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Abstract: The rapid growth of distributed energy resources (DERs) poses operational challenges for the low-voltage (LV)
distribution networks, such as overloading of the transformer and/or voltage violation. Many smart strategies based on
flexibility and coordinated control of DER have been developed to address these issues. To facilitate this
implementation, this study presents a stochastic modelling technique, based on the Monte Carlo approach, to analyse
the correlation between transformer loading and voltage magnitudes measured at the point of connection (POC) of
DER in the network. A case study has been performed using IEEE European LV test feeder and smart meter
measurement from the Netherlands to reflect the realistic aspects of operational conditions. Advanced statistical
modelling techniques are applied to generate a set of scenarios, consisting of solar irradiation, and electric vehicle
charging and load consumption profiles. Simulation results reveal a strong linear relationship between transformer
loading and voltage magnitudes at the POC of DERs. Thus, these findings can aid in implementing flexibility and
coordinated control DERs for congestion management in the LV distribution network.
1 Introduction

The rapid growth of distributed energy resources (DERs),
especially photovoltaic (PV) systems and electric vehicles (EVs), in
the low-voltage (LV) distribution networks, poses operational
challenges for the network operators [1]. A high level of PV
penetration can result in overloading the transformer and/or voltage
rise problems [2]. On the other hand, the integration of a large
number of EVs will increase the overall energy consumption with a
higher peak load, leading to congestions and/or serious voltage
drops along the feeders. This warrants the deployment of smart
strategies in the LV networks to deal with the challenges regarding
transformer overloading and voltage rise problems, e.g. using
flexibility and coordinated control of PV systems and/or EVs as
presented in the literary works [3–7]. In these approaches, the
control rules are based on voltage magnitude and/or transformer
loading rate, to regulate the PV inverters and EV-charging behaviours.

Theoretically, the relationship between power injection and bus
voltage magnitude and angle can be observed by applying the
concept of the Jacobian matrix, which is derived from solving the
nonlinear load flow using Newton–Raphson algorithm [8]. This
relationship can be used to implement different coordinated control
mechanisms in the network as presented in the literary works [9–
12]. Authors in [9, 10] apply the Jacobian matrix to complement
the active and reactive power control of PV inverters, respectively.
In the work of Ali et al. [11], the Jacobian matrix-based method is
proposed to fairly curtail PV power output for overvoltage
mitigation. In the work of Mai et al. [12], the Jacobian matrix is
utilised to aid the coordination of active and reactive powers of
PV inverters to tackle overvoltage issues. However, the Jacobian
matrix varies with instantaneous power flow and calculating such
matrices requires gathering the information of the entire system/
network [13]. Thus, observing the relationship by calculating
the Jacobian matrix in an on-line manner is computationally
demanding if not impossible. Due to the intermittent,
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unpredictable behaviours of EV charging and PV generation, an
alternative approach is required to represent the correlation of
power injection with voltage magnitude and angle. With this
correlation being defined, power entering the transformer, e.g.
transformer loading can be determined using measured voltage
magnitude at point of connection (POC) of DERs. Hence, this can
aid in implementing the flexibility and coordinated control DERs
for congestion management in the LV distribution network.

Based on the above-presented discussion, this paper presents a
stochastic modelling technique to determine the correlation between
transformer loading and voltage magnitude in the LV distribution
network with PV and EV integration. Based on the Monte Carlo
approach, along with Pearson’s correlation coefficient, the proposed
method aims to investigate the correlation between the loading rate
of the transformer and the voltage magnitude measured by the
residential smart meters. A case study has been performed
considering an IEEE European LV distribution feeder and real data
measured in the Netherlands, i.e. solar irradiation measured in the
field, smart meter measurements and PV system capacity of Dutch
residential consumers, and EV battery specifications of Nissan Leaf
2018. Using the real set of data, advanced statistical modelling
techniques are used to generate a set of scenarios, consisting of
solar irradiation, EV-charging profiles and load consumption data.
A simulation platform including Python and OpenDSS has been
deployed to perform stochastic analyses with a high number of
generated scenarios.
2 Stochastic modelling methodology

2.1 Stochastic modelling

The stochasticmodelling involves the uncertaintyof PVgeneration, EV
charging and load consumption for the assessment of the correlation
CIRED, Open Access Proc. J., 2020, Vol. 2020, Iss. 1, pp. 480–483
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Fig. 1 IEEE European test case, adopted from the work of Neumann [16]
between transformer loading and voltage levels. Implementing the
proposed methodology follows three main steps as listed below.

† First, a series of scenarios S including daily profiles of PV
generation, EV charging and load demand for one year (8760 h)
are generated. The households in the test network are then
randomly assigned with the load profiles.
† Then, the penetration level (%) of PV systems and EV usage are
defined. The houses having PV units and EVs are randomly
allocated. It is assumed that PV units and EV have the same phase
connection as the house.
† Next, simulations are executed for a series of scenario S. All
resulting data from the simulation required for calculating the
correlation metrics are gathered.

2.2 PV generation, EV charging, and load consumption
profiles modelling

To model PV generation profiles, daily solar irradiation (W/m2)
profiles are developed following a random sampling method based
on a Gaussian mixture model (GMM). The probability density
function of the GMM is expressed by

f (x) =
∑K
k=1

pkN(x|mk , Sk ) (1)

In (1),
∑K

k=1 pk = 1 where k is the component, and
x = (1, . . . , xt , . . . , xT) denotes a solar irradiation profile with time
step t and length T, while Sk [ RT × RT represents the statistical
correlation of solar irradiation between time-steps. K for each PDF
in (1) is the total number of component, which is determined using
the Bayesian information criteria [14]. Based on this, the GMM
generates the solar irradiation profiles for each month of a year, then
the seasonality fluctuations during the year are considered.

For developing EV charging profiles, the normal distribution
method discussed in the work of Minniti et al. [15] is fitted with
the typical departure time and working hours of EV owners. For
this, the real data of travelling behaviour from Dutch persons are
utilised, while the EV battery specifications are derived from a
commercial EV, which both are described in the next section.

To generate the residential load consumption profiles, a probabilistic
method based on conditional copula is utilised. This method uses
historical load consumption data derived from real smart meter
measurement with 15-min resolution. The conditional copula
applied in this paper can be mathematically presented as follows:

F(x1, . . . , xt , . . . , xT|v) =C(FX1|W (x1|v), . . . ,
FXt |W (xt|v), . . . , FXT|W (xT|v))

(2)

where x = (1, . . . , xt , . . . , xT) represents a load consumption profile
with time step t and length T, and FXt |W (.) denotes the empirical
continuous distribution function, while v denotes the total annual
energy consumption (kWh) of the households. The conditional
copula allows the generated load consumption profiles to preserve
the statistical correlation among the time steps, and also follow the
appropriated total annual energy consumption.

2.3 Pearson’s correlation coefficient

Pearson’s correlation coefficient is applied to measure the statistical
relationship between transformer loading (Ptransf) and voltage levels
at POC of residential houses (V ). This type of coefficient, denoted by
r, is most commonly used to indicate the strength of a linear
relationship between two variables, e.g. Ptransf and V, as given as
follows:

r =
∑N

i=1 (P
i
transf − Ptransf )(V

i − V )�������������������������∑N
i=1 (P

i
transf − Ptransf )

2
√ �����������������∑N

i=1 (V
i − V )

2
√ (3)

where N is a total number of observations, i.e. 8760.
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3 Simulation setup

The test network is based on the well-known IEEE European test
case as shown in Fig. 1. The test network is energised from a
250 kVA, 11/0.4 kV transformer with the secondary-side voltage
level at 1.03 p.u., and supplies electricity to 55 households. These
households are all single-phase users with a total number of 21,
19, and 15 households connected to phase A (phase 1), phase B
(phase 2), and phase C (phase 3), respectively. Thus, the test
network represents an unbalanced LV distribution network.

The smart meter measurements of real Dutch residential
consumers provided by one Dutch DSO are used to generate the
load consumption profiles following the procedure described in
Section 2.1. The actual measured solar irradiation obtained from
the Royal Netherlands Meteorological Institute in the work of
Koninklijk Nederlands Meteorologisch Instituut (KNMI) [17] is
used to generate the solar irradiation profile as discussed in
Section 2.1. The capacity of PV systems is chosen based on
typical Dutch residential-scale PV systems ranging from 4.06 to
6.27 kWp. Typical Dutch travelling information has been obtained
from the Dutch Central Bureau for Statistics as used in the work
of Minniti et al. [15], is utilised to simulate EV charging profiles.
EV battery specifications of Nissan Leaf 2018 with battery
capacity 40 kWh and level 1 charging power 1.5 kW are employed
[18]. Simulations of one-year time-series power flow have been
performed in Python-OpenDSS platform for three penetration
levels, i.e., 20, 60, and 100%, of PV systems and EVs. A total of
10 scenarios per penetration level is analysed.
4 Numerical results

With no loss of generality, the relationship between the single-phase
power of the transformer in phase A and the voltage magnitude
measured at a POC of house no. 25 connected to the same phase
is visualised in Fig. 2. This scatter plot along with the least-square
lines show the linear relationship between these two variables in
all penetration levels. The notable differences between the
penetration levels are the angle of inclination. The inclination of
the higher penetration levels is steeper than the smaller one.

Since the transformer power and the voltage level at the POC of
households have a linear relationship, Pearson’s correlation
coefficient concept is employed to quantify the correlation
between them. The correlation is measured in each phase for all
POC, in which the single-phase power of the transformer and the
voltage level at each POC in the same phase defines a pair of
correlated variables. For the demonstration purpose, the resulting
481Commons



Pearson’s correlation coefficients for phase A are shown in Fig. 3,
where the index values in the horizontal axis, e.g. index 1,
represents a pair of correlated variables, e.g. Ptransf of phase A of
the transformer and V1 (measured at POC of house no. 1). As can
be seen from Fig. 3, the calculated Pearson’s correlation
coefficients are all positive, high values, i.e. >0.99, in all cases of
phases and penetration levels. This indicates that the linear
relationship is strong and in an increasing direction.

Maximum values of Pearson’s correlation coefficient (rmax) in
different penetration levels for three phases are shown in Table 1,
where Ptransf−Vi depicts the pair of variables, in which Vi depicts
Fig. 3 Pearson’s correlation coefficients between phase A transformer
power and the voltage level

Fig. 2 Scatter plot for transformer power of phase A and voltage magnitude
measured at house no. 25

Table 1 Maximum Pearson’s correlation coefficients in different
penetration levels for different phases

Phase Properties Penetration levels

20% 60% 100%

A rmax 0.9977 0.9971 0.9972
Ptransf–Vi Ptransf–V14 Ptransf–V22 Ptransf–V29

B rmax 0.9898 0.9961 0.9963
Ptransf–Vi Ptransf–V26 Ptransf–V23 Ptransf–V50

C rmax 0.8331 0.9852 0.9941
Ptransf–Vi Ptransf–V47 Ptransf–V47 Ptransf–V16
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voltage levels measured at house no. i. It is observed that with
increasing penetration levels, the houses connected in phases A
and B, and closer to the end of the feeder have the strongest
association of their voltage levels and the transformer power.
Meanwhile, for phase C with a 100% penetration level, the houses
in the middle of the feeder, i.e. house no. 16, has the highest
correlation coefficient. This might be caused by the unbalance of
the network, in which phase C has only 15 households while
phases A and B have 21 and 19 households, respectively.

Based on this strong linear association, i.e. rmax≃ 1, the
transformer loading can be estimated from DER location using
the measured voltage magnitude at POC. This, thus, provides
valuable insights for implementing flexibility and coordinated
control DERs for congestion management in the LV distribution
network.
5 Conclusion

This paper investigates the correlation of the transformer loading
with voltage magnitude measured at the POC of DERs in the LV
distribution network. To this end, a stochastic modelling
technique, based on the Monte Carlo approach is proposed and
Pearson’s correlation coefficient is calculated. The obtained results
show the strong linear relationship of transformer loading with
voltage magnitudes at the POC of DERs. This linear relationship
and the measured voltage magnitude at POC of DERs can be
utilised to estimate transformer loading rate, then facilitating the
flexibility and coordinated control DERs for congestion
management.
6 Acknowledgements

The authors would like to acknowledge the financial support for this
work from the RVO TKI Urban Energy FAIR-PLAY project.
7 References

1 Long, C., Ochoa, L.F.: ‘Voltage control of PV-rich LV networks: OLTC-fitted
transformer and capacitor banks’, IEEE Trans. Power Syst., 2016, 31, (5),
pp. 4016–4025

2 Haque, A.N.M.M., Nguyen, P.H., Vo, T.H., et al.: ‘Agent-based unified approach
for thermal and voltage constraint management in LV distribution network’, Electr.
Power Syst. Res., 2017, 143, pp. 462–473

3 Zeraati, M., Golshan, M.E.H., Guerrero, J.M.: ‘A consensus-based
cooperative control of PEV battery and PV active power curtailment for voltage
regulation in distribution networks’, IEEE Trans. Smart Grid, 2017, 3053, (1),
pp. 1–11

4 Marra, F., Yang, G.Y., Træholt, C., et al.: ‘EV charging facilities and their
application in LV feeders with photovoltaics’, IEEE Trans. Smart Grid, 2013,
4, (3), pp. 1533–1540

5 Jiang, X., Wang, J., Han, Y., et al.: ‘Coordination dispatch of electric vehicles
charging/discharging and renewable energy resources power in microgrid’,
Procedia Comput. Sci., 2017, 107, (I), pp. 157–163

6 Kikusato, H., Mori, K., Yoshizawa, S., et al.: ‘Electric vehicle charge-discharge
management for utilization of photovoltaic by coordination between home and
grid energy management systems’, IEEE Trans. Smart Grid, 2019, 10, (3),
pp. 3186–3197

7 Eldeeb, H.H., Hariri, A.O., Mohammed, O.A.: ‘Coordinated control for the
integration of a large scale electric vehicle park with PV into the MV grid’.
Conf. Proc. – 2017 17th IEEE Int. Conf. Environ. Electr. Eng. 2017 1st IEEE
Ind. Commer. Power Syst. Eur. EEEIC/I CPS Eur. 2017, Milan, Italy, 2017,
pp. 1–6

8 Grainger, J.J., Stevenson, W.D.J.: ‘Power Syst. Anal.,’ (McGraw-Hill Education,
USA, 1994)

9 Ali, M.M.V.M., Paterakis, N.G., Nguyen, P.H., et al.: ‘A LV network overvoltage
mitigation strategy based on epsilon-decomposition’. 2017 IEEE PES PowerTech,
Manchester, UK, 2017, pp. 1–6

10 Weckx, S., Driesen, J.: ‘Optimal local reactive power control by PV inverters’,
IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 1624–1633

11 Ali, M.M.V.M., Nguyen, P.H., Kling, W.L., et al.: ‘Fair power curtailment of
distributed renewable energy sources to mitigate overvoltages in low-voltage
networks’. IEEE PES PowerTech 2015 Eindhoven, Eindhoven, The Netherlands,
2015

12 Mai, T.T., Haque, A.N.M.M., Vo, T., et al.: ‘Coordinated active and reactive power
control for overvoltage mitigation in physical LV microgrids’. 2018 Int. Conf. on
Renewable Power Generation, Copenhagen, Denmark, 2018, pp. 1–6
CIRED, Open Access Proc. J., 2020, Vol. 2020, Iss. 1, pp. 480–483
access article published by the IET under the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0/)



13 Alyami, S., Wang, Y., Wang, C., et al.: ‘Adaptive real power capping method for
fair overvoltage regulation of distribution networks with high penetration of PV
systems’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 2729–2738

14 Anderson, T.W.: ‘Institute of mathematical statistics is collaborating with JSTOR
to digitize, preserve, and extend access to the annals of statistics. ®www.jstor.
orgx’, Ann. Stat., 1986, 14, (2), pp. 590–606

15 Minniti, S., Haque, A.N.M.M., Paterakis, N.G., et al.: ‘A hybrid robust-stochastic
approach for the day-ahead scheduling of an EV aggregator’. 2019 IEEE Milan
PowerTech, PowerTech 2019, Milan, Italy, 2019, pp. 1–6
CIRED, Open Access Proc. J., 2020, Vol. 2020, Iss. 1, pp. 480–483
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
16 Neumann, F.: ‘Optimal scheduling of electric vehicle charging in distribution
networks MSc dissertation thesis MSc in sustainable energy systems optimal
scheduling of electric vehicle charging in distribution networks Fabian
Neumann’, June 2018

17 ‘Koninklijk Nederlands Meteorologisch Instituut (KNMI)’, [online]. Available at
https://www.knmi.nl/home, accessed 10 January 2019

18 ‘Nissan Leaf 2018’, [online]. Available at https://www.nissan.co.uk/vehicles/new-
vehicles/leaf/prices-specifications.html#grade-LEAFZE1A-1%7Cspecs, accessed
25 November 2019
483Commons

www.jstor.org
www.jstor.org
www.jstor.org
www.jstor.org
https://www.knmi.nl/home
https://www.knmi.nl/home
https://www.knmi.nl/home
https://www.knmi.nl/home
https://www.knmi.nl/home
https://www.nissan.co.uk/vehicles/new-vehicles/leaf/prices-specifications.html#grade-LEAFZE1A-1%7Cspecs
https://www.nissan.co.uk/vehicles/new-vehicles/leaf/prices-specifications.html#grade-LEAFZE1A-1%7Cspecs
https://www.nissan.co.uk/vehicles/new-vehicles/leaf/prices-specifications.html#grade-LEAFZE1A-1%7Cspecs
https://www.nissan.co.uk/vehicles/new-vehicles/leaf/prices-specifications.html#grade-LEAFZE1A-1%7Cspecs
https://www.nissan.co.uk/vehicles/new-vehicles/leaf/prices-specifications.html#grade-LEAFZE1A-1%7Cspecs
https://www.nissan.co.uk/vehicles/new-vehicles/leaf/prices-specifications.html#grade-LEAFZE1A-1%7Cspecs
https://www.nissan.co.uk/vehicles/new-vehicles/leaf/prices-specifications.html#grade-LEAFZE1A-1%7Cspecs
https://www.nissan.co.uk/vehicles/new-vehicles/leaf/prices-specifications.html#grade-LEAFZE1A-1%7Cspecs

	1 Introduction
	2 Stochastic modelling methodology
	3 Simulation setup
	4 Numerical results
	5 Conclusion
	6 Acknowledgements
	7 References

