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Max H. Bergkamp, ac Sebastian Cajigas, d

Leo J. van IJzendoornbc and Menno W. J. Prins *abcd

Real-time monitoring-and-control of biological systems requires lab-on-a-chip sensors that are able to

accurately measure concentration–time profiles with a well-defined time delay and accuracy using only small

amounts of sampled fluid. Here, we study real-time continuousmonitoring of dynamic concentration profiles

in a microfluidic measurement chamber. Step functions and sinusoidal oscillations of concentrations were

generated using two pumps and a herringbone mixer. Concentrations in the bulk of the measurement

chamber were quantified using a solution with a dye and light absorbance measurements. Concentrations

near the surface were measured using a reversible cortisol sensor based on particle motion. The experiments

show how the total time delay of the real-time sensor has contributions from advection, diffusion, reaction

kinetics at the surface and signal processing. The total time delay of the studied real-time cortisol sensor was

∼90 seconds for measuring 63% of the concentration change. Monitoring of sinusoidal cortisol

concentration–time profiles showed that the sensor has a low-pass frequency response with a cutoff

frequency of ∼4 mHz and a lag time of ∼60 seconds. The described experimental methodology paves the

way for the development of monitoring-and-control in lab-on-a-chip systems and for further engineering of

the analytical characteristics of real-time continuous biosensors.

1. Introduction

Real-time biosensors that enable continuous measurements of
concentration–time profiles have great potential for studying
the dynamics of biological and biotechnological processes and
for the development of strategies to control biological systems
based on measurements in real time. Here, real-time sensing
refers to sensing methods that operate with time delays that are
short with respect to the timescales of typical concentration
fluctuations in the system of interest, allowing one to collect
detailed information and to act quickly if and when needed.1

Such sensors enable closed-loop therapy control in healthcare2,3

and real-time process control in industrial applications.4–6 For
example, real-time continuous glucose sensors, based on
enzymatic electrochemical sensing principles, have already been
established as a valuable technology for glucose control in

patients with diabetes.7–9 However, enzymatic sensing is limited
to reactive analytes at high concentrations.10,11 In contrast,
affinity-based sensing can be applied for a wider range of analytes
and a wider range of concentrations (micromolar, nanomolar,
picomolar) for measuring analytes such as hormones, proteins,
drugs and nucleic acids. Furthermore, the intrinsic reversibility
of affinity-based interactions can be used to design sensors that
are fully reversible.12,13 Examples of affinity-based sensors that
have been demonstrated for real-time continuous biosensing are
electrochemical aptamer-based sensors,14–16 fluorescence-based
sensors17–19 and biosensors based on particle motion.20–25 These
approaches have shown continuous sensing over multiple hours
with time delays on timescales ofminutes.

The total time delay of a real-time affinity-based sensor has
contributions from transport processes (advection,
diffusion),26 affinity reactions,26 and signal processing.27 It is
important to understand the origins of the different
contributions in order to be able to design sensors that meet
the needs of different applications. Lubken et al. performed
simulations to study the response of a continuous affinity-
based sensor depending on parameters such as the dimensions
of the measurement chamber, the concentration of the analyte,
and the affinity constants of the binder molecules.13 The
results show that transport and reaction properties cause
continuous sensors to act as low-pass frequency filters, where
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slow changes in concentration (low frequencies) can be
measured more easily than fast changes in concentration (high
frequencies).13,28 In addition, the output signals of real-time
sensors are delayed by signal processing contributions,27

including the data sampling time and the time needed to
analyze themeasurement data.

In this paper, we present experiments that quantify the
total time delay and the frequency response of a real-time
cortisol biosensor based on biosensing by particle motion
(BPM). Concentration–time profiles are generated using two

pumps and a herringbone mixer chip29 and the sample stream
is measured in the biosensing chip. We show how experiments
with concentration steps can be used to extract time delays
related to physicochemical processes. The transport into the
measurement chamber is characterized with light absorbance
measurements. Transport and reaction properties are studied
using a reversible cortisol BPM sensor integrated in the
measurement chamber. Sinusoidal cortisol concentration–
time profiles are applied to study how the response of the
sensor depends on the modulation frequency of concentration

Fig. 1 Real-time continuous monitoring of dynamic concentration profiles. (a) Time delays in real-time continuous biosensing. The total time delay
of the real-time sensor that monitors the concentration in a system of interest has both physicochemical contributions and signal processing
contributions. Physicochemical contributions include transport processes (advection, diffusion) and molecular reactions in the sensor (binding
kinetics). The signal processing time delay is determined by the data sampling time and data analysis time. Quantification of physicochemical time
delays is performed by applying step functions of concentrations and extracting the transport time delay Δt0 and the characteristic equilibration time
τC by single-exponential fitting (see definitions section 2.2). The sketch indicates the total time delay of the real-time sensor ΔtRTS, which is the sum
of the physicochemical time delays (Δt0, τC) and the signal processing time delay ΔtSP. The dynamic sensor response is studied by supplying the
sensor with sinusoidal concentration profiles. The measured concentration–time profile CM(t) may differ with respect to the concentration–time
profile in the system of interest CS(t), in terms of its amplitude and lag time. (b) Setup for generating and measuring dynamic concentration profiles,
exemplified with light absorbance measurements of dynamic concentrations of dye molecules. Light absorbance measurements probe the bulk
solution in the measurement chamber. The flow rates of pump 1 (containing a low concentration) and pump 2 (containing a high concentration) are
continuously controlled by a computer. The output solutions of pump 1 and pump 2 are mixed in a herringbone mixer chip to generate dynamic
concentration profiles. The output of the herringbone mixer chip is connected to the biosensor chip that is imaged with brightfield microscopy.
Captured images are processed in real time. (c) Real-time continuous biosensing of cortisol with a BPM sensing surface. Measured time delays are
related to analyte transport and molecular reactions at the surface. The right panel shows a sketch of a BPM sensor for cortisol, with a competition
assay format.25 Particles functionalized with anti-cortisol antibodies are tethered (dsDNA tether) to the sensor surface that is functionalized with
cortisol-analogue. The sensing principle is based on the formation of reversible bonds between the antibodies on the particle and cortisol-analogue
molecules on the sensor surface. The concentration of cortisol influences the switching between bound and unbound states, since cortisol
molecules can bind to the antibodies on the particle, thereby blocking the bond formation between the particle and surface.
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changes. Finally, we discuss how the experimental
methodology can help engineers in the development of real-
time affinity-based biosensors for a variety of applications.

2. Experimental section
2.1 Real-time continuous monitoring of dynamic
concentration profiles

Fig. 1a outlines the questions that are addressed in this paper.
The main aim is to study the total time delay of a real time
sensor ΔtRTS, i.e., the time between the moment that a probed
system of interest is in a certain concentration condition and
the subsequent moment that the biosensor reports the
corresponding concentration value. The total time delay has
contributions from physicochemical processes, such as
transport (advection, diffusion) and molecular reaction
processes (binding kinetics), and from signal processing,
including the data sampling time and the time needed to
analyze the measurement data. Experiments with
concentration step functions are performed to quantify the
transport time delay Δt0 and the characteristic equilibration
time τC. Real-time continuous monitoring of dynamic
concentration profiles is studied with sinusoidal concentration
profiles, which allows quantifications of the measured
concentration change ΔCM compared to the concentration
change in the system of interest ΔCS and of the lag time Δt.

2.2 Definitions

The middle panel of Fig. 1a shows that at any moment in time,
three concentrations can be identified in the sensing system:
(1) the analyte concentration in the system of interest, (2) the
concentration that is measured by the biosensor, and (3) the
concentration that is reported by the biosensor. The three
corresponding concentration–time profiles are correlated in
the time-domain according to the following definitions:

Transport time delay Δt0,X: the time until a change of
concentration is measured in the biosensor after applying a
concentration step function in the system of interest, for
concentrations measured by method X. In this research we
used two methods: light absorbance (X = A) and biosensing
by particle motion (X = BPM).

Characteristic equilibration time τC,X: the characteristic time
of a single-exponential fit (see eqn (5) and (6)) of the measured
concentration–time profile after applying a concentration step
function, for concentration measured by method X (see above).

Total physicochemical time delay ΔtC63%,X: time delay due to
physicochemical effects to measure 63% of the concentration
change after applying a concentration step function, given by:

ΔtC63%,X = Δt0,X + τC,X (1)

Signal processing time delay ΔtSP,X: time difference between the
time at which a measurement signal is reported and the time at
which the biosensor was in that condition.27 The signal
processing time delay depends on the data sampling period,
i.e., the block size tblock, and on the data analysis time tanalysis

for processing the data in a single measurement block:

ΔtSP;X ¼ tblock
2

þ tanalysis (2)

Total time delay of a real-time sensor ΔtRTS,X: the difference
between the time at which a concentration measurement is
reported and the time at which the system of interest was really
in that concentration condition,27 which is the sum of the total
physicochemical time delay and the signal processing time delay:

ΔtRTS,X = ΔtC63%,X + ΔtSP,X (3)

2.3 Experimental setup

Fig. 1b illustrates the setup for generating and measuring
dynamic concentration profiles (see Fig. S1† for a picture of
the setup in the lab).

Generating dynamic concentration profiles. Concentrations
were generated by microfluidic mixing with a herringbone
mixer (Microfluidic ChipShop GmbH, main mixing channel
dimensions: 0.6 mm width × 0.2 mm height × 9.4 mm length,
total volume 2 μL) and two syringe pumps (Pump 11 Elite OEM,
Harvard Apparatus) connected to the two inlets of the mixing
chip. Both pumps hold a 20 mL syringe that contains solutions
with low analyte concentration (pump 1) and with high analyte
concentration (pump 2). In all measurements, the total flow
rate, i.e., the sum of the flow rates of pump 1 and 2, was set to
100 μL min−1. The desired concentrations were generated by
varying the ratio between the flow rates of pump 1 and 2. The
output of the mixing chip was connected to the sensor chip (μ-
slide III 3-in-1, Ibidi, chamber height 400 μm, chamber volume
60 μL) with 5 cm of PTFE tubing (inner diameter 0.8 mm,
tubing volume 25 μL).

Imaging setup. Imaging was performed with brightfield
microscopy on a custom build compact microscope with a
total magnification of 10 (objective: 10× DIN Achromatic
Finite Intl Standard (Edmund Optics), light source: green
LED (3 mm, 12 V)). A high-speed CMOS camera was used
(FLIR Blackfly S BFS-U3-32S4M) with a FOV of 2048 × 1536
pixels (0.71 × 0.53 mm2).

Real-time signal processing and pump control. A PC was
used both for controlling the flow rate of the pumps and for
real-time signal processing. A MATLAB application was
written for plotting the output data in real time. The plots
were updated with high frequency to minimize the time delays.

2.4 Light absorbance measurements

Concentrations of dye solution were determined by light
absorbance measurements. Pump 1 contained Milli-Q water
and pump 2 contained a solution of 2% (v/v) JOLA-RED (food
coloring) in Milli-Q water. Images were captured at 120 Hz
frame rate with an exposure time of 0.3 ms. In each frame,
the transmitted light was calculated by taking the average of
all pixel values in the FOV. The real-time response is the
average transmitted light in each measurement block of 10
seconds.
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2.5 Cortisol sensor – biosensing by particle motion (BPM)

Cortisol sensing was performed with a BPM competition
immunosensor (see Fig. 1c), that was developed by van
Smeden et al.25 The BPM cortisol sensor has been
demonstrated for continuous monitoring of cortisol in buffer
and in blood plasma.25 The functionalization protocol of the
cortisol BPM sensor was the same as described in previous
work.27 Therefore, only the main components of the sensor
are provided here.

Particle functionalization. Streptavidin-coated magnetic
particles with a diameter of 1 μM (Dynabeads MyOne
Streptavidin C1, Thermo Fisher Scientific) were
functionalized with biotinylated anti-cortisol antibody and
blocked with 1 kDa mPEG-biotin.

Sensor surface functionalization. dsDNA tether (221 bp,
with DBCO on one end and biotin at the other end) and
ssDNA-DBCO were covalently coupled to a PLL-g-PEG layer on
the sensor surface via click chemistry (DBCO-azide).23

Particles were incubated for 15 minutes to allow binding of
the particles to the dsDNA tethers. Solution with cortisol-
DNA conjugate (cortisol analogue) was added to activate the
sensor.

Syringe solutions. Pump 1 contained buffer solution (0.5
M NaCl in PBS buffer). Pump 2 contained buffer solution (0.5
M NaCl in PBS buffer) with 30 μM cortisol.

Real-time signal processing. Images were captured at 120 Hz
frame rate with an exposure time of 0.3 ms. Signal processing
was performed in real-time according to the methods described
by Bergkamp et al.27 Signal processing steps include real-time
image acquisition, particle identification, particle tracking with
phasor-based localization,30 drift correction and analysis of time
traces. The analysis includes determining the bound fraction
from the diffusion coefficient time traces in each measurement
block of 30 seconds. Diffusion coefficient time traces were
derived directly from the x and y time traces of the particles (see
ESI† section S2). The dose–response relation was obtained by
fitting a sigmoidal curve, with the signal S, i.e., the bound
fraction, as a function of the concentration C given by:

S ¼ Smin þ Smax − Smin

1þ C
EC50

� �n (4)

2.6 Single-exponential fitting

Signals and concentrations measured after applying
concentration step functions are fitted with single-exponential
curves. The function for decreasing signals and concentrations is:

y ¼ yeq þ y0 − yeq
� �

·e
− t −Δt0ð Þ

τ (5)

The function for increasing signals and concentrations is:

y ¼ y0 þ yeq − y0
� �

· 1 − e
− t−Δt0ð Þ

τ

� �
(6)

3. Results and discussion
3.1 Light absorbance measurements

The microfluidic mixing setup for generating dynamic
concentration profiles was first studied using light absorbance
measurements of fluctuating dye concentrations. These
measurements report the average concentration in the
measurement chamber along the line of sight and provide the
dye transport timescales related to advection and diffusion.
Fig. 2a shows a real-time sensing experiment with step functions
of dye concentration that were generated by microfluidic mixing.
Different concentrations of dye solution were alternated with the
baseline concentration (1% of the maximum dye concentration),
as sketched in the top panel. The middle panel shows the
measured transmitted light intensity. After the inflow of a higher
concentration of dye solution the transmitted light intensity
decreases as a function of time. The decreases and increases in
light intensity are fitted by single-exponential functions (eqn (5)
and (6)). The asymptotic values are used to calculate the light
absorbance as a function of concentration, as shown in Fig. 2b.
The dose–response curve scales linearly according to the Beer–
Lambert law. The fitted dose–response relation is used for
estimating the concentration in the measurement chamber as a
function of time (see Fig. 2a-III).

The concentration time trace is used to extract the
transport timescales, by fitting single-exponential curves that
are delayed with a transport time delay Δt0,A. The average
value of Δt0,A is 22 ± 2 seconds (see Fig. 2c-I), which is the
time required for analyte transportation from the mixing chip
to the sensor chip. The transport time delay can be
influenced by changing the parameters related to the
advective sampling, including the tubing length, the
dimensions of the sensor chip and the flow rate (Δt0 ∝ V/Q).
The time constant of the single-exponential fit τC,A is the
characteristic equilibration time, which is dependent on
advection and diffusion parameters including the flow
profile, the flow rate, the flow chamber dimensions and the
diffusion coefficient of the dye molecules. Fig. 2c-II shows
that the equilibration time is not dependent on the dye
concentration and has an average value of 15 ± 3 seconds.

3.2 BPM sensing under continuous flow

A cortisol BPM sensor was integrated in the microfluidic flow
cell in order to study time delays for real-time sensing at a
surface in the measurement chamber, as sketched in Fig. 1c.
In short, particles with anti-cortisol antibodies were tethered
to a surface functionalized with oligonucleotides. Thereafter
a solution with cortisol-analogue (cortisol-DNA conjugate)
was supplied, causing hybridization of the analogues. The
presence of cortisol analogues on the surface causes
reversible switching of particles between bound and unbound
states. The switching behavior changes when the sensor is
exposed to a solution containing cortisol, because the cortisol
binds to the antibodies and reduces the probability per unit
of time that particles switch from unbound to bound states.
In this study we focus on continuous advection-based
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sampling, which requires that the sensor functions well
under continuous flow. In previous BPM studies, the particle
switching activity, bound and unbound state lifetimes, and
particle bound fraction have been used as readout
parameters. Here, the bound fraction (derived from the
diffusion coefficient time traces, see ESI† section S2) is used,
since it gives robust results under flow.

Fig. 3 shows the behavior of the cortisol BPM sensor for
various experimental conditions. Before supply of cortisol-
analogue molecules, particles mostly show motion patterns
of circular shape with a size defined by the length of the
dsDNA tether and the particle diameter, see Fig. 3a. On the
right hand side, histograms are shown of the diffusion
coefficient of a single particle measured over a time span of
30 seconds, and of all particles in the field of view. When a
flow is applied from right to left, the particle motion

becomes confined due to the fluidic drag force that pushes
the particles toward the direction of the flow, resulting in
moon-shaped motion patterns and diffusion coefficient
histograms that shift to lower values, see Fig. 3b. After
hybridization of cortisol-analogue, the particles show state
switching behavior that originates from the reversible
interaction between the analogue molecules on the sensor
surface and the antibodies on the particles, visible without
flow (Fig. 3c) as well as with an applied flow (Fig. 3d). Bound
states can be recognized in the motion patterns by a higher
density of data points in a confined region, and in the time
traces by time periods with a reduced variability in x and y.
In the presence of flow, a diffusion coefficient threshold is
set to separate bound states (red) and unbound states (grey).
The fraction of bound states with respect to the total states
in the histogram is defined as the bound fraction (BF).

Fig. 2 Light absorbance measurements with fluctuating dye concentrations in order to measure timescales related to analyte transport (advection
and diffusion). (a) Real-time sensing of dye concentration by light absorbance measurements. (I) Dye concentration as a function of time that was
generated by controlled microfluidic mixing. The concentration is expressed as a percentage of the dye solution in pump 2. C1 is the baseline
concentration, containing 1% of dye solution. (II) Transmitted light intensity as a function of time. Each datapoint was obtained in real-time (ΔtSP,A
≈ 5 s) and represents the average transmitted light intensity in a measurement block of 10 seconds. Datapoints were fitted with single-exponential
curves (eqn (5) and (6)) to extract equilibrium intensity values Ix, that are needed to construct the dose–response curve (panel b). I1 is the
equilibrium intensity corresponding to the baseline concentration C1. (III) Measured dye concentration as a function of time. The measured dye
concentration (post-processing) was derived from the signal and the fitted dose–response curve (red line in panel b). Datapoints were fitted with
single-exponential curves (eqn (5) and (6)), yielding a transport time delay Δt0 and equilibration time τC. (b) Dose–response curve: absorbance as a
function of the dye solution percentage. The absorbance values are calculated according to the equation with the fitted equilibrium intensities Ix
(panel a) and I0 (blank measurement, data not shown in panel a). The error bars are the 95% confidence intervals of the fitted equilibrium intensities
Ix. The red line shows the linear fit, which is according to the Beer–Lambert law. (c) Transport time delay (I) and characteristic equilibration time (II)
as a function of the dye solution percentage, obtained from the fitted single-exponential curves in panel a-III. The blue and red datapoints
correspond to concentration changes from the baseline towards a higher concentration (C1 → Cx), and from the higher concentration towards the
baseline (Cx → C1), respectively. The error bars are the 95% confidence intervals. The mean with standard deviation of the transport time delay is
22 ± 2 seconds. The mean with standard deviation of the characteristic equilibration time is 15 ± 3 seconds.
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During sensor operation, cortisol molecules are present in
solution and these bind to the antibodies on the particles,
thereby blocking the bond formation between the antibodies
on the particles and the cortisol-analogue molecules on the
sensor surface, see Fig. 3e. The blocking increases the
particle diffusivity and reduces the bound fraction, as shown
in the single-particle and the all-particle histograms. The
single particle is clearly in the unbound state during the
measurement. The all-particle histogram shows overlapping
distributions of bound and unbound states, caused by
particle-to-particle variations in roughness, tethering, and
densities of binder molecules.33,34 To simplify the data
analysis, the same diffusion coefficient threshold of 0.033
μm2 s−1 was used in the analysis of all particle time traces in
the subsequent experiments.

3.3 Real-time cortisol sensing: responses and timescales

Fig. 4 shows a study on the response of a cortisol BPM sensor
to a series of concentration step functions. Fig. 4a shows that

a concentration increase gives a rapid decrease of the bound
fraction until a stable level is reached. A concentration
decrease gives an increase of the bound fraction, with a
somewhat slower response. The sensor is reversible as
evidenced by the fact that every return to concentration C1

gives the same bound fraction signal, which is discussed in
ESI† section 3.2. Fig. 4b shows the bound fraction as a
function of the cortisol concentration, which is determined
from the equilibrium bound fraction values of the fitted
single-exponential curves in panel a. The dose–response
relationship is obtained by fitting a sigmoidal function (eqn
(4)) to the data. The fitted dose–response relation is used to
determine the measured concentration of the BPM sensor as
a function of time (see Fig. 4a-III). Large fluctuations are
observed in the measured concentration at cortisol
concentrations above 10 μM; this can be attributed to the
S-shape of the dose–response curve, giving a reduced slope at
high concentrations, so that small fluctuations in signal lead
to large fluctuations in the measured concentration. With
this data, it is possible to determine the transport time delay

Fig. 3 BPM sensing with flow. A single particle and an ensemble of particles in a cortisol BPM sensor is studied for various functionalization steps
and flow conditions. The shown motion patterns, the time traces, and the histograms marked “single particle”, are all derived from one and the
same particle in the cortisol BPM sensor. The particle motion is tracked in x and y direction and visualized as motion patterns and time traces. The
diffusion coefficient time trace (D) is derived from the x and y time traces of the particle (see ESI† section S2). In the time traces graphs, the blue
arrows indicate a scale of 1 μm and the grey arrows a scale of 0.2 μm2 s−1. The diffusion coefficient values in the time trace of the single particle
are shown in the left histogram. The diffusion coefficient histogram of all particles (at the right) combines the diffusion coefficient histograms of
all particles in the field-of-view. The bound fraction BF is the real-time signal parameter that is extracted from the diffusion coefficient histograms
by setting a threshold (black vertical line at 0.033 μm2 s−1). Diffusion coefficient values below the threshold are classified as bound (red color). (a)
Measurements without flow before functionalization of the surface with analogue. (b) Measurements with flow before functionalization with
analogue. Flow direction is from right to left, as the pump was in withdrawal mode during the sensor functionalization steps. (c) Measurements
without flow after functionalization with analogue. (d) Measurements with flow after functionalization with analogue. Flow direction is from left to
right, as pumps were in infusing mode to transport liquid from the syringes to the mixing chamber and measurement chamber. (e) Real-time
cortisol sensing with continuous flow, with a cortisol concentration of 30 μM. During the measurement series of panels a to e, the number of
particles in the field of view decreased from 1367 to 807; the loss of particles is attributed to flow-induced dissociation31,32 of biotin–streptavidin
bonds of the dsDNA tether.
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and characteristic equilibration times, see Fig. 4c. The
equilibration time includes contributions of advection,
diffusion, and affinity reactions in the BPM sensor. No clear
dependence on the analyte concentration is observed in the
equilibration time. The average transport time delay and the
average equilibration time in the BPM experiments (Δt0,BPM
≈ 32 s, τC,BPM ≈ 37 s) are longer than the parameters in the
absorbance experiments in Fig. 2 (Δt0,A ≈ 22 s, τC,A ≈ 15 s).
The longer transport time delay in BPM can be attributed to
the additional time involved in the transport of analyte
towards the sensing surface. The longer equilibration time
can be attributed to analyte transport towards the sensing
surface and the affinity reactions in the sensor. The resulting
total time delay of the BPM sensor for measuring 63% of the
cortisol concentration change (ΔtRTS,BPM) is ∼90 s, which is
the sum of the physicochemical time delay (ΔtC63%,BPM ≈ 70
s) and the signal processing time delay (ΔtSP,BPM ≈ 20 s).

The presented experimental approach allows one to
determine the total time delay of a real-time sensor and can

help researchers to study the effects of changes in sensor
design parameters. Estimations of the roles of advection,
diffusion, reaction, and signal processing in the present
cortisol BPM sensor (see ESI† section S4) indicate that
advection and diffusion are the most significant contributors
to the total time delay. In a future sensor design, the
advection and diffusion timescales could be shortened by
decreasing the dimensions of the measurement chamber.

3.4 Sensing sinusoidal cortisol concentration–time profiles

Fig. 5 shows a study on the dynamic response of the cortisol
BPM sensor to sinusoidal cortisol concentration–time
profiles. The average of the sine functions was set to 3.15
μM, which is close to the EC50 value of 2.5 μM (see Fig. 4b).
The amplitude of the sine was set to 2.85 μM, resulting in
concentration fluctuations between 300 nM and 6 μM. The
periods of the applied sine functions were set to 40, 20, 10, 5
and 2.5 minutes. Before (0–30 min) and after (220–250 min)

Fig. 4 Real-time cortisol sensing. (a) Real-time sensing of cortisol concentrations with BPM. (I) Cortisol concentration as a function of time that
was generated by controlled microfluidic mixing. C1 is the baseline concentration of 300 nM (100 times dilution of the 30 μM cortisol solution in
pump 2). (II) Bound fraction as a function of time. Each datapoint was obtained in real-time (ΔtSP,BPM ≈ 20 s) and represents the bound fraction in a
measurement block of 30 seconds. Datapoints were fitted with single-exponential curves (eqn (5) and (6)). (III) Measured cortisol concentration as a
function of time. The measured cortisol concentration (post-processing) was derived from the signal and the fitted dose–response relation (red
curve in panel b). The data was fitted with single-exponential curves (eqn (5) and (6)). ESI† section S3.1 provides an additional figure with motion
patterns at different cortisol concentrations. (b) Dose–response curve: bound fraction as a function of the cortisol concentration, obtained from the
fitted single-exponential curves on the bound fraction (fits were performed on data with a 10 times higher time-resolution, see ESI† section S3.3).
The error bars are the 95% confidence intervals. The red curve shows the sigmoidal fit (eqn (4)) with an EC50 value of 2.5 μM and n of 1.3. (c)
Transport time delay (I) and characteristic equilibration time (II) as a function of the cortisol concentration, obtained from the fitted single-
exponential curves on the measured concentration (fits were performed on data with a 10 times higher time-resolution, see ESI† section S3.3). The
blue and red datapoints correspond to concentration changes from the baseline towards a higher concentration (C1 → Cx), and from the higher
concentration towards the baseline (Cx → C1), respectively. The error bars are the 95% confidence intervals. The mean with standard deviation of
the transport time delay is 32 ± 7 seconds. The mean with standard deviation of the characteristic equilibration time is 37 ± 17 seconds.
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the sinusoidal modulations, calibration measurements were
performed by applying step functions at 300 nM and 6 μM
(see ESI† section S5). Calibration was used to correct the
dose–response relationship for gradual changes of the
sensor, e.g., due to changes of binders on particle or
substrate or non-specific interactions.23

Fig. 5a-II shows the real-time sensor signal. The changes in
the bound fraction are larger for a concentration decrease (3.15
μM to 0.3 μM) compared to a concentration increase (3.15 μM
to 6 μM), which is due to the non-linear dose–response curve.
Fig. 5a-III shows the cortisol concentrations derived from the
measured bound fractions and the established dose–response
curve. Measurements at concentrations above ∼4 μM show
more noise than measurements at lower concentrations,
because the concentration determination is less precise toward
the tail of the S-shaped dose–response curve (see Fig. 4b). The
measured concentration–time profiles oscillate with the same

frequency as the input concentrations. Fig. 5b shows the sensor
responses for the sinusoidal modulations with periods of 10
minutes (top) and 2.5 minutes (bottom), plotted with a 10 times
higher time-resolution compared the data in Fig. 5a-III. Sine
functions were fitted to this data to determine the amplitude–
frequency response of the cortisol sensor, i.e., the measured
concentration change ΔCM (normalized to the input
concentration change ΔCI) as a function of the modulation
frequency f (see Fig. 5c). The amplitude versus frequency data
was fitted with the following function:

ΔCM

ΔCI
¼ γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f = f C
� �2q (7)

This function describes the transfer function of a first-order
low-pass filter with cutoff frequency fC and scaling factor γ. The
cutoff frequency was found to be equal to ∼4 mHz, which is

Fig. 5 Real-time sensing of sinusoidal cortisol concentration–time profiles. (a-I) Cortisol concentration as a function of time that was generated
by controlled microfluidic mixing. No data is shown between 120 and 135 min, because in this period the experiment was halted in order to refill
the syringe of pump 1. (II) Measured BPM bound fraction as a function of time. Each datapoint was obtained in real-time (ΔtSP,BPM ≈ 20 s) and
represents the bound fraction in a measurement block of 30 seconds. Responses obtained after applying step functions were fitted with single-
exponential curves (eqn (5) and (6)). Extracted equilibrium bound fraction values were used for calibration, i.e., a correction of the dose–response
relation (see ESI† section S5). (III) Measured cortisol concentration as a function of time. The measured cortisol concentration (post-processing)
was derived from the signal and the corrected dose–response relation. (b) Two constant-frequency segments of the data in panel a-III. The data is
plotted with a 10 times higher time resolution, obtained by splitting each measurement block of 30 seconds into 10 sub-blocks of 3 seconds. The
data (blue dots) was fitted with sine functions (red curves), in order to extract the measured concentration change ΔCM and lag time Δt. (c)
Frequency response of the studied real-time cortisol sensor. Measured concentration change ΔCM (normalized to the input concentration change
ΔCI) as a function of the modulation frequency f. The red curve shows the fit ΔCM=ΔCI ¼ γ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f= fCð Þ2

q� �
that was applied to extract the cutoff

frequency fC, which was found to be ∼4 mHz. The inset shows the lag time Δt as a function of f.
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close to the cutoff frequency that can be estimated using a
model of an advection-limited measurement chamber ( fc ∼ Q/
(2πV) ≈ 4.4 mHz, see ESI† section S6). The scaling factor is
slightly smaller than unity; this can be attributed to deviations
between the generated and measured concentrations, as is
clearly visible for high concentrations (see e.g. at 65–75 min and
100–105 min). The deviations can relate to errors in the applied
concentration modulation or in the measured concentration
values (see ESI† section S5). The inset shows the lag time as a
function of the modulation frequency. As expected, the lag time
is larger than the transport time delay. The lag time is close to
60 seconds and shows a decreasing trend above the cutoff
frequency, which is in agreement with the simulations
performed by Lubken et al.13

The presented experimental methodology with sinusoidal
concentration modulations allows one to test if a biosensor is
able to perform continuous monitoring of dynamic
concentration changes and clarifies the frequency response
of the sensor. It will help researchers to tune sensor design
parameters in order to ensure that the sensor is fast with
respect to the concentration fluctuations in the system of
interest.

4. Conclusions

In this paper we developed an experimental methodology to
unravel and quantify the time delays that determine the
dynamic response of affinity-based biosensors for continuous
sensing. The methodology was demonstrated by continuous
monitoring of dynamic cortisol concentration–time profiles
with timescales of concentration changes on the order of
seconds to minutes. We developed an easy-to-use
experimental setup that can generate dynamic concentration
profiles with two pumps and a herringbone mixing chip. This
experimental approach allowed us to quantify the total time
delay of a real-time continuous biosensor, with contributions
relating to physicochemical processes (advection, diffusion
and reaction) and signal processing. Experiments with the
continuous cortisol BPM immunosensor showed a total time
delay of about 90 seconds for measuring 63% of an applied
concentration change. Monitoring of sinusoidal cortisol
concentration–time profiles showed that the sensor has a
low-pass frequency response with a cutoff frequency of ∼4
mHz and a lag time of ∼60 seconds.

The developed methodologies to quantify time delays and
dynamic response can help engineers to design real-time
biosensors for applications with diverse analytes, analyte
concentrations, and time requirements.13 Studies can be
performed on how the dynamic response depends on design
parameters of microfluidic systems and molecular designs of
continuous sensors. The experimental methodology is also
useful for investigating frequency-dependent signal processing
concepts such as pre-equilibrium biosensing.28 Detailed
experimental studies of the time-dependent behavior of real-
time continuous biosensors are expected to lead to novel sensor
engineering approaches as well as the development of

monitoring-and-control strategies in lab-on-a-chip systems and
in biomedical and biotechnological applications.
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