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A B S T R A C T

The mean field limit with time dependent weights for a 1D singular case, given by the attractive
Coulomb interactions, is considered. This extends recent results (Ayi and Duteil, 2021; Duteil,
2022) for the case of regular interactions. The approach taken here is based on transferring
the kinetic target equation to a Burgers-type equation through the distribution function of the
measures. The analysis leading to the stability estimates of the latter equation makes use of
Kruzkov entropy type estimates adapted to deal with nonlocal source terms.

. Introduction

.1. General background

In this paper, we are concerned with analysing the mean field limit of the following system of 2𝑁 ODEs:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥̇𝑁𝑖 (𝑡) = 1
𝑁

𝑁
∑

𝑗=1
𝑚𝑁𝑗 (𝑡)𝑉 ′(𝑥𝑁𝑗 (𝑡) − 𝑥𝑁𝑖 (𝑡)), 𝑥𝑁𝑖 (0) = 𝑥0,𝑁𝑖

𝑚̇𝑁𝑖 (𝑡) = 𝜓𝑁𝑖 (𝐱𝑁 (𝑡),𝐦𝑁 (𝑡)), 𝑚𝑁𝑖 (0) = 𝑚0,𝑁
𝑖 .

(1.1)

he notation is as follows: the unknowns 𝑥𝑁𝑖 ∈ R and 𝑚𝑁𝑖 ∈ R are referred to as the opinions and weights respectively. The evolution
f the opinions is given in terms of the weights and a function 𝑉 ∶ R → R which is called the interaction modulating the value of the
pinion 𝑥𝑁𝑖 by the presence of the other opinions 𝑥𝑁𝑗 . The evolution of the weights is given by means of functions 𝜓𝑁𝑖 ∶ R𝑁×R𝑁 → R
here we apply the notation

𝐱𝑁 (𝑡) ∶= (𝑥𝑁1 (𝑡),… , 𝑥𝑁𝑁 (𝑡)), 𝐦𝑁 (𝑡) ∶= (𝑚𝑁1 (𝑡),… , 𝑚𝑁𝑁 (𝑡)).

he weights 𝑚𝑁𝑖 (𝑡) can be interpreted as the proportion of the total population with opinion 𝑥𝑁𝑖 (𝑡). How the system (1.1) originates
rom real-life phenomena is beyond the scope of this work. Just to mention a few works which explain how this system models
henomena in biology and the social sciences, we refer to [3,13,16]. The system (1.1) is a weighted version of the first order 𝑁-body
roblem (simply by taking all the weights to be identically equal to 1), to which we now briefly draw our attention to. As to give
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an extensive review of the relevant literature, we momentarily consider arbitrary 𝑑 ≥ 1, although our main result is in 1D. By now,
the mean field limit of the 𝑁-body problem

𝑥̇𝑁𝑖 (𝑡) = 1
𝑁

𝑁
∑

𝑗=1
∇𝑉 (𝑥𝑁𝑗 (𝑡) − 𝑥𝑁𝑖 (𝑡)), 𝑥𝑁𝑖 (0) = 𝑥0,𝑁𝑖 (1.2)

is fairly well understood, even in the case of interactions with strong singularities near the origin — we will comment more about
this later on. This mean field limit is understood in terms of the empirical measure which is defined by

𝜇𝑁 (𝑡) ∶= 1
𝑁

𝑁
∑

𝑖=1
𝛿𝑥𝑁𝑖 (𝑡).

Thanks to the work of Dobrushin [7], and assuming ∇𝑉 is Lipschitz, it is possible to show that 𝜇𝑁 (𝑡) converges to the solution 𝜇 of
he Vlasov equation

𝜕𝑡𝜇(𝑡, 𝑥) − div(𝜇∇𝑉 ⋆ 𝜇)(𝑡, 𝑥) = 0, 𝜇(0, ⋅) = 𝜇0 (1.3)

ith respect to the Wasserstein metric (provided this is true initially of course). When time dependent weights are included the
roblem is rendered difficult, since now the candidate for the empirical measure is

𝜇𝑁 (𝑡) ∶= 1
𝑁

𝑁
∑

𝑖=1
𝑚𝑁𝑖 (𝑡)𝛿𝑥𝑁𝑖 (𝑡)

and formal considerations (see Proposition 15 in [7]) suggest the following transport equation with self-consistent source term as
the target equation

𝜕𝑡𝜇(𝑡, 𝑥) − div(𝜇∇𝑉 ⋆ 𝜇)(𝑡, 𝑥) = ℎ[𝜇](𝑡, 𝑥), 𝜇(0, ⋅) = 𝜇0. (1.4)

Here ℎ[𝜇] is the self-consistent source term which arises from the inclusion of weights, and for the moment we do not specify it.
Already at the level of the well posedness theory of the target Eq. (1.4) and the system (1.1) some care is needed, since apriori
it is not entirely that the solution stays a probability density for all times. The well-posedness of Eqs. (1.1) and (1.4) as well as
the weighted mean field limit has been successfully established in [3,8] in arbitrary dimension and for interactions with Lipschitz
gradient. The approach in [8] is based on stability estimates for the Wasserstein distance, which imply both well-posedness and
mean field limit, whereas the approach in [3] recovers to some extent the mean field limit obtained in [8], and is based on the
graph limit method. We refer also to [14,15] for more details about the graph limit regime and its link with the mean field limit.
Other works which consider weighted opinion dynamics are [10], in which the weights are taken to be time-independent, but may
vary from one opinion to another, and [16] which serves as a general survey.

1.2. Main results

All the existing literature reviewed so far concerns arbitrary dimension and relatively well behaved potentials in terms of
regularity, typically with at least locally Lipschitz gradient. It is the aim of this work to investigate how to overcome the challenges
created due to singular potentials in 1D. In particular, we consider the attractive 1D Coulomb interaction 𝑉 (𝑥) = |𝑥| (so that
𝜕𝑥𝑉 = sgn(𝑥), with the convention sgn(0) = 0). In addition, we add further limitations on the equation governing the weights,
namely we take

𝜓𝑁𝑖 (𝐱𝑁 ,𝐦𝑁 ) = 1
𝑁

𝑁
∑

𝑗=1
𝑚𝑁𝑖 𝑚

𝑁
𝑗 𝑆(𝑥

𝑁
𝑗 − 𝑥𝑁𝑖 ) (1.5)

where 𝑆 ∈ 𝐶∞
0 (R) is assumed to be odd. From the opinion modelling point of view, the value |𝑆(𝑥𝑁𝑗 − 𝑥𝑁𝑖 )| in (1.5) can be interpreted

as the rate of change from opinion 𝑥𝑁𝑖 to 𝑥𝑁𝑗 at a given time. In view of this interpretation the oddness of the function 𝑆 is natural
from the assumption of conservation of the total population of individuals. In fact, it means that the proportion of individuals that
change their opinion from value 𝑥𝑁𝑖 to value 𝑥𝑁𝑗 is the opposite of the individuals that change their opinion from value 𝑥𝑁𝑗 to value
𝑥𝑁𝑖 at a given time. Note that at a first glance it seems we allow that at any given time the individuals can change abruptly from
opinion 𝑥𝑁𝑖 to opinion 𝑥𝑁𝑗 . However, if the rate function 𝑆 is of compact support, as in our main result in Theorem 4.1, then the
allowed change of opinion is local and smooth. As we already mentioned, this parity condition turns out to be important for the
purpose of guaranteeing preservation of the total mass. For these choices, the system (2.1) takes the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥̇𝑁𝑖 (𝑡) = 1
𝑁

𝑁
∑

𝑗=1
𝑚𝑁𝑗 (𝑡) sgn(𝑥𝑁𝑗 (𝑡) − 𝑥𝑁𝑖 (𝑡)), 𝑥𝑁𝑖 (0) = 𝑥0,𝑁𝑖 ,

𝑚̇𝑁𝑖 (𝑡) = 1
𝑁

𝑁
∑

𝑗=1
𝑚𝑁𝑖 (𝑡)𝑚𝑁𝑗 (𝑡)𝑆(𝑥𝑁𝑗 (𝑡) − 𝑥𝑁𝑖 (𝑡)), 𝑚𝑁𝑖 (0) = 𝑚0,𝑁

𝑖 .

(1.6)

In this case, the mean field equation takes the form

𝜕𝑡𝜇(𝑡, 𝑥) − 𝜕𝑥

(

𝜇(𝑡, 𝑥)
𝑥
𝜇(𝑡, 𝑦)𝑑𝑦 − 𝜇(𝑡, 𝑥)

∞
𝜇(𝑡, 𝑦)𝑑𝑦

)

= 𝜇(𝑡, 𝑥)𝑆 ⋆ 𝜇(𝑡, 𝑥), 𝜇(0, 𝑥) = 𝜇0.
2

∫−∞ ∫𝑥
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When the kernel 𝑆 is odd one expects that 𝜇 stays a probability density for all times and therefore the equation formally transforms
to

𝜕𝑡𝜇(𝑡, 𝑥) − 𝜕𝑥

(

𝜇(𝑡, 𝑥)
(

2∫

𝑥

−∞
𝜇(𝑡, 𝑦)𝑑𝑦 − 1

))

= 𝜇(𝑡, 𝑥)𝑆 ⋆ 𝜇(𝑡, 𝑥), 𝜇(0, 𝑥) = 𝜇0. (1.7)

Setting 𝐹 (𝑡, 𝑥) = − 1
2 + ∫ 𝑥−∞ 𝜇(𝑡, 𝑦)𝑑𝑦 and integrating both sides of Eq. (1.7), we arrive (still at the formal level) at the following non

local Burgers type equation for 𝐹

𝜕𝑡𝐹 + 𝜕𝑥(𝐴(𝐹 )) = 𝐒[𝐹 ](𝑡, 𝑥) (1.8)

here 𝐴(𝐹 ) ∶= −𝐹 2 and

𝐒[𝐹 ](𝑡, 𝑥) ∶= 𝐹 (𝑡, 𝑥)(𝜙 ⋆ 𝐹 )(𝑡, 𝑥) − ∫

𝑥

−∞
𝐹 (𝑡, 𝑧)(𝜕𝑧𝜙 ⋆ 𝐹 )(𝑡, 𝑧)𝑑𝑧, 𝜙 ∶= 𝜕𝑥𝑆.

f course, the definition of 𝐒[𝐹 ] is motivated by integrating by parts the expression ∫ 𝑥−∞ 𝜕𝑧𝐹 (𝑡, 𝑧)(𝑆 ⋆ 𝜕𝑧𝐹 )(𝑡, 𝑥)𝑑𝑧. The idea of
analysing the equation for the primitive of 𝜇 stems from the work [4] which studies the homogeneous Burgers equation. The
advantage of Eq. (1.8) in comparison to (1.7) is that the flux term is local, which raises the hope that a well posedness theory
is in reach. We refer to [6] for a well posedness theory in the case of non-local fluxes (yet with no source term). By closely adapting
the method introduced in [12] (which has its roots in the classical Kruzkov entropy) we are able to simultaneously prove the 𝐵𝑉 -well
posedness of Eq. (1.8), and derive the unique solution of (1.8) in the limit as 𝑁 → ∞ of the primitive of the empirical measure
(shifted by − 1

2 in order to ensure proper cancellation), namely

𝐹𝑁 (𝑡, 𝑥) ∶= −1
2
+ 1
𝑁

𝑁
∑

𝑘=1
𝑚𝑁𝑘 (𝑡)𝐻(𝑥 − 𝑥𝑁𝑘 (𝑡))

where 𝐻 is the Heaviside function. A notable difference with respect to [12] is that we deal with time dependent fluxes for the
approximation sequence of conservation laws with sources satisfied by 𝐹𝑁 associated to the particle system (1.6), see (3.2) below.
n addition, we also face technical difficulties in checking the entropy conditions of the accumulation limits of the sequence 𝐹𝑁
ue to the time dependency. Other differences which put our work in variance with [12] are reflected in the well-posedness for
he system (1.1), the handling of the different source term, and the verification that 𝐹𝑁 is an entropy solution of (a discretized
ersion of) Eq. (1.8). We stress that the 1D settings are essential for the analysis to be carried out properly. In the context of higher
imensions, we mention the recent breakthrough [18], in which the author succeeded in deriving Eq. (1.3) from the system (1.2)
or interaction which may have even stronger singularities than Coulomb. The modulated energy strategy in [18] is well suited for
igher dimensions, which raises the interesting question whether this strategy can be extended to the framework of the present
ork in which time dependent weights are considered.

In Section 2 we fix some notation, prove the well posedness of the system (1.1) for the case of the 1D attractive Coulomb
nteraction and record other basic properties of the solutions of the ODE system. Section 3 is aimed at constructing a discretized
lux and showing that 𝐹𝑁 satisfies the Burgers equation associated with this flux. Section 4 is devoted towards proving Theorem 4.1,
he main result of this work. The mean field limit and the 𝐵𝑉 -well posedness of Eq. (1.8) are the content of Theorem 4.1.

. Preliminaries

For readability, the upper index 𝑁 of the opinions/weights appears implicitly in the sequel. Consider the weighted 𝑁-body
roblem

⎧

⎪

⎨

⎪

⎩

𝑥̇𝑖(𝑡) =
1
𝑁

∑

1≤𝑗≤𝑁∶𝑗≠𝑖
𝑚𝑗 (𝑡)sgn(𝑥𝑗 (𝑡) − 𝑥𝑖(𝑡)), 𝑥𝑖(0) = 𝑥0𝑖 ,

𝑚̇𝑖(𝑡) = 𝜓𝑁𝑖 (𝐱𝑁 (𝑡),𝐦𝑁 (𝑡)), 𝑚𝑖(0) = 𝑚0
𝑖 .

(2.1)

For the purpose of establishing well posedness of the system (2.1) on short times it is not strictly necessary to take 𝜓𝑁𝑖 to be of the
form (1.5). However, in order to have well-posedness for all times this special form, and specifically the oddness of 𝑆 seems to be
needed at least to some extent. The hypotheses that we impose on 𝜓𝑁𝑖 in the sequel are identical to those specified in [3] and are
ecalled below.

ypothesis (H1). There is a constant 𝐿 > 0 such that for all
(

𝐱𝑁 , 𝐲𝑁 ,𝐦𝑁 ,𝐩𝑁
)

∈ R4𝑁 the inequalities
|

|

|

𝜓𝑁𝑖 (𝐱𝑁 ,𝐦𝑁 ) − 𝜓𝑁𝑖 (𝐲𝑁 ,𝐦𝑁 )||
|

≤ 𝐿 |

|

𝐱𝑁 − 𝐲𝑁 |

|

,

|

|

|

𝜓𝑁𝑖 (𝐱𝑁 ,𝐦𝑁 ) − 𝜓𝑁𝑖 (𝐱𝑁 ,𝐩𝑁 )||
|

≤ 𝐿 |

|

𝐦𝑁 − 𝐩𝑁 |

|

old. In addition, there is a constant 𝐶 > 0 such that and for each
(

𝐱𝑁 ,𝐦𝑁
)

∈ R4𝑁 it holds that
|

|𝜓𝑁 (𝐱 ,𝐦 )|| ≤ 𝐶(1 + max |𝑚 |). (2.2)
3

|

𝑖 𝑁 𝑁
| 1≤𝑘≤𝑁 | 𝑘|
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We shall hereafter supress the dependence on 𝑁 of the opinions/weights whenever this dependence is irrelevant. Since we wish
to prove well posedness on a time interval which does not shrink to zero as 𝑁 → ∞, a natural assumption to impose is that the
opinions are separated initially, i.e.

∀𝑁 ∈ N ∶ 𝑥01 <⋯ < 𝑥0𝑁 . (2.3)

2.1. Filippov solutions

Before embarking on the task of establishing the stability estimates, we must first prove the existence of a solution to Eq. (1.6)
on some time interval [0, 𝑇 ], where 𝑇 is independent of 𝑁 (because eventually we wish to take 𝑁 → ∞). It is the aim of this section
to explain how this is achieved — in fact we will prove existence for arbitrarily large times. First, let us be lucid about the notion of
solution that we work with. We start by examining the more general ODE (2.1) and we specify later the stage in which the special
form (1.5) comes into play.

Definition 2.1. A classical solution of the system (2.1) on [0, 𝑇 ] is an absolutely continuous curve 𝑡 ↦ (𝐱𝑁 (𝑡),𝐦𝑁 (𝑡)) ∈
AC([0, 𝑇 ];R2𝑁 ) such that the system (2.1) is satisfied for a.e. 𝑡 ∈ [0, 𝑇 ]. Equivalently, for all 𝑡 ∈ [0, 𝑇 ] it holds that

𝑥𝑖(𝑡) = 𝑥0𝑖 + ∫

𝑡

0

1
𝑁

∑

1≤𝑗≤𝑁∶𝑗≠𝑖
𝑚𝑗 (𝜏) sgn

(

𝑥𝑗 (𝜏) − 𝑥𝑖(𝜏)
)

𝑑𝜏,

𝑚𝑖(𝑡) = 𝑚0
𝑖 + ∫

𝑡

0
𝜓𝑁𝑖 (𝐱𝑁 (𝜏),𝐦𝑁 (𝜏))𝑑𝜏.

In order to prove existence of solutions in the sense of Definition 2.1 it is convenient to use the machinery of differential inclusions
as developed by Filippov [9]. The special form (1.6) is irrelevant for what concerns the abstract theory of Filippov. First we must
review some basic definitions and facts from convex analysis. Let us recall how to view the system (2.1) as a differential inclusion.
Let 𝛺 ⊂ R𝑙 be some domain. Given a vector field 𝑓 ∶ 𝛺 → R𝑙 whose set of discontinuities is 𝐷 we assign to it a set valued map
[𝑓 ] ∶ 𝛺 → 2R𝑙 defined as

[𝑓 ](𝑋) ∶=

⎧

⎪

⎨

⎪

⎩

lim
𝑋∗→𝑋
𝑋∗∉𝐷

𝑓 (𝑋∗)

⎫

⎪

⎬

⎪

⎭

.

With this notation define the set valued map  [𝑓 ] ∶ 𝛺 → 2R𝑙by

 [𝑓 ](𝑋) ∶= co[𝑓 ](𝑋), (2.4)

where co stands for the convex hull.

Remark 2.1. In the context of system (2.1) we take 𝑓 (𝐱𝑁 ,𝐦𝑁 ) to be the vector
(

1
𝑁

∑

1≤𝑗≤𝑁
𝑚1sgn(𝑥𝑗 − 𝑥1),… , 1

𝑁
∑

1≤𝑗≤𝑁
𝑚𝑁 sgn(𝑥𝑗 − 𝑥𝑁 ), 𝜓𝑁1 (𝐱𝑁 ,𝐦𝑁 ),… , 𝜓𝑁𝑁 (𝐱𝑁 ,𝐦𝑁 )

)

. (2.5)

Next, we recall the notion of upper-semicontinuity.

efinition 2.2. For each closed sets 𝐴,𝐵 ⊂ 𝛺 let 𝛽(𝐴,𝐵) ∶= sup𝑎∈𝐴 inf𝑏∈𝐵 |𝑎 − 𝑏|. A function  ∶ 𝛺 → 2R𝑙 is said to be
pper-semicontinuous at 𝑝 ∈ 𝛺 if lim

𝑝′→𝑝
𝛽( (𝑝), (𝑝′)) = 0. If  is upper-semicontinuous for each 𝑝 ∈ 𝛺 then we say that it is

pper-semicontinuous.

On the other hand, recall the notion of a solution to a differential inclusion

efinition 2.3. Let  ∶ 𝛺 → 2R𝑙 be a set valued map. A solution on [𝑇 , 𝑇 ] to the differential inclusion

𝑋̇(𝑡) ∈  (𝑋(𝑡)) (2.6)

s an absolutely continuous map 𝑋 ∶ [𝑇 , 𝑇 ] → R𝑙 such that (2.6) holds for a.e. 𝑡 ∈ [𝑇 , 𝑇 ].

The existence theory of differential inclusions has been developed by several different groups (Just to mention a few, see [1,2,9]).
e follow [9], and by no means aim to give an exhaustive overview of this rich theory. The following theorem is the main tool

hat we need to get existence for the opinion dynamics.

heorem 2.1 ([9], Theorem 1, Page 77). Let  ∶ R𝑙 → 2R𝑙 be such that
1.  (𝑥) ≠ ∅ for all 𝑥 ∈ 𝛺.
2.  (𝑥) is compact and convex for all 𝑥 ∈ 𝛺.
3.  is upper-semicontinuous.
4
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Then for any 𝑇 > 0 and any 𝑋𝑇 ∈ R𝑙 there exist a solution (in the sense of Definition 2.3 ) to the differential inclusion

𝑋̇(𝑡) ∈  (𝑋(𝑡)), 𝑋(𝑇 ) = 𝑋𝑇

on the time interval [𝑇 , 𝑇 ].

Here is a convenient criteria for upper semi-continuity

emma 2.1 ([9], Lemma 3, Page 67). Let 𝑓 ∶ 𝛺 → R𝑙 be piecewise continuous and let  [𝑓 ] be defined as in (2.4). Then  [𝑓 ] is
upper-semicontinuous.

We can now gather all of the above reminders to get the following important conclusion

Corollary 2.1. Let 𝜓𝑁𝑖 satisfy (H1). Let 𝑓 ∶ R2𝑁 → R2𝑁 be given by (2.5). For any 𝑇 > 0 and any (𝐱𝑇𝑁 ,𝐦
𝑇
𝑁 ) ∈ R2𝑁 there exist a solution

to the differential inclusion

(𝐱̇𝑁 , 𝐦̇𝑁 ) ∈  [𝑓 ](𝐱𝑁 (𝑡),𝐦𝑁 (𝑡)), (𝐱𝑁 (𝑇 ),𝐦𝑁 (𝑇 )) = (𝐱𝑇𝑁 ,𝐦
𝑇
𝑁 )

n [𝑇 , 𝑇 ].

roof. That [𝑓 ](𝑝) is compact is an immediate consequence of the easy observation that [𝑓 ] is finite set-valued map. For the same
reason  [𝑓 ](𝑝) is the set of all convex combinations of the points of [𝑓 ](𝑝), and is therefore compact (see, e.g., page 62 in [9]). By
Lemma 2.1,  [𝑓 ] is upper-semicontinuous, so that by Theorem 2.1 the claim follows. □

It is important to observe that when 𝑓 is continuous, the map  [𝑓 ] is single valued and as a result the corresponding differential
inclusion reduces to an ODE in the sense of Definition 2.1. This observation, as well as the special structure which arises from
the attractive interaction and forces opinions to stick together, allows us to construct solutions to the system (2.1) in the sense of
Definition 2.1. We now return to the form (1.6). The following proposition is the main result of this section.

Proposition 2.1. Let assumption (2.3) hold and suppose 𝑚0
𝑖 > 0 and 1

𝑁
∑𝑁
𝑖=1 𝑚

0
𝑖 = 1. Let 𝑆 be odd, continuous and bounded. For each

𝑇 > 0 there exist a solution on [0, 𝑇 ] to the system (1.6) (in the sense of Definition 2.1).

Proof. Step 1(a). Preservation of total mass. Let 𝑇 > 0 and let (𝐱𝑁 (𝑡),𝐦𝑁 (𝑡)) be some solution on [0, 𝑇 ] given by Corollary 2.1.
or each 1 ≤ 𝑖 ≤ 2𝑁 let f𝑖 ∶ R2𝑁 → R2𝑁 be the vector field whose 𝑖th component identifies with the 𝑖th component of 𝑓 and is 0 in
ll other components, so that 𝑓 =

∑2𝑁
𝑖=1 f𝑖. By subadditivity of  [𝑓 ] we have

 [𝑓 ] ⊂
2𝑁
∪
𝑖=1

 [f𝑖].

ince the functions 𝜓𝑁𝑖 are continuous,  [f𝑖] =
{

f𝑖
}

for each 𝑁 + 1 ≤ 𝑖 ≤ 2𝑁 , so that the weights are governed by an ODE, namely
or a.e. 𝑡 ∈ [0, 𝑇 ] one has

𝑚̇𝑖(𝑡) = 𝜓𝑁𝑖 (𝐱𝑁 (𝑡),𝐦𝑁 (𝑡)), 𝑚𝑖(0) = 𝑚0
𝑖 .

We claim that the total mass is preserved. Indeed, using that 𝑆 is odd, let us compute

1
𝑁

𝑁
∑

𝑘=1
𝑚̇𝑘(𝑡) =

1
𝑁2

𝑁
∑

𝑘=1

𝑁
∑

𝑗=1
𝑚𝑘(𝑡)𝑚𝑗 (𝑡)𝑆(𝑥𝑗 (𝑡) − 𝑥𝑘(𝑡)) = − 1

𝑁2

𝑁
∑

𝑘=1

𝑁
∑

𝑗=1
𝑚𝑘(𝑡)𝑚𝑗 (𝑡)𝑆(𝑥𝑘(𝑡) − 𝑥𝑗 (𝑡))

= − 1
𝑁2

𝑁
∑

𝑗=1
𝑚𝑗 (𝑡)

𝑁
∑

𝑘=1
𝑚𝑘(𝑡)𝑆(𝑥𝑘(𝑡) − 𝑥𝑗 (𝑡)) = − 1

𝑁

𝑁
∑

𝑗=1
𝑚̇𝑗 (𝑡).

s a result we get

𝑑
𝑑𝑡

1
𝑁

𝑁
∑

𝑘=1
𝑚𝑘(𝑡) = 0,

o that

1
𝑁

𝑁
∑

𝑘=1
𝑚𝑘(𝑡) =

1
𝑁

𝑁
∑

𝑘=1
𝑚0
𝑘 = 1.

Step 1(b). Weights remain positive. We claim that 𝑚𝑖(𝑡) > 0 for all 𝑡 ∈ [0, 𝑇 ]. Indeed using preservation of total mass we obtain

|

|

|

|

𝑑
𝑑𝑡

1
2
log

(

𝑚2
𝑖 + 𝜀

2)|
|

|

|

=
|

|

|

|

|

𝑚𝑖(𝑡)𝑚̇𝑖(𝑡)
𝑚2
𝑖 + 𝜀2

|

|

|

|

|

=
|

|

|

|

|

|

𝑚2
𝑖 (𝑡)

(𝑚2
𝑖 (𝑡) + 𝜀2)𝑁

𝑁
∑

𝑗=1
𝑚𝑗 (𝑡)𝑆(𝑥𝑗 (𝑡) − 𝑥𝑖(𝑡))

|

|

|

|

|

|

≤ ‖𝑆‖∞ ,

hence

− ‖𝑆‖ ≤ 1 𝑑 log
(

𝑚2(𝑡) + 𝜀2
)

≤ ‖𝑆‖ .
5

∞ 2 𝑑𝑡 𝑖 ∞
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Integration in time yields the for all 𝑡 ∈ [0, 𝑇 ] the estimate

−2 ‖𝑆‖∞ 𝑡 + log
(

(𝑚0
𝑖 )

2 + 𝜀2
)

≤ log
(

𝑚2
𝑖 + 𝜀

2) ≤ 2 ‖𝑆‖∞ 𝑡 + log
(

(𝑚0
𝑖 )

2 + 𝜀2
)

,

nd consequently
(

(𝑚0
𝑖 )

2 + 𝜀2
)

exp(−2 ‖𝑆‖∞ 𝑡) ≤ 𝑚2
𝑖 (𝑡) + 𝜀

2 ≤
(

(𝑚0
𝑖 )

2 + 𝜀2
)

exp(2 ‖𝑆‖∞ 𝑡).

etting 𝜀→ 0 gives

(𝑚0
𝑖 )

2 exp(−2 ‖𝑆‖∞ 𝑡) ≤ 𝑚2
𝑖 (𝑡) ≤ (𝑚0

𝑖 )
2 exp(2 ‖𝑆‖∞ 𝑡).

In particular 𝑚𝑖(𝑡) does not vanish on [0, 𝑇 ], which by continuity and the assumption 𝑚in
𝑖 > 0 implies 𝑚𝑖(𝑡) > 0 for all 𝑡 ∈ [0, 𝑇 ] with

the estimate

𝑚0
𝑖 exp(− ‖𝑆‖∞ 𝑡) ≤ 𝑚𝑖(𝑡) ≤ 𝑚0

𝑖 exp(‖𝑆‖∞ 𝑡).

Step 2. Construction of a classical solution on [0, 𝑇 ]. The idea is to apply an iteration argument which terminates after at
most 𝑁 steps. This iteration proceeds as follows. The assumption that ∀𝑖 ≠ 𝑗 ∶ 𝑥0𝑖 ≠ 𝑥0𝑗 implies that ∀𝑖 ≠ 𝑗 ∶ 𝑥𝑖(𝑡) ≠ 𝑥𝑗 (𝑡) on some
sufficiently (possibly 𝑁-dependent) short time interval (by continuity). As a result the solution is classical on some short time —
by the same argument at the beginning of Step 1(a). Let

𝑇 ∗
1 = sup

{

0 < 𝑇 ≤ 𝑇 |

|

|

∀𝑡 ∈ [0, 𝑇 ),∀𝑖 ≠ 𝑗 ∶ 𝑥𝑖(𝑡) ≠ 𝑥𝑗 (𝑡)
}

.

If 𝑇 ∗
1 = 𝑇 we are done. If 𝑇 ∗

1 < 𝑇 , consider the set of all collisions at time 𝑇 ∗
1 with the 𝑖th particle, i.e.

𝐽 𝑖1 ∶=
{

𝑗 ≠ 𝑖 ||
|

𝑥𝑖(𝑇 ∗
1 ) = 𝑥𝑗 (𝑇 ∗

1 )
}

,

and set

𝑓 1
𝑖 (𝐱𝑁 ,𝐦𝑁 ) ∶= 1

𝑁
∑

𝑗∉𝐽 𝑖1

𝑚𝑗sgn(𝑥𝑗 − 𝑥𝑖),

and

𝑓 1 ∶= (𝑓 1
1 ,… , 𝑓 1

𝑁 ).

Obviously 𝐽 𝑖1 = 𝐽 𝑗1 iff 𝑗 ∈ 𝐽 𝑖1. From the same consideration as before the solution of the differential inclusion

𝐱̇𝑁,1 ∈  [𝑓 1](𝐱𝑁,1(𝑡)), 𝐱𝑁,1(𝑇 ∗
1 ) = 𝐱𝑁 (𝑇 ∗

1 )

satisfies 𝑥𝑖(𝑡) ≠ 𝑥𝑗 (𝑡) for all 1 ≤ 𝑖 ≤ 𝑁 and 𝑗 ∈ [𝑁] ⧵ 𝐽 𝑖1 with 𝑖 ≠ 𝑗, and is classical (both of these conclusions hold on some short time
of course). Let

𝑇 ∗
2 = sup

{

𝑇 ∗
1 < 𝑇 ≤ 𝑇 |

|

|

∀𝑡 ∈ [𝑇 ∗
1 , 𝑇 ),∀1 ≤ 𝑖 ≤ 𝑁,∀𝑗 ∈ [𝑁] ⧵ 𝐽 𝑖1, 𝑖 ≠ 𝑗 ∶ 𝑥𝑖(𝑡) ≠ 𝑥𝑗 (𝑡)

}

.

If 𝑇 ∗
2 = 𝑇 , then consider the curve

𝐲𝑁 (𝑡) =

{

𝐱𝑁 (𝑡), 𝑡 ∈ [0, 𝑇 ∗
1 ]

𝐱𝑁,1(𝑡) 𝑡 ∈ (𝑇 ∗
1 , 𝑇 ]

.

In this case we make use of the attractive structure, which implies that opinions which collided remain so, in order to show that
𝑁 (𝑡) is a solution:

laim 2.1. The curve (𝐲𝑁 (𝑡),𝐦𝑁 (𝑡)) is a solution to the system (1.6) on [0, 𝑇 ].

roof. The curve 𝐲𝑁 (𝑡) solves the Eq. (1.6) on [0, 𝑇 ∗
1 ]. To see that 𝐲𝑁 (𝑡) solves the equation on (𝑇 ∗

1 , 𝑇 ] we need to explain why
articles that collided at time 𝑇 ∗

1 remain collided for all 𝑡 > 𝑇 ∗
1 . Indeed, suppose on the contrary that 𝑥𝑖0 (𝑇

∗
1 ) = 𝑥𝑗0 (𝑇

∗
1 ) for some

0 ≠ 𝑗0, but

𝜏 ∶= inf
{

𝑇 ∗
1 < 𝑡 ≤ 𝑇 |

|

|

𝑥𝑖0 (𝑡) ≠ 𝑥𝑗0 (𝑡)
}

> 0,

o that 𝑥𝑖0 (𝜏) = 𝑥𝑗0 (𝜏). We may assume with no loss of generality that 𝑥𝑖0 (𝑡) − 𝑥𝑗0 (𝑡) > 0 on some sufficiently small time interval
𝜏, 𝜏) ⊂ (𝜏, 𝑇 ]. Let

𝜏 ∶= inf
{

𝜏 < 𝜏′ < 𝜏|∀𝑡 ∈ (𝜏′, 𝜏) ∶ 𝑥 (𝑡) − 𝑥 (𝑡) > 0
}

,

6

∗ | 𝑖0 𝑗0
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so that 𝑥𝑖0 (𝑡) − 𝑥𝑗0 (𝑡) > 0 for all 𝑡 ∈ (𝜏∗, 𝜏) and 𝑥𝑖0 (𝜏∗) = 𝑥𝑗0 (𝜏∗). On the other hand, since 𝐽 𝑖01 = 𝐽 𝑗01 , for a.e. 𝑡 ∈ (𝜏∗, 𝜏) we compute
that

𝑥̇𝑖0 (𝑡) − 𝑥̇𝑗0 (𝑡) =
1
𝑁

∑

𝑗∉𝐽 𝑖01

𝑚𝑗 (𝑡)(sgn(𝑥𝑗 (𝑡) − 𝑥𝑖0 (𝑡)) − sgn(𝑥𝑗 (𝑡) − 𝑥𝑗0 (𝑡)))

= 1
𝑁

∑

𝑗∉𝐽 𝑖01 ∶𝑥𝑖0 (𝑡)≥𝑥𝑗≥𝑥𝑗0 (𝑡)

𝑚𝑗 (𝑡)(sgn(𝑥𝑗 − 𝑥𝑖0 ) − sgn(𝑥𝑗 − 𝑥𝑗0 )) ≤ 0,
(2.7)

hich implies that for all 𝑡 ∈ (𝜏∗, 𝜏)

𝑥𝑖0 (𝑡) − 𝑥𝑗0 (𝑡) ≤ 𝑥𝑖0 (𝜏∗) − 𝑥𝑗0 (𝜏∗) = 0,

which is absurd. Remark that Inequality (2.7) is thanks to the fact the weights are positive (step 1(b)). Therefore 𝑥𝑖0 (𝑡) = 𝑥𝑗0 (𝑡) for
all 𝑡 > 𝑇 ∗

1 which shows that for all 𝑇 ∗
1 < 𝑡 ≤ 𝑇 it holds that

1
𝑁

∑

𝑗∉𝐽 𝑖01

sgn(𝑥𝑗 (𝑡) − 𝑥𝑖(𝑡)) =
1
𝑁

𝑁
∑

𝑗=1
sgn(𝑥𝑗 (𝑡) − 𝑥𝑖(𝑡)),

so that 𝐲𝑁 (𝑡) is a solution to the system (1.1) on (𝑇 ∗
1 , 𝑇 ] as well. □

If 𝑇 ∗
2 < 𝑇 , then we continue according to the algorithm described above, which must terminate after at most 𝑁 steps, thereby

ielding an absolutely continuous curve 𝐲𝑁 (𝑡) on [0, 𝑇 ]. The same argument demonstrated in Claim 2.1 shows that 𝐲𝑁 (𝑡) is a solution
o the system (1.6). □

We finish this section by observing a few elementary properties of solutions to (1.6). First we stress that any classical solution
n some given time interval to the system (1.6) must satisfy the ‘‘sticky opinions property’’, namely that opinions that collide stay
ollided. As a result there exist a finite partition of the time interval into sub-intervals on each of which no new collisions occur.
oreover, opinions preserve the initial ordering. This is summarized in the following

roposition 2.2. Let the assumptions of Proposition 2.1 hold. Let (𝐱𝑁 (𝑡),𝐦𝑁 (𝑡)) be a solution to system (1.6) (in the sense of Definition
.1) on some time interval [0, 𝑇 ]. There exist 0 = 𝑇0 < 𝑇1 <⋯ < 𝑇𝑘−1 < 𝑇𝑘 = 𝑇 (1 ≤ 𝑘 ≤ 𝑁) such that for any given 1 ≤ 𝑙 ≤ 𝑘 it holds that

for any given 1 ≤ 𝑖, 𝑗 ≤ 𝑁 either ∀𝑡 ∈ [𝑇𝑙−1, 𝑇𝑙) ∶ 𝑥𝑖(𝑡) = 𝑥𝑗 (𝑡) or ∀𝑡 ∈ [𝑇𝑙−1, 𝑇𝑙) ∶ 𝑥𝑖(𝑡) ≠ 𝑥𝑗 (𝑡). Moreover, 𝑥1(𝑡) ≤ ⋯ ≤ 𝑥𝑁 (𝑡), 𝑡 ∈ [0, 𝑇 ].

A careful examination of the argument in Proposition 2.1 reveals that the proof of Proposition 2.2 is in fact implicitly included
n that of Proposition 2.1 , and is therefore omitted. This is just to clarify that the ‘‘sticky opinions property’’ is not some kind of
n extra assumption. In addition, for the mean field limit it is important to observe that

𝐹𝑁 (𝑡, 𝑥) ∶= −1
2
+ 1
𝑁

𝑁
∑

𝑘=1
𝑚𝑘(𝑡)𝐻(𝑥 − 𝑥𝑘(𝑡)), (2.8)

becomes constant for any 𝑥 outside some interval, which is a consequence of preservation of total mass — this is precisely the place
where we use the assumption that 𝑆 is odd. This would allow to obtain stability estimates globally in 𝐿1 (rather only in 𝐿1

loc) and
is recorded in the following simple

Lemma 2.2. Let the assumptions of Proposition 2.1 hold. Suppose also there is some 𝑋 such that for all 𝑁 ∈ N and 1 ≤ 𝑖 ≤ 𝑁 it holds
hat ||

|

𝑥0𝑖
|

|

|

≤ 𝑋. Then, there exist some 𝑅 = 𝑅(‖𝑆‖∞ , 𝑋, 𝑇 ) > 0 such that for any 𝐹𝑁 (𝑡,±𝑥) = ± 1
2 for all 𝑡 ∈ [0, 𝑇 ] and |𝑥| > 𝑅.

Proof. Thanks to the equation for the opinions, the bound for the masses in step 1 of Proposition 2.1 and the assumption on the
initial opinions, we have

|

|

𝑥𝑖(𝑡)|| ≤
|

|

|

𝑥0𝑖
|

|

|

+ 1
𝑁

∑

1≤𝑗≤𝑁∶𝑗≠𝑖
∫

𝑡

0

|

|

|

𝑚𝑗 (𝜏)
|

|

|

𝑑𝜏 ≤ 𝑋 +𝑀𝑇 ,

for some 𝑀 =𝑀(‖𝑆‖∞ , 𝑇 ). Set 𝑅 = 𝑅(𝑇 ,𝑋,𝑀) ∶= 𝑋 +𝑀𝑇 . Then according, for all 𝑥 ≥ 𝑅 it holds that

𝐻(𝑥 − 𝑥𝑘(𝑡)) = 1

while for all 𝑥 < −𝑅 it holds that

𝐻(𝑥 − 𝑥𝑘(𝑡)) = 0.

Keeping in mind step 1 of Proposition 2.1 we conclude that for all 𝑥 > 𝑅 and 𝑡 ∈ [0, 𝑇 ]

𝐹𝑁 (𝑡, 𝑥) = −1
2
+ 1
𝑁

𝑁
∑

𝑘=1
𝑚𝑘(𝑡) = −1

2
+ 1 = 1

2
,

while for all 𝑥 < −𝑅 and 𝑡 ∈ [0, 𝑇 ]

𝐹 (𝑡, 𝑥) = −1 + 0 = −1 . □
7
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3. The discretized version of the Burgers-type equation

In this section we construct a discretization of the flux by means of the weights, and then show that 𝐹𝑁 is an entropy solution
or the corresponding Burgers like equation — that is Eq. (1.8), with the only difference being that the flux 𝐴 is replaced by a
iscretized approximation thereof. As usual, we assume that the opinion are ordered increasingly, i.e.,

𝑥01 < 𝑥
0
2 < ⋯ < 𝑥0𝑁 .

hroughout this section we always work under the assumptions of Proposition 2.1 and take 𝑡 ↦ (𝐱𝑁 (𝑡),𝐦𝑁 (𝑡)) to be a solution of
he system (1.6). For each 0 ≤ 𝑖 ≤ 𝑁 we set

𝜃𝑖(𝑡) ∶=

⎧

⎪

⎨

⎪

⎩

− 1
2 + 1

𝑁

𝑖
∑

𝑗=1
𝑚𝑗 (𝑡), 1 ≤ 𝑖 ≤ 𝑁,

− 1
2 , 𝑖 = 0.

ote that since the weights are positive for all times (step 1 in Proposition 2.1 ) the 𝜃𝑖 are ordered increasingly

−1
2
≡ 𝜃0(𝑡) <⋯ < 𝜃𝑁 (𝑡) ≡ 1

2
.

he discretized flux, denoted 𝐴𝑁 (𝑡, 𝑥), is defined for each 𝑡 to be the (unique) continuous, piecewise linear function with break
points only at

(

𝜃𝑖(𝑡)
)𝑁−1
𝑖=1 such that 𝐴(𝑡, 𝜃𝑖(𝑡)) = 𝐴(𝜃𝑖(𝑡)). In other words for each 𝑥 ∈ (𝜃𝑖−1(𝑡), 𝜃𝑖(𝑡))

𝐴𝑁 (𝑡, 𝑥) ∶=
(

𝐴(𝜃𝑖(𝑡)) − 𝐴(𝜃𝑖−1(𝑡))
𝜃𝑖(𝑡) − 𝜃𝑖−1(𝑡)

)

(𝑥 − 𝜃𝑖(𝑡)) + 𝐴(𝜃𝑖(𝑡)).

Although the 𝐴𝑁 are time dependent, the following simple lemma shows that they approximate the time independent flux 𝐴.

Lemma 3.1. For each 𝑡 ∈ [0, 𝑇 ] and each 𝑥 ∈ [− 1
2 ,

1
2 ] it holds that

|

|

𝐴𝑁 (𝑡, 𝑥) − 𝐴(𝑥)|
|

≤
2𝑀Lip(𝐴|[− 1

2 ,
1
2 ]
)

𝑁
.

here 𝑀 is as in Lemma 2.2 .

Proof. Keep 𝑡 ∈ [0, 𝑇 ] fixed. Let 𝑥 ∈ [− 1
2 ,

1
2 ], and pick 1 ≤ 𝑖 ≤ 𝑁 such that 𝑥 ∈ [𝜃𝑖−1(𝑡), 𝜃𝑖(𝑡)]. By the above formula for 𝐴𝑁 we get

|

|

𝐴𝑁 (𝑡, 𝑥) − 𝐴(𝑥)|
|

≤
|

|

|

|

𝐴(𝜃𝑖(𝑡)) − 𝐴(𝜃𝑖−1(𝑡))
𝜃𝑖−1(𝑡) − 𝜃𝑖(𝑡)

(

𝑥 − 𝜃𝑖(𝑡)
)|

|

|

|

+ |

|

𝐴(𝜃𝑖(𝑡)) − 𝐴(𝑥)|| .

learly
|

|

|

|

𝑥 − 𝜃𝑖(𝑡)
𝜃𝑖−1(𝑡) − 𝜃𝑖(𝑡)

|

|

|

|

≤ 1,

so that

|

|

𝐴𝑁 (𝑡, 𝑥) − 𝐴(𝑥)|
|

≤ |

|

𝐴(𝜃𝑖(𝑡)) − 𝐴(𝜃𝑖−1(𝑡))|| + |

|

𝐴(𝜃𝑖(𝑡)) − 𝐴(𝑥)||

≤ 2Lip(𝐴|[− 1
2 ,

1
2 ]
) |
|

𝜃𝑖(𝑡) − 𝜃𝑖−1(𝑡)|| ≤
2𝑀Lip(𝐴|[− 1

2 ,
1
2 ]
)

𝑁
. □

The definition of entropy solutions originated in the celebrated work [11]. We recall the notion of entropy solution for
conservation laws with non-local source terms, which will be the notion of solution that we will use for what concerns the mean
field limit and the well posedness for the Cauchy problem of the Burgers equation.

Definition 3.1. Let 𝐴 ∈ 𝐶([0, 𝑇 ]; Lip[− 1
2 ,

1
2 ]). A function 𝐹 ∈ 𝐵𝑉 ([0, 𝑇 ] × R) is called an entropy solution of the equation

𝜕𝑡𝐹 + 𝜕𝑥(𝐴(𝑡, 𝐹 )) = 𝐒[𝐹 ](𝑡, 𝑥)

with initial data 𝐹 0 ∈ 𝐵𝑉 (R) if
(1) ∀𝑡 ∈ [0, 𝑇 ],∀𝑥 ≥ 𝑅 ∶ 𝐹 (𝑡,±𝑥) = ± 1

2 .
(2) The map 𝑥 ↦ 𝐹 (𝑡, 𝑥) is non-decreasing for any 𝑡 ∈ [0, 𝑇 ].
(3) 𝐹 (𝑡, ⋅) converges to 𝐹 0 as 𝑡 → 0+ in the sense of distributions.
(4) For any 𝜒 ∈ 𝐶∞

0 ((0, 𝑇 ) × R) and any 𝛼 ∈ R it holds that

∫

𝑇

0 ∫R

(

|𝐹 − 𝛼|𝜒𝑡 + sgn(𝐹 − 𝛼) (𝐴(𝐹 ) − 𝐴(𝛼)) 𝜕𝑥𝜒 + sgn(𝐹 − 𝛼)𝜒𝐒[𝐹 ](𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡 ≥ 0. (3.1)

emark 3.1. A particular byproduct of the requirements (1) and (2) is that for any 𝑡 ∈ [0, 𝑇 ] the total variation |

|

𝜕𝑥𝐹 (𝑡, ⋅)|| is a
8

robability measure.
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Remark 3.2. We emphasize that we can keep the classical definition of the convolution for the term 𝐒[𝐹 ] unlike in [12]. That is,
f supp(𝑆) ⊂ [−𝑟, 𝑟] we take 𝑅 = max

{

𝑟, 𝑅
}

(𝑅 as in Lemma 2.2 ) and realizing that

𝜙 ⋆ 𝐹 (𝑡, 𝑧) ∶= ∫

2𝑅

−2𝑅
𝜙(𝑧 − 𝜁 )𝐹 (𝑡, 𝜁)𝑑𝜁,

due to the definition of 𝑆 ⋆ 𝐹 , 𝜙 = 𝜕𝑧𝑆, and the fact that 𝐹 is constant outside the interval [−2𝑅, 2𝑅]. It is now evident that
𝜙 ⋆ 𝐹 , 𝜕𝑧𝜙 ⋆ 𝐹 ∈ 𝐶0([0, 𝑇 ] × R), which enables to make sense of the last term in the left hand side of inequality (3.1).

Next we claim that 𝐹𝑁 is an entropy solution to our Burgers equation but with a discretized flux,. i.e. the equation

𝜕𝑡𝐹𝑁 + 𝜕𝑥(𝐴𝑁 (𝑡, 𝐹𝑁 )) = 𝐒[𝐹𝑁 ](𝑡, 𝑥). (3.2)

To verify this we need to check that
i. 𝐹𝑁 is a classical solution on finitely many regions which form a disjoint partition of the whole domain (0, 𝑇 ) × R
ii. The Rankine–Hugoniot condition
iii. The Oleinik conditions.
It is classical that the verification of i-iii imply the integral inequality (3.1)- see Appendix for more details about this implication.

We start by verifying point 1. Let us recall that by Proposition 2.2 we know there exist finitely many times 0 = 𝑇0 < 𝑇1 < ⋯ <
𝑇𝑘−1 < 𝑇𝑘 = 𝑇 such that on each (𝑇𝑗−1, 𝑇𝑗 ) collision does not occur. More specifically, we know that for each 1 ≤ 𝑗 ≤ 𝑘 there is a
disjoint partition of [𝑁] into subsets 𝐼 𝑗1 ,… , 𝐼 𝑗𝑚𝑗 ⊂ [𝑁] (in brief ⊔𝑚𝑗𝑖=1𝐼

𝑗
𝑖 = [𝑁]) such that:

(a) Given 1 ≤ 𝑖 ≤ 𝑚𝑗 it holds that 𝑥𝛼(𝑡) = 𝑥𝛽 (𝑡) for each 𝛼, 𝛽 ∈ 𝐼 𝑗𝑖 and each 𝑡 ∈ [𝑇𝑗−1, 𝑇𝑗 ).
(b) For each 1 ≤ 𝑖 < 𝑖′ ≤ 𝑚𝑗 it holds that 𝑥𝛼(𝑡) < 𝑥𝛽 (𝑡) for each 𝛼 ∈ 𝐼 𝑗𝑖 , 𝛽 ∈ 𝐼 𝑗𝑖′ and each 𝑡 ∈ [𝑇𝑗−1, 𝑇𝑗 ).
For each 1 ≤ 𝑗 ≤ 𝑘 and 1 ≤ 𝑖 ≤ 𝑚𝑗 we let 𝑖∗(𝑗) be the maximal index inside 𝐼 𝑗𝑖 , i.e.

𝑖∗(𝑗) ∶= max
{

𝑟 ||
|

𝑟 ∈ 𝐼 𝑗𝑖
}

.

With this notation we have the following simple

Lemma 3.2. Let 𝐹𝑁 be given by (2.8). For each 1 ≤ 𝑗 ≤ 𝑘 and 1 ≤ 𝑖 ≤ 𝑚𝑗 set

𝑉 𝑖,𝑗
𝐿 ∶=

{

(𝑡, 𝑥) ||
|

𝑡 ∈ [𝑇𝑗−1, 𝑇𝑗 ), 𝑥(𝑖−1)∗(𝑗)(𝑡) ≤ 𝑥 < 𝑥𝑖∗(𝑗)(𝑡)
}

and

𝑉 𝑖,𝑗
𝑅 ∶=

{

(𝑡, 𝑥) ||
|

𝑡 ∈ [𝑇𝑗−1, 𝑇𝑗 ), 𝑥𝑖∗(𝑗)(𝑡) < 𝑥 ≤ 𝑥(𝑖+1)∗(𝑗)(𝑡)
}

.

(with the convention 𝑥0∗ = −∞ and 𝑥(𝑚𝑗+1)∗ = +∞. Then, for each 1 ≤ 𝑗 ≤ 𝑘 and 1 ≤ 𝑖 ≤ 𝑚𝑗 , 𝐹𝑁 is a classical solution on both 𝑉 𝑖,𝑗
𝐿 and

𝑉 𝑖,𝑗
𝑅 .

Proof. For any (𝑡, 𝑥) ∈ 𝑉 𝑖,𝑗
𝐿 we have

𝐹𝑁 (𝑡, 𝑥) = −1
2
+ 1
𝑁

(𝑖−1)∗(𝑗)
∑

𝑟=1
𝑚𝑟(𝑡) = 𝜃(𝑖−1)∗(𝑗)(𝑡)

and for any (𝑡, 𝑥) ∈ 𝑉 𝑖,𝑗
𝑅 we have

𝐹𝑁 (𝑡, 𝑥) = −1
2
+ 1
𝑁

𝑖∗(𝑗)
∑

𝑟=1
𝑚𝑟(𝑡) = 𝜃𝑖∗(𝑗)(𝑡).

n particular, note that 𝐴𝑁 (𝑡, 𝐹𝑁 (𝑡, 𝑥)) is constant in 𝑥 on both regions, so that its 𝑥-derivative vanishes. In addition for each
𝑥(𝑖−1)∗(𝑗)(𝑡) ≤ 𝑥 < 𝑥𝑖∗(𝑗)(𝑡) and 𝑡 ∈ [𝑇𝑗−1, 𝑇𝑗 ) a routine calculation shows that

𝐒[𝐹𝑁 ](𝑡, 𝑥) = 1
𝑁2

∑

𝑙,𝑟
𝐻(𝑥 − 𝑥𝑙(𝑡))𝑚𝑙(𝑡)𝑚𝑟(𝑡)𝑆(𝑥𝑙(𝑡) − 𝑥𝑟(𝑡))

= 1
𝑁2

𝑁
∑

𝑟=1

(𝑖−1)∗(𝑗)
∑

𝑙=1
𝑚𝑙(𝑡)𝑚𝑟(𝑡)𝑆(𝑥𝑙(𝑡) − 𝑥𝑟(𝑡)),

while

𝑑
𝑑𝑡
𝐹𝑁 (𝑡, 𝑥) = 1

𝑁2

(𝑖−1)∗(𝑗)
∑

𝑙=1

𝑁
∑

𝑟=1
𝑚𝑙(𝑡)𝑚𝑟(𝑡)𝑆(𝑥𝑙(𝑡) − 𝑥𝑟(𝑡))

= 1
𝑁2

𝑁
∑

𝑟=1

(𝑖−1)∗(𝑗)
∑

𝑙=1
𝑚𝑙(𝑡)𝑚𝑟(𝑡)𝑆(𝑥𝑙(𝑡) − 𝑥𝑟(𝑡)) = 𝐒[𝐹𝑁 ].

This shows that 𝐹 is a classical solution on 𝑉 𝑖,𝑗 . The same calculation shows that 𝐹 is a classical solution on 𝑉 𝑖,𝑗 . □
9
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We move to verify conditions (ii) and (iii).

emma 3.3. The function 𝐹𝑁 is an entropy solution to Eq. (3.2) in the sense of Definition 3.1

roof. Condition (1) is from Lemma 2.2 and that 𝑥 ↦ 𝐹𝑁 (𝑡, 𝑥) is non-decreasing is immediate from the fact that the weights are
positive, which gives condition (2). Validating the requested weak inequality is slightly longer and rests upon the Rankine–Hugoniot
and Oleinik conditions (which as already remarked, are recapped in Appendix). With the same notation of Lemma 3.2 , keep 1 ≤ 𝑗 ≤ 𝑘
and 1 ≤ 𝑖 ≤ 𝑚𝑗 fixed and consider the curve

𝛤𝑖,𝑗 ∶=
{

(𝑡, 𝑥𝑖∗(𝑗)(𝑡))
|

|

|

𝑡 ∈ [𝑇𝑗−1, 𝑇𝑗 )
}

.

The Rankine–Hugoniot Condition. We wish to show that

𝐴(𝑡, 𝐹 𝑖,𝑗𝑁,𝐿(𝑡)) − 𝐴(𝑡, 𝐹
𝑖,𝑗
𝑁,𝑅(𝑡))

𝐹 𝑖,𝑗𝑁,𝐿(𝑡) − 𝐹
𝑖,𝑗
𝑁,𝑅(𝑡)

= 𝑥̇𝑖∗(𝑗)(𝑡).

To make the equations a bit lighter let us abbreviate 𝑖∗(𝑗) = 𝑖, (𝑖 − 1)∗(𝑗) = 𝑖. It is clear that

𝐹 𝑖,𝑗𝑁,𝐿(𝑡) = −1
2
+ 1
𝑁

𝑖
∑

𝑟=1
𝑚𝑟(𝑡) = 𝜃𝑖(𝑡)

and

𝐹 𝑖,𝑗𝑁,𝑅(𝑡) = −1
2
+ 1
𝑁

𝑖
∑

𝑟=1
𝑚𝑟(𝑡) = 𝜃𝑖(𝑡).

Since 1
𝑁

∑𝑁
𝑟=1 𝑚𝑟(𝑡) = 1 we may rewrite

𝐹 𝑖,𝑗𝑁,𝐿(𝑡) =
1
2
− 1
𝑁

∑

𝑟>𝑖
𝑚𝑟(𝑡).

Therefore, using that 1
𝑁

∑𝑁
𝑗=1 𝑚𝑗 (𝑡) = 1 and the fact that the initial order is preserved, the following identities hold

𝐴𝑁 (𝑡, 𝐹 𝑖,𝑗𝑁,𝐿(𝑡)) − 𝐴𝑁 (𝑡, 𝐹 𝑖,𝑗𝑁,𝑅(𝑡))

𝐹 𝑖,𝑗𝑁,𝐿(𝑡) − 𝐹
𝑖,𝑗
𝑁,𝑅(𝑡)

=
𝜃2
𝑖
(𝑡) − 𝜃2𝑖 (𝑡)

𝜃𝑖(𝑡) − 𝜃𝑖(𝑡)
= −(𝜃𝑖(𝑡) + 𝜃𝑖(𝑡))

= 1 − 1
𝑁

𝑖
∑

𝑟=1
𝑚𝑟(𝑡) −

1
𝑁

𝑖
∑

𝑟=1
𝑚𝑟(𝑡)

= 1 −

(

1 − 1
𝑁

∑

𝑟>𝑖

𝑚𝑟(𝑡)

)

− 1
𝑁

𝑖
∑

𝑟=1
𝑚𝑟(𝑡) =

1
𝑁

∑

𝑟>𝑖

𝑚𝑟(𝑡) −
1
𝑁

𝑖
∑

𝑟=1
𝑚𝑟(𝑡)

= 1
𝑁

∑

𝑟>𝑖

sgn(𝑥𝑟(𝑡) − 𝑥𝑖(𝑡))𝑚𝑟(𝑡) +
1
𝑁

𝑖
∑

𝑟=1
sgn(𝑥𝑟(𝑡) − 𝑥𝑖(𝑡))𝑚𝑟(𝑡)

+ 1
𝑁

𝑖
∑

𝑟=𝑖+1
sgn(𝑥𝑟(𝑡) − 𝑥𝑖(𝑡))𝑚𝑟(𝑡)

= 1
𝑁

𝑁
∑

𝑟=1
𝑚𝑟(𝑡)sgn(𝑥𝑟(𝑡) − 𝑥𝑖(𝑡)) = 𝑥̇𝑖(𝑡).

he Oleinik Condition. Let 𝜃 ∈ (𝜃𝑖(𝑡), 𝜃𝑖(𝑡)). We wish to show

𝐴𝑁 (𝑡, 𝜃) − 𝐴𝑁 (𝑡, 𝜃𝑖(𝑡))

𝜃 − 𝜃𝑖(𝑡)(𝑡)
≥ 𝑥̇𝑖(𝑡).

Note that if we pick 𝑖 + 1 ≤ 𝑚 ≤ 𝑖 such that 𝜃 ∈ [𝜃𝑚−1(𝑡), 𝜃𝑚(𝑡)] then since 𝐴𝑁 is piecewise linear we clearly have

𝐴𝑁 (𝑡, 𝜃) − 𝐴𝑁 (𝑡, 𝜃𝑖(𝑡))

𝜃 − 𝜃𝑖(𝑡)
≥ min

{

𝐴𝑁 (𝑡, 𝜃𝑚(𝑡)) − 𝐴𝑁 (𝑡, 𝜃𝑖(𝑡))

𝜃𝑚(𝑡) − 𝜃𝑖(𝑡)
,
𝐴𝑁 (𝑡, 𝜃𝑚−1(𝑡)) − 𝐴𝑁 (𝑡, 𝜃𝑖(𝑡))

𝜃𝑚−1(𝑡) − 𝜃𝑖(𝑡)

}

.

Therefore it suffices to check the inequality for 𝜃 = 𝜃𝑘(𝑡) where 𝑖 ≤ 𝑘 ≤ 𝑖. We have

𝐴𝑁 (𝑡, 𝜃𝑘(𝑡)) − 𝐴𝑁 (𝑡, 𝜃𝑖(𝑡))

𝜃𝑘(𝑡) − 𝜃𝑖(𝑡)
=
𝐴(𝜃𝑘(𝑡)) − 𝐴(𝜃𝑖(𝑡))

𝜃𝑘(𝑡) − 𝜃𝑖(𝑡)
= −(𝜃𝑘(𝑡) + 𝜃𝑖(𝑡)) ≥ −(𝜃𝑖(𝑡) + 𝜃𝑖(𝑡)) = 𝑥̇𝑖(𝑡)

here the inequality is because 𝜃 (𝑡) ≥ 𝜃 (𝑡), and the last identity is a byproduct of the previous step. □
10
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1

4. The mean field limit

In this section we prove well-posedness, stability estimates and mean field limit for the equation

𝜕𝑡𝐹 + 𝜕𝑥(𝐴(𝑡, 𝐹 )) = 𝐒[𝐹 ](𝑡, 𝑥) (4.1)

where

𝐒[𝐹 ](𝑡, 𝑥) ∶= 𝐹 (𝑡, 𝑥)(𝜙 ⋆ 𝐹 )(𝑡, 𝑥) − ∫

𝑥

−∞
𝐹 (𝑡, 𝑧)(𝜕𝑧𝜙 ⋆ 𝐹 )(𝑡, 𝑧)𝑑𝑧, 𝜙 ∶= 𝜕𝑥𝑆.

This equation has a slightly more general form than Eq. (1.8), since here the flux is time dependent. As already explained, the
strategy of proof is a modification of the argument in [12], and can be divided into the following steps

1. Extraction of a converging subsequence from 𝐹𝑁 with a limit 𝐹 .
2. Showing that the limit 𝐹 obtained in 1. is an entropy solution.
3. Provided steps 1 + 2 are successfully established, it remains to prove stability estimates (from which the remaining parts –

that is uniqueness and mean field limit – would follow). This is one step where our argument differs from the one in [12], since the
source term in question carries a different form. Some technical modifications appear in step 2 as well.

Before detailing the proof of the plan proposed above, we recall the following chain rule for 𝐵𝑉 functions, which will be used
in the course of the proof

Lemma 4.1 ([5], Lemma A.21). Suppose 𝑊 ∈ 𝐵𝑉loc(R) and 𝑓 is Lipschitz. Then 𝑓◦𝑊 ∈ 𝐵𝑉loc(R) and
|

|

|

|

𝑑
𝑑𝑥
𝑓◦𝑊

|

|

|

|

≤ |𝑓 |Lip
|

|

|

|

𝑑
𝑑𝑥
𝑊

|

|

|

|

in the sense of measures.

In order to treat the source term we will be forced to verify the entropy inequality only on dense subset of the real line, which
is sufficient, as observed in the following simple

Lemma 4.2. The entropy inequality holds (3.1) iff it holds for some dense set 𝐷 ⊂ R.

Proof. Let 𝐷 ⊂ R be dense and suppose (3.1) holds all 𝛽 ∈ 𝐷, and let 𝛼 ∈ R. Then, taking a sequence
(

𝛽𝑘
)

⊂ 𝐷 such that 𝛽𝑘 → 𝛼,
we have that for all 𝑘

∫

𝑇

0 ∫R
𝟏𝐹>𝛽𝑘

(

(𝐹 − 𝛽𝑘)𝜒𝑡 +
(

𝐴(𝐹 ) − 𝐴(𝛽𝑘)
)

𝜕𝑥𝜒 + 𝜒𝐒(𝐹 )(𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡

− ∫

𝑇

0 ∫R
𝟏𝐹<𝛽𝑘

(

(𝐹 − 𝛽𝑘)𝜒𝑡 +
(

𝐴(𝐹 ) − 𝐴(𝛽𝑘)
)

𝜕𝑥𝜒 + 𝜒𝐒(𝐹 )(𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡.

As 𝑘→ ∞ the first integral tends to

∫

𝑇

0 ∫R
𝟏𝐹≥𝛼

(

(𝐹 − 𝛼)𝜒𝑡 + (𝐴(𝐹 ) − 𝐴(𝛼)) 𝜕𝑥𝜒 + 𝜒𝐒(𝐹 )(𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡,

whereas the second integral tends to

−∫

𝑇

0 ∫R
𝟏𝐹≤𝛼

(

(𝐹 − 𝛼)𝜒𝑡 + (𝐴(𝐹 ) − 𝐴(𝛼)) 𝜕𝑥𝜒 + 𝜒𝐒(𝐹 )(𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡,

so that

∫

𝑇

0 ∫R

(

|𝐹 − 𝛼|𝜒𝑡 + sgn(𝐹 − 𝛼) (𝐴(𝐹 ) − 𝐴(𝛼)) 𝜕𝑥𝜒 + sgn(𝐹 − 𝛼)𝜒𝐒(𝐹 )(𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡

= ∫

𝑇

0 ∫R
𝟏𝐹≥𝛼

(

(𝐹 − 𝛼)𝜒𝑡 + (𝐴(𝐹 ) − 𝐴(𝛼)) 𝜕𝑥𝜒 + 𝜒𝐒(𝐹 )(𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡

− ∫

𝑇

0 ∫R
𝟏𝐹≤𝛼

(

(𝐹 − 𝛽𝑘)𝜒𝑡 +
(

𝐴(𝐹 ) − 𝐴(𝛽𝑘)
)

𝜕𝑥𝜒 + 𝜒𝐒(𝐹 )(𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡 ≥ 0. □

We are now in a good position to prove the main result, which we now state. Remark that we insist on including time dependency
in the flux in order to enable applying the belowstated stability estimate for the fluxes 𝐴𝑁 (𝑡, 𝑥) and 𝐴(𝑥) as defined in Section 3.

Theorem 4.1. Let 𝑆 ∈ 𝐶∞
0 (R) be such supp(𝑆) ⊂ [−𝑟, 𝑟] for some 𝑟 > 0. Let 𝐴(𝑡, 𝑥), 𝐴(𝑡, 𝑥) ∈ 𝐶([0, 𝑇 ]; Lip([− 1

2 ,
1
2 ])). Suppose 𝐹 0 ∈ 𝐵𝑉 (R)

is non-decreasing and there is some 𝑅 > 0 such that

∀𝑥 ≥ 𝑅 ∶ 𝐹 0(±𝑥) = ±1
2
. (4.2)

. (Well-posedness) There exist a unique entropy solution (in the sense of Definition 3.1) to the problem (4.1).
11
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2. (Stability) If 𝐹 , 𝐹 are two entropy solutions with initial datas 𝐹 0, 𝐹 0 respectively satisfying (4.2) then there is some 𝐶 =
(𝑟, 𝑅, ‖

‖

𝜕𝑧𝜙‖‖∞ , ‖𝜙‖∞) > 0 such that

‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1

≤ 𝑒𝐶𝑡
(

‖

‖

‖

𝐹 0 − 𝐹 0‖
‖

‖1
+ 𝑡 sup

𝑡∈[0,𝑇 ]

|

|

|

𝐴(𝑡, ⋅) − 𝐴(𝑡, ⋅)||
|Lip

)

.

. (Mean field limit) It holds that 𝐹𝑁 − 𝐹 →
𝑁→∞

0 in 𝐶([0, 𝑇 ];𝐿1(R)) provided 𝐹 0
𝑁 − 𝐹 0 → 0 in 𝐿1(R).

roof. Step 1. Extracting a converging subsequence from 𝐹𝑁 . Keep 𝑡 ∈ [0, 𝑇 ] fixed. We know that 𝐹𝑁 (𝑡, ⋅) is a sequence of
on-decreasing functions with uniformly bounded (with respect to 𝑁) total variation on each compact subset. Therefore, by Helly’s
election theorem there is a subsequence, still labeled 𝐹𝑁 (𝑡, ⋅), and some 𝐹 (𝑡, ⋅) ∈ 𝐿1

loc(R) such that 𝐹𝑁 (𝑡, ⋅) →
𝑁→∞

𝐹 (𝑡, ⋅) pointwise a.e.
y diagonalization we may find a subsequence, still labeled 𝐹𝑁 (𝑡), such that 𝐹𝑁 (𝑡, ⋅) converge to 𝐹 (𝑡, ⋅) for all 𝑡 ∈ Q. Recall that by
emma 2.2 , as long as 𝑥 > 𝑅, 𝐹𝑁 (𝑡,±𝑥) = ± 1

2 for all 𝑡. As a result, the same conclusion is true for the limit 𝐹 (𝑡, ⋅), so that we have
𝐹𝑁 (𝑡, ⋅) − 𝐹 (𝑡, ⋅) →

𝑁→∞
0 in 𝐿1(R) for all 𝑡 ∈ Q. Next, we upgrade the convergence to irrational times as well.

∫R
|

|

𝐹𝑁 (𝑡, 𝑥) − 𝐹𝑁 (𝑠, 𝑥)|
|

𝑑𝑥 = ∫
|𝑥|≤𝑅

|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑖=1
𝑚𝑖(𝑡)𝟏{𝑥|𝑥≥𝑥𝑖(𝑡) } − 1

𝑁

𝑁
∑

𝑖=1
𝑚𝑖(𝑠)𝟏{𝑥|𝑥≥𝑥𝑖(𝑠) }

|

|

|

|

|

|

𝑑𝑥

≤ ∫
|𝑥|≤𝑅

|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑖=1
𝑚𝑖(𝑡)𝟏{𝑥|𝑥𝑖(𝑡)≤𝑥≤𝑥𝑖(𝑠) }

|

|

|

|

|

|

𝑑𝑥

+ ∫
|𝑥|≤𝑅

|

|

|

|

|

|

1
𝑁

𝑁
∑

𝑖=1
(𝑚𝑖(𝑡) − 𝑚𝑖(𝑠))𝟏{𝑥|𝑥≥𝑥𝑖(𝑠) }

|

|

|

|

|

|

𝑑𝑥.

he first integral is

≤𝑀 max
1≤𝑖≤𝑁

|

|

𝑥𝑖(𝑡) − 𝑥𝑖(𝑠)|| ≤𝑀
2
|𝑡 − 𝑠| ,

whereas the second integral is

≤ 2𝑅 max
1≤𝑖≤𝑁

|

|

𝑚𝑖(𝑡) − 𝑚𝑖(𝑠)|| ≤ 2𝑅𝐶(1 +𝑀) |𝑡 − 𝑠| ,

o that
‖

‖

𝐹𝑁 (𝑡, ⋅) − 𝐹𝑁 (𝑠, ⋅)‖
‖1 ≤ 𝑐 |𝑡 − 𝑠| , (4.3)

for some suitable constant 𝑐 = 𝑐(𝐶,𝑀,𝑅). The estimate (4.3) implies that 𝐹𝑁 (𝑡, ⋅) is a Cauchy sequence in 𝐿1((−𝑅,𝑅)) for any
𝑡 ∈ [0, 𝑇 ]. Indeed, keep 𝑡 fixed and let

{

𝑡𝑘
}∞
𝑘=1 ⊂ Q such that 𝑡𝑘 →

𝑘→∞
𝑡. Let 𝜀 > 0. We estimate

‖

‖

‖

𝐹𝑁 (𝑡, ⋅) − 𝐹𝑁+𝑝(𝑡, ⋅)
‖

‖

‖1
≤ ‖

‖

𝐹𝑁 (𝑡, ⋅) − 𝐹𝑁 (𝑡𝑘, ⋅)‖‖1 + ‖

‖

𝐹𝑁 (𝑡𝑘, ⋅) − 𝐹 (𝑡𝑘, ⋅)‖‖1

+ ‖

‖

‖

𝐹𝑁+𝑝(𝑡, ⋅) − 𝐹𝑁+𝑝(𝑡𝑘, ⋅)
‖

‖

‖1
+ ‖

‖

‖

𝐹𝑁+𝑝(𝑡𝑘, ⋅) − 𝐹 (𝑡𝑘, ⋅)
‖

‖

‖1

≤ 2𝑐 |
|

𝑡 − 𝑡𝑘|| + ‖

‖

𝐹𝑁 (𝑡𝑘, ⋅) − 𝐹 (𝑡𝑘, ⋅)‖‖1 +
‖

‖

‖

𝐹𝑁+𝑝(𝑡𝑘, ⋅) − 𝐹 (𝑡𝑘, ⋅)
‖

‖

‖1
.

Pick 𝑘 large enough so that |

|

𝑡 − 𝑡𝑘|| < 𝜀 and pick 𝑁0 large enough so that for any 𝑁 ≥ 𝑁0 one has ‖

‖

𝐹𝑁 (𝑡𝑘, ⋅) − 𝐹 (𝑡𝑘, ⋅)‖‖1 < 𝜀. Then
for these choices we get

‖

‖

‖

𝐹𝑁 (𝑡, ⋅) − 𝐹𝑁+𝑝(𝑡, ⋅)
‖

‖

‖

≲ 𝜀

and therefore there is some 𝐹 (𝑡, ⋅) ∈ 𝐿1((−𝑅,𝑅)) such that 𝐹𝑁 (𝑡, ⋅) →
𝑁→∞

𝐹 (𝑡, ⋅) in 𝐿1((−𝑅,𝑅)). In particular, for each 𝑡, the
equence 𝐹𝑁 (𝑡, ⋅) is confined in a compact set of 𝐿1((−𝑅,𝑅)). Therefore the estimate (4.3) makes the theorem of Arzelá-Ascoli
vailable (Theorem 1.1 in [17] for example), thereby ensuring the existence of a subsequence, still labeled 𝐹𝑁 , and an element
̃̃ ∈ 𝐶([0, 𝑇 ];𝐿1

loc(R)) such that 𝐹𝑁 − ̃̃𝐹 →
𝑁→∞

0 in 𝐶([0, 𝑇 ];𝐿1(R)). It is clear that ̃̃𝐹 ∈ 𝐵𝑉 ([0, 𝑇 ] × R) and ∀𝑥 ≥ 𝑅 ∶ ̃̃𝐹 (𝑡,±𝑥) = ± 1
2 . To

minimize cumbersome notation we shall hereafter denote by 𝐹 the limit function ̃̃𝐹 that we constructed.
Step 2. The Limit function 𝐹 is an entropy solution. We wish to show that the limit function 𝐹 obtained in step 1. is an

ntropy solution to the original equation, which will establish the existence claim. By Lemma 3.3 we know that

∫

𝑇

0 ∫R
|

|

𝐹𝑁 − 𝛼|
|

𝜒𝑡 + sgn(𝐹𝑁 − 𝛼)
(

𝐴𝑁 (𝑡, 𝐹𝑁 ) − 𝐴𝑁 (𝑡, 𝛼)
)

𝜕𝑥𝜒 + sgn(𝐹𝑁 − 𝛼)𝜒𝐒[𝐹𝑁 ](𝑡, 𝑥)𝑑𝑥𝑑𝑡 ≥ 0,

nd we wish now to pass to the limit as 𝑁 → ∞. That

∫

𝑇

0 ∫R
|

|

𝐹𝑁 − 𝛼|
|

𝜒𝑡 → ∫

𝑇

0 ∫R
|𝐹 − 𝛼|𝜒𝑡

s due to dominated convergence theorem. In addition, Lemma 3.1 and the identity sgn(𝑎 − 𝑏)(𝑎2 − 𝑏2) = |𝑎 − 𝑏| (𝑎 + 𝑏) entails
|

|

|

𝑇
sgn(𝐹𝑁 − 𝛼)

(

𝐴𝑁 (𝑡, 𝐹𝑁 ) − 𝐴𝑁 (𝑡, 𝛼)
)

𝜕𝑥𝜒 −
𝑇

sgn(𝐹 − 𝛼) (𝐴(𝐹 ) − 𝐴(𝛼)) 𝜕𝑥𝜒
|

|

|

12
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a

a

≤
|

|

|

|

|

∫

𝑇

0 ∫R
sgn(𝐹𝑁 − 𝛼)

(

𝐴𝑁 (𝑡, 𝐹𝑁 ) − 𝐴𝑁 (𝑡, 𝛼)
)

𝜕𝑥𝜒 − ∫

𝑇

0 ∫R
sgn(𝐹𝑁 − 𝛼)

(

𝐴(𝐹𝑁 ) − 𝐴(𝛼)
)

𝜕𝑥𝜒
|

|

|

|

|

+
|

|

|

|

|

∫

𝑇

0 ∫R
sgn(𝐹𝑁 − 𝛼)

(

𝐴(𝐹𝑁 ) − 𝐴(𝛼)
)

𝜕𝑥𝜒 − ∫

𝑇

0 ∫R
sgn(𝐹 − 𝛼) (𝐴(𝐹 ) − 𝐴(𝛼)) 𝜕𝑥𝜒

|

|

|

|

|

≤
4𝑀Lip(𝐴|[− 1

2 ,
1
2 ]
)

𝑁 ∫

𝑇

0 ∫R
|

|

𝜕𝑥𝜒|| 𝑑𝑥𝑑𝑡

+
|

|

|

|

|

∫

𝑇

0 ∫R
|

|

𝐹𝑁 − 𝛼|
|

(𝐹𝑁 + 𝛼)𝜕𝑥𝜒 − ∫

𝑇

0 ∫R
|𝐹 − 𝛼| (𝐹 + 𝛼)𝜕𝑥𝜒

|

|

|

|

|

→
𝑁→∞

0.

The last term is slightly more subtle. Observe that

∫

2𝑅

−2𝑅
𝜙(𝑧 − 𝜁 )𝐹𝑁 (𝑡, 𝜁)𝑑𝜁 →

𝑁→∞ ∫

2𝑅

−2𝑅
𝜙(𝑧 − 𝜁 )𝐹 (𝑡, 𝜁)𝑑𝜁,

so that

𝐹𝑁 (𝑡, 𝑥)𝜙 ⋆ 𝐹𝑁 (𝑡, 𝑥) →
𝑁→∞

𝐹 (𝑡, 𝑥)𝜙 ⋆ 𝐹 (𝑡, 𝑥)

pointwise a.e. Recall that 𝜙′⋆𝐹𝑁 is compactly supported and therefore dominated convergence is applicable for the second integral
as well which implies

∫

𝑥

−∞
𝐹𝑁 (𝑡, 𝑧)𝜙′ ⋆ 𝐹𝑁 (𝑡, 𝑧)𝑑𝑧 →

𝑁→∞ ∫

𝑥

−∞
𝐹 (𝑡, 𝑧)𝜙′ ⋆ 𝐹 (𝑡, 𝑧)𝑑𝑧.

By Lemma 4.2 it suffices to verify the entropy condition on dense set. Note that since 𝐹 is locally summable it holds that
𝜆({(𝑡, 𝑥) |𝐹 (𝑡, 𝑥) = 𝛼 }) = 0 for a.e. 𝛼. In particular there is dense set 𝐷 ⊂ R such that 𝜆({𝐹 (𝑡, 𝑥) = 𝛼}) = 0 for all 𝛼 ∈ 𝐷. Therefore,
since 𝐹𝑁 → 𝐹 and 𝐒[𝐹𝑁 ](𝑡, 𝑥) → 𝐒[𝐹 ](𝑡, 𝑥) pointwise a.e., we conclude that for all 𝛼 ∈ 𝐷

∫

𝑇

0 ∫R
sgn(𝐹𝑁 − 𝛼)𝜒𝐒[𝐹𝑁 ](𝑡, 𝑥)𝑑𝑥𝑑𝑡 = ∫

𝑇

0 ∫R
𝟏{𝐹 (𝑡,𝑥)≠𝛼}sgn(𝐹𝑁 − 𝛼)𝜒𝐒[𝐹𝑁 ](𝑡, 𝑥)𝑑𝑥𝑑𝑡

→
𝑁→∞ ∫

𝑇

0 ∫R
sgn(𝐹 − 𝛼)𝜒𝐒[𝐹 ](𝑡, 𝑥)𝑑𝑥𝑑𝑡

s desired.
Step 3. Uniqueness and Stability. Let 𝐹 , 𝐹 be two entropy solutions. Keep (𝑠, 𝑦) ∈ [0, 𝑇 ] ×R fixed. Then by definition we have

0 ≤ ∬
|

|

|

𝐹 (𝑡, 𝑥) − 𝐹 (𝑠, 𝑦)||
|

𝜕𝑡𝜒(𝑡, 𝑥, 𝑠, 𝑦)𝑑𝑥𝑑𝑡

+∬ sgn(𝐹 (𝑡, 𝑥) − 𝐹 (𝑠, 𝑦))
(

𝐴(𝑡, 𝐹 (𝑡, 𝑥)) − 𝐴(𝑡, 𝐹 (𝑠, 𝑦))
)

𝜕𝑥𝜒(𝑡, 𝑥, 𝑠, 𝑦)𝑑𝑥𝑑𝑡

+∬ sgn(𝐹 (𝑡, 𝑥) − 𝐹 (𝑠, 𝑦))𝜒(𝑡, 𝑥, 𝑠, 𝑦)𝐒[𝐹 ](𝑡, 𝑥)𝑑𝑥𝑑𝑡.

Exchanging the roles of 𝐹 and 𝐹 we also have the inequality

0 ≤ ∬
|

|

|

𝐹 (𝑠, 𝑦) − 𝐹 (𝑡, 𝑥)||
|

𝜕𝑠𝜒(𝑡, 𝑥, 𝑠, 𝑦)𝑑𝑦𝑑𝑠

+∬ sgn(𝐹 (𝑠, 𝑦) − 𝐹 (𝑡, 𝑥))
(

𝐴(𝑠, 𝐹 (𝑠, 𝑦)) − 𝐴(𝑠, 𝐹 (𝑡, 𝑥))
)

𝜕𝑦𝜒(𝑡, 𝑥, 𝑠, 𝑦)𝑑𝑦𝑑𝑠

+∬ sgn(𝐹 (𝑠, 𝑦) − 𝐹 (𝑡, 𝑥))𝜒(𝑡, 𝑥, 𝑠, 𝑦)𝐒[𝐹 ](𝑠, 𝑦)𝑑𝑦𝑑𝑠.

Integrating both of the above inequalities over the free variables and summing up gives

0 ≤ ⨌
|

|

|

𝐹 (𝑡, 𝑥) − 𝐹 (𝑠, 𝑦)||
|

(

𝜕𝑡𝜒 + 𝜕𝑠𝜒
)

+⨌ sgn(𝐹 (𝑡, 𝑥) − 𝐹 (𝑠, 𝑦))
(

𝐴(𝑡, 𝐹 (𝑡, 𝑥)) − 𝐴(𝑡, 𝐹 (𝑠, 𝑦))
)

𝜕𝑥𝜒

+⨌ sgn(𝐹 (𝑠, 𝑦) − 𝐹 (𝑡, 𝑥))
(

𝐴(𝑠, 𝐹 (𝑠, 𝑦)) − 𝐴(𝑠, 𝐹 (𝑡, 𝑥))
)

𝜕𝑦𝜒

+⨌

(

𝜒sgn(𝐹 (𝑡, 𝑥) − 𝐹 (𝑠, 𝑦))𝐒[𝐹 ](𝑡, 𝑥) + 𝜒sgn(𝐹 (𝑠, 𝑦) − 𝐹 (𝑡, 𝑥))𝐒[𝐹 ](𝑠, 𝑦)
)

𝑑𝑥𝑑𝑡𝑑𝑦𝑑𝑠.

(4.4)

Now consider the variable change

𝑦 =
𝑥 − 𝑦
2

, 𝑠 = 𝑡 − 𝑠
2

, 𝑥 =
𝑥 + 𝑦
2

, 𝑡 = 𝑡 + 𝑠
2

,

nd take 𝜒 to be of the form

𝜒(𝑡, 𝑥, 𝑠, 𝑦) = 𝑏
(𝑥 − 𝑦)

𝑏
( 𝑡 − 𝑠) 𝑔

(𝑥 + 𝑦)
ℎ

( 𝑡 + 𝑠)
13

𝜀 2 𝜀 2 2 𝛿 2
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= 𝑏𝜀
(

𝑦
)

𝑏𝜀
(

𝑠
)

𝑔
(

𝑥
)

ℎ𝛿
(

𝑡
)

.

here 𝑏𝜀, 𝑔, ℎ𝛿 are chosen as follows. Keep 𝜎 < 𝜏 ∈ (0, 𝑇 ) fixed. For each 𝜀 > 0, 𝛿 > 0 such that 0 < 𝜀 + 𝛿 < min(𝜎, 𝑇 − 𝜏) we define
the functions as follows.

1. 𝑏𝜀 is an approximation of the identity, i.e. 𝑏𝜀 =
1
𝜀 𝜁 (

𝑥
𝜀 ) for some radial 0 ≤ 𝜁 ∈ 𝐶∞

0 (R) with supp(𝜁 ) ⋐ 𝐵1(0).
2. 𝑔(𝑥) = 1 for all 𝑥 ∈ [−𝑅,𝑅] and 𝑔 ∈ 𝐶∞

0 (R).
3. Let

ℎ𝛿(𝑡) ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 𝑡 ∈ [𝜎, 𝜏]

− 1
𝛿 𝑡 +

𝜏+𝛿
𝛿 , 𝑡 ∈ [𝜏, 𝜏 + 𝛿]

1
𝛿 𝑡 −

𝜎−𝛿
𝛿 , 𝑡 ∈ [𝜎 − 𝛿, 𝜎]

0, 𝑡 ∉ [𝜎 − 𝛿, 𝜏 + 𝛿]

.

ith this choice we easily observe that 𝜒(𝑡, 𝑥, 𝑠, 𝑦) is compactly supported in the variables (𝑡, 𝑥) for any fixed (𝑠, 𝑦), and viceversa.

Claim 4.1. For each fixed (𝑠, 𝑦) ∈ (0, 𝑇 ) × R the function (𝑡, 𝑥) ↦ 𝜒(𝑡, 𝑥, 𝑠, 𝑦) is compactly supported in (0, 𝑇 ) × R. Vice versa, for each
fixed (𝑡, 𝑥) ∈ (0, 𝑇 ) × R the function (𝑠, 𝑦) ↦ 𝜒(𝑡, 𝑥, 𝑠, 𝑦) is compactly supported in (0, 𝑇 ) × R.

Proof. That 𝑥↦ 𝜒(𝑡, 𝑥, 𝑠, 𝑦) vanishes outside some finite interval is clear. In addition if 𝑠 > 2𝜀 then 𝑏𝜀(
𝑡−𝑠
2 ) = 0 for all 𝑡 ∈ (0, 𝑠− 2𝜀),

while if 𝑠 ≤ 2𝜀 then ℎ𝛿(
𝑡+𝑠
2 ) = 0 then since 𝜎 > 𝜀 + 𝛿 it follows that 2𝜎 − 2𝛿 − 𝑠 > 0, so that ℎ𝛿(

𝑡+𝑠
2 ) = 0 for all 𝑡 ∈ (0, 2𝜎 − 2𝛿 − 𝑠).

Hence 𝜒(𝑡, 𝑥, 𝑠, 𝑦) = 0 for all 𝑡 ∈ (0, 𝟏𝑠<2𝜀(𝑠 − 2𝜀) + 𝟏𝑠≥2𝜀2𝜎 − 2𝛿 − 𝑠) (note that the right end of the interval is strictly positive). If
𝑠 < 𝑇 − 2𝜀 then 𝑏𝜀(

𝑡−𝑠
2 ) = 0 for all 𝑡 ∈ (𝑠 + 2𝜀, 𝑇 ) while if 𝑠 ≥ 𝑇 − 2𝜀 then 2𝜏 + 2𝛿 − 𝑠 ≤ 2𝜏 + 2𝛿 + 2𝜀 − 𝑇 < 2𝑇 − 𝑇 = 𝑇 because

< 𝑇 − (𝛿 + 𝜀). Therefore 𝜒(𝑡, 𝑥, 𝑠, 𝑦) = 0 for all 𝑡 ∈ (𝟏𝑠<𝑇−2𝜀(𝑠 + 2𝜀) + 𝟏𝑠≥𝑇−2𝜀(2𝜏 + 2𝛿 − 𝑠), 𝑇 ). To conclude 𝑡 ↦ 𝜒(𝑡, 𝑥, 𝑠, 𝑦) vanishes
utside some interval compactly supported in (0, 𝑇 ). Since 𝑏𝜀 is radial, by symmetry the same argument shows that for any fixed
𝑡, 𝑥) the function (𝑠, 𝑦) ↦ 𝜒(𝑡, 𝑥, 𝑠, 𝑦) is compactly supported. □

In addition, it is readily checked that

𝜕𝑡 + 𝜕𝑠 = 𝜕𝑡, 𝜕𝑥 + 𝜕𝑦 = 𝜕𝑥, 𝜕𝑥 − 𝜕𝑦 = 𝜕𝑦.

nder this variable change, the second and third term in (4.4) can be grouped together as follows (to make the equations lighter
he arguments are of 𝐹 and 𝐹 are always (𝑡 + 𝑠, 𝑥 + 𝑦) and (𝑡 − 𝑠, 𝑥 − 𝑦) respectively, and are implicit)

⨌ sgn(𝐹 (𝑡, 𝑥) − 𝐹 (𝑠, 𝑦))
(

𝐴(𝑡, 𝐹 (𝑡, 𝑥)) − 𝐴(𝑡, 𝐹 (𝑠, 𝑦))
)

𝜕𝑥𝜒

+⨌ sgn(𝐹 (𝑠, 𝑦) − 𝐹 (𝑡, 𝑥))
(

𝐴(𝑠, 𝐹 (𝑠, 𝑦)) − 𝐴(𝑠, 𝐹 (𝑡, 𝑥))
)

𝜕𝑦𝜒

= 1
2 ⨌ sgn(𝐹 − 𝐹 )

(

𝐴(𝑡 + 𝑠, 𝐹 ) − 𝐴(𝑡 + 𝑠, 𝐹 )
)

(𝜕𝑥 + 𝜕𝑦)𝜒

+ 1
2 ⨌ sgn(𝐹 − 𝐹 )

(

𝐴(𝑡 − 𝑠, 𝐹 ) − 𝐴(𝑡 − 𝑠, 𝐹 )
)

(𝜕𝑥 − 𝜕𝑦)𝜒

= 1
2 ⨌ sgn(𝐹 − 𝐹 )

(

𝐴(𝑡 + 𝑠, 𝐹 ) + 𝐴(𝑡 − 𝑠, 𝐹 ) − 𝐴(𝑡 + 𝑠, 𝐹 ) − 𝐴(𝑡 − 𝑠, 𝐹 )
)

𝜕𝑥𝜒

+ 1
2 ⨌ sgn(𝐹 − 𝐹 )

(

𝐴(𝑡 + 𝑠, 𝐹 ) − 𝐴(𝑡 − 𝑠, 𝐹 ) − 𝐴(𝑡 + 𝑠, 𝐹 (𝑠, 𝑦)) + 𝐴(𝑡 − 𝑠, 𝐹 (𝑠, 𝑦))
)

𝜕𝑦𝜒

= ⨌ sgn(𝐹 − 𝐹 )
(

𝐴+(𝑡 + 𝑠, 𝑡 − 𝑠, 𝐹 ) − 𝐴+(𝑡 + 𝑠, 𝑡 − 𝑠, 𝐹 )
)

𝜕𝑥𝜒

+⨌ sgn(𝐹 − 𝐹 )
(

𝐴−(𝑡 + 𝑠, 𝑡 − 𝑠, 𝐹 ) − 𝐴−(𝑡 + 𝑠, 𝑡 − 𝑠, 𝐹 )
)

𝜕𝑦𝜒,

where we have set

𝐴±(𝑡, 𝑠, 𝑥) ∶=
𝐴(𝑡, 𝑥) ± 𝐴(𝑠, 𝑥)

2
.

The Inequality (4.4) is then transformed to

0 ≤ 𝐼𝜀,𝛿 + 𝐼𝐼𝜀,𝛿 + 𝐼𝐼𝐼𝜀,𝛿 + 𝐼𝑉𝜀,𝛿

∶= ⨌
|

|

|

𝐹 (𝑡 + 𝑠, 𝑥 + 𝑦) − 𝐹 (𝑡 − 𝑠, 𝑥 − 𝑦)||
|

𝜕𝑡𝜒(𝑡, 𝑥, 𝑠, 𝑦)𝑑𝑡𝑑𝑥𝑑𝑠𝑑𝑦

+⨌ sgn(𝐹 (𝑡 + 𝑠, 𝑥 + 𝑦) − 𝐹 (𝑡 − 𝑠, 𝑥 − 𝑦))
(

𝐴+(𝑡 + 𝑠, 𝑡 − 𝑠, 𝐹 ) − 𝐴+(𝑡 + 𝑠, 𝑡 − 𝑠, 𝐹 )
)

𝜕𝑥𝜒(𝑡, 𝑥, 𝑠, 𝑦)𝑑𝑡𝑑𝑥𝑑𝑠𝑑𝑦

+⨌ sgn(𝐹 (𝑡 + 𝑠, 𝑥 + 𝑦) − 𝐹 (𝑡 − 𝑠, 𝑥 − 𝑦))
(

𝐴−(𝑡 + 𝑠, 𝑡 − 𝑠, 𝐹 ) − 𝐴−(𝑡 + 𝑠, 𝑡 − 𝑠, 𝐹 )
)

𝜕𝑦𝜒(𝑡, 𝑥, 𝑠, 𝑦)𝑑𝑡𝑑𝑥𝑑𝑠𝑑𝑦

+ 𝜒sgn(𝐹 (𝑡 + 𝑠, 𝑥 + 𝑦) − 𝐹 (𝑡 − 𝑠, 𝑥 − 𝑦))
(

𝐒[𝐹 ](𝑡 + 𝑠, 𝑥 + 𝑦) − 𝐒[𝐹 ](𝑡 − 𝑠, 𝑥 − 𝑦)
)

𝑑𝑡𝑑𝑥𝑑𝑠𝑑𝑦.

(4.5)
14

⨌
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We handle separately each one of the above integrals.
The integral 𝐼𝜀,𝛿 . Letting 𝜀 → 0 we get the 2D integral

𝐼𝛿 ∶= lim
𝜀→0

𝐼𝜀,𝛿 = ∫ ∫
|

|

|

𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑥)||
|

𝑔
(

𝑥
)

ℎ′𝛿
(

𝑡
)

𝑑𝑥𝑑𝑡.

We can pass to the limit as 𝛿 → 0 to find that

𝐼𝛿 = ∫ ∫
|

|

|

𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑥)||
|

𝑔
(

𝑥
)

ℎ′𝛿
(

𝑡
)

= 1
𝛿 ∫

𝜎

𝜎−𝛿 ∫
|

|

|

𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑥)||
|

𝑔
(

𝑥
)

𝑑𝑥𝑑𝑡 − 1
𝛿 ∫

𝜏+𝛿

𝜏 ∫
|

|

|

𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑥)||
|

𝑔
(

𝑥
)

𝑑𝑥𝑑𝑡

→
𝛿→0 ∫

|

|

|

𝐹 (𝜎, 𝑥) − 𝐹 (𝜎, 𝑥)||
|

𝑔
(

𝑥
)

𝑑𝑥 − ∫
|

|

|

𝐹 (𝜏, 𝑥) − 𝐹 (𝜏, 𝑥)||
|

𝑔
(

𝑥
)

𝑑𝑥

= ∫
|

|

|

𝐹 (𝜎, 𝑥) − 𝐹 (𝜎, 𝑥)||
|

𝑑𝑥 − ∫
|

|

|

𝐹 (𝜏, 𝑥) − 𝐹 (𝜏, 𝑥)||
|

𝑑𝑥,

(4.6)

here in the last equation we relied on the choice of 𝑔 as well as fact that 𝐹 − 𝐹 is 0 outside [−𝑅,𝑅].
The integral 𝐼𝐼𝜀,𝛿 . Letting 𝜀 → 0 the integral becomes

𝐼𝐼𝛿 = lim
𝜀→0

𝐼𝐼𝜀,𝛿 = ∬ sgn(𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑥))
(

𝐴+(𝑡, 𝑡, 𝐹 (𝑡, 𝑥)) − 𝐴+(𝑡, 𝑡, 𝐹 (𝑡, 𝑥))
)

𝑔′
(

𝑥
)

ℎ𝛿
(

𝑡
)

𝑑𝑡𝑑𝑥.

bserve that 𝑔′
(

𝑥
)

= 0 for all 𝑥 ∈ supp(𝐴+(𝑡, 𝑡, 𝐹 (𝑡, ⋅))−𝐴+(𝑡, 𝑡, 𝐹 (𝑡, ⋅))) ⊂ [−𝑅,𝑅], where the latter inclusion is because of the uniform
in time Lipschitz continuity assumed for 𝐴,𝐴. We therefore infer that the above integral vanishes identically, i.e.

𝐼𝐼𝛿 = 0. (4.7)

The integral 𝐼𝐼𝐼𝜀,𝛿 . The following claim is a straightforward adaptation of Lemma 5.4 in [12]

Claim 4.2. The function 𝛾(𝑡, 𝐹 , 𝐹 ) ∶= sgn(𝐹 −𝐹 )(𝐴−(𝑡, 𝑡, 𝐹 ) −𝐴−(𝑡, 𝑡, 𝐹 )) is uniformly in time Lipschitz with respect to the first and second
ariable with the bounds

|

|

|

𝛾(𝑡, ⋅, 𝐹 )||
|Lip

≤ |

|

|

𝐴−(𝑡, 𝑡, ⋅)
|

|

|Lip
, ||
|

𝛾(𝑡, 𝐹 , ⋅)||
|Lip

≤ |

|

|

𝐴−(𝑡, 𝑡, ⋅)
|

|

|Lip
.

Proof. Keep 𝑡 ∈ [0, 𝑇 ], 𝐹 ∈ [− 1
2 ,

1
2 ] fixed. Let 𝐹1, 𝐹2 ∈ [− 1

2 ,
1
2 ]. If sgn(𝐹1 − 𝐹 ) = sgn(𝐹2 − 𝐹 ) then we have

|

|

|

𝛾(𝑡, 𝐹1, 𝐹 ) − 𝛾(𝑡, 𝐹2, 𝐹 )
|

|

|

= |

|

|

𝐴−(𝑡, 𝑡, 𝐹1) − 𝐴−(𝑡, 𝑡, 𝐹2)
|

|

|

≤ |

|

|

𝐴−(𝑡, 𝑡, ⋅)
|

|

|Lip
|

|

𝐹1 − 𝐹2|| .

f sgn(𝐹1 − 𝐹 ) ≠ sgn(𝐹2 − 𝐹 ) then
|

|

|

𝛾(𝑡, 𝐹1, 𝐹 ) − 𝛾(𝑡, 𝐹2, 𝐹 )
|

|

|

= |

|

|

𝐴−(𝑡, 𝑡, 𝐹1) − 𝐴−(𝑡, 𝑡, 𝐹 ) + 𝐴−(𝑡, 𝑡, 𝐹2) − 𝐴−(𝑡, 𝑡, 𝐹 )
|

|

|

≤ |

|

|

𝐴−(𝑡, 𝑡, ⋅)
|

|

|Lip
(||
|

𝐹1 − 𝐹
|

|

|

+ |

|

|

𝐹2 − 𝐹
|

|

|

)

= |

|

|

𝐴−(𝑡, 𝑡, ⋅)
|

|

|Lip
|

|

|

𝐹1 − 𝐹 + 𝐹 − 𝐹2
|

|

|

= |

|

|

𝐴−(𝑡, 𝑡, ⋅)
|

|

|Lip
|

|

𝐹1 − 𝐹2|| . □

We can apply this observation together with Lemma 4.1 in order to integrate by parts and obtain

𝐼𝐼𝐼𝜀,𝛿 = −⨌ 𝜕𝑦𝛾(𝑡, 𝐹 , 𝐹 )𝜒.

Moreover we get the bound
|

|

|

|

⨌ 𝜕𝑦𝛾(𝑡, 𝐹 , 𝐹 )𝜒
|

|

|

|

≤ sup
𝑡∈[0,𝑇 ]

|

|

|

𝐴−(𝑡, 𝑡, ⋅)
|

|

|Lip ⨌

(

|

|

|

𝜕1𝐹 (𝑡 + 𝑠, 𝑥 + 𝑦)
|

|

|

+ |

|

|

𝜕1𝐹 (𝑡 − 𝑠, 𝑥 − 𝑦)
|

|

|

)

𝑏𝜀
(

𝑦
)

𝑏𝜀
(

𝑠
)

𝑔
(

𝑥
)

ℎ𝛿
(

𝑡
)

.

Letting 𝜀 → 0 and setting 𝐼𝐼𝐼𝛿 ∶= lim𝜀→0 𝐼𝐼𝐼𝜀,𝛿 we arrive at

|

|

𝐼𝐼𝐼𝛿|| ≤ sup
𝑡∈[0,𝑇 ]

|

|

|

𝐴−(𝑡, 𝑡, ⋅)
|

|

|Lip ∬

(

|

|

|

𝜕1𝐹 (𝑡, 𝑥)
|

|

|

+ |

|

|

𝜕1𝐹 (𝑡, 𝑥)
|

|

|

)

𝑔
(

𝑥
)

ℎ𝛿
(

𝑡
)

𝑑𝑥𝑑𝑡.

etting 𝛿 → 0 this becomes

lim
𝛿→0

|

|

𝐼𝐼𝐼𝛿|| ≤ sup
𝑡∈[0,𝑇 ]

|

|

|

𝐴−(𝑡, 𝑡, ⋅)
|

|

|Lip ∫

𝜏

𝜎 ∫

(

|

|

|

𝜕1𝐹 (𝑡, 𝑥)
|

|

|

+ |

|

|

𝜕1𝐹 (𝑡, 𝑥)
|

|

|

)

𝑑𝑥𝑑𝑡.

Since for any fixed 𝑡
(

|

|𝜕1𝐹 (𝑡, 𝑥)
|

| + |

|𝜕1𝐹 (𝑡, 𝑥)
|

|

)

= 2,
15

∫ | | | |



Nonlinear Analysis 240 (2024) 113462I. Ben-Porat et al.

s

we conclude

lim
𝛿→0

|

|

𝐼𝐼𝐼𝛿|| ≤ 2 sup
𝑡∈[0,𝑇 ]

|

|

|

𝐴−(𝑡, 𝑡, ⋅)
|

|

|Lip
(𝜏 − 𝜎) = sup

𝑡∈[0,𝑇 ]

|

|

|

𝐴(𝑡, ⋅) − 𝐴(𝑡, ⋅)||
|Lip

(𝜏 − 𝜎). (4.8)

The integral 𝐼𝑉𝜀,𝛿 . The treatment of this integral reflects the novelty for what concerns the stability estimate, since the non-local
ource term in question stands in variance to the one in [12]. Letting 𝜀→ 0 we get the 2D integral

𝐼𝑉𝛿 ∶= ∬ sgn(𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑥))
(

𝐒[𝐹 ](𝑡, 𝑥) − 𝐒[𝐹 ](𝑡, 𝑥)
)

𝑔
(

𝑥
)

ℎ𝛿
(

𝑡
)

𝑑𝑡𝑑𝑥.

The integral 𝐼𝑉𝛿 is now to be bounded by 4 terms, each of which is mastered separately.

|

|

𝐼𝑉𝛿|| ≤ ∬
|

|

|

𝐒[𝐹 ](𝑡, 𝑥) − 𝐒[𝐹 ](𝑡, 𝑥)||
|

𝑔 (𝑥)ℎ𝛿 (𝑡) 𝑑𝑥𝑑𝑡

≤ ∬
|

|

|

𝐹 (𝑡, 𝑥)𝜙 ⋆ 𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑥)𝜙 ⋆ 𝐹 (𝑡, 𝑥)||
|

𝑔 (𝑥)ℎ𝛿 (𝑡) 𝑑𝑥𝑑𝑡

+∬
|

|

|

|

∫

𝑥

−∞
𝐹 (𝑡, 𝑧)𝜕𝑧𝜙 ⋆ 𝐹 (𝑡, 𝑧) − 𝐹 (𝑡, 𝑧)𝜕𝑧𝜙 ⋆ 𝐹 (𝑡, 𝑧)𝑑𝑧

|

|

|

|

𝑔 (𝑥)ℎ𝛿 (𝑡) 𝑑𝑥𝑑𝑡

≤ ∬
|

|

|

|

(

𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑥)
)

𝜙 ⋆ 𝐹 (𝑡, 𝑥)
|

|

|

|

𝑔 (𝑥)ℎ𝛿 (𝑡) 𝑑𝑥𝑑𝑡

+∬
|

|

|

𝐹 (𝑡, 𝑥)𝜙 ⋆ (𝐹 − 𝐹 )(𝑡, 𝑥)||
|

𝑔 (𝑥)ℎ𝛿 (𝑡) 𝑑𝑥𝑑𝑡

+∬
|

|

|

|

∫

𝑥

−∞
𝐹 (𝑡, 𝑧)(𝜕𝑧𝜙 ⋆ (𝐹 − 𝐹 )(𝑡, 𝑧))𝑑𝑧

|

|

|

|

𝑔 (𝑥)ℎ𝛿 (𝑡) 𝑑𝑥𝑑𝑡

+∬
|

|

|

|

∫

𝑥

−∞
𝜕𝑧𝜙 ⋆ 𝐹 (𝑡, 𝑧)(𝐹 − 𝐹 )(𝑡, 𝑧)𝑑𝑧

|

|

|

|

𝑔 (𝑥)ℎ𝛿 (𝑡) 𝑑𝑥𝑑𝑡 ∶=
4
∑

𝑘=1
𝐽𝑘.

Estimate on 𝐽1.
|

|

|

|

(

𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑥)
)

𝜙 ⋆ 𝐹 (𝑡, 𝑥)
|

|

|

|

≤ 2𝑅 ‖𝜙‖∞
|

|

|

𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑥)||
|

,

so that

|

|

𝐽1|| ≤ 2𝑅 ‖𝜙‖∞ ∬
|

|

|

𝐹 (𝑡, 𝑥) − 𝐹 (𝑡, 𝑥)||
|

𝑔 (𝑥)ℎ𝛿 (𝑡) 𝑑𝑥𝑑𝑡

≤ 2𝑅 ‖𝜙‖∞ ∫
‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
ℎ𝛿 (𝑡) 𝑑𝑡 →

𝛿→0
2𝑅 ‖𝜙‖∞ ∫

𝜏

𝜎

‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
𝑑𝑡.

Estimate on 𝐽2.
|

|

|

𝜙 ⋆ (𝐹 − 𝐹 )(𝑡, 𝑥)||
|

≤ ‖𝜙‖∞
‖

‖

‖

(𝐹 − 𝐹 )(𝑡, ⋅)‖‖
‖1
,

so that

|

|

𝐽2|| ≤
1
2
‖𝜙‖∞ ∬

‖

‖

‖

(𝐹 − 𝐹 )(𝑡, ⋅)‖‖
‖1
𝑔 (𝑥)ℎ𝛿 (𝑡) 𝑑𝑥𝑑𝑡

≤ 2𝑅 ‖𝜙‖∞ ∫
‖

‖

‖

(𝐹 − 𝐹 )(𝑡, ⋅)‖‖
‖1
ℎ𝛿 (𝑡) 𝑑𝑡 →

𝛿→0
2𝑅 ‖𝜙‖∞ ∫

𝜏

𝜎

‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
𝑑𝑡.

Estimate on 𝐽3. Since supp(𝜕𝑧𝜙 ⋆ (𝐹 − 𝐹 )) ⊂ supp(𝜙) + supp(𝐹 − 𝐹 ) ⊂ [−(𝑟 + 𝑅), 𝑟 + 𝑅] it follows that

|

|

|

|

∫

𝑥

−∞
𝐹 (𝑡, 𝑧)(𝜕𝑧𝜙 ⋆ (𝐹 − 𝐹 )(𝑡, 𝑧))𝑑𝑧

|

|

|

|

≤
|

|

|

|

|

∫

𝑟+𝑅

−(𝑟+𝑅)
𝐹 (𝑡, 𝑧)(𝜕𝑧𝜙 ⋆ (𝐹 − 𝐹 )(𝑡, 𝑧))𝑑𝑧

|

|

|

|

|

≤ (𝑟 + 𝑅) ‖
‖

𝜕𝑧𝜙‖‖∞
‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
.

Consequently

|

|

𝐽3|| ≤ (𝑟 + 𝑅) ‖
‖

𝜕𝑧𝜙‖‖∞ ∬
‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
𝑔 (𝑥)ℎ𝛿 (𝑡) 𝑑𝑥𝑑𝑡

≤ (𝑟 + 𝑅) ‖
‖

𝜕𝑧𝜙‖‖∞ ∬
‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
𝑔 (𝑥)ℎ𝛿 (𝑡) 𝑑𝑥𝑑𝑡

≤ 4𝑅(𝑟 + 𝑅) ‖
‖

𝜕𝑧𝜙‖‖∞ ∫
‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
ℎ𝛿 (𝑡) 𝑑𝑡

→
𝛿→0

4𝑅(𝑟 + 𝑅) ‖
‖

𝜕𝑧𝜙‖‖∞ ∫

𝜏

𝜎

‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
𝑑𝑡.

Estimate on 𝐽4.
|

|

𝑥
𝜕𝑧𝜙 ⋆ 𝐹 (𝑡, 𝑧)(𝐹 − 𝐹 )(𝑡, 𝑧)𝑑𝑧

|

| ≤ 2𝑅 ‖𝜕𝑧𝜙‖
‖

‖𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖ .
16
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As a result

|

|

𝐽4|| ≤ 2𝑅 ‖

‖

𝜕𝑧𝜙‖‖∞ ∬
‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
𝑔 (𝑥)ℎ𝛿 (𝑡) 𝑑𝑥𝑑𝑡

≤ 8𝑅2
‖

‖

𝜕𝑧𝜙‖‖∞ ∫
‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
ℎ𝛿 (𝑡) 𝑑𝑡

→
𝛿→0

8𝑅2
‖

‖

𝜕𝑧𝜙‖‖∞ ∫

𝜏

𝜎

‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
𝑑𝑡.

Summarizing
|

|

|

|

lim
𝛿→0

lim
𝜀→0

𝐼𝑉𝜀,𝛿
|

|

|

|

≤ 𝐶(𝑟, 𝑅, ‖𝜙‖∞ , ‖
‖

𝜕𝑧𝜙‖‖∞)∫

𝜏

𝜎

‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
𝑑𝑡. (4.9)

Step 4. Conclusion. The combination of (4.6), (4.7), (4.8), (4.9) and (4.5) yields the inequality

sup
𝑡∈[0,𝑇 ]

|

|

|

𝐴(𝑡, ⋅) − 𝐴(𝑡, ⋅)||
|Lip

(𝜏 − 𝜎) + 𝐶 ∫

𝜏

𝜎

‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1
𝑑𝑡

+ ∫
|

|

|

𝐹 (𝜎, 𝑥) − 𝐹 (𝜎, 𝑥)||
|

𝑑𝑥 − ∫
|

|

|

𝐹 (𝜏, 𝑥) − 𝐹 (𝜏, 𝑥)||
|

𝑑𝑥 ≥ 0,

for some constant 𝐶 = 𝐶(𝑟, 𝑅, ‖
‖

𝜕𝑧𝜙‖‖∞ , ‖𝜙‖∞). In particular we get

‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1

≤ 𝑡 sup
𝑡∈[0,𝑇 ]

|

|

|

𝐴(𝑡, ⋅) − 𝐴(𝑡, ⋅)||
|Lip

+ ‖

‖

‖

𝐹 (0, ⋅) − 𝐹 (0, ⋅)‖‖
‖1

+ 𝐶 ∫

𝑡

0

‖

‖

‖

𝐹 (𝑠, ⋅) − 𝐹 (𝑠, ⋅)‖‖
‖1
𝑑𝑠,

which by Gronwall implies

‖

‖

‖

𝐹 (𝑡, ⋅) − 𝐹 (𝑡, ⋅)‖‖
‖1

≤ 𝑒𝐶𝑡
(

‖

‖

‖

𝐹 (0, ⋅) − 𝐹 (0, ⋅)‖‖
‖1

+ 𝑡 sup
𝑡∈[0,𝑇 ]

|

|

|

𝐴(𝑡, ⋅) − 𝐴(𝑡, ⋅)||
|Lip

)

,

as desired. □

Remark 4.1. Given initial data 𝐹 0, it is not difficult to construct explicitly initial weights 𝑚0
𝑖 and initial opinions 𝑥0𝑖 such that

‖

‖

‖

− 1
2 + 1

𝑁
∑𝑁
𝑖=1 𝑚

0
𝑖𝐻(𝑥 − 𝑥0𝑖 ) − 𝐹

0‖
‖

‖1
→

𝑁→∞
0, thereby witnessing the fact that the assumption ‖

‖

‖

𝐹 0
𝑁 − 𝐹 0‖

‖

‖1
→

𝑁→∞
0 is reasonably typical.

ee Lemma 5.3 in [12] for a guidance how to do this.
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ppendix. The Rankine–Hugoniot and Oleinik conditions revisited

The Rankine–Hugoniot and Oleinik conditions are a very standard tool in the theory of conservation laws. However it seems
hat the literature typically formulates these conditions for conservation laws with time independent fluxes, no source terms and
hen there is only a single curve of discontinuity. All of these additions are completely harmless, but for the sake of completeness
e revisit the derivation of the entropy inequality subject in this slightly more general settings. The equation is as usual

𝜕𝑡𝐹 + 𝜕𝑥(𝐴(𝑡, 𝐹 )) = 𝐒[𝐹 ](𝑡, 𝑥). (A.1)

Proposition A.1 (Oleinik Condition). Suppose there are times 0 = 𝑇0 < 𝑇1 < ⋯ < 𝑇𝑘−1 < 𝑇𝑘 = 𝑇 such that for each 1 ≤ 𝑗 ≤ 𝑘 there are
urves

{

(𝑡, 𝑠𝑗𝑖 (𝑡))
}𝑚𝑗

𝑖=1
(𝑚𝑗 ∈ N) such that 𝐹 is a classical solution to Eq. (A.1) on

𝑉 𝑖,𝑗
𝐿 ∶=

{

(𝑡, 𝑥) ||
|

𝑡 ∈ [𝑇𝑗−1, 𝑇𝑗 ), 𝑠
𝑗
𝑖−1(𝑡) ≤ 𝑥 < 𝑠𝑗𝑖 (𝑡)

}

nd

𝑉 𝑖,𝑗
𝑅 ∶=

{

(𝑡, 𝑥) ||
|

𝑡 ∈ [𝑇𝑗−1, 𝑇𝑗 ), 𝑠
𝑗
𝑖 (𝑡) < 𝑥 ≤ 𝑠𝑗𝑖+1(𝑡)

}

,

with the convention 𝑠𝑗0(𝑡) = −∞ and 𝑠𝑗𝑚𝑗+1(𝑡) = +∞. For each 𝑡 ∈ [𝑇𝑗−1, 𝑇𝑗 ) let

𝐹 𝑖,𝑗𝐿 (𝑡) ∶= lim
𝑗
𝐹 (𝑡, 𝑥), 𝐹 𝑖,𝑗𝑅 (𝑡) ∶= lim

𝑗
𝐹 (𝑡, 𝑥).
17
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Suppose that for each 𝑡 ∈ [𝑇𝑗−1, 𝑇𝑗 ) and each 𝜃 ∈ (𝐹 𝑖,𝑗𝐿 (𝑡), 𝐹 𝑖,𝑗𝑅 (𝑡)) it holds that

𝐴(𝑡, 𝐹 𝑖,𝑗𝐿 (𝑡)) − 𝐴(𝑡, 𝐹 𝑖,𝑗𝑅 (𝑡))

𝐹 𝑖,𝑗𝐿 (𝑡) − 𝐹 𝑖,𝑗𝑅 (𝑡)
= 𝑠̇𝑗𝑖 (𝑡) (A.2)

and

𝐴(𝑡, 𝜃) − 𝐴(𝑡, 𝐹 𝑖,𝑗𝐿 (𝑡))

𝜃 − 𝐹 𝑖,𝑗𝐿 (𝑡)
≥ 𝑠̇𝑗𝑖 (𝑡). (A.3)

Then for each 𝛼 ∈ R 𝐹 satisfies the entropy inequality

∬𝑉
𝜕𝑡𝜒(𝐹 − 𝛼)sgn(𝐹 − 𝛼) + 𝜕𝑥𝜒 (𝐴(𝐹 ) − 𝐴(𝛼)) sgn(𝐹 − 𝛼) + 𝜒sgn(𝐹 − 𝛼)𝐒[𝐹 ](𝑡, 𝑥)𝑑𝑥𝑑𝑡 ≥ 0. (A.4)

Proof. Let us first consider 𝜂 ∶ R → R, 𝜓 ∶ R → R where 𝜂 ∈ 𝐶1,1(R) is convex and 𝜓 ′ = 𝜂′𝐴′. Then we have that

∬ 𝜕𝑡𝜒𝜂(𝐹 ) + 𝜕𝑥𝜒𝜓(𝐹 ) + 𝜒𝐒[𝐹 ](𝑡, 𝑥)𝑑𝑥𝑑𝑡 =
𝑘
∑

𝑗=1

𝑚𝑗
∑

𝑖=1
∬𝑉 𝑖,𝑗𝐿

(

𝜕𝑡𝜒𝜂(𝐹 ) + 𝜕𝑥𝜒𝜓(𝐹 ) + 𝜒𝜂′(𝐹 )𝐒[𝐹 ](𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡

+
𝑘
∑

𝑗=1

𝑚𝑗
∑

𝑖=1
∬𝑉 𝑖,𝑗𝑅

(

𝜕𝑡𝜒𝜂(𝐹 ) + 𝜕𝑥𝜒𝜓(𝐹 ) + 𝜒𝜂′(𝐹 )𝐒[𝐹 ](𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡.

et 𝛤𝑖,𝑗 ∶=
{

(𝑡, 𝑠𝑗𝑖 (𝑡))
|

|

|

𝑡 ∈ [𝑇𝑗−1, 𝑇𝑗 )
}

. Keep 1 ≤ 𝑗 ≤ 𝑘 and 1 ≤ 𝑖 ≤ 𝑚𝑗 fixed and take a test function 𝜒 ∈ 𝐶∞
0 ((0, 𝑇 ) ×R). For readability,

we omit the indices 𝑖, 𝑗. Using that 𝐹 is a classical solution on 𝑉𝐿, 𝑉𝑅 we get

∬𝑉𝐿

(

𝜕𝑡𝜒𝜂(𝐹 ) + 𝜕𝑥𝜒𝜓(𝐹 ) + 𝜒𝜂′(𝐹 )𝐒[𝐹 ](𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡

+∬𝑉𝑅

(

𝜕𝑡𝜒𝜂(𝐹 ) + 𝜕𝑥𝜒𝜓(𝐹 ) + 𝜒𝜂′(𝐹 )𝐒[𝐹 ](𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡

= ∬𝑉𝐿

(

−𝜒𝜕𝑡𝜂(𝐹 ) − 𝜒𝜕𝑥𝜓(𝐹 ) + 𝜒𝜂′(𝐹 )𝐒[𝐹 ](𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡

+∬𝑉𝑅

(

−𝜒𝜕𝑡𝜂(𝐹 ) − 𝜒𝜕𝑥𝜓(𝐹 ) + 𝜒𝜂′(𝐹 )𝐒[𝐹 ](𝑡, 𝑥)
)

𝑑𝑥𝑑𝑡

+ ∫𝛤

(

𝜒𝜂(𝐹𝐿)𝜈1 + 𝜒𝜓(𝐹𝐿)𝜈2
)

𝑑𝜎 − ∫𝛤
(𝜒𝜂(𝐹𝑅)𝜈1 + 𝜒𝜓(𝐹𝑅)𝜈2)𝑑𝜎

= ∫𝛤

(

𝜒(𝜓(𝐹𝐿) − 𝜓(𝐹𝑅))𝜈1 + 𝜒(𝜂(𝐹𝐿) − 𝜂(𝐹𝑅))𝜈2
)

𝑑𝜎.

Here

(𝜈1, 𝜈2) = 1
√

1 + 𝑠̇2
(−𝑠̇, 1),

and the last equality is because of the identity

𝜕𝑡𝜂(𝐹 ) + 𝜕𝑥𝜓(𝐹 ) + 𝜂′(𝐹 )𝐒[𝐹 ] = 0,

which is easily derived using that 𝐹 is a classical solution on each region. We claim that

(𝜂(𝐹𝐿) − 𝜂(𝐹𝑅)) − (𝜓(𝐹𝐿) − 𝜓(𝐹𝑅))𝑠̇(𝑡) ≥ 0.

First, we integrate by parts to find that

𝜓(𝐹𝑅) − 𝜓(𝐹𝐿) = ∫

𝐹𝑅

𝐹𝐿
𝜂′(𝑦)𝐴′(𝑡, 𝑦)𝑑𝑦

= −∫

𝐹𝑅

𝐹𝐿
𝜂′′(𝑦)(𝐴(𝑡, 𝑦) − 𝐴(𝑡, 𝐹𝐿(𝑡)))𝑑𝑦 + 𝜂′(⋅)(𝐴(𝑡, ⋅) − 𝐴(𝑡, 𝐹𝐿))||

𝐹𝑅
𝐹𝐿

= −∫

𝐹𝑅

𝐹𝐿
𝜂′′(𝑦)(𝐴(𝑡, 𝑦) − 𝐴(𝑡, 𝐹𝐿))𝑑𝑦 + 𝜂′(𝐹𝑅(𝑡))(𝐴(𝑡, 𝐹𝑅(𝑡)) − 𝐴(𝑡, 𝐹𝐿(𝑡))),

and so thanks to the assumption (A.3) and the convexity of 𝜂 we have the inequality

𝜓(𝐹𝐿) − 𝜓(𝐹𝑅) = ∫

𝐹𝑅

𝐹𝐿
𝜂′′(𝑦)(𝐴(𝑡, 𝑦) − 𝐴(𝑡, 𝐹𝐿))𝑑𝑦 − 𝜂′(𝐹𝑅)(𝐴(𝑡, 𝐹𝑅) − 𝐴(𝑡, 𝐹𝐿))

≥ 𝑠̇(𝑡)
𝐹𝑅
𝜂′′(𝑦)(𝑦 − 𝐹𝐿)𝑑𝑦 − 𝜂′(𝐹𝑅)(𝐴(𝑡, 𝐹𝑅)) − 𝐴(𝑡, 𝐹𝐿).

(A.5)
18
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On the other hand

𝜂(𝐹𝑅) − 𝜂(𝐹𝐿) = ∫

𝐹𝑅

𝐹𝐿
𝜂′(𝑦)𝑑𝑦 = −∫

𝐹𝑅

𝐹𝐿
𝜂′′(𝑦)(𝑦 − 𝐹𝐿)𝑑𝑦 + (𝑦 − 𝐹𝐿)𝜂′||

𝐹𝑅
𝐹𝐿

= −∫

𝐹𝑅

𝐹𝐿
𝜂′′(𝑦)(𝑦 − 𝐹𝐿(𝑡))𝑑𝑦 + (𝐹𝑅 − 𝐹𝐿)𝜂′(𝐹𝑅).

ogether with inequality (A.5) the last equation entails

𝜓(𝐹𝐿) − 𝜓(𝐹𝑅) − 𝑠̇(𝑡)(𝜂(𝐹𝐿) − 𝜂(𝐹𝑅)) ≥ 𝜂′(𝐹𝑅)
(

𝑠̇(𝑡)(𝐹𝑅 − 𝐹𝐿) − 𝐴(𝑡, 𝐹𝑅) − 𝐴(𝑡, 𝐹𝐿)
)

= 0,

where the last equality is because of the assumption (A.2). It follows that

∫ 𝜕𝑡𝜒𝜂(𝐹 ) + 𝜕𝑥𝜒𝜓(𝐹 ) + 𝜒𝜂′(𝐹 )𝐒[𝐹 ](𝑡, 𝑥)𝑑𝑥𝑑𝑡 ≥ 0. (A.6)

To finish, we use a standard approximation argument. For each 𝜀 > 0 consider the convex function s𝜀 ∈ 𝐶1,1(R) defined by

s𝜀(𝑧) ∶=

⎧

⎪

⎨

⎪

⎩

1
2𝜀 𝑧

2, |𝑧| ≤ 𝜀,

|𝑧| − 𝜀
2 , |𝑧| > 𝜀.

and for each 𝛼 ∈ R let

𝜂𝜀(𝑧) ∶= s𝜀(𝑧 − 𝛼).

It is clear that we have pointwise convergence

𝜂𝜀 →
𝜀→0

|𝑧 − 𝛼| , 𝜂′𝜀 →
𝜀→0

sgn(𝑧 − 𝛼).

Furthermore we can take

𝜓𝜀(𝐹 ) = ∫

𝐹

𝛼
𝜂′𝜀𝐴

′(𝑡, 𝑦)𝑑𝑦 = ∫

𝐹

𝛼
𝜂′𝜀(𝐴(𝑡, 𝑦) − 𝐴(𝑡, 𝛼))

′𝑑𝑦,

and as 𝜀 → 0 we get

𝜓𝜀(𝐹 ) →
𝜀→0 ∫

𝐹

𝛼
sgn(𝑦 − 𝛼)(𝐴(𝑡, 𝑦) − 𝐴(𝑡, 𝛼))′𝑑𝑦 = sgn(𝐹 − 𝛼)(𝐴(𝑡, 𝐹 ) − 𝐴(𝑡, 𝛼))

pointwise. Therefore testing inequality (A.6) with 𝜂𝜀, 𝜓𝜀 and taking the limit as 𝜀→ 0 yields the asserted inequality (A.4). □
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