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Abstract

We show that if all internal vertices of a disc triangulation have degree at least 6, then
the full structure can be determined from the pairwise graph distances between boundary
vertices. A similar result holds for disc quadrangulations with all internal vertices having
degree at least 4. This confirms a conjecture of Itai Benjamini. Both degree bounds are best
possible, and correspond to local non-positive curvature. However, we show that a natural
conjecture for a “mixed” version of the two results is not true.

1 Introduction

Let T be a planar near-triangulation (that is, a planar graph such that every face other than
the outer face is a triangle) with a simple closed boundary of length n, and suppose that all
distances in T between boundary vertices are known. Under what conditions does this allow
the precise structure of T to be determined? In general this is not the case if internal vertices
of degree 5 (or below) are permitted. For any near-triangulation we can glue an icosahedron
into any face, adding nine vertices of degree 5, without changing any distances between existing
vertices. This question was first posed by Itai Benjamini [7], who conjectured that provided all
internal vertices have degree at least 6, the near-triangulation can be reconstructed.

Indeed, degree 5 is the natural boundary to this sort of counterexample. If all internal
vertices have degree at least 6, then no triangle can have internal vertices. To see this, suppose
abc is a triangle surrounding m ≥ 1 internal vertices. Then the total number of edges between
and inside abc is at least 3m + 9/2, since each of a, b, c has at least one neighbour inside the
triangle, but a planar graph on m+ 3 vertices can have at most 3m+ 3 edges.

Similarly, we might instead consider a planar near-quadrangulation. If internal vertices of
degree 3 are permitted then we may glue a cube onto a face, but again this type of example
cannot occur if the minimum degree of internal vertices is at least 4. Both of these conditions
(minimum degree 6 for triangulations and minimum degree 4 for quadrangulations) correspond
to having non-positive curvature at each internal vertex.

In more generality, if we consider a planar map with simple closed boundary which may
have faces of different sizes, then the natural interpretation of what it means to have non-
positive curvature at each internal vertex is to look locally at the faces surrounding a vertex,
considering each as a regular polygon with the appropriate number of sides, and require the
angles around the vertex to sum to at least 2π. For example, if all faces are triangles or
quadrangles, and an internal vertex v meets t(v) triangles and q(v) quadrangles, then this
condition becomes 2t(v) + 3q(v) ≥ 12. As we shall see, this is indeed the right definition, in the
sense that it precludes the type of simple counterexamples discussed above. However, perhaps
surprisingly in light of our main results, this condition is not sufficient to allow reconstruction
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of the graph from boundary distances, even for graphs with only these two types of faces; a
class of counterexamples is given in Section 4.

However, we show that in the cases of pure near-triangulations and pure near-quadrangulations
the natural condition is sufficient to allow reconstruction.

Theorem 1.1. Let T be a near-triangulation with a simple closed boundary such that all internal
vertices have degree at least 6. Then the distances between boundary vertices determine T .

Theorem 1.2. Let Q be a near-quadrangulation with a simple closed boundary such that all
internal vertices have degree at least 4. Then the distances between boundary vertices determine
Q.

Note that the information we receive in each case is the set of boundary vertices and all
pairwise distances between them. In particular, we are not given the cyclic order of boundary
vertices. However, this information can easily be recovered as an initial step.1

Lemma 1.3. Let G be any planar graph with simple closed boundary. Then the set of pairs of
boundary vertices at distance 1 determines the cyclic ordering of boundary vertices.

Proof. Let G′ be the subgraph induced on the boundary vertices, and consider an edge uv ∈
E(G′). If uv is a boundary edge, i.e. u and v are consecutive boundary vertices, then G′ \{u, v}
is connected, since the remaining boundary edges form a spanning path. However, if uv is a
chord then no other chord can cross it, and so G′ \ {u, v} has two components consisting of the
two sections of the boundary between u and v.

Theorems 1.1 and 1.2 may be viewed as discrete versions of the continuous inverse problem
of reconstructing (up to isometry) the metric on a compact Riemannian metric with specified
boundary from the distance function on pairs of boundary points. This problem originates from
rigidity questions in Riemannian geometry [13, 9, 10], and a manifold is said to be boundary
rigid if any other Riemannian manifold with the same boundary and boundary distance function
is isometric to it. Michel [13] conjectured that any simple Riemannian manifold is boundary
rigid; the condition of being simple requires that the manifold is simply-connected with strictly
convex boundary and that geodesics have no conjugate points. In the two-dimensional case this
was confirmed for simple surfaces of negative curvature by Croke [8] and for all simple surfaces
by Pestov and Uhlmann [14]. Note, however, that these results in the continuous case require
strong assumptions on the boundary, whereas our results hold for any boundary which encloses
a simply-connected region.

In addition to the reconstruction question, we might also ask about recognition: is there
an efficient way to determine whether a given list of distances arise from such a graph? While
the proofs of our main results do indeed give a way to do this, the recognition question also
makes sense in contexts where reconstruction is not possible. In Section 5 we discuss such
generalisations.

Throughout, we write dG(·, ·) for the graph distance within G (or just d(·, ·) if there is only
one possible graph); to avoid confusion, we write degG(·) (or deg(·)) for the vertex degree.

2 Disc triangulations

In this section we prove Theorem 1.1. Our approach is induction on n, the number of boundary
vertices (the observation in Section 1 that every triangle is a face gives the result for n = 3). We
show that certain types of configuration allow reduction to smaller cases. For a configuration to

1I am grateful to Alex Scott for this observation.
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allow such a reduction, we require two properties: first, that the presence of this configuration
within T can be recognised from the boundary distances; secondly, that after removing the
configuration what remains consists of one or more smaller disc triangulations, and all boundary
distances for these may be deduced from the original boundary distances. By Lemma 1.3, we
may assume that the cyclic ordering of boundary vertices is known.

A simple example of such a configuration is a chord, that is, if T contains an internal edge
between two boundary vertices. A chord may be identified because its ends are a non-consecutive
pair of boundary vertices at distance 1, giving the first property. Assuming such a chord exists,
let the boundary vertices, in order, be v1, . . . , vn and suppose without loss of generality that
d(v1, vk) = 1 for k 6= 2, n. Then we may split T into two near-triangulations T1 and T2 bounded
respectively by the cycles v1 · · · vkv1 and vk · · · vnv1vk. No shortest path (in T ) between two
vertices of T1 can use vertices outside T1, since if a path leaves T1 and subsequently returns
to it then the section outside T1 can be replaced by the single edge v1vk (in some direction).
Thus for each pair (vi, vj) of boundary vertices of T1 we have dT1(vi, vj) = dT (vi, vj). The same
applies to T2, giving the second property.

Of course, in order to make this approach into an inductive proof, we will need our set of
reducible configurations to be sufficiently large that at least one of them is guaranteed to occur
(except in the base case). While there are some other “small” configurations (in the sense of
depending only on one or two internal vertices) that allow reductions, in general we will need
to consider configurations of unbounded size. The general form of these will be a strip of faces
running along the boundary, which we can remove to leave a single near-triangulation consisting
of all remaining faces.

A key fact which we will need in order to deduce the boundary distances of the smaller
near-triangulation is that in any near-triangulation where internal vertices all have degree at
least 6, the three vertices of any face cannot be equidistant from any fourth point; we prove
this in Section 2.1. We then define the main configurations we use in Section 2.2, and show
that they may be identified and permit reductions. After giving some other simpler reduction
configurations in Section 2.3, we complete the proof in Section 2.4.

In what follows, a disc triangulation is a plane graph with a simple closed boundary and all
internal faces being triangles. It is chordless if no internal edge joins two boundary vertices.
We define the boundary faces of T to be those which share an edge with the boundary cycle.

2.1 Meridians and no equidistant triangle

Lemma 2.1. Let T be a disc triangulation with boundary v0v1 · · · vn−1v0 such that every in-
ternal vertex has degree at least 6. Suppose that v1, . . . , vk−1 each have degree at least 4. Then
dT (v0, vk) = k, and furthermore v0v1 · · · vk is the unique shortest path between v0 and vk.

Proof. First we argue that for every pair 0 ≤ i < j ≤ k with j > i + 1, the vertices vi, vj
are not adjacent and do not have a common neighbour other than vi+1. Indeed, suppose not
and consider a counterexample minimising j − i. Consider the boundary faces with edges
vivi+1, . . . , vj−1vj . The third vertices of all these faces are distinct, using minimality and the
fact that each of v1, . . . , vk−1 has degree at least 4. Thus if vi and vj are adjacent then the
cycle vi · · · vj is chordless and encloses a triangulation where all internal vertices have degree
at least 6 and at least j − i − 1 internal vertices are adjacent to the boundary. Similarly, if vi
and vj have a common neighbour x (other than vi+1), then the cycle vi · · · vjx has the same
properties. In either case, it follows that the inner subtriangulation remaining after removing
the cycle of length at most j− i+1 has boundary length at least j− i−2. However, this gives a
contradiction together with [1, Lemma 2.2], which states that if T ′ is a triangulation of a cycle
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of order ` with all internal vertices having degree at least 6 then the inner subtriangulation
remaining after removing the cycle has boundary length at most `− 6.

Now we prove the desired result. Suppose it is not true and take a counterexample with as
few total vertices in the near-triangulation as possible, and among such counterexamples, with
k as small as possible. Let P be either a shorter path or a different path of length k between
v0 and vk. If vj is on P for some 1 ≤ j < k then either the section of P from v0 to vj or the
section from vj to vk contradicts minimality of the original counterexample. Thus P avoids
v1, . . . , vk−1.

Consider the set of faces incident with at least one of v1, . . . , vk−1. The number of such faces
is k +

∑k−1
i=1 (deg(vi) − 3) ≥ 2k − 1. There is another path P ′ from v0 to vk around the other

side of this strip of faces, which has length at least k + 1 and is disjoint from {v1, . . . , vk−1}; in
particular P ′ is longer than P , so is not a shortest path in T \ {v1, . . . , vk−1}. Suppose that P ′

consists entirely of internal vertices of T . Then removing v1, . . . , vk−1 leaves a disc triangulation
T ′ for which P ′ forms part of the boundary, and since each vertex on P ′, other than v0 and vk,
was adjacent to at most two of the removed vertices, we conclude that it has degree at least 4 in
the remaining near-triangulation. Since P lies entirely in T ′, it follows that P ′ is not a shortest
path between v0 and vk in T ′, contradicting minimality of the original example. If some vertices
of P ′ are boundary vertices of T , we may remove any bridges from T ′ and split any cutvertices
to leave two or more disc triangulations, then apply the same argument to each section of P ′

that remains, noting that every vertex of P ′ which lies strictly inside such a section has degree
at least 4.

Lemma 2.2. Let T be a triangulation of the cycle v0v1 · · · vn−1v0 with every internal vertex
having degree at least 6. Suppose that v1, . . . , vk−1 each have degree at least 3, that if deg(vi) =
3 then there is some h with 0 < h < i and deg(vh) ≥ 5, and that if there are two values
0 < i < j < k with deg(vi) = deg(vj) = 3 then there is some h with i < h < j and deg(vh) ≥ 5.
Then dT (v0, vk) = k, and furthermore every path of length exactly k uses v1.

Proof. Again, suppose not and take a counterexample with as few total vertices as possible. By
Lemma 2.1, at least one of these vertices, say vi, has degree 3. Let wi be the neighbour of vi
other than vi−1, vi+1, and remove vi to give a near-triangulation T ′. For any shortest v0vk-path
in T which uses vi, replacing vi by wi gives another shortest path, and so it suffices to show the
conclusion holds for T ′.

Note that v0, . . . , vi−1, wi, vi+1, . . . vk are consecutive boundary vertices of T ′, degT ′(vi−1) =
degT (vi−1) − 1, degT ′(vi+1) = degT (vi+1) − 1 and degT ′(wi) = degT (wi) − 1, with all other
degrees unchanged. If wi was an internal vertex of T then T ′ is still a disc triangulation and
degT ′(wi) ≥ 5. It follows that T ′ satisfies the same boundary degree conditions, and so the
result holds by minimality of T . If not, then T ′ consists of two disc triangulations T ′1 and
T ′2 with a common vertex wi. The required boundary conditions are met in T ′1 for vertices
v1, . . . , vi−1 and in T ′2 for vi+1 . . . vk−1, and so dT ′

1
(v0, wi) = i with every shortest path using v1,

and dT ′
2
(wi, vk) = i− k, from which the result follows.

We work towards the crucial Lemma 2.4. We first need a definition.
Given a plane near-triangulation T , and an internal vertex x, let C be the cycle of neighbours

of x. We regard C as a cyclic list alternating between vertices and edges, of even length 2 deg(x).
If two elements of this list have positions differing by deg(x), we say they are opposite with
respect to x. If y, z are two neighbours of x then their positions in the list differ by an even
number, so there are two list elements exactly halfway between them which form a pair of
opposite elements; we say either such element is a midpoint of y and z with respect to x. We
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Figure 1: Part of a near-triangulation, with a meridian (circled groups) and a path following
the meridian (doubled lines). The dotted section at the top shows how the near-triangulation
may be expanded to avoid the path meeting the boundary (bold) internally.

may similarly define the midpoint of y and z relative to x when x is not internal; in this case
there is only one midpoint.

We define a meridian in T as a sequence e0, . . . , er with the following properties:

� For each i, ei is either a vertex or an edge.

� ei is a boundary vertex or boundary edge if and only if i ∈ {0, r}.

� For 0 < i < r, if ei is a vertex then ei−1 and ei+1 are opposite with respect to ei.

� For 0 < i < r, if ei is an edge then ei−1 and ei+1 are the two vertices completing faces
with ei in some order.

Note that we may associate a meridian with a simple curve, passing through each vertex and
crossing each edge which is an element of the meridian, meeting the boundary of T (only) at
each endpoint. Consequently a meridian divides T into two parts.

We say that a meridian bisects two incident edges xy and xz if x is an element of the
meridian and the adjacent elements are midpoints of y and z relative to x. Note that this
includes the case where x is a boundary vertex and so there is only one adjacent element (and
only one midpoint). Since each ei is either a vertex or an edge, we abuse notation by writing
v ∈ ei to mean that either ei is the vertex v or is an edge containing v. We say that a path
v0v1 · · · vs in T follows a meridian e0, . . . , er if v0 = ei for some i, and either for every j we have
vj ∈ ei+j or for every j we have vj ∈ ei−j . Note that we require the path to start in a vertex of
the meridian. Figure 1 shows a meridian and following path. Our next lemma shows that paths
which follow meridians are shortest paths for the class of near-triangulations we consider.

Lemma 2.3. Let T be a disc triangulation for which every internal vertex has degree at least 6,
let ` be a meridian in T and let v0v1 · · · vs be a path which follows `. Set v′1 to be the other vertex
(if it exists) for which v0v

′
1v2 follows `. Then dT (v0, vs) = s, and furthermore if v0w1 · · ·ws−1vs

is any path of length s then w1 ∈ {v1, v′1}.

Proof. Suppose not, and take a counterexample P = v0v1 · · · vs following a meridian `, with
s as small as possible. Note that we may assume v1, . . . , vr−1 are internal vertices of T , since
we may add vertices to T , if necessary, to ensure this without violating the fact that P is a
counterexample, and in such a way that all internal vertices have degree at least 6 (see Figure
1).

Let P ′ be an alternative path which demonstrates that P is a counterexample, and let γ be
a curve associated with `. Note that minimality ensures that, for 0 < i < r, if vi is an element
of ` then P ′ does not visit that vertex, and if viv

′
i is an element of ` then P ′ does not use that
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edge. In particular, this means that P ′ does not cross γ, so we may choose a subtriangulation
T ′ induced by vertices which are either on γ or on a particular side of it, such that P ′ lies
entirely in T ′. We may assume P also lies entirely within T ′ (if not, replace each vertex which
does not with its neighbour which does). We may also assume T ′ is a disc triangulation, since
our previous assumption that v1, . . . , vr−1 were internal in T ensures that P and P ′ lie entirely
within one block of T ′.

Fix i with 0 < i < r. Suppose first that vi is an element of `. If vi−1 and vi+1 are both
elements of ` then they are opposite in T with respect to vi, and since degT (vi) ≥ 6 we have
degT ′(vi) ≥ 4. If exactly one is an element of ` then degT (vi) must be odd, so at least 7, and
again degT ′(vi) ≥ 4. Finally, if neither is an element of ` then we obtain degT ′(vi) ≥ 3.

Alternatively, if vi is not an element of ` then it has exactly one neighbour in T \T ′, and so
degT ′(vi) ≥ 5.

Note that each vi satisfies degT ′(vi) ≥ 3, and if degT ′(vi) = 3 it follows that i > 1 and
degT ′(vi−1) ≥ 5. Thus the conditions of Lemma 2.2 are met, giving the result.

We can now prove the main result of this section.

Lemma 2.4. Let T be a near-triangulation with a simple closed boundary with all internal
vertices having degree at least 6. Let a, b, c be the vertices of a triangle in T , and let x be any
other vertex of T . Then the distances dT (x, a), dT (x, b), dT (x, c) are not all equal.

Proof. Suppose the result is not true, and take a counterexample where the common distance
is as small as possible; note that it cannot be 1 because each triangle bounds a face. Fix three
shortest paths Pa, Pb, Pc to a, b, c respectively, and let ya, yb, yc be the vertices adjacent to x on
the paths. By minimality of distance, ya, yb, yc are not all equal.

Suppose that ya 6= yb. Then consider the meridian ` which bisects xya and xyb, and let γ
be the associated curve. The cycle K consisting of Pa, Pb and ab crosses γ at x, so must cross
it at least once more, either because there is some vertex z 6= x on K which is an element of `,
or because there is some edge zz′ of K which is an element of `. If there are multiple crossings,
note that each crossing corresponds to an element of `, and we fix the crossing for which this
element z or zz′ is closest to the element x. Since the length of the cycle is at least 5, neither
z nor z′ is adjacent to x.

Without loss of generality z lies on Pa, and so an initial section of Pa is a shortest path to
z. Also, using Lemma 2.3, any x-z path which follows ` is a shortest path. Let ei be the next
element of ` after x used by such a path. Since x and z are not adjacent, for each y ∈ ei there is
an x-z path following ` which uses y. By Lemma 2.3, ya ∈ ei. Since ya 6= yb and ei is a midpoint
of ya and yb, we must have ei = {ya, yb}. Consequently there is an alternative shortest path P ′a
with y′a = yb.

Applying the above argument to each pair of paths, each pair of ya, yb, yc are equal or
adjacent. Suppose without loss of generality that ya = yb ∼ yc. Now apply the above argument
to the pairs (Pa, Pc) and (Pb, Pc) respectively. If either of the vertices z obtained lies on Pc,
there is an alternative shortest path P ′c passing through ya; if not, there are alternative shortest
paths P ′a and P ′b both passing through yc. In either case this contradicts minimality of the
supposed counterexample.

2.2 Nice configurations

We next define the main configurations we use in the proof; we shall show that such a con-
figuration can be identified from the pairwise distances of its boundary vertices, and allows a
reduction to a smaller near-triangulation.
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v0 v1 · · · vk

w1 · · · wk−2

Figure 2: A nice configuration with k ≥ 4. Boundary edges and vertices are precisely those
represented by bold lines and filled circles.

For k ≥ 4, a nice configuration of length k in a near-triangulation T consists of k + 1
consecutive boundary vertices, which we label v0, . . . , vk, and k−2 internal vertices w1 · · ·wk−2,
such that the triangles v0w1v1, vk−1wk−2vk, viwivi+1 for each 1 ≤ i ≤ k− 2, and wiwi+1vi+1 for
each 1 ≤ i ≤ k − 3 are all faces of T . See Figure 2 for an example.

We next give a bound on the maximum distance between boundary vertices, which is slightly
stronger than the trivial bound (using the path along the boundary) of bn/2c.

Lemma 2.5. Let T be a chordless disc triangulation of boundary length n > 3 in which every
internal vertex has degree at least 6. Then the maximum distance in T between external vertices
is at most bn/2c − 1.

Proof. Removing the external vertices leaves a triangulated graph T ′. Since T contains no
chords, T ′ must be connected and every external vertex of T is adjacent to a vertex on the
boundary of T ′. By [1, Lemma 2.2], the boundary length of T ′ is at most n− 6; note that this
counts edges with multiplicity, i.e. any edge of T ′ meeting the external face on both sides is
counted twice. The boundary of T ′ forms a connected graph H, and every block of H is either
a cycle or a bridge. Writing a for the number of edges of H in cycles and b for the number of
bridges of H, the bound mentioned is therefore that a+2b ≤ n−6. Any two vertices x, y on the
boundary of T may be connected by taking a shortest path in H between vertices x′ adjacent
to x and y′ adjacent to y. Any shortest path in H uses at most half the edges of any cycle, and
so has length at most a/2 + b ≤ n/2− 3, implying that the path from x to y has length at most
n/2− 1.

Lemma 2.6. Suppose T is a chordless disc triangulation with all internal vertices having degree
at least 6, and v0, . . . , vk are consecutive boundary vertices. Then the following are equivalent.

� v0, . . . , vk are the boundary vertices of a nice configuration.

� dT (v0, vk) = k − 1 and dT (vi, vj) = j − i for all other pairs 0 ≤ i < j ≤ k.

Proof. First we show the forward implication. Consider the near-triangulation T ′ obtained
by removing v1, . . . , vk−1. Applying Lemma 2.1 to T ′ and the path v0w1 · · ·wk−2vk, this is a
shortest path in T ′. It follows that for any 0 ≤ i < j ≤ k, there is a shortest path in T from
vi to vj which lies entirely within the nice configuration, since any section which goes outside
must start and end at vertices on the path v0w1 · · ·wk−2vk and lie in T ′, so can be replaced
by a section of that path without increasing the length. The claim follows since these are the
distances on the subgraph formed by the nice configuration.

Next we show the reverse implication. The distance conditions ensure that there is a path of
length k−1 from v0 to vk which is disjoint from v1, . . . , vk−1. Write w1, . . . wk−2 for the vertices
on the path other than v0 and vk. We will show that wivi and wivi+1 are edges of T for each
i; since T is chordless this means each wi must be an internal vertex of T and so this is a nice
configuration.
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Indeed, the cycle C := v0 · · · vkwk−2 · · ·w1 can have no chord other than these, since if j < i
and wivj is an edge then the path vjwi · · ·wk−2vk is too short unless (j, i) = (0, 1), whereas if
j > i+ 1 and wivj is an edge then the path v0w1 · · ·wivj is too short unless (j, i) = (k − 2, k).
Suppose not all of the required chords of C are edges of T . Then there is some chordless cycle
C ′ of length at least 4 in T whose vertices are vertices of C, and each edge of C ′ is either an
edge of C or one of the required chords. We consider the subtriangulation T ′ with boundary
C ′. If C ′ = C then Lemma 2.5 gives that dT ′(v1, vk) ≤ k − 2 a contradiction. If it contains
v0, . . . , vj but not vj+1 for j < k, then it contains at most j other vertices and Lemma 2.5 gives
dT ′(v0, vj) ≤ j − 1, a contradiction, and the case vk ∈ C ′ is similar. Finally, if C ′ contains
vi, . . . , vj but not vi−1 or vj+1 for some 0 < i < j < k then it contains wi, . . . wj−1 and possibly
also wi−1 and/or wj . Lemma 2.5 gives a contradiction to the distance between vi and vj if
wi−1, wj 6∈ C ′, whereas if wi−1 ∈ C ′ it gives a contradiction to the distance between vi−1 and
vj via wi (and the remaining case is similar).

Lemma 2.7. Let T be a disc triangulation with boundary v0, . . . , vn−1 and all internal vertices
having degree at least 6, and suppose that v0, . . . , vk and w1, . . . , wk−2 form a nice configuration.
Let T ′ be the near-triangulation obtained by removing v1, . . . , vk−1. Then if all pairwise dis-
tances between boundary vertices of T are known, we may deduce all pairwise distances between
boundary vertices of T ′.

Proof. By Lemma 2.6, v0w1 · · ·wk−2vk is a shortest path, and it follows that dT ′(x, y) =
dT (x, y) for all x, y ∈ T ′. Thus it is sufficient to show that for any i > k we may deduce
(dT (vi, wj))1≤j≤k−2 from (dT (vi, vj))1≤j≤k−1. We use the following three properties satisfied by
the function f(y) = dT (x, y) for any fixed x:

(i) if y and z are adjacent then |f(y)− f(z)| ≤ 1;

(ii) if f(y) > 0 then y has a neighbour z with f(z) = f(y)− 1;

(iii) f is not constant on any triangle, by Lemma 2.4.

Fix x = vi for some i > k, and let 1 ≤ j ≤ k − 2.
If f(vj) 6= f(vj+1), then they differ by 1 and f(wj) takes one of those two values, using

(i). We claim it must be the lower of the two. Suppose not; by symmetry we may assume
f(wj) = f(vj) = q and f(vj+1) = q − 1. Now applying (ii) to vj+1, either f(wj+1) = q − 2
or f(vj+2) = q − 2, but the former is impossible by (i). So f(wj+1) = f(vj+1) = q − 1
and f(vj+2) = q − 2. Proceeding in this manner, we see that f(wk−2) = q + 2 + j − k and
f(vk−1) = q + 1 + j − k. Now applying (ii) to vk−1, we must have f(vk) = q + j − k but this
contradicts (i).

If f(vj) = f(vj+1) = q, then f(wj) = q ± 1 by (i) and (iii). If f(vj−1) ≤ q − 1, then either
j > 1 and the previous paragraph gives f(wj−1) = q − 1, or j = 1 and v0 is adjacent to w1. If
f(vj−1) ≥ q then by (ii) either we have f(wj) = q − 1 or we have j > 1 and f(wj−1) = q − 1.
In all cases either wj or one of its neighbours has value q − 1, so f(wj) 6= q + 1 by (i).

Thus in every case we may determine f(wj) from the values f(vj) and f(vj−1).

2.3 Additional reductions

Next we give some additional small cases which yield reductions. Throughout this section we
assume T is a chordless disc triangulation with all internal vertices having degree at least 6;
recall that this ensures that no cycle of length less than 6 encloses any vertices.

Lemma 2.8. Let S be a set of at least five boundary vertices of T . Then the vertices in S have
a common neighbour if and only if all pairwise distances between vertices in S are at most 2.
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Proof. We show the “if” statement; “only if” is immediate. Write S = {w1, . . . , wr}, labelled
anticlockwise around the boundary cycle. First suppose r ≥ 6. There must be some vertex x
not on the boundary which is adjacent to w1 and w4. There must also be paths of length 2
between w2 and each of w5, . . . , wr−1, and between w3 and wr; since there are no chords these
must all go via x.

If r = 5 then without loss of generality vertices w1 and w5 are not adjacent (since we have
n ≥ 6). Again there must be a vertex x adjacent to w1 and w4, and this must also be adjacent
to w2 and w5. If w2, w3, w4 are consecutive boundary vertices then w2w3w4x is a 4-cycle and
must be triangulated by the edge xw3. If not, assume without loss of generality w3, w4 are not
adjacent. Then the path of length 2 from w3 to w5 must use x. In either case x is adjacent to
all five vertices.

Lemma 2.9. Let v1, . . . , v4 be four consecutive boundary vertices of T . Then v1, . . . , v4 have a
common neighbour if and only if d(v1, v4) = 2.

Proof. Again, it is sufficient to prove the “if” statement. Indeed, the path of length 2 from v1
to v4 uses some vertex x 6= v2, v3, and now the 5-cycle v1v2v3v4x must be triangulated without
additional vertices or chords of the boundary cycle, so by the edges v2x and v3x.

Lemma 2.10. Suppose there are five boundary vertices, w1, . . . , w5 labelled anticlockwise, with
a common internal neighbour x. Let Ti be the subtriangulation with boundary consisting of x
and the section of the boundary from wi to wi+1 (taking subscripts modulo 5). Assume the
boundary distances of T are given. Then for each i, and each pair y, z of boundary vertices of
Ti we may deduce dTi(y, z).

Proof. Note that a path between two such vertices in T cannot be shorter than the shortest
path in Ti: if a section of the path is outside Ti then that section must consist of at least two
edges and go between two of vi, vi+1 and x, but then it may be replaced by edges vix and/or
vi+1x without increasing the length. Thus it is sufficient to find dT (y, z) for each such pair.
This is known except for pairs of the form x, y, where y is on the boundary between xi and
xi+1. However, for any such y, any shortest path in T between vi+3 and y must pass through
either vi, vi+1 or x, and so, since d(vi+3, vi), d(vi+3, vi+1) ≥ 2, there is a shortest path which
uses the edge vi+3x. Thus d(x, y) = d(vi+3, y)− 1.

2.4 Boundary distances determine the near-triangulation

We have now established almost all the facts needed to prove the main result. The final piece
of the jigsaw is to show that one of the reductions detailed in Sections 2.2 and 2.3 must be
available to us. For this we need the following lemma, which is a modification of [11, Lemma
15].

We state the lemma with the weaker condition of a lower bound on the average degree of
internal vertices, although when applying it in this section we have a bound on their minimal
degree; we shall use this extra strength in Section 4. Let T be a disc triangulation with boundary
length n. Recall that the boundary faces of T are those which share an edge with the boundary
cycle; we endow them with the natural cyclic ordering. Define a Cleveland vertex to be an
internal vertex lying on exactly two non-consecutive boundary faces (that is, it lies on exactly
two boundary faces and those boundary faces are not consecutive). We write IC for the indicator
function of a condition C.

Lemma 2.11. Let T be a chordless disc triangulation with boundary length n. Suppose the
average degree of internal vertices of T is at least d. Let m be the number of internal vertices
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on at least one boundary face, let k be the number of edges incident with the boundary which
do not form part of a boundary face, and let c be the number of Cleveland vertices. Then
n ≥ (d− 5)m+ k + c+ 5 + Im≥2.

Proof. Note that if m = 1 then all boundary faces have a common internal vertex, so we must
have k = 0, c = 0 and n ≥ d as all the neighbours of the internal vertex are external. Thus
we may assume m ≥ 2. The fact that the boundary has no chords implies that the subgraph
induced by internal vertices adjacent to the boundary is connected.

Adding a new vertex v∗ in the unbounded face of T adjacent to all vertices on the boundary
gives a triangulation T̃ of the sphere. with |X|+ |Y |+ |Z|+ 1 vertices, i.e. all faces, including
the unbounded one, have degree 3. It follows (using Euler’s formula) that E = 3V − 6, where
F , E and V denote the number of faces, edges and vertices of T̃ .

We next count the faces of T with at least one boundary vertex. We count these in cyclic
order around the boundary: starting from any boundary face including boundary vertices x, y,
we proceed through all internal faces meeting y (if any) in order, then to the next boundary face
meeting boundary vertices y, z, and so on. Looking instead at the internal vertices included in
faces, the ordering will consist of some boundary faces meeting an internal vertex u, followed by
a face meeting two internal vertices u, v, then possibly some boundary faces meeting v, followed
by a face meeting v and some other internal vertex w, and so on. This gives a cyclic list of
internal vertices; however, the same internal vertex may appear in this list more than once.
For each entry in the list, we note the number of boundary faces, if any, encountered at the
corresponding point in the cyclic ordering. Note that the total number of faces meeting two
internal vertices and one boundary vertex is equal to the total length of this list (since each
two adjacent entries in the list correspond to one such face). Additionally, every internal vertex
which is on a boundary face appears as an entry in this list with a positive number of boundary
faces, every Cleveland vertex appears twice as an entry with a positive number of boundary
faces, and every edge incident with a boundary vertex which does not form part of a boundary
face corresponds to an entry on the list with no boundary faces. Thus the length of the list,
and hence the number of faces with exactly one boundary vertex, is at least m+ k + c.

Additionally, the number of boundary faces is n, and so there are at least n + m + k + c
faces containing at least one boundary vertex. There is a one-to-one correspondence between
such faces and edges meeting the boundary, not counting boundary edges or the new edges of
T̃ .

Thus, we may calculate the number of edges of T̃ as follows. There are n edges between
boundary vertices, and another n meeting v∗. Summing the degrees of internal vertices counts
other edges meeting the boundary once each and other edges not meeting the boundary twice.
If there are m+ s internal vertices in total, then, we have

d(m+ s) + (m+ k + c+ n) + 4n ≤ 2E = 6(m+ s+ n+ 1)− 12,

and therefore
n ≥ (d− 5)m+ k + c+ s+ 6 ≥ (d− 5)m+ k + c+ 6.

We are now ready to complete the proof.

Proof of Theorem 1.1. We proceed by induction on the number of boundary vertices. Recall
that if T has a chord we may reduce to two smaller cases. Likewise, if any internal vertex has
five or more boundary neighbours then we may identify these neighbours by Lemma 2.8, and
reduce (using Lemma 2.10) to one or more subtriangulations, all of which have strictly fewer
than n boundary vertices, thus completing the inductive step of the proof.
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If any internal vertex has four consecutive boundary neighbours, we may identify them by
Lemma 2.9. Suppose that w has consecutive boundary neighbours v1, v2, v3, v4. We claim that
in this case we can deduce the distance between boundary vertices in T \ {v2, v3}; it suffices to
check we can deduce dT (vi, w) for each i > 4. As in the proof of Lemma 2.7, if the distances
from vi to v2 and v3 differ, say they are q, q + 1 in some order, then one of v1, v4 must be at
distance q − 1, so the distance to w must be q. If both distances are q then at least one of v1
or w is at distance q − 1, and since the distance to w is not q by Lemma 2.4, it must be q − 1.

Thus we may reduce to a smaller case if any of the above configurations exist. If T contains
no chord and no internal vertex adjacent to four consecutive boundary vertices or to any five
boundary vertices, we will show that it must contain a nice configuration. Then, by Lemma
2.6, we may identify such a configuration, and, by Lemma 2.7, reduce to a near-triangulation
with a shorter boundary.

To establish this, we apply Lemma 2.11 with d = 6. By assumption, there is no internal
vertex on more than two boundary faces. Let m1 be the number of internal vertices on one
boundary face, let m2 be the number of internal vertices on two consecutive boundary faces, and
let c be the number of Cleveland vertices. The result of that lemma gives n = m1 + 2m2 + 2c ≥
(m1 +m2 + c) + c+ k + 5, where k is the number of edges meeting the boundary but not on a
boundary face (note that, by assumption, such an edge meets the boundary only once). Thus
m2 ≥ k+ 5, so as we traverse the boundary we must at some point find two pairs of consecutive
boundary faces, with each pair having an internal vertex in common, such that every edge
meeting the boundary between them is on a boundary face. This is a nice configuration,
completing the proof.

3 Disc quadrangulations

In this section we prove Theorem 1.2. The proof follows the same lines as that of Theorem
1.1 but is slightly simpler, largely due to identification of boundary distances in the reduced
near-quadrangulation being more straightforward. Again, by Lemma 1.3, we may assume that
the cyclic ordering of boundary vertices is known.

Let Q be a chordless disc quadrangulation of boundary length n (where, necessarily, n is
even) with all internal vertices having degree at least 4, and having at least one internal vertex.
We first prove a tight bound on the number of edges meeting the boundary.

Lemma 3.1. Let e◦ be the number of internal edges meeting one boundary vertex (necessarily
exactly one, since Q is chordless). Then e◦ ≤ n− 4.

Proof. Write f, e, v for the number of faces (including the external face), edges and vertices of
Q. Note that summing degrees of internal vertices of Q counts each internal edge meeting a
boundary vertex once and counts each other internal edge twice. Thus 2(e−n)− e◦ ≤ 4(v−n),
i.e. 2e ≤ 4v−2n+e◦. Summing face degrees gives 4(f−1)+n = 2e, i.e. f = e/2−n/4+1. Thus
Euler’s formula gives e = v + e/2− n/4− 1. Combining these facts, we obtain e◦ ≤ n− 4.

Let Q′ be the subgraph obtained by removing all boundary vertices of Q. Note that
chordlessness implies that Q′ is connected. We now give the corresponding result for near-
quadrangulations of [1, Lemma 2.2]. Note that, if desired, the equivalent result where chords
are permitted may be easily deduced by breaking Q along chords into smaller chordless near-
quadrangulations.

Lemma 3.2. Let m be the degree of the external face of Q′, i.e. the boundary length of Q′,
counting edges with multiplicity, and let r be the number of boundary vertices of Q′. We have
m ≤ n− 8, and consequently r ≤ n− 8 + In=8.
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v0

v1 · · · vk−1

vk

w2 · · · wk−2

Figure 3: A nice configuration for a near-quadrangulation, with k ≥ 4.

Proof. Let F ◦ be the set of internal faces of Q meeting at least one boundary vertex, let E◦ be
the set of edges of Q meeting a boundary vertex, and write f◦, e◦ for their sizes. Consider a
face x ∈ F ◦. If x contains two consecutive boundary edges then both remaining edges of x are
necessarily in the set E◦ of Lemma 3.1 (since if one were a boundary edge, the other would be
a chord); otherwise if x contains a boundary edge then both adjacent edges of x are in E◦. If x
does not contain a boundary edge then both edges of x meeting a boundary vertex are in E◦.
Thus every face in F ◦ contains at least two edges of E◦ and so f◦ ≤ e◦.

Now the 4f◦ pairs consisting of a face in F ◦ and an edge of that face count the boundary
edges of Q′ (with multiplicity), the boundary edges of Q (once each) and the edges of E◦ (twice
each). Thus m = 4f◦ − 2e◦ − n ≤ 2f◦ − n ≤ n− 8, as required. Finally, since the boundary of
Q′ is a connected graph with r vertices, it has at least r − 1 edges, and if it has exactly r − 1
edges all are bridges and hence counted twice. It follows that r ≤ m ≤ n− 8 unless m = 0 and
r = 1 (when n ≥ 8).

In particular, note that there can be no internal vertices if n < 8.

Lemma 3.3. For n ≥ 6, let Q be a chordless disc quadrangulation with boundary length n such
that every internal vertex has degree at least 4, and let x and y be boundary vertices. Then
dQ(x, y) ≤ bn/2c − Ideg(x)>2 − Ideg(y)>2.

Proof. It is sufficient to prove the case deg(x),deg(y) > 2. The other cases follow from this,
since dQ(x, y) ≤ dQ(x′, y) + 1, where x′ is a boundary vertex adjacent to x, and chordlessness
implies that deg(x′) > 2 whenever deg(x) = 2.

If deg(x), deg(y) > 2 then let x′′ and y′′ be internal neighbours of x and y respectively. As
in the proof of Lemma 2.5, dQ′(x′′, y′′) ≤ bm/2c, where m is the length (with multiplicity) of
the boundary of Q′. By Lemma 3.2, m ≤ n− 8, giving the required bound.

For near-quadrangulations, we redefine a nice configuration as follows. For k ≥ 4, a nice
configuration of length k in a near-quadrangulation Q consists of k + 1 consecutive boundary
vertices, which we label v0, . . . , vk, and k − 3 internal vertices w2 · · ·wk−2, such that the quad-
rangles v0v1v2w2, vk−2vk−1vkwk−2 and wivivi+1wi+1 for each 2 ≤ i ≤ k − 3 are all faces of Q.
See Figure 3 for an example.

Lemma 3.4. If Q is a chordless disc quadrangulation with boundary length n > 4 such that all
internal vertices have degree are at least 4, then Q contains a nice configuration.

Proof. By Lemma 3.1 the number of internal edges meeting an external vertex is at most n−4.
Writing S0, S1, S≥2 for the sets of external vertices with zero, one and at least two internal
neighbours respectively, we have |S0| ≥ |S≥2| + 4. Consequently the vertices of S0 divide the
boundary into |S0| ≥ 4 intervals, some of which contain no vertices of S≥2 (and each of which
has at most n−3 edges). Consequently, relabelling if necessary, we have, for some k ≥ 3, distinct
consecutive boundary vertices v0, . . . , vk with v1, vk−1 ∈ S0 and vi ∈ S1 for each 2 ≤ i ≤ k − 2.
We cannot have k = 3, since then v0v1v2v3 would be a face, making v0v3 a chord, so k ≥ 4.
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For each 2 ≤ i ≤ k − 2, the vertex vi has a unique internal neighbour wi, and together with
v0, . . . , vk these form a nice configuration.

We now need to show that a nice configuration may be identified from the information
available. The proof will be similar to the triangulation case.

Lemma 3.5. Suppose that Q is a disc quadrangulation with all internal vertices having degree at
least 4, and v0, . . . , vk are consecutive boundary vertices with deg(vi) ≥ 3 for each 1 ≤ i ≤ k−1.
Then dQ(v0, vk) = k, and the unique path of length exactly k is v0v1 · · · vk.

Proof. First we argue that if 0 ≤ i < j ≤ k then vi, vj are not adjacent unless with j = i + 1,
and do not have a common neighbour. Indeed, suppose not and take a counterexample with
j − i as small as possible. Now either vivi+1 · · · vj (if vi and vj are adjacent) or vivi+1 · · · vjw
(if they have a common neighbour w) forms a cycle C, and C together with the vertices inside
it induces a quadrangulation of C, which is chordless by minimiality of the counterexample.
However, each ` with i < ` < j meets at least one internal edge of this quadrangulation of C,
so at least |C| − 3 internal edges meet boundary vertices, contradicting Lemma 3.1.

Now we prove the desired result. Suppose it is not true and take a counterexample with as
few total vertices in the near-quadrangulation as possible, and among such counterexamples,
with k as small as possible. Let P be either a shorter path or a different path of length k. If
vj is on P for some 1 ≤ j < k then P contains either a v0-vj path of length at most j other
than v0v1 · · · vj or a vj-vk path of length at most k − j other than vjvj+1 · · · vk, contradicting
minimality in each case. Thus P avoids v1, . . . , vk−1.

Consider the set of faces incident with at least one of v1, . . . , vk−1. The number of such
faces is k +

∑k−1
i=1 (deg(vi) − 3) ≥ k. There is another path P ′ from v0 to vk around the other

side of this strip of faces, which has length at least k + 2 and is disjoint from {v1, . . . , vk−1};
in particular P ′ is longer than P , so is not a shortest path in Q \ {v1, . . . , vk−1}. Suppose
that P ′ consists entirely of internal vertices of Q. Then removing v1, . . . , vk−1 leaves a disc
quadrangulation Q′ for which P ′ forms part of the boundary, and since each internal vertex of
P ′ was adjacent to at most one of the removed vertices it has degree at least 3 in the remaining
near-quadrangulation. Since P ′ is not a shortest path between v0 and vk in Q′, this contradicts
minimality of the original example.

If some vertices of P ′ are boundary vertices of Q, we may remove any bridges from Q′ and
split any cutvertices to leave two or more disc quadrangulations and apply the same argument
to each section of P ′ that remains, noting that each vertex of P ′ which lies strictly inside such
a section has degree at least 3.

Lemma 3.6. Suppose Q is a chordless disc quadrangulation with all internal vertices having
degree at least 4, and v0, . . . , vk are consecutive boundary vertices, where k ≥ 4. Then the
following are equivalent.

� v0, . . . , vk are the boundary vertices of a nice configuration.

� dQ(v0, vk) = k − 2 and dQ(vi, vj) = j − i for all other pairs 0 ≤ i < j ≤ k.

Proof. We first prove the forward implication; write w2, . . . wk−2 for the internal vertices of the
nice configuration.

If 0 < i < j < k this follows directly by applying Lemma 3.5 to Q, since deg(v`) = 3 for all
i < ` < j. If i = 0 and j < k, we deduce this by induction on j (it is clearly true for j = 1).
Suppose j > 1 and let Q′ be the near-quadrangulation obtained by removing v1, . . . , vj−1; since
each w` is internal for Q, this is a disc quadrangulation. Since v0, w2, . . . , wj , vj forms part of
the boundary of Q′, and degQ′(w`) ≥ 3 for 2 ≤ ` ≤ j, Lemma 3.5 gives dQ′(v0, vj) = j. Since
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dQ(v0, v`) = ` and dQ(v`, vj) = j − ` (using the induction hypothesis and the previous case) for
each 0 < ` < j, there is no shorter path via v` and so dQ(v0, vj) = j. The case i > 0 and j = k is
similar. Finally, v0w2 · · ·wk−2vk is a path of length k−2, and we cannot have dQ(v0, vk) < k−2
since dQ(v0, vk−1) = k − 1.

Next we show the reverse implication. The distance conditions ensure that there is a path
of length k − 2 ≥ 2 from v0 to vk which is disjoint from v1, . . . , vk−1. Write w2, . . . wk−2 for
the vertices on the path other than v0 and vk; for ease of notation we also set w1 = v0 and
wk−1 = vk. Since Q is chordless, each wi is internal for 2 ≤ i ≤ k − 2. It suffices to show that
viwi is an edge of Q for 2 ≤ i ≤ k − 2.

Indeed, the cycle C := v0 · · · vkwk−2 · · ·w2 can have no chord other than these, since if j 6= i
and wivj is an edge then either the path vjwi · · ·wk−2vk or the path v0w2 · · ·wivj contradicts
a distance condition. Suppose not all of the required chords of C are edges of Q. Then there
is some chordless cycle C ′ of length at least 6 in T whose vertices are vertices of C, and the
boundary of C ′ consists of viwi, vjwj and the paths wiwi+1 · · ·wj and vivi+1 · · · vj for some
1 ≤ i < j ≤ k − 1.

We consider the subquadrangulation Q′ with boundary C ′. Since Q′ is chordless, we have
either degQ′(vi) ≥ 3 or degQ′(wi) ≥ 3 (or both), and similarly for vj , wj . Thus Lemma 3.3
gives that one of the four distances dQ′(vi, vj), dQ′(wi, vj), dQ′(vi, wj) or dQ′(wi, wj) is at most
j− i−1. However, in each case this contradicts a distance condition: respectively, the condition
dQ(vi, vj) = j − i, dQ(v0, vj) = j, dQ(vi, vk) = k − j or dQ(v0, vk) = k − 2.

Next we show that identifying a nice configuration will allow us to reduce the problem of
determining the near-quadrangulation to a smaller case.

Lemma 3.7. Let v0, . . . , vk and w2, . . . wk−2 be the vertices of a nice configuration in Q, and
let Q′ be the near-quadrangulation obtained by removing v1, . . . , vk−1. Let z be any vertex of Q′.
Then dQ′(wi, z) = dQ(vi, z)− 1 for each 2 ≤ i ≤ k − 2.

Proof. Note first that if x, y ∈ V (Q′) then dQ′(x, y) = dQ(x, y). This is true when x, y ∈
{v0, w2, . . . , wk−2, vk} by Lemma 3.6, since a shorter route in Q between any two of these
vertices would contradict the fact that dQ(v0, vk) = k − 2. The corresponding fact for ar-
bitrary x, y follows since any path which leaves Q′ contains a subpath between two vertices
of {v0, w2, . . . , wk−2, vk}, which can be replaced by a shortest path in Q′ between those two
vertices.

Now suppose the desired result is not true, and for fixed z choose i for which dQ′(wi, z) 6=
dQ(vi, z)−1 with dQ(vi, z) as small as possible. Since there is a path in Q from vi to z of length
1 + dQ′(wi, z), we must have dQ(wi, z) = dQ′(wi, z) > dQ(vi, z) − 1 and so the shortest path
in Q from vi to z does not use wi. Consequently we have either dQ(vi−1, z) = dQ(vi, z) − 1
or dQ(vi+1, z) = dQ(vi, z) − 1; assume without loss of generality the former. If i − 1 > 1 then
dQ′(wi−1, z) ≥ dQ′(wi, z) − 1 > dQ(vi−1, z) − 1, contradicting our choice of i. Otherwise (if
i = 2), we must have dQ′(v0, z) = dQ(v0, z) = dQ(v1, z) − 1 ≤ d′Q(w2, z) − 2, but this gives a
contradiction since dQ′(v0, z) ≥ dQ′(w2, z)− 1.

We now have all the ingredients needed to complete the proof.

Proof of Theorem 1.2. We proceed by induction on the boundary length, n. By Lemma 3.2, if
n < 8 then there are no internal vertices and we may identify Q from the pairs at distance 1. If
Q has a chord, we may divide Q along the chord into two subquadrangulations Q1 and Q2, for
which we know all boundary distances, and hence by the induction hypothesis can determine
in full.
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Thus we may assume Q is chordless and n ≥ 8. By Lemma 3.4 there is a nice configuration,
with boundary vertices v0, . . . , vk, say, which we may identify by Lemma 3.6. By Lemma 3.7,
together with the induction hypothesis, we may deduce all boundary distances for the near-
quadrangulation obtained by removing v1, . . . , vk−1, and hence determine it precisely. Together
with the known edges meeting v1, . . . , vk−1, this determines Q.

4 Mixing triangles and quadrangles

Noting that the conditions of minimum degree 6 for triangles and 4 for quadrangles correspond
to locally everywhere non-positive curvature, we might conjecture that a similar condition is
sufficient to determine planar graphs where all internal faces are triangles or quadrangles by
the distances between boundary vertices. In particular, the natural condition to impose on
internal vertices is that 2t(v) + 3q(v) ≥ 12, where t(v), q(v) are the number of triangular and
quadrangular faces containing v respectively. We first show that this has similar properties to
the conditions on disc triangulations and quadrangulations, in that it excludes examples of the
kind discussed in Section 1, that is, obtained by adding extra vertices inside a face.

Proposition 4.1. Let G be a plane graph with a simple closed boundary of length n for which
every internal face is a triangle or quadrangle. Suppose that G has at least one internal vertex,
and every internal vertex satisfies 2t(v) + 3q(v) ≥ 12. Then n ≥ 6.

Proof. We may assume that G is chordless, since any counterexample with a chord must contain
a chordless counterexample as a subgraph. Note that each internal vertex v has deg(v) =
t(v) + q(v) ≥ 6 − q(v)/2. Consequently, denoting the set of internal vertices by I(G), we have∑

v∈I(G) deg(v) ≥ 6|I(G)| − q1/2 − q2 − 3q3/2 − 2q4, where qi is the number of quadrangles
containing exactly i internal vertices. We now add a diagonal to each quadrangle to form
a near-triangulation T . If a quadrangle contains i internal vertices, we may ensure that the
diagonal we add meets at least di/2e internal vertices, and this also ensures that we do not
create any new chords (the fact that G is chordless means that every quadrangle meets at least
one new vertex). Thus we have∑

v∈I(T )

degT (v) ≥
∑

v∈I(G)

degG(v) + q1 + q2 + 2q3 + 2q4 ≥ 6|I(T )|,

and so the average degree of internal vertices of T is at least 6. Now Lemma 2.11 gives the
desired result.

However, this condition is not sufficient to determine the graph from its boundary distances,
as the graphs in Figure 4 show. The left-hand graph has 2t(v) + 3q(v) = 12 for every internal
vertex v, but has the property that each boundary vertex is at distance 1, 2 and 3 respectively
from the next three vertices in either direction, and at distance 4 from the five remaining
boundary vertices. In particular, the boundary distances are preserved by a cyclic relabelling
of the boundary. Consequently, boundary distances cannot distinguish between the original
example and the isomorphic configuration for which uv lies on a triangular face if either appears
anywhere in a planar graph. By adding some extra faces we can obtain two non-isomorphic
graphs that satisfy the condition on internal vertices but nevertheless have identical boundary
distances, for example the middle and right-hand graphs in Figure 4. The original example,
and one of the non-isomorphic pair but not the other, may be obtained as a section of the
rhombitrihexagonal tiling after dividing each hexagon into six triangles.
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u v

Figure 4: A graph with zero curvature whose boundary distances are preserved by relabelling
(left), and two non-isomorphic graphs with identical boundary distances (middle and right).

5 Algorithmic considerations

Suppose we are given a set of boundary vertices and all distances between them. The proof of
our main result gives a polynomial-time algorithm to determine whether there exists a near-
triangulation with that boundary and all internal vertices having degree at least 6 that achieves
those distances (and in fact reconstructs the unique such graph, if one exists). One might
naturally ask whether the decision problem can still be solved in polynomial time if we relax
the minimum degree condition. In this case a near-triangulation, if it exists, will not be unique,
but can we efficiently determine whether it exists? Observe that removing the degree condition
gives a genuinely different question, since without it Lemma 2.5 is not necessarily satisfied.

Similar problems arise in other contexts, particularly for the identification and reconstruction
of phylogenetic networks. A (binary) phylogenetic network is a rooted graph where every vertex
is either a tree vertex, with two children and (unless it is the root) one parent; a leaf with
no children and one parent; or a reticulation vertex with one child and two parents. Such
networks represent divergence between taxa in evolutionary history, with reticulation vertices
corresponding to hybridisation events.

Reconstruction of such networks from partial information is a key task in evolutionary
biology. In particular, distance-based methods which seek to reconstruct the network from
information about the lengths of paths between taxa (that is, leaves) are widely studied; here
we may think of the set of leaves as the boundary of the network. Early work focussed on the
simplest case of a phylogenetic tree, that is, a phylogenetic network without reticulation points.
Simple necessary and sufficient conditions for a phylogenetic tree realising a set of boundary
distances to exist, in terms of a relationship satisfied by the distances between any four vertices,
were found by Zareckĭı [15] and subsequently rediscovered by Buneman [6]. These apply to both
weighted and unweighted trees, with an additional parity constraint for the latter, and give a
straightforward quartic recognition algorithm.

If weighted networks are considered, one can always modify some weights while retaining all
distances between leaves (for example, by choosing an internal vertex and transferring a fixed
small amount of weight from each incoming edge to each outgoing edge), and so reconstruc-
tion is only possible up to equivalence under these and other transformations. Consequently
we essentially have a recognition problem rather than reconstruction, though of course it is
interesting to classify the precise equivalence up to which reconstruction is possible. This has
been accomplished recently in various contexts. Bordewich and Semple [3] showed that under
the assumption that the network is tree-child, that is, every non-leaf vertex has at least one
child which is either a leaf or a tree vertex, knowing the lengths of all paths between each pair
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of leaves is sufficient to reconstruct a network efficiently, and this was subsequently extended
to weighted networks [4]. Results closer to ours, in which only the shortest-path distance be-
tween each pair of leaves is given, have been obtained with the additional assumption of either
an ultrametric tree-child network [5] or a normal tree-child network [2]. A polynomial-time
recognition algorithm was also recently obtained for metrics arising from cactus graphs [12].

Returning to the question of recognising near-triangulations, it actually makes no difference
whether we ask for a near-triangulation or, more simply, for a plane graph which achieves the
given boundary distances. This is because any plane graph with given boundary can be extended
to a triangulation of that boundary, without changing any distances between existing vertices.
To do this, if an internal face has r > 3 edges, add a band of 2r triangles inside that face,
leaving another r-face inside the band. Repeat this process br/4c times, and then triangulate
the final r-face ad lib. Notice that the addition of a band does not change the distance between
two original vertices, and the edges added in the final step are too far away from the original
vertices to introduce a shorter path. Thus we ask the following.

Question 5.1. Given a set V of vertices and all pairwise distances between them, is there a
polynomial-time algorithm to determine whether there is a plane graph with simple boundary
consisting of V in some cyclic ordering that realises those distances?

Note that, as before, Lemma 1.3 means that we may assume the cyclic ordering of V is
given.

There are some non-trivial necessary conditions on the distances for such a graph to exist
(that is, conditions which would not be necessary if the planarity requirement were dropped).
In particular, we have the following condition satisfied by any four points (which can easily be
checked in polynomial time).

Proposition 5.2. If a, b, c, d are boundary vertices appearing in that order, then d(a, b) +
d(c, d) ≤ d(a, c) + d(b, d).

Proof. Note that if P1 is an a-c path and P2 is a b-d path then P1 and P2 must intersect.
Choose P1 and P2 to be shortest paths, and let x be a point of intersection. Now since x is on
each shortest path we have d(a, c) = d(a, x) + d(x, c) and d(b, d) = d(b, x) + d(x, d). However,
d(a, b) ≤ d(a, x) + d(x, b) and d(c, d) ≤ d(c, x) + d(x, d), giving the result.

However, Proposition 5.2 (together with the distances forming an integer-valued metric) is
not sufficient to ensure planarity. For example, boundary distances for the graph shown in
Figure 5 satisfy Proposition 5.2, but no plane graph has the same boundary and boundary
distances, since the only way to achieve d(v0, v3) = d(v1, v6) = d(v4, v7) = 2 without crossing
edges or adding external vertices is to identify x and y, reducing d(v0, v4).

v0
v1 v2

v3

v4

v5v6
v7

x

y

Figure 5: A graph whose boundary distances satisfy Proposition 5.2 but are not consistent with
a plane graph having the same boundary.
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