 2 s interval for analysis
(Fig. 5B). This means that the arm movements on each trial were
exactly 2 hz, with the same phase at each timepoint in all trials.

As reported by Ames and Churchland (36), these arm
movements led to regular 2-hz firing patterns in neurons from
the motor cortex. Most of the neurons showed an oscillation
with 2 hz periodicity, and these neurons had diverse waveforms
and phase offsets (Fig. 5C, light purple). Due to this diversity of
phases and waveforms, there was little evidence of synchronized
oscillatory activity in the mean neuron activity (Fig. 5C, dark
purple). After computing PCA, we saw that the second and third
principal components resembled sinusoidal oscillations at 2 hz
(Fig. 5D) and explained a large fraction of variance, even after
cross-validation (Fig. 5E). These two components were separated
by a 90° phase, so linear combinations could capture a 2-hz
sinusoidal oscillation of any phase. Given the 2-hz oscillations

of the arm movements and 2-hz oscillations of the neurons, the
2-hz oscillations in the PCs appear to reflect true 2-hz oscillations
in the data. We will demonstrate this below by comparing these
PCs of putative true oscillations to our previous examples of
phantom oscillations from smooth (Fig. 2) and time-shifted
(Fig. 3) simulations, resting state fMRI (Fig. 2), and the random
dot motion task Fig. 4.

One strategy to identify true oscillations is to use traditional
methods for detecting oscillations in timeseries, such as peaks in
the power spectrum. True oscillations will often appear as distinct
peaks in the power spectrum, whereas phantom oscillations
always appear as a 1/f -like pattern which decreases with in-
creasing frequency. This 1/f -like pattern has been previously
characterized as the “aperiodic” part of the spectrum (37). While
power spectra may contain false peaks due to windowing effects,
harmonics, and other artifacts, the absence of peaks in the power
spectrum is strong evidence that an oscillation is actually a
phantom oscillation. We compute the power spectrum as the
mean spectrum of all timeseries in our data. In our cycling dataset,
we see a clear peak in the power spectrum at 2 hz corresponding
to the four cycles of the manipulandum, as well as a peak at 4 hz
corresponding to the first harmonic (Fig. 5 F, Left). By contrast,
no such peaks are present in the power spectrum for the other
datasets (Fig. 5F ).

A second strategy to identify true oscillations is to inspect
the covariance matrix. In phantom oscillations, we expect
one thick prominent stripe along the diagonal of the matrix,
covering either all (SI Appendix, Fig. S1) or part (SI Appendix,
Fig. S6) of the diagonal. By contrast, for true oscillations,
we expect multiple diagonal stripes throughout the covariance
matrix. These multiple stripes represent the correlation across
different phases of the same oscillation. We observe multiple
stripes in the pedaling dataset (Fig. 5 G, Left), but only one thick
stripe in the others (Fig. 5G).

A third strategy is based on the fact that a single phantom
oscillation principal component is never found alone. Phantom
oscillations always appear across many frequencies, often with
a distinct frequency in each principal component. Smoothness-
driven phantom oscillations with low oscillatory frequency will
explain more variance than those with higher frequency, and
shift-driven phantom oscillations tend to follow a similar pattern
as well. The slope of this relationship should increase consistently
with a slope less than 1, linearly or step-wise, and should not
make any large jumps. Therefore, the oscillation frequency
will form a monotonic relationship with the ordering of the
PCs. In the simulated, fMRI, and decision-making data, we
see a near-linear relationship between the PC number and the
frequency of the oscillation (Fig. 5H ). By contrast, in the
cycling data, after a first constant PC, the second and third PCs
oscillate four times, and the fifth and sixth oscillate 8 times
(Fig. 5 H, Left).

Putative shift-driven phantom oscillations have an additional
property which distinguishes them from true oscillations. As we
saw previously (Fig. 3 E and F ) (Fig. 4I ), the PC scores of shift-
driven phantom oscillations are correlated with the magnitude
of the shift. Performing this analysis requires estimating a time
shift from each observation, using methods including cross-
correlation, peak detection, or other techniques. Since the
relationship may be nonmonotonic, a Pearson correlation may
be insufficient, but examining this relationship by eye should
provide an indication of nonlinear relationships. Therefore,
several strategies can be used to determine whether an oscillation
is a phantom oscillation or a true oscillatory signal.
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A

C

F

G

H

D E

B

Fig. 5. True oscillations in a pedal task. Ames and Churchland (36) recorded from the motor cortex in monkeys performing a pedaling task. (A) Diagram of the
experiment, reproduced from ref. 36. (B) Horizontal and vertical positions of the arm during the pedaling task during an example trial. Only the middle four
cycles were analyzed. Cycles were rescaled in this period to allow averaging across trials by arm position. (C) Mean activity of three example neurons during the
analyzed time period. (D) PCA was performed on the mean activity of each neuron during the task, and the loadings are shown. (E) PCA was recomputed on half
of the neurons, and the variance explained is shown in green (solid). The remaining neurons were projected onto the PCs from the first half, and the variance
explained is shown in green (dashed). For comparison, PCA was performed on an equal number of white noise timeseries of the same length, and variance
explained is shown in gray. (F–H) Measures for detecting phantom oscillations are shown for the pedal task, a dataset with true oscillations (Left) as well as the
other datasets exhibiting smoothness-driven and shift-driven phantom oscillations we have seen so far. (F ) The power spectrum from the pedal task. (G) The
covariance matrices for each of these datasets. (H) For each dataset, the number of oscillations (i.e., the wave number) for each PC loading is shown.
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Discussion
Despite being one of the simplest forms of dimensionality
reduction, PCA’s interpretation can be complicated. Here, we
showed that PCs may exhibit oscillations that do not exist in
the underlying data. This is because real-life data often vary
along a continuum—such as time in a timeseries, or position
in spatially embedded data. However, data that vary along a
continuum violate the implicit assumptions underlying the classic
interpretation of PCA. Other examples of continua include neu-
rons along a linear probe, subjects in a longitudinal experiment,
or brain regions in an imaging experiment. We showed that
there are two distinct ways that phantom oscillations can arise
from a continuum: smoothness, and shifts across observations.
Our simulations and data analysis showed different patterns
for smoothness-driven and shift-driven phantom oscillations.
Likewise, in SI Appendix, we determined that smoothness is
related to the second derivative of the timeseries, whereas shifts are
related to the first derivative. We also provided a simple method
to test for both types of phantom oscillations. Our results may
apply more broadly to topographic space, such as place cells (38),
retinotopy and tonotopy, or concepts in high-dimensional space
defined across a graph.

We are not the first to observe phantom oscillations. Previous
work found similar oscillations from PCA in neural data (22) and
tuning curves (39), as well as other types of smooth data, such
as natural images (18, 40), music (41), and spatial population
genetics (19). In one notable example, several authors showed that
the oscillation-like activity observed in the motor cortex during
reaching (4) could be traced to an artifact of dimensionality
reduction (21, 22, 42). Phantom oscillations also resemble the
oscillation modes in whole brain imaging experiments (28–31),
which is connected to PCA through the same set of differential
equations (SI Appendix). We (SI Appendix, Fig. S3) and others
(22) showed that, when plotted against each other, phantom
oscillations can show a U-shape. This effect, also known as
the “horseshoe effect,” is also found in other dimensionality
reduction methods such as multidimensional scaling (MDS)
(43, 44). Nevertheless, in SI Appendix, we show that phantom
oscillations are more complicated than simply the terms of a
Fourier series. This is because phantom oscillations often have
noninteger and nonuniformly spaced oscillatory frequencies. Ad-
ditionally, phantom oscillations may only produce one sinusoid
at each frequency, whereas a Fourier series requires a sine and a
cosine at each frequency to account for phase shifts. The only
condition in which phantom oscillations do resemble a Fourier
series is the rare situation when the edges of the timeseries wrap
around, such that the first and last points are correlated with each
other in the same way as neighboring points. This results in a
“step-like” scree plot (SI Appendix and SI Appendix, Fig. S1).

The conditions that cause phantom oscillations are ubiquitous
in neuroscience data. Smoothness may occur for biological or
methodological reasons. On the biological side, reasons include
slow intrinsic neural and circuit time constants and the fact that
behavior is often history-dependent. On the methodological side,
reasons include measurements of activity with slow dynamics,
such as calcium indicators or the hemodynamic response function
in fMRI. More generally, any type of low-pass filtering makes
data vulnerable to phantom oscillations. Shifts may also occur
for biological or methodological reasons. On the biological side,
different subjects or neurons may have slight intrinsic differences
in response time. Response time may also vary across trials within
a subject, or may depend on external factors like attention or
arousal (45). There also may be multiple points of interest,

such as the stimulus and choice onsets in our decision-making
dataset, making it difficult or impossible to align to both. On
the methodological side, a slow sampling rate or imprecision in
alignment may create the same effect. Additionally, volumetric
imaging technologies such as two-photon imaging or fMRI
usually acquire volumetric planes sequentially, leading to shifts
in timing across planes. In most cases of shift-driven phantom
oscillations, data must be aligned to an external signal or reference
registration, so realignment is not an option.

It remains to be shown whether it is possible to compute
PCA in a way which is robust to phantom oscillations. One
potential approach for smoothness-driven phantom oscillations
is to formulate an appropriate noise model. For instance, in
factor analysis and probabilistic PCA (PPCA), there is an explicit
model of the noise (46) which assumes noise is independent
and normally distributed (47). Using a correlated noise model to
account for smoothness may help reduce the effect of smoothness-
driven phantom oscillations. Such a noise model may help to
bring out true underlying patterns even in data which do not show
phantom oscillations. For example, true oscillations were found
in the Ames and Churchland data, but these data also contained
neurons which were naturally smooth, and artificial smoothing
was applied during preprocessing. Had this smoothness been
accounted for by an appropriate noise model, the true oscillations
identified by PCA may have been even stronger.

PCA is often used as a way to compare brain activity across
different experimental conditions. However, if differences in
PCs are observed when phantom oscillations are present, these
differences may be a proxy for some simpler phenomenon. For
example, since the PC score is correlated with the location of
the peak in shift-driven phantom oscillations, any change in
the peak latency across conditions will be reflected in the PCs.
Moreover, anything which is correlated with this latency will also
be correlated with the PC score. In smoothness-driven phantom
oscillations, differences in smoothness across observations will
also be reflected in the PCs. Such differences may arise from
many sources, including variation in firing rate or signal-to-noise
ratio. Therefore, in the presence of phantom oscillations, group
differences in PC loadings or scores can often be explained by a
simpler statistical property of the data.

Phantom oscillations are an artifact of dimensionality reduc-
tion and should not be interpreted. The exact form of phantom
oscillations is determined by a complex nonlinear combination
of factors such as the smoothness, the distribution of shifts,
the distribution of variance, and the behavior at the edges.
These factors can all be measured without relying on phantom
oscillations. Additionally, the form of phantom oscillations is
sensitive to small differences in the data, such as adding a
constant. It can also be insensitive to large changes; for example,
all data with homogeneous smoothness that wrap around have
identical principal components. We provided intuitions for how
these different cases behave in SI Appendix, Figs. S1 and S6 and
SI Appendix. On a similar note, PCA is not the ideal tool to study
true oscillations. PCA can fail to identify true oscillations, such as
those that are phase-locked, and it struggles to identify multiple
oscillatory frequencies simultaneously. Specialized tools should
be used for detecting oscillations (37).

In this work, we focused on the case where time is the feature
dimension, and thus, the loadings represent points in time.
By contrast, in neuroscience, it is common to perform PCA
with time in the observation dimension, which is equivalent to
performing PCA of the transpose of the data matrix. We focus
on the former for three reasons. First, performing PCA along
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the feature dimension allows us to assume our observations are
independent samples from the same statistical process. The stan-
dard interpretation of PCA, where components represent latent
patterns in the data, assumes that observations are independent.
If smoothness occurred in the observation dimension, then the
observations would by definition no longer be independent. Our
mathematical analyses are largely based on the Karhunen-Loève
transform, which also assumes observations are independent.
Second, the relationship between the covariance matrix and
smoothness is only visually evident as a thick diagonal when
smoothness occurs in the feature dimension. It may be possible
to rearrange the rows and columns of the covariance matrix to
emphasize this thick diagonal, but this is beyond the scope of most
analyses. Third, PCA along the observation dimension gives very
similar results to PCA across the feature dimension. We showed
that, in our simulations, both smoothness and time shifts cause
oscillations regardless of whether the smoothness or time shifts
are in the feature or observation dimension. We also provided a
mathematical justification for why this is the case in SI Appendix.
Therefore, phantom oscillations occur no matter the dimension
that PCA is performed.

PCA is closely related to many other forms of dimensionality
reduction. For example, our mathematical analyses can be
applied almost identically to SVD, which is the same method as
PCA except without mean subtraction. Additionally, phantom
oscillations have been reported for other forms of dimensionality
reduction, including demixed PCA (48), jPCA (21), and MDS
(43, 44). These methods involve finding the eigenvectors of a
matrix multiplied by its transpose, such as a covariance matrix,
correlation matrix, or matrix of second moments. It remains to
be shown whether phantom oscillations or other biases occur in
dimensionality reduction methods that are conceptually similar
but mathematically different from PCA, such as factor analysis
(FA), nonnegative matrix factorization (NMF), or independent
component analysis (ICA). For example, subsequence timeseries
clustering does not utilize eigenvectors but still shows phantom
oscillations (49). It is also unknown how phantom oscillations
impact other machine learning methods that use PCA for
preprocessing. Many studies explore how low-level statistics
influence dimensionality reduction (21–23, 32, 50–58). These
studies mirror our own by showing that patterns in high-
dimensional data analysis may not always reflect true patterns
in the data.

Materials and Methods
A. Mathematical Explanations, Derivations, and Proofs. Mathematical
details can be found in SI Appendix. In brief, we prove that both smoothness and
shifts cause phantom oscillations. For smooth data, we show how PCA is linked to
the differential equation for a harmonic oscillator. We also compute closed-form
expressions for PCs using the Karhunen-Loève transform. For shifted data, we
show why the derivatives of the shifted signal can be used to construct the PCs.
Mathematical proofs are accompanied by intuitive explanations.

B. Smoothness-Driven Phantom Oscillations. The smooth artificial time-
series were generated as smoothed white noise. We generated 100,000 artificial
timeseries of length 300 drawn from the standard normal distribution. We
filtered with a Gaussian filter of SD 4. We discarded all but the central 60
timepoints to avoid edge effects of the filtering, leaving 100,000 timeseries of
length 60. We repeated this procedure to create an equally sized dataset for
cross-validation.

The resting state fMRI data were derived from the Cam-CAN project (26). We
used the resting state scans with the AAL parcellation, as provided by the Cam-
CAN project. To remove transient high-frequency artifacts, we applied a low-pass

Butterworth filter at half the Nyquist frequency. For each of the 646 subjects,
we selected 60 parcels with replacement, and for each selection, we chose a
random segment of 60 time points. Sampling rate (TR) was 1.97 s, for a total of
118.2 s of data. In total, this yielded 38,760 timeseries. We randomly selected
half of these, 19,380, for our core dataset, and used the rest for cross-validation.

The spatially smooth data were generated by drawing from a multivariate
normal distribution. Each timepoint was one sample from this distribution. The
covariance matrix was determined as negative exponential of distance for each
region or pixel. For the data in the geometry of a widefield recording, we drew
10,000 independent samples of size 5,916 (for 5,916 pixels in the image) and
for the geometry of cortex, 3,000 independent samples of size 180 (for 180
pixels in the parcellation of ref. 59.

C. Shift-Driven PhantomOscillations. The random shifts in timing data were
generated based on the response of frontal eye field neurons to a delayed
stimulus (60). The base timeseries was taken from the freely available data
provided by ref. 60, using the mean activity from cells in Monkey Q with 70%
coherence in the 400-ms presample condition, with data from 600 ms before
and after stimulus onset with 10 ms time bins. The resulting timeseries was
smoothed with a Savitzky–Golay filter of order 1 with a window length of 5.
We drew 2,000 time shift offsets from a uniform distribution from 0.1 to 0.4.
The base timeseries was upsampled through linear interpolation according to
each shift, and the segment from 0 to 700 ms was selected. This yielded 2,000
timeseries of length 700. We repeated this sampling and interpolation process
to create another 2,000 timeseries to be used for cross-validation only.

The random shifts with nonidentical signals were generated using noisy
difference of gammas. We generated base data using

xi(t) = f3(t − 2Δi)− (si/3 + 0.4)f3bi + 4(t − 2Δi) + 0.03wi(t − 2Δi),

where Δi ∼ U[0, 1] is the shift in time, b ∼ U[0, 1] is the shape parameter,
si ∼ U[0, 1] is the amplitude of the second gamma for timeseries i, fk(t) is the
probability density function of the gamma distribution with shape parameter
k, and wi(t) is 1/f� noise with exponent 1.8. We chose this form arbitrarily
because it visually approximates a noisy hemodynamic response function. We
generated 2,000 timeseries of length 10 s at 100 hz this way, and 2,000
additional timeseries for cross-validation only.

The images were generated with a single static two-photon image of two
neurons. The shifts for the image were computed by filtering a white noise
timeseries of length 10,000 with a Gaussian filter of SD 5. Only a small segment
of this timeseries is shown in (Fig. 3G). Shifts were applied to the image,
simulating movement of the imaging window, and images were flattened
before computing PCA.

D. Random Dot Motion Task. Full details of the random dot motion
experiment are described in ref. 33. Due to the limited number of neurons
recorded in this dataset, analyses presented here pool data from both monkeys.
For illustration purposes, in the schematic Fig. 4B, we used neural activity
averaged across all trials with an RT greater than 800 ms, with a bin size of
50 ms.

Forouranalysisofdiffusion-likeactivityshowingsmoothness-drivenphantom
oscillations, we examined the period from 0 to 800 ms after the onset of the
stimulus, using a bin size of 80 ms. We restricted to trials which had an RT greater
than 800 ms. This gave a total of 1,821 trials with 10 time points per trial.

Forouranalysisof transientactivityshowingshift-drivenphantomoscillations,
we examined the period 500 ms before the saccade to 300 ms after the saccade,
with a time bin of 50 ms. Because these transients generally occur when the
target is in the receptive field, we only examined saccades to T-IN. To ensure a
strong transient, we only considered trials with a motion coherence greater than
10%. Assuming each cell had a similar delay, we averaged the response of each
neuron, for a total of 54 timeseries (one for each neuron) with 16 timepoints.

E. Pedal Task. Full details of the pedal experiment are described in ref. 36.
We used data only from monkey E, starting from the top, pedaling in the
forward direction with both hands. Activity was averaged for each neuron, and
all sessions were pooled for a total of 626 neurons. While pedaling on each trial
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was performed at approximately the same speed, it was not exactly the same on
each trial. Therefore, to find average firing rate for each neuron at each point in
time, trials were aligned according to the pedal position, and this was rescaled
across time such that each cycle took 500 ms. Data were slightly smoothed with
a 25-ms Gaussian filter to compute an instantaneous firing rate and allow for
this rescaling. The first two cycles and the last cycle were discarded. The hand
position example in Fig. 5B uses the hand position of an example aligned trial.

Data, Materials, and Software Availability. Previously published data were
used for this work (26, 33, 36).
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