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ARTICLE OPEN

Predictive analytics for cardio-thoracic surgery duration as a
stepstone towards data-driven capacity management
Mariana Nikolova-Simons 1✉, Rikkert Keldermann 2, Yvon Peters1, Wilma Compagner 2, Leon Montenij 2, Ymke de Jong 1 and
R. Arthur Bouwman 2,3

Effective capacity management of operation rooms is key to avoid surgery cancellations and prevent long waiting lists that
negatively affect clinical and financial outcomes as well as patient and staff satisfaction. This requires optimal surgery scheduling,
leveraging essential parameters like surgery duration, post-operative bed type and hospital length-of-stay. Common clinical
practice is to use the surgeon’s average procedure time of the last N patients as a planned surgery duration for the next patient. A
discrepancy between the actual and planned surgery duration may lead to suboptimal surgery schedule. We used deidentified data
from 2294 cardio-thoracic surgeries to first calculate the discrepancy of the current model and second to develop new predictive
models based on linear regression, random forest, and extreme gradient boosting. The new ensamble models reduced the RMSE
for elective and acute surgeries by 19% (0.99 vs 0.80, p= 0.002) and 52% (1.87 vs 0.89, p < 0.001), respectively. Also, the elective and
acute surgeries “behind schedule” were reduced by 28% (60% vs. 32%, p < 0.001) and 9% (37% vs. 28%, p= 0.003), respectively.
These improvements were fueled by the patient and surgery features added to the models. Surgery planners can benefit from
these predictive models as a patient flow AI decision support tool to optimize OR utilization.
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INTRODUCTION
Worldwide, healthcare organizations (HCOs) are facing challenges
due to an increased demand for care by an aging population and
increased multi-morbidity1–3. This problem is exacerbated in the
long term due to an increased shortage of healthcare profes-
sionals4,5 that cannot be solved by increasing healthcare
budgets6,7. The necessity to improve healthcare systems using
innovative strategies is high and health policymakers are
proposing both—cost-containment and production improvement
policies8,9. While cost-containment strategies ensure short-term
savings they cannot guarantee long-term results8. Therefore,
production improvement strategies utilizing capacity efficiently
are key for long-term solutions10–13.
Effective capacity management strategies are based on under-

standing the barriers to streamlining hospital patient flow and
associated root causes as described in several systematic
reviews14–17. The most recent review by Ahlin et al.18 went a step
further. First, it explored which factors are preventing swift patient
throughput at hospitals and second, it synthesized these factors
into main barriers and underlying root causes. The main barriers
were long lead times and inefficient coordination during the
patient transfer process, caused by inadequate staffing, lack of
standards, insufficient operational planning, and a lack of IT
support.
Capacity management strategies can benefit from digital

innovations19. Artificial intelligence (AI) can power digital
medicine clinically via better disease surveillance, improved
diagnosis, and novel treatments20, as well as operationally via
improved capacity utilization. The Catharina Hospital in Eindho-
ven, the Netherlands, is pioneering on efficient use of capacity
resources and value-based healthcare21–23. The hospital provides
outpatient and inpatient services for up to 415,000 patients

annually with a workforce of ~400 physicians (attendings and
residents) and 1250 nurses. It comprises 400 beds and 20
operation rooms with more than 16,000 surgeries performed
annually. The Catharina Hospital specializes in cardio-vascular and
oncology care24.
An overview of production planning, main capacity challenges,

and key performance indicators (KPIs) is depicted in Fig. 1. Given
the challenges the hospitals are facing, efficient planning and
utilization of capacity resources such as operation rooms (OR),
intensive care unit (ICU), post anesthesia care unit (PACU), and the
general ward is imperative. To ensure their timely availability for
patients and staff, surgery and bed planners are using predictions
of surgery duration, post-OR bed type (ICU/PACU/general ward),
and hospital length-of-stay.
This study focuses on predictive models for cardio-thoracic

surgery duration as a stepstone towards data-driven capacity
management. The current model to estimate the surgery duration
of a patient with a surgical procedure X is based on 2 steps: (1)
the surgeon’s average procedure X time of the last 10 patients
and (2) a manual correction to account for patient’s specific
characteristics if needed. While this model is simple to under-
stand, the discrepancy (delta) between the actual and planned
surgery duration can be substantial and cause suboptimal surgery
scheduling. This leads to inefficient OR utilization, surgery
rescheduling, long waiting lists, staff overtime, and high
workload.
The study objective was (i) to evaluate the performance of the

current surgery duration model used in clinical practices, (ii) to
develop and validate an enhanced predictive model and (iii) to get
insight into which patient and surgery characteristics are key
features in the model development.

1Philips Research, Eindhoven, the Netherlands. 2Catharina Hospital, Eindhoven, the Netherlands. 3Eindhoven University of Technology, Department of Electrical
Engineering, Eindhoven, the Netherlands. ✉email: mariana.simons@philips.com
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RESULTS
Surgery inclusion criteria
The surgeries included and excluded in the analysis are illustrated
in Fig. 2. In summary, 2363 cardio-thoracic surgeries were
performed in the Catharina hospital on 2144 patients older than
18 years in the period Dec 2018—Feb 2020, prior to the COVID-19
pandemic. We excluded 69 (out of 2363; 3%) surgeries according
to the exclusion criteria mentioned in the Methods section and
Fig. 2. Hence, 2294 (97%) surgeries were included in the analyses,
performed on 2098 patients. Thus, 165 patients (out of 2098; 8%)
had multiple surgeries, e.g., CABG followed by a resternotomy,
both included in the analysis. These 165 patients included 44
patients with at least two elective surgeries, 38 patients with at
least two acute surgeries, and 83 patients with one elective and
one acute surgery. We refer to the total set as the overall cohort.
Most of the surgeries were elective—1925 (out of 2294; 84%) vs.
369 (out of 2294; 16%) acute.

Surgery and patient characteristics
The characteristics of the three surgery cohorts—elective, acute,
overall—are summarized in Tables 1 and 2. There were statistically
significant differences between all characteristics of the elective
and acute cohorts, except gender and type of surgeon. The
patients characteristics with the highest prevalence in the overall
surgery cohort were the age category 60–74 (54%), male (75%),
overweight (39%), ASA (American Society of Anesthesiologists)
score = 3 (44%), medications category either 1–5 (27%) or 6–10
(26%) and normal creatinine level (44%). The most common

surgery procedure in the overall cohort was CABG (49%, Coronary
Artery Bypass Graft) followed by AVR (14%, Aortic Valve
Replacement). Only 17% of overall surgeries had at least two
procedures performed during the same surgery. Nearly two-third
of overall surgeries were performed by attending physicians. The
three post-OR bed types (ICU, PACU, general ward) were with
similar utilization. The target variable—surgery duration—had an
average value of 3.5 h in the overall cohort.
Further, similar analysis was performed on the development,

test, and validation sets. No statistically significant differences
were found between the characteristics, confirming that the
randomization ensured set similarity.

Evaluation of the current model of surgery duration
We evaluated the performance of the current model of surgery
duration using the root mean square error (RMSE) and the mean
absolute error (MAE) for both elective (RMSEelective= 0.99 and
MAEelective= 0.71), and acute surgeries (RMSEacute= 1.87 and
MAEacute= 1.22), respectively, see Table 4. While RMSE and MAE
are common errors for regression models in data analysis, they do
not provide any scheduling insights into OR utilization. Therefore,
we clustered the surgeries with respect to their differences
between real and planned surgery duration into meaningful
categories for OR utilization, namely surgeries “on time”, “behind
schedule” and “ahead of schedule”, and named them customized
errors, see Table 5 and Fig. 3. The analyses showed that in 43%
and 19% of all elective and acute surgeries, respectively, the
average surgical procedure duration (step 1 of the current model)

Main challenges:
• Es�mate a pa�ent’s capacity need (surgery dura�on, bed type, LOS)
• Priori�ze pa�ents (on the wai�ng list and OR schedule)
• Evaluate current models to es�mate capacity
• Assess the quality of the planning on basis of KPI’s
• Understand & control the consequences of changes

Main KPI’s:
• OR u�liza�on & rescheduling
• Bed occupancy ICU & general ward
• Pa�ents' intake

• Length of wai�ng list
• Time on wai�ng list

• Produc�on agreement targets

1.Produc�on 
planning 
(yearly)

2. Capacity 
planning 

(7-12 weeks)

Produc�on 
planning

Periodic 
planning Week schedule OR schedule

3. Weekly 
planning 

4. OR and bed 
planning 

5. Opera�onal 
management 

Fig. 1 Catharina’s capacity management in surgery planning. Provides an overview of Catharina’s production planning, main capacity
challenges, and key performance indicators (KPIs).

Fig. 2 Surgery flowchart. Summarizes the included and excluded elective and acute surgeries used to develop and evaluate the predictive
models of surgery duration—training, test, and validation sets.
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was manually corrected by the surgeons (step 2 of the current
model). After the correction, see Fig 3b and e, (1) 37% of all
elective surgeries and 60% of all acute surgeries were “behind
schedule”, (2) 33% of all elective surgeries and 30% of all acute
surgeries were “on time”, and (3) 30% of all elective surgeries and
10% of all acute surgeries were “ahead of schedule”. These
discrepancies were the rationale for developing improved ML
predictive models that leverage additional patient and surgery
characteristics.

ML predictive models of surgery duration development
Table 3 provides an overview of the patient and surgery
characteristics used to develop the ML predictive models for
surgery duration. The features were extracted from the surgery
request form and the pre-operative screening recorded in the EHR
prior to the patients’ surgery. The feature selection had two steps
based on univariate and multivariate analyses, respectively, as
indicated in Table 3.
The univariate analysis revealed that gender and BMI are not

statistically significant predictors (p > 0.05). However, BMI is a
significant factor in the anesthesiologist/surgeon clinical evalua-
tion before and during the pre-operative screening and has

another weight for elective than acute surgeries. The remaining
features went through the multivariate analysis using Boruta
algorithm25. It clustered the features into important, tentative, and
unimportant, see Fig. 4, where each boxplot corresponds to a
category of a feature from Table 3. For example, five of the box
plots in Fig. 4 represent the importance of ASA score categories 1,
2, 3, 4, and 5 as features. Examples of unimportant features were
the surgeon type (attending vs. resident) and age. The important
and tentative features were selected to develop the predictive
models using three ML techniques—linear regression (LM),
random forest (RF), and extreme gradient boosting (XGBoost;
abbreviated as GB). We trained the models on the three surgery
cohorts—elective, acute, and overall surgeries. In the remainder of
the paper, we dropped the models trained on the overall surgeries
since they were outperformed by the dedicated models trained on
elective-only and acute-only surgeries. The outperformance is
explained by the statistically significant differences between the
elective and acute cohorts shown in Tables 1 and 2.
Figure 5a, b illustrates the importance of the top 20 features

of the RF models. Note that all features are defined during pre-

Table 1. Patient characteristics by surgery cohort.

Cardio-thoracic surgeries

Characteristics Elective
n= 1925

Acute
n= 369

Overall
n= 2294

p
value

Patients, n (%) 1878 323 2098

Patients with multiple
surgeries, n (%)

44 (2) 38 (12) 165 (8) <0.001

Age category, n (%) <0.001

18–29 50 (2.6) 17 (4.6) 67 (2.9)

30–44 37 (1.9) 20 (5.4) 57 (2.5)

45–59 374 (19.4) 86 (23.3) 460 (20.1)

60–74 1061 (55.1) 175 (47.4) 1236 (53.9)

75+ 403 (20.9) 93 (19.2) 474 (20.7)

Gender, male, n (%) 1449 (75.3) 276 (74.8) 1725 (75.2) 0.898

BMI category, n (%) <0.001

Normal 483 (25.1) 65 (17.6) 548 (23.9)

Overweight 816 (42.4) 83 (22.5) 899 (39.2)

Obese 462 (24.0) 42 (22.5) 504 (22.0)

Unknown 164 (8.5) 179 (48.5) 343 (15.0)

ASA category, n (%) <0.001

1 30 (1.6) 3 (0.8) 33 (1.4)

2 114 (5.9) 12 (3.3) 126 (5.5)

3 977 (50.8) 34 (9.2) 1011 (44.1)

4+ 565 (29.4) 86 (23.3) 651 (28.4)

Unknown 239 (12.4) 234 (63.4) 473 (20.6)

Medications category, n (%) <0.001

1–5 548 (28.5) 79 (21.4) 627 (27.3)

6–11 527 (27.4) 77 (20.9) 604 (26.3)

11+ 151 (7.8) 21 (5.7) 172 (7.5)

Unknown 699 (36.3) 192 (52.0) 891 (38.8)

Creatinine category, n (%) <0.001

Normal 899 (46.7) 113 (30.6) 1012 (44.1)

Moderate decreased 738 (38.3) 91 (24.7) 829 (36.1)

Severe decreased 138 (7.2) 35 (9.5) 173 (7.5)

Unknown 150 (7.8) 130 (35.2) 280 (12.2)

p value of Student t tests/Mann–Whitney U tests for normally/non-normally
distributed continuous variables and Pearson Chi-square tests for
categorical variables.

Table 2. Surgery characteristics by surgery cohort.

Cardio-thoracic surgeries

Characteristics Elective
n= 1925

Acute
n= 369

Overall
n= 2294

p value

Surgery urgency,
acute, n (%)

0 (0.0) 369 (100.0) 369 (16.1) <0.001

Procedure cluster, n (%) <0.001

Lungs 173 (9.0) 62 (16.8) 235 (10.2)

Pectus 67 (3.5) 2 (0.5) 69 (3.0)

Vascular 14 (0.7) 29 (7.9) 43 (1.9)

Heart

CABG* 1023 (53.1) 105 (28.5) 1128 (49.2)

CABGtotal 60 (3.1) 7 (1.9) 67 (2.9)

AVR** 313 (16.3) 15 (4.1) 328 (14.3)

AVRaorta 36 (1.9) 3 (0.8) 39 (1.7)

MVP*** 79 (4.1) 4 (1.1) 83 (3.6)

MVR**** 33 (1.7) 6 (1.6) 39 (1.7)

Resternotomy 3 (0.2) 84 (22.8) 87 (3.8)

Heart others 76 (3.9) 26 (7.0) 102 (4.5)

Sternum refixation 39 (2.0) 10 (2.7) 49 (2.1)

Others 9 (0.5) 16 (4.3) 25 (1.1)

Procedures during
surgery, n (%)

0.002

Single 1568 (81.5) 328 (88.9) 1896 (82.7)

Double 298 (15.5) 33 (8.9) 331 (14.4)

Multiple (3+) 59 (3.1) 8 (2.2) 67 (2.9)

Surgeon type,
attending, n (%)

1234 (64.1) 234 (63.4) 1468 (64.0) 0.847

Post-OR bed type, n (%) <0.001

General ward 459 (23.8) 284 (77.0) 743 (32.4)

ICU 647 (33.6) 71 (19.2) 718 (31.3)

PACU 819 (42.5) 14 (3.8) 833 (36.3)

Surgery duration,
mean (SD) hours

3.63 (1.14) 2.81 (1.66) 3.50 (1.28) <0.001

*CABG coronary artery bypass graft, **AVR aortic valve replacement,
***MVP mitral valve plastic, ****MVR mitral valve replacement, p value of
Student t tests/Mann–Whitney U tests for normally/non-normally distrib-
uted continuous variables and Pearson Chi-square tests for categorical
variables.
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operative screening. The 3 most important predictors for the
duration of elective surgery were (1) the anesthesiologist
estimate of post-OR bed type being ICU rather than PACU or
general ward, (2) the multiple number of procedures during the
surgery, e.g., CABG and AVR, and (3) the ASA score being at
least 226. The three most important predictors for the duration
of acute surgery were (1) the surgery procedure being in the
vascular cluster compared to other procedure clusters, (2) the
surgery procedure being in the CABG cluster, and (3) the ASA
score being at least 4. The top 20 predictors of the LM and GB
models were similar although their ranking was different. More
insights into the feature importance are provided in the
Discussion section.

Evaluation of the ML models of surgery duration
Table 4 shows the predictive models performance in terms of
RMSE and MAE on the validation data sets and the % error
reduction compared to the current model. The latter includes both
the correction by a surgeon on top of the average procedure time
estimate. The GB model for elective cardio-thoracic surgery
duration showed the best RMSE and MAE error reduction
compared to the current model: −19% for RMSE (from 0.99 to
0.80, p=0.002) and −14% for MAE (from 0.71 to 0.61, p=0.005).
The GB model for acute cardio-thoracic surgery duration also
showed the best RMSE error reduction compared to the current
model: −52% (from 1.87 to 0.89, p<0.001). However, the RF model
for acute cardio-thoracic surgery duration was slightly better than
the GB model in reducing the MAE error: −50% (from 1.22 to 0.61,
p<0.001).
Table 5 shows the predictive models’ performance in terms of

customized errors on the validation data sets.
Summing up, all three models LM, RF, and GB had a statistically

significant error reduction compared to the current model (see
Tables 4 and 5) with a slight outperformance of the GB/RF models
compared to the LM model. To further improve the model
performance, we created multiple ensemble models using the LM,
RF, and GB predictions on the test data sets.

The best predictive model of elective cardio-thoracic surgery
duration, according to the customized errors, was an ensemble
model—LM+ RF+ GB predictions stacked by LM (see Table 5). It
reduced the number of surgeries “behind schedule” by −9% (from
37 to 28%) and boosted the surgery “on time” by +5% (from 33 to
38%), see also Fig. 3b, c. The number of surgeries “ahead of
schedule” was increased by +4% (from 30 to 34%).
The best predictive model of acute cardio-thoracic surgery

duration, according to the customized errors, was an ensemble
model, namely LM+ GB predictions stacked by RF (see Table 5). It
reduced the number of surgeries “behind schedule” by −28%
(from 60 to 32%) and boosted the surgery “on time” by +15%
(from 30 to 45%), see also Fig. 3e, f. The number of surgeries
“ahead of schedule” was increased by +13% (from 10 to 23%) and
this is the price we paid.

DISCUSSION
The analyses revealed a couple of key findings. First, the
discrepancy between the real and planned surgery durations in
the current clinical practice is substantial. In cardio-thoracic
surgery 37% of all elective surgeries and 60% of all acute
surgeries were “behind schedule”, see Fig. 3b, e. Similar
percentages were reported by Rozario27 on aggregated OR level
—ORs were overtime 48% of the time. In both studies, as well as
in27, the current planned surgery duration is the surgeon’s average
procedure time of the last 10 patients. In our study, 43% and 19%
of the elective and acute average procedure times, respectively,
were corrected manually by surgeon. Whilst the corrections for
elective surgeries reduced “behind schedule” surgeries from 47 to
37%, see Fig. 3a, b, this reduction for acute surgeries was minimal -
from 61 to 60%, see Fig. 3d, e. The current model is surgeon- and
procedure-specific with an optional manual patient-specific
correction that cannot completely resolve the discrepancy.
Furthermore, the last 10 patients are not representative of the
next individual patient to be planned. Taking an average of only
10 patients can be inaccurate due to deviation induced by the
small sample size and outlier skewness. In contrast, the ML models

60% behind
schedule

10% ahead 
of schedule

32% behind
schedule

23% ahead 
of schedule

on �me on �me61% behind
schedule

10% ahead 
of schedule

on �me

37% behind
schedule

30% ahead 
of schedule

28% behind
schedule

34% ahead 
of schedule

on �me on �me47% behind
schedule

22% ahead 
of schedule

on �me

Fig. 3 Performance of the current and the ensemble models of surgery duration—customized errors on the validation set. Visualizes the
delta between real and planned elective a–c and acute d–f surgery duration: a, d current model without surgeon correction; b, e current
model with surgeon correction; c, f new ensemble models.
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we developed included (1) 15 months of data cleaned from
extreme outliers, so that the outliers’ effect is minimal and (2)
more patient and surgery characteristics than the surgeon and the
procedure only. Both powered the reduction of discrepancy
between the real and planned surgery durations.
The second key finding is that the features quantifying and

qualifying the surgery and patient complexity are the most
important features of our predictive models (see Fig. 5). For
example, type and number of procedures during the surgery,
post-OR bed type (ICU/PACU/general ward), ASA score, number of
home medications and renal function are among the most
important features. The ASA score characterizes patient operative
risk on a scale of 1–5, where 1 is a normal health condition and 5 is
moribund26. It has already been shown that ASA is a predictor of
medical complications and post-surgery mortality28. Our study
showed that ASA is an important predictor of surgery duration as
well. The age, BMI, and surgeon type (attendings vs. residents)
features correlate to the important features aforementioned,
which explains their exclusion by the uni-/multivariate analyses.
For example, the patient’s age and BMI could implicitly influence
the anesthesiologist’s estimate of ASA score and post-OR bed
type. Note that most complex surgery procedures were performed
by attendings. The surgical residents’ years of experience might
affect OR times, but we did not have data to account therefore.
The gender was pointed out as an unimportant feature for cardio-
thoracic surgery duration by the Catharina anesthesiologists and
indeed was statistically unsignificant in the univariate analysis.
The third key finding is that the ensemble model outperformed

the LM, RF, and GB ML models with respect to reducing the
surgeries “behind schedule” and increasing the surgeries “on
time”. Since our data have complex underlying patterns, we
stacked the linear (LM) with non-linear (RF and GB) model
predictions into an ensemble model to get optimal performance.
RF and GB represent the bagging and boosting ML techniques,
respectively. Bagging is a variance reduction technique whereas
boosting is a bias reduction technique and ensembling them
improved accuracy while keeping data variance and bias low29.
The novel aspects of the models described in this paper are (1)

inclusion of patient-/surgery-complexity characteristics in addition
to the surgeon and surgery procedure; (2) use of features available
in the scheduling phase of the surgery, prior to patient’s

hospitalization, proving feasibility of good predictions without
vital signs, lab results, and other monitoring data; (3) ensemble of
linear and non-linear ML algorithms for best performance.
The OR is the major cost and revenue center for most hospitals

and effective use of capacity resources can provide significant
benefits as summarized by the following papers30–33. Parameters
like surgery duration, post-OR bed type, and length-of-stay are
essential for surgery planners and have been target variables of
recent publications34–36. The models of elective and acute surgery
duration we developed support surgery planners in a different
way. The former is used in scheduling elective patients several
days or weeks ahead of the patients’ hospitalization. The latter is
used in elective patient rescheduling caused by an acute patient
with a high medical urgency. The rescheduling can result in (1)
exceeding the target surgery date of elective patients and (2)
inefficient OR utilization. Hence, surgery planners need to decide
whether any elective patient can be safely rescheduled and if yes
which OR with elective surgery is the best to reschedule. These
decisions are supported by the predictive models of acute surgery
duration. Summing up, predictive models of elective and acute
surgery duration facilitate complex patient scheduling with OR
and ward occupancy rates close to the hospital’s KPIs. These
models can also enhance decision-making processes elsewhere in
the end-to-end chain of in-/out-patients services such as planning
for intakes and patient preparation at the ward, or estimation of
ICU bed capacity by predicting more accurately the patients’ OR
in- and out-flows. It is worth mentioning that the surgery duration
predictions need to be combined with OR cleaning time which is
dependent on hospital-specific processes and can be derived from
historical data.
Recently, there has been a substantial increase in AI research in

medicine37–40, showing that healthcare professionals are most
comfortable using AI for workflow tasks such as staffing and
patient scheduling (64%), followed by clinical tasks such as
flagging anomalies (59%), treatment plan recommendation (47%)
and diagnosis (47%). The models described in this paper belong to
the first group and may facilitate broader AI adoption by
generating data-driven insights that show a positive impact on
operational efficiency and capital investments.
Future work will investigate (1) the impact of the ML models on

optimizing the surgery schedule and how it translates into more

Table 3. Features based on patient and surgery characteristics.

Features Examples Univariate analysis Multivariate analysis

Age Categorical [18–29], [30–44], [45–69], … √ ×

Gender Categorical Male vs. female × ×

BMI (body mass index) Categorical Underweight, normal, overweight, obese × ×

ASA score Categorical 1, 2, 3, 4, 5 √ √

Medications Categorical [1–5], [6–10], [11–15], 16++ √ √

Creatinine levels Categorical Renal failure, severe decrease, moderate decrease,
normal

√ √

Surgeon ID Categorical, unclustered Surgeon_6791, Surgeon_86 √ √

Categorical, clustered Hierarchical clustering - Surgeon_C1, Surgeon_C2

Surgeon type Categorical Attending vs. resident √ ×

Surgery procedures (Px) Categorical, unclustered CABG*, AVR** √ √

Categorical, clustered Medical—CABG, AVR, Lungs, etc.; Hierarchical—
Px_C1, Px_C2

Number of procedures Categorical Single, double, multiple (≥3) √ √

Surgery urgency Categorical Acute vs. elective √ √

Post-OR bed type
estimate

Categorical ICU, PACU, general ward √ √

*CABG coronary artery bypass graft, **AVR aortic valve replacement, V selected, x excluded.
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effective OR utilization and bed occupancy in the ICU and general
ward, and (2) new predictive models for patients at high risk of
complications that can generate meaningful alerts for long-lasting
surgeries.
This study has some limitations. First, we analyzed only

2294 surgeries prior to the COVID-19 pandemic as shown in Fig.
2. The pandemic had affected not only surgery volume, but also
surgery times and complexity. Patients’ complications due to
postponed surgeries may lead to longer surgery duration. Back to
“normal” OR schedule was seen mid-2022, which is why we could
not use bigger and more recent data for analyses. Second, the
need for predictive models tailoring on different levels - per
hospital, per medical specialty, per surgeon, etc., limits the models’
scalability. While the model development methodology is
reproducible, the model implementation is hospital-specific. Third,
the new ML models are prone to drifting due to either a change in
the relationship between the target and independent variables,
missing input variables, or any other disruption. Changes in
patient’s population, surgeon’s skills, surgeon’s fatigue, or
surgery’s procedures over time are usually the root cause of the
model’s drift leading to poor performance. Then, either retraining
or including new features in the ML model accounting for
disruptions are needed as a part of the ML models lifecycle. In
contrast, the current model based on average surgery duration
can quickly pick up upon data changes and might be used as a
backup model. Despite the limitations, this study provides
valuable insights into the shortcomings of the current models of
surgery duration and how they can be overcome by leveraging
advanced ML models.

In conclusion, ML technologies based on specific individual
patient and surgery characteristics are a fundament of improved
predictive models of cardio-thoracic surgery duration. These
models are a stepstone towards data-driven capacity manage-
ment. Surgery planners could benefit from these predictive
models as a patient flow AI decision support tool to create an
optimized surgery schedule for optimal OR utilization which is a
prerequisite to effective capacity management.

METHODS
The methods used in the study are summarized according to the
guidelines by Luo et al.41 for developing and reporting ML
predictive models in biomedical research.

Design
This was a retrospective predictive modeling study of surgery
duration to estimate the OR time required for a patient’s cardio-
thoracic surgery. The OR time was defined as a difference between
the patient’s departure and arrival times in the OR, excluding the
OR cleaning time. The study was approved by both—the
Institutional Review Board (IRB) of the Catharina Hospital
(nWMO-2020.165) and the Internal Committee for Biomedical
Experiments (ICBE-S-000239) of Philips. An individual patient’s
consent was waived due to the retrospective study design in
accordance with the IRB rules of the Catharina Hospital.

unimportant                                                      tenta�ve   important

Fig. 4 Feature selection. Depicts the output of Boruta algorithm—features on the x axis clustered into important (green), tentative (yellow),
and unimportant (red) according to their importance on the y axis.

M. Nikolova-Simons et al.

6

npj Digital Medicine (2023)   205 Published in partnership with Seoul National University Bundang Hospital



Study cohorts
In this study, we included cardio-thoracic surgeries performed in
the Catharina hospital during the period Dec 2018—Feb 2020 on
patients older than 18 years. The age restriction was related to the
privacy requirement of the study protocol. We selected 15-month
study period prior to COVID-19 to avoid the pandemic impact on
surgery volume, surgery times, and medical urgency. Our focus on
cardio-thoracic surgeries was driven not only by the main KPI of
the Catharina hospital depicted in Fig. 1, but also by an additional
Dutch healthcare regulations rule “the time on the waiting list for
cardio-thoracic patients should be less than 7 weeks to prevent
severe medical complications”42. This rule emphasizes the
importance of tools for effective surgery scheduling, rescheduling,
and OR utilization that this paper focuses on. We excluded
surgeries according to the following criteria: (1) surgery duration
longer than ave(cardio-thoracic surgery time)+ 3*sd(cardio-
thoracic surgery time) ~8 h, which excluded 1% of all surgeries,
(2) patients’ mortality during surgery, and (3) surgery performed
by a surgeon with less than 10 surgeries in the study period. The
rationale behind the third exclusion criteria was twofold. First, the
surgery duration estimate by the current model was unreliable to
compare with. Second, the number of surgeries per surgeon is too
low for meaningful data analysis. Summing up, the three exclusion
criteria were selected to clean up the surgery data set from
outliers related to low surgery frequency per surgeon and long/
short surgery duration, e.g., long duration due to complications
and short duration due to mortality, that are unplannable. The
resulting surgery data set comprised both elective and acute
surgeries. The acute surgeries were performed within 24 h of
patient admission according to the study definition. There were
three study cohorts analyzed—overall, elective, and acute
surgeries.

Data sources and preprocessing
The primary data source for this study was the electronic health
record (EHR) data repository of the Catharina Hospital. The data
contain patient demographics, patient and surgery characteristics
collected at the pre-operative screening, and real surgery duration
recorded during inpatient encounters. Data over the period Dec
2018—Feb 2020 were extracted from the EHR using Microsoft SQL

Server Management Studio (SSMS) 2018. Data management and
deidentification were achieved through SSMS and pseudo-coding.
All data were deidentified before analyses.
The data preprocessing included both data cleaning and data

transformations. The data cleaning comprised removing dupli-
cates, correcting out-of-range variables, and imputing missing
values of the following categorical variables—BMI, ASA, Medica-
tions, and Creatinine (see Table 1). The imputation strategy was
based on replacing missing values with “the most frequent
category” or a newly created “unknown” category. The first data
transformation consisted of converting discrete into categorical
variables, where both medical and statistical rationale were
involved. For example, we used well-established medical cate-
gories for BMI, ASA26, and Creatinine43, and underlying statistical
distributions for age and number of home medications, see Table
1. The second data transformation consisted of performing
clustering of surgical procedures. Due to the proprietary
procedures codes used by the Catharina Hospital, we were not
able to use the Clinical Classifications Software Refined (CCSR)44,
which is based on standardized procedure coding systems like
ICD-10-PCS. That is why hierarchical (data-driven) and medical
(clinician’s expertise-driven) clustering was performed to group
the procedure codes into categories meaningful for data analysis.
The third data transformation was one-hot encoding of the
categorical variables. It was necessary for linear ML models, which
cannot take categorical input directly, in contrast to decision tree
ML models.

Predictive models development and evaluation
The current model deployed in the Catharina hospital uses the
surgeon’s average procedure time of the last 10 patients as a
prediction of surgery duration for the next patient having the
same procedure. Further, the average surgery duration is some-
times manually corrected by the surgeons. The final estimate is
referred to in this paper as a planned surgery duration by the
current model used in clinical practice.
The new ML predictive models development went through the

following steps: (1) data splitting, (2) feature selection, (3) model
training, (4) model testing and evaluation, and (5) models
ensembling.

Fig. 5 Feature importance. Visualizes the feature importance of the RF models for a elective and b acute cardio-thoracic surgery.
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In the first step, each of the three cohorts described above was
randomly split into a training set (50%), a test set (20%), and a
validation set (30%), which is common practice in data analysis.
The splitting was “surgery”-aware but not “patient”-aware, i.e., the
three sets were mutually exclusive with respect to surgeries but
not patients with multiple surgeries. This splitting strategy might
induce data leakage; however, the risk was minimal due to
different procedures performed by different surgeons on patients
with multiple surgeries (2% in the elective and 12% in the acute
cohort). The training sets were used to develop predictive models
including features selection and hyperparameters tuning based on
a Random Grid Search K-fold Cross-Validation. We selected K= 10
for elective surgeries and K= 5 for acute surgeries since the latter
data set was relatively small. Examples of RF hyperparameters
tuned were the number of decision trees in the forest, maximum
depth of the tree, the max number of features to consider at each
split, and error measure to split on. The test sets were used to
perform model stacking, i.e., fit ensemble models that combine
the predictions of the different ML models developed on the
training sets. In this way, the test sets became training sets for the
ensemble models and that is why validation sets were needed to
report model performance. So, the validation sets have been held
out during the ML models development and were only used to
evaluate the performance of the current model as well as all new
predictive models as reported in Tables 4, 5 and Fig. 3.
In the second step, features were extracted from the EHR data

related to patient cardio-thoracic surgeries. All these features were
available at the point of surgery scheduling prior to patients’
hospitalization, and therefore lab results and monitoring data such
as vital signs and ECG, were not available. The latter are expected
to be strong predictors of real-time changes in surgery duration
due to intra-operative complications which is a different user case
than the patient’s surgery scheduling. We used a 2-step process
for feature selection. First, we performed univariate inferential
analysis to investigate the predictive power of each feature and
dropped those that were not statistically significant predictors
(p > 0.05). Second, we performed multivariate inferential analysis
using Boruta algorithm25 based on RF ML technique that clusters
features into important, tentative, and unimportant.
In the third step, we trained several predictive models using the

features selected in the second step and multiple ML techniques
—linear regression (LM), random forest (RF), and extreme gradient
boosting (XGBoost; abbreviated as GB in this paper). RF and GB are
non-linear models, very popular as algorithms of choice for many
winning teams of machine learning competitions45.

In the fourth step, we used two well-known error metrics - RMSE
and MAE - for the performance evaluation of regression models.
Both metrics quantify the delta (real-planned) surgery duration,
where planned refers to the surgery duration in hours predicted by
the models, and real refers to the surgery duration in hours
recorded in the Catharina EHR. In addition to RMSE and MAE, we
defined customized error metrics in terms of surgeries “on time”,
“behind schedule” and “ahead of schedule”. The categories “ahead
of schedule” and “behind schedule” consist of all surgeries ahead
and delayed, respectively, at least t min compared to their
planned time. The category “on time” comprises all surgeries
within the time range [−t, t] compared to their planned time. In
our analysis we chose t= 10%*ave(cardio-thoracic surgery time)=
10%*(3 h 30min) ~20 min. Furthermore, the category “ahead of
schedule” had two subcategories with a time range of “more than
60min” and “60–20min” ahead of schedule, respectively. Similarly,
the category “behind schedule” had three subcategories with a
time range of “20–60min”, “60–120min”, and “more than
120min” behind schedule, respectively. The time cut-offs of the
subcategories corresponded to 30%*- and 60% * ave(cardio-
thoracic surgery duration). We evaluated RMSE, MAE, and the
customized errors on the current as well as new ML predictive
models of surgery duration.
In the fifth step, we performed model stacking, i.e., the

predictions on the test set made by the different models trained
in the third step were used as features to fit a new model that we
referred to as an ensemble model.

Statistical analysis
The analysis of patients’ and surgeries’ characteristics by study
cohort (elective vs. acute vs. overall) and by model development
cohort (train, test, validation sets) were presented and summar-
ized as means and standard deviations (SDs), or frequencies and
percentages. Comparisons of normally/non-normally distributed
continuous variables by cohorts were conducted using Student t
tests/Mann–Whitney U tests, respectively. For categorical vari-
ables, Pearson Chi-square tests were used to examine the
association between the cohorts. The significance level was set
to p= 0.05. All data analyses were performed using the statistical
software R, version 4.2.146.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Table 4. Model performances—RMSE, MAE errors on the validation set.

Models for Cardio-Thoracic surgery Elective* Acute**

RMSE [95% CI]
% reduction, p***

MAE [95% CI]
% reduction, p

RMSE [95% CI]
% reduction, p

MAE [95% CI]
% reduction, p

Current**** 0.99 [0.94, 1.05] 0.71 [0.67, 0.75] 1.87 [1.72, 2.25] 1.22 [1.11, 1.46]

New ML models LM 0.84 [0.79, 0.89]
−15%, p= 0.01

0.65 [0.61, 0.69]
−9%, p= 0.09

0.92 [0.82, 1.07]
−50%, p < 0.001

0.66 [0.58, 0.76]
−46%, p < 0.001

RF 0.83 [0.78, 0.88]
−16%, p= 0.007

0.62 [0.59, 0.66]
−12%, p= 0.02

0.92 [0.81, 1.06]
−50%, p < 0.001

0.61 [0.53, 0.70]
−50%, p < 0.001

GB 0.80 [0.76, 0.85]
−19%, p= 0.002

0.61 [0.57, 0.65]
−14%, p= 0.005

0.89 [0.79, 1.03]
−52%, p < 0.001

0.62 [0.54, 0.71]
−49%, p < 0.001

Ensemble 0.79 [0.75, 0.84]
−20%, p= 0.001

0.60 [0.57, 0.64]
−15%, p= 0.004

0.91 [0.86, 1.13]
−51%, p < 0.001

0.60 [0.56, 0.73]
−50%, p < 0.001

RMSE root mean square error, MAE mean absolute error, %reduction % error reduction compared to the current model, ML machine learning, LM linear
regression model, RF random forest, GB extreme gradient boosting.
*ML predictive models trained on elective-only surgeries; **ML predictive models trained on acute-only surgeries; ***p value of Student t tests comparing to
the current model; ****current model incl. both steps of average procedure time and a correction by a surgeon.
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