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A Mixed-integer Linear Programming Model 
for Defining Customer Export Limit in 

PV-rich Low-voltage Distribution Networks
Pedro P. Vergara, Member, IEEE, Juan S. Giraldo, Member, IEEE, Mauricio Salazar, Student 

Member, IEEE, Nanda K. Panda, Student Member, IEEE, and Phuong H. Nguyen, Member, IEEE

Abstract——A photovoltaic (PV)-rich low-voltage (LV) distribu‐
tion network poses a limit on the export power of PVs due to 
the voltage magnitude constraints. By defining a customer ex‐
port limit, switching off the PV inverters can be avoided, and 
thus reducing power curtailment. Based on this, this paper pro‐
poses a mixed-integer nonlinear programming (MINLP) model 
to define such optimal customer export. The MINLP model 
aims to minimize the total PV power curtailment while consid‐
ering the technical operation of the distribution network. First, 
a nonlinear mathematical formulation is presented. Then, a new 
set of linearizations approximating the Euclidean norm is intro‐
duced to turn the MINLP model into an MILP formulation that 
can be solved with reasonable computational effort. An exten‐
sion to consider multiple stochastic scenarios is also presented. 
The proposed model has been tested in a real LV distribution 
network using smart meter measurements and irradiance pro‐
files from a case study in the Netherlands. To assess the quality 
of the solution provided by the proposed MILP model, Monte 
Carlo simulations are executed in OpenDSS, while an error as‐
sessment between the original MINLP and the approximated 
MILP model has been conducted.

Index Terms——Low-voltage distribution network, photovoltaic 
(PV) curtailment, optimal power flow, Monte Carlo simula‐
tions.

NOMENCLATURE

A. Sets

F Set of phases, F ={A, B, C}

L Set of lines

N Set of nodes

S Set of stochastic scenarios
T Set of time intervals

B. Indices

ϕ, ψ Indices of phases, ϕ, ψÎF
km, mn Indices of lines, km, mnÎL
nm Indices of nodes, nmÎN
s Index of scenario, sÎS
t Index of time interval, tÎ T

C. Parameters

αϕ, βϕ Parameters used for linearization of voltage 
magnitudes

-
I

2
mn The maximum line current limit

PFm Power factor of photovoltaic (PV) inverters
P PV

mϕt Expected active power generation of PV sys‐
tems

P Rate
mϕ Rated power capacity of PV inverter

P D
mϕt, Q

D
mϕt Expected active and reactive power consump‐

tions of customers
Rmnϕψ Xmnϕψ Resistance and reactance of lines
t Length of time intervals

-V, 
-
V The maximum and minimum voltage magni‐

tudes
V re0

mϕtV
im0

mϕt Real and imaginary parts of voltage magni‐
tude at estimated operational point

D. Continuous Variables

γt Customer export limit

I Gre
mϕtI

Gim
mϕt Real and imaginary parts of current injection 

of PV inverters
I Dre

mϕtI
Dim
mϕt Real and imaginary parts of current injection 

of customers
I re

mnϕtI
im
mnϕt Real and imaginary parts of current injections 

of lines
P N

mϕt Net power injection of customers
P G

mϕt Active power injection of PV inverters (AC 
side)

P Limit
mϕt Active power export limit of customers

V re
mϕtV

im
mϕt Real and imaginary parts of voltage magnitude
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V +
mϕt,V

-
mϕt Auxiliary variables used for linearization of 

voltage magnitude

E. Binary Variables

δmt Variable associated with export limit constraint

I. INTRODUCTION 

THE world-wide installed photovoltaic (PV) capacity is 
continuously increasing, with a total of 102.4 GW add‐

ed only in 2018 [1]. In the Netherlands, the total installed ca‐
pacity was about 4.4 GW in the same year, representing a 
46% increase compared with the previous year [2]. Most of 
these new PV systems were installed at the residential level, 
connected to low-voltage (LV) distribution networks planned 
many decades ago, thus not well prepared to accommodate 
the high amount of export power coming from residential 
customers [3]. Due to these high levels of aggregated PV 
generation, distribution system operators (DSOs) are facing 
new technical operational challenges, including overvoltage 
issues, increase in the frequency of tap changes in the distri‐
bution transformers as well as increase in power losses, vio‐
lation of the thermal limits on the lines, among others [4], 
[5]. Nevertheless, as residential PV installations are usually 
single-phase systems, overvoltage in one phase and high 
voltage unbalance among all phases are considered the most 
critical [6].

Several solutions are available to cope with the technical 
issues as a result of the high penetration of PV systems in 
LV distribution networks. These solutions can be roughly 
classified in coordinated and locally-implemented approach‐
es. Coordinated approaches require either a centralized [7] or 
distributed [8] communication infrastructure. In these ap‐
proaches, PV systems cooperatively define their maximum 
active power injection (which can be also seen as an export 
limit), guaranteeing that the voltage magnitudes are within 
the required operational limits. In this sense, by defining the 
maximum active power injections of individuals, the total 
amount of active power curtailed for the whole distribution 
system can be minimized. However, such an approach can 
be considered socially unfair, as users experiencing overvolt‐
age issues more often will be required to curtail more to 
maintain the voltage level within the required limits [9]. To 
reduce PV power curtailment and simultaneously improve 
the distribution network voltage profile, other coordinated ap‐
proaches, e. g., [10], [11], include energy storage systems, 
which require the use of long-term dispatching algorithms. 
In this sense, the need for a communication infrastructure 
for these approaches reduces their chances of being widely 
implemented, as large investments might be needed. Besides, 
locally-implemented approaches do not require large or even 
any communication infrastructure and are based on locally 
customized strategies [12], or simple operational rules such 
as droop control [13], [14]. In the droop-based approaches, 
the PV inverters regulate their active and reactive power in‐
jections as a function of the voltage magnitude at their point 
of connection [15], [16]. Regardless of their effectiveness to 
mitigate overvoltage issues, locally-implemented approaches 
can be also considered socially unfair, as customers located 

at the end of feeder experience a higher amount of PV pow‐
er curtailment. A simple and effective solution to mitigate all 
the technical issues is to impose a limit on the total amount 
of active power that all the residential customers can export 
to the LV distribution network. In Germany, for instance, 
since 2012, the exported energy of PV systems in distribu‐
tion networks with high PV penetration must be either be‐
low 70% of their nominal capacity or able to be regulated 
by the DSOs [17]. Although it is effective, such an export 
limit has a significant economic impact on the PV owners, 
which might then discourage the installation of new PV sys‐
tems [18]. Nevertheless, its definition can guarantee a safe 
operation while more long-term technical actions e. g., net‐
work reinforcement, new topology arrangements, are imple‐
mented by the DSOs.

With the above consideration, this paper presents a mixed-
integer nonlinear programming (MINLP) model to define the 
optimal customer export limit of a PV-rich LV distribution 
network. This model aims to minimize the PV generation 
curtailment while considering the technical operation of the 
LV distribution network through a three-phase power flow 
formulation. Here, the operation of voltage regulators, capac‐
itor banks, or switches has not been considered. Neverthe‐
less, the proposed model can be easily extended following 
the modeling approach of such devices and using the models 
available in [19] and [20]. Due to their complex nature, 
MINLP models are non-deterministic polynomial hard (NP-
hard), making it difficult to be solved in polynomial time 
and scale to larger-size problems [21]. To overcome this 
problem, in the exsiting literature, two main approaches are 
used to solve MINLP models: developing mixed-integer lin‐
ear programming (MILP) formulations or convex equivalent 
models. Optimal power flow (OPF) based convex models 
available in the literature are summarized in [22]. Convex re‐
laxations based on the second-order cone programming 
(SOCP) have been used in [23] and [24] to define the state 
of a smart distribution network, and in [25], where the mini‐
mum conditions are stated to obtain an exact and equivalent 
model in balanced distribution networks. In this sense, the 
main disadvantage of such convex models is that if the mini‐
mum conditions are not met (as it is in practical cases), the 
optimality nature (local or global) of the obtained solution 
cannot be defined [26]. In contrast, MILP formulations are 
not required to meet strict operating conditions to provide 
global optimal solutions of an approximated version of the 
original MINLP model. MILP formulations are usually ob‐
tained by approximating the non-linear power flow con‐
straints such as in [27], or by using piece-wise linear repre‐
sentations such as in [28], [29].

To linearize the proposed MINLP model, a new set of ap‐
proximations based on the Euclidean norm is introduced to 
turn the model into an MILP model, which can be solved 
with a reasonable computational effort. An extension to con‐
sider stochastic scenarios is also presented, which enables 
the DSO to control the robustness of the solution provided 
by the proposed model. The proposed model is tested in a re‐
al LV distribution network using smart meter and irradiance 
profiles for a case study in the Netherlands. To assess the op‐
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eration of the distribution network under the optimal custom‐
er export limit provided by the proposed model, Monte Car‐
lo simulations in OpenDSS are executed. Although results 
are presented only for one case of study, the proposed model 
can be used first with a set of representative networks [30], 
[31], helping the DSOs characterize and identify the net‐
works with lower customer export limits. Then, technical ac‐
tions such as installing voltage regulators, capacitor banks, 
and switches, or reinforcing the network can be implement‐
ed. In this sense, the export limit can be used as a criterion 
in order to define whether other technical actions need to be 
deployed, aiming to increase the PV hosting capacity of 
such distribution networks.

The main contributions of this paper are as follows. An 
MINLP model is presented to define the net customer power 
export limit in an LV distribution network with high PV pen‐
etration, considering the operational constraints of network. 
An accurate MILP formulation is presented, which approxi‐
mates the original MINLP problem into a mathematical for‐
mulation that can be solved using commercial optimization 
solvers.

II. CUSTOMER EXPORT LIMIT 

To ensure that individual net power injections defined in 
(1), i. e., PV generation P G

mϕt minus consumption P D
mϕt, do 

not violate technical constraints, a power limit P Limit
mϕt can be 

defined. Imposing this power limit on the net power injec‐
tion, as shown in (2), must trigger power curtailment on the 
PV systems. Notice that in this case, customers are modelled 
as non-flexible loads, thus consumption curtailment is not 
considered as an option. For simplicity, this power limit can 
be defined as a percentage γt of the rated power capacity of 
the PV inverter installed in phase ϕ, i.e., P Rate

mϕ  [18].

P N
mϕt =P G

mϕt -P D
mϕt (1)

P N
mϕt £P Limit

mϕt (2)

P Limit
mϕt = γt P

Rate
mϕ (3)

Notice that such an export limit γt in (3) has the same val‐
ue for all the residential customers within the distribution 
network, while its value can change dynamically with time. 
In order to better understand the net power generation export 
limit, Fig.1 is considered, where the export limit is imposed 
at the net power injection P N

mϕt measured by the smart meter 
(SM).

Thus, if the net power injection P N
mϕt is lower than the ex‐

port limit, no PV generation curtailment is applied, then 
P G

mϕt =P PV
mϕt. In the case that P N

mϕt is greater than the export 
limit, the PV system adjusts its generation to fulfill the ex‐
port limit requirement, as shown in (4). Here, the efficiency 
of the PV inverter is considered when estimating P G

mϕt 

from P PV
mϕt.

P G
mϕt =

ì
í
î

P PV
mϕt  P PV

mϕt -P D
mϕt £ γt P

Rate
mϕ

γt P
Rate
mϕ +P D

mϕt  P PV
mϕt -P D

mϕt > γt P
Rate
mϕ

(4)

As all the PV inverters connected to the distribution net‐
work will contribute to the aggregated reverse power flow 
and the increased voltage profile of the feeder, defining a 
unique export limit is considered as a social fair approach. 
Moreover, if such a limit is allowed to dynamically adapt to 
the operational conditions, e. g., low demand periods, high 
generation periods, of the distribution network, a lower 
amount of PV generation curtailment can be ensured, when 
compared with the case of a static value. Notice that al‐
though one export limit is defined system-wide, the total 
amount of curtailed active power depends on the nominal 
PV rate of each user. Finally, the definition of the same ex‐
port limit for all customers might facilitate its implementa‐
tion by the DSOs, which are required to be updated only if 
the number of PV installations increases or if the number of 
overvoltage issues starts to increase.

III. MATHEMATICAL FORMULATIONS 

In this section, an MINLP problem formulation is present‐
ed to properly define the customer export limit γt for an LV 
distribution network. Then, a set of new approximations and 
linearization procedures is introduced in order to transform 
the MINLP model into MILP formulation that can be solved 
using commercial solvers. Finally, an extension considering 
multiple scenarios is also presented.

A. MINLP Problem Formulation

The definition of the custom export limit γt can be done 
using the MINLP model given by (1), (2), and (5)-(20). The 
objective function in (5) aims at minimizing the PV genera‐
tion curtailment for the time horizon T, which is equivalent 
to maximize the amount of active power provided by the PV 
systems.

min
γt"tÎ T

ì
í
î

ïï
ïï
∑
tÎ T 

é

ë

ê
êê
ê ù

û

ú
úú
ú∑

mÎN
∑
ϕÎF

(P D
mϕt -P G

mϕt )Dt
ü
ý
þ

ïïïï
ïï

(5)

s.t.

|P G
mϕt -P PV

mϕt| £Mδmt "m"ϕ"t (6)

 |P G
mϕt - γt P

Rate
mϕ -P D

mϕt| £M (1 - δmt ) "m"ϕ"t (7)

P G
mϕt £P PV

mϕt "m"ϕ"t (8)

δmtÎ{01} "m"t (9)

∑
nmÎL

I re
nmϕt- ∑

mnÎL
I re

mnϕt+ I Gre
mϕt= I Dre

mϕt "mnÎL"ϕÎF "tÎT
(10)

∑
nmÎL

I im
nmϕt- ∑

mnÎL
I im

mnϕt+ I Gim
mϕt = I Dim

mϕt "mnÎL"ϕÎF "tÎT
(11)

V re
mϕt -V re

nϕt =∑
ψÎF

(Rmnϕψ I re
mnψt -Xmnϕψ I im

mnψt )

   "mnÎL"ϕÎF "tÎ T (12)

PV system

Pm,ϕ,t
PV Pm,ϕ,t

G

AC

DC
SM m

Pm,ϕ,t
D

Pm,ϕ,t
N

Fig. 1.　Representation of power flow balance of residential customer m.
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V im
mϕt -V im

nϕt =∑
ψÎF

(Xmnϕψ I re
mnψt +Rmnϕψ I im

mnψt )

"mnÎL"ϕÎF "tÎ T (13)

P D
mϕt =V re

mϕt I
Dre
mϕt +V im

mϕt I
Dim
mϕt "mÎN"ϕÎF "tÎ T (14)

QD
mϕt =-V re

mϕt I
Dim
mϕt +V im

mϕt I
Dre
mϕt "mÎN"ϕÎF "tÎ T (15)

P G
mϕt =V re

mϕt I
Gre
mϕt +V im

mϕt I
Gim
mϕt "mÎN"ϕÎF "tÎ T (16)

0 =-V re
mϕt I

Gim
mϕt +V im

mϕt I
Gre
mϕt "mÎN"ϕÎF "tÎ T (17)

-V
2 £ (V re

mϕt )
2 + (V im

mϕt )
2 £ -

V
2
 "mÎN"ϕÎF "tÎ T (18)

0 £ (I re
mnϕt )

2 + (I im
mnϕt )

2 £ -
I

2
mn "mÎL"ϕÎF "tÎ T (19)

0 £ γt £ 1 "tÎ T (20)

To model the output power of the PV systems at the AC 
side of the PV inverter, i.e., P G

mϕt, described by the expres‐
sion in (4), a binary variable δmt is used. Thus, (4) can be re‐
placed by the set of expressions in (6)-(9), where M is a pa‐
rameter with a large positive value. Notice that if δmt = 0, 
P G

mϕt =P PV
mϕt, i. e., no PV curtailment is applied; whereas if 

δmt = 1, P G
mϕt = γt P

Rate
mϕ +P D

mϕt, enforcing the export limit and 
performing PV generation curtailment. In both cases, P G

mϕt is 
limited by the current PV generation (at the same time, 
which is a function of the current irradiance) at the DC side 
of the PV inverted by (8).

The unbalanced distribution network is modeled using the 
AC three-phase power flow formulation shown in (10)-(13). 
Constraints (10) and (11) model the real and imaginary line 
current balances, respectively. Constraints (12) and (13) mod‐
el the real and imaginary voltage drop in lines, respectively. 
The active and reactive power consumptions of customers 
are modeled using (14) and (15), respectively, while the ac‐
tive and reactive PV generations of customers are modeling 
using (16) and (17), respectively. Notice that in (17), it is as‐
sumed that the PV inverter operates with unity power factor. 
Constraints (18) and (19) enforce the voltage magnitude lim‐
its and the thermal limits of lines, respectively. Finally, (20) 
defines the boundaries for the customer export limit γt.

B. MILP Problem Formulation

Mathematical formulations such as that presented in Sec‐
tion III-A are difficult to solve, due to the nonlinear expres‐
sions used to model the active and reactive power consump‐
tion in (14) and (15), the PV generation of customers  in 
(16) and (17), as well as the constraints used to enforce volt‐
age magnitude and current limits in (18) and (19), respective‐
ly. Hence, precise linearization and approximations are used 
to transform the original MINLP formulation into an accu‐
rate MILP problem. Notice that although (6) and (7) are lin‐
ear expressions, they can be more easily understood if they 
are expressed as:

-Mδmt £P G
mϕt -P PV

mϕt £Mδmt "m"ϕ"t (21)

-M (1 - δmt )£P G
mϕt - γt P

Rate
mϕ -P D

mϕt £M (1 - δmt ) "m"ϕ"t
(22)

To linearize (14) and (15), they are re-written as the func‐
tions g(×) and h(×) in (23) and (24), respectively.

I Dre
mϕt = g(P D

mϕtQ
D
mϕtV

re
mϕtV

im
mϕt )=

P D
mϕtV

re
mϕt +QD

mϕtV
im

mϕt

(V re
mϕt )

2 + (V im
mϕt )

2

 "m"ϕ"t (23)

I Dim
mϕt = h(P D

mϕtQ
D
mϕtV

re
mϕtV

im
mϕt )=

P D
mϕtV

im
mϕt -QD

mϕtV
re

mϕt

(V re
mϕt )

2 + (V im
mϕt )

2

 "m"ϕ"t (24)

Then, these can be approximated as linear expressions us‐
ing a first-order Taylor series expansion around an estimated 
operational point (V re0

mϕtV
im0

mϕt ), as explained in [28], [32]. 
The estimated operational point can be obtained, for in‐
stance, by following the procedure presented in Section V. 
The PV generation of customers in (16) and (17) can be ap‐
proximated as in (25) and (26), respectively.

P G
mϕt =V re0

mϕt I
Gre
mϕt +V im0

mϕt I
Gim
mϕt "m"ϕ"t (25)

0 =-V re0
mϕt I

Gim
mϕt +V im0

mϕt I
Gre
mϕt "m"ϕ"t (26)

To linearize the voltage magnitude constraint (18), an ap‐
proach based on the Euclidean norm is used. Recall that as 
L¥ £ L2 £ L1 [33], the Euclidean norm of a generic two di‐
mension vector xÎR2, with xre and xim being its real and 
imaginary parts, respectively, can be written as a linear com‐
bination of L1 and L¥, as shown in (27).

L2 (x)= ||x||2 » αL¥ (x)+ βL1 (x) (27)

where L¥ (x)=max{|xre||xim|} and L1 (x)= |xre| + |xim|; and α and 
β are the parameters. Hence, the square of voltage magni‐
tude can be approximated as:

(V re
mϕt )

2 + (V im
mϕt )

2 » αϕmax{|V re
mϕt||V

im
mϕt|}+ βϕ (|V re

mϕt| + |V im
mϕt|) 

"m"ϕ"t (28)

where αϕ and βϕ are the parameters that depend on the maxi‐
mum voltage deviation angles of the distribution system and 
are obtained following the fitting procedure previously pro‐
posed in [34]. Notice that for the case in which ϕ=A, 
|V re

mϕ=At|=V re
mϕ=At, as V re

mϕ=At>0. Moreover, V re
mϕ =At > |V im

mϕ =At| 
always holds for distribution systems, as can be observed in 
Fig. 2. Thus, (28) can be expressed as:

(V re
mϕt )

2 + (V im
mϕt )

2 » αϕV
re

mϕt + βϕ (V re
mϕt + |V im

mϕt|)    "mϕ =A"t
(29)

Vm,ϕ=C,t

Vm,ϕ,t

im

im(Vm,ϕ=C,t+jVm,ϕ=C,t)
-j2π/3re

im(Vm,ϕ=B,t+jVm,ϕ=B,t)e
j2π/3re

re

V

V

Vm,ϕ=A,t

re

Vm,ϕ=A,t

im

Vm,ϕ=A,t

re 2
Vm,ϕ=A,t

im 2
+

Fig. 2.　Representation of voltage of phase ϕ =A in terms of its real and 
imaginary parts.
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To apply the same approximation to phases ϕ =BC, a lin‐
ear rotation transformation is applied to have the same angle 
reference as phase ϕ =A.

In order to avoid the calculation of the nonlinear term 
|V im

mϕt| in (29), two new continuous variables V +
mϕt and V -

mϕt 
are defined as in (30) and (31), respectively. These expres‐
sions are derived based on the fact that |V im

mϕt| can be either 
V im

mϕt or -V im
mϕt. Notice that only one of these expressions ap‐

proximates the voltage magnitude correctly, corresponding to 
max{V +

mϕtV
-

mϕt }.

V +
mϕt = αϕV

re
mϕt + βϕ (V re

mϕt +V im
mϕt )    "mϕ =A"t (30)

V -
mϕt = αϕV

re
mϕt + βϕ (V re

mϕt -V im
mϕt )    "mϕ =A"t (31)

To enforce the voltage magnitude constraint in (18), vari‐
ables V +

mϕt and V -
mϕt are forced to be within the required 

voltage limits -V and 
-
V, as expressed in (32) and (33), respec‐

tively. Thus, (18) is approximated by adding (32) and (33) 
to the MILP formulation.

-V £V +
mϕt £

-
V (32)

-V £V -
mϕt £

-
V (33)

Regarding the cases of ϕ =BC, it has been shown in [34] 
that the approximation error is higher than for the case of ϕ =
A. Hence, a linear rotation transformation is applied to per‐
form the estimation of the voltage magnitude of phases ϕ =
BC, with the same angle reference of phase ϕ =A, as shown 
in Fig. 2. After this rotation transformation is performed, 
similar expressions in (30) and (31) can be added to the 
MILP formulation. In this case, as all the phases have the 
same angle reference, there is no need to estimate new pa‐
rameters αϕ and βϕ for phases ϕ =BC as the ones for phase 
ϕ =A can be used. Notice that the total number of added lin‐
ear constraints in this case is 2|F||N|, where the function | × | 
returns the cardinality of the set.

Similar to the linearization of the voltage magnitude, to 
linearize (19), the Euclidean norm of a vector xÎR2 can be 
approximated using the expression in (34) [35].

(xre )2 + (xim )2 » η[X + + ( 2 - 1)X - ] (34)

where η = 2/(1 + 4 - 2 2 ); X + =max{|xre||xim|}; and X - =
min{|xre||xim|}. Thus, (34) can be extended to estimate the 
square of current magnitude as [34], [36]:

(I re
mnϕt )

2 + (I im
mnϕt )

2 » η[I +
mnϕt + ( 2 - 1)I -

mnϕt ]    "m"ϕ"t

(35)

where I +
mnϕt = max{|I re

mnϕt| |I
im
mnϕt|}; and I -

mnϕt = min{|I re
mnϕt| 

|I im
mnϕt|}. Notice that to avoid the estimation of I +

mnϕt and 
I -

mnϕt, as being nonlinear functions due to the max and min 
operators and the absolute values, all the expressions derived 
among all the possible combinations, whereas if I +

mnϕt and 
I -

mnϕt are equal to ±I re
mnϕt or ±I im

mnϕt, can be added to the 

MILP model and limited by 
-
I

2
mn. These new sets of con‐

straints shown in (36) - (43) enforce the maximum current 
magnitude constraint in (19).

0 £ η[I re
mnϕt + ( 2 - 1)I im

mnϕt ]£
-
I

2
mn (36)

0 £ η[-I re
mnϕt + ( 2 - 1)I im

mnϕt ]£
-
I

2
mn (37)

0 £ η[I re
mnϕt - ( 2 - 1)I im

mnϕt ]£
-
I

2
mn (38)

0 £ η[-I re
mnϕt - ( 2 - 1)I im

mnϕt ]£
-
I

2
mn (39)

0 £ η[I im
mnϕt + ( 2 - 1)I re

mnϕt ]£
-
I

2
mn (40)

0 £ η[-I im
mnϕt + ( 2 - 1)I re

mnϕt ]£
-
I

2
mn (41)

0 £ η[I im
mnϕt - ( 2 - 1)I re

mnϕt ]£
-
I

2
mn (42)

0 £ η[-I im
mnϕt - ( 2 - 1)I re

mnϕt ]£
-
I

2
mn (43)

Thus, the optimal customer export limit can be calculated 
solving the next MILP formulation, where we minimize (5) 
subject to: (1), (2), (6)-(9), (10)-(13), (20), the linearized ver‐
sions of (23) and (24)-(26), (30)-(33), and (36)-(43). An as‐
sessment of the error introduced by the proposed lineariza‐
tions/approximations are presented in Section IV-C.

C. Extension for Multiple Scenarios

To cope with multiple scenarios of PV generation and 
load consumption of customers, the MILP formulation pre‐
sented in Section III-B can be extended as a scenario-based 
stochastic model. Thus, different irradiance profiles (used to 
estimate the PV generation profile of each customer based 
on their PV system rate P Rate

mϕ ) and active power consumption 
are considered. For each scenario sÎS, the proposed MILP 
model is solved and an optimal customer export limit γts is 
defined. The final customer export limit can be defined by 
the DSO based on a robustness criterion. Therefore, if the 
DSO desires to comply the technical constraints (voltage and 
current magnitude limits) for all the 100% scenarios in the 
set S, γt can be defined as:

γt = min
"sÎS

{γts } "tÎ T (44)

Equation (44) corresponds to the minimum customer ex‐
port limit found by the MILP model among all the simulated 
scenarios. If the DSO desires to address technical issues in 
the 95% of the scenarios, γt can be selected as the minimum 
value γts found by the MILP model that guarantees that 95% 
of the scenarios comply with the technical constraints.

IV. CASE OF STUDY 

The proposed MILP model is used to study one case in 
the Netherlands. The LV distribution network used corre‐
sponds to a real distribution network, provided by a Dutch 
DSO. This LV distribution network, as shown in Fig. 3, is 
supplied by a single distribution transformer with nominal 
rating power of 250 kVA and voltage rating of 11 kV/400 V. 
The voltage at the swing-bus is considered to be 1.03 p.u.. 
In total, 86 residential consumers are considered, modeled as 
single-phase loads. Residential load consumption profiles 
with a 15-min resolution are used, obtained from smart me‐
ter measurements from real users in the Netherlands. PV gen‐
eration profiles are based on irradiance measurements provid‐
ed by the Royal Netherlands Meteorological Institute 
(KNMI) [37]. 
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Figure 4 shows the mean and the standard deviations of 
the set of 350 irradiance scenarios. The sizes of the PV gen‐
eration systems are selected based on peak power capacity 
information related to the PV systems installed at the resi‐
dential level in a Dutch municipality. The peak capacity of 
PV systems ranges from 4.0 kWp to 6.5 kWp, modeled as 
single-phase generators, connected to the same phase as the 
corresponding residential user. Finally, customers are consid‐
ered to have a 0.95 lagging power factor, while PV inverter 
operates with unity power factor, and the minimum and max‐
imum voltage magnitude limits are defined as 0.95 p.u. and 
1.10 p.u., respectively.

The proposed MILP model is implemented in Python lan‐
guage, using the optimization language Pyomo, and solved 
with CPLEX. To obtain the results presented below, first, a 
relaxed version of the original MINLP model is solved, ob‐
tained after relaxing all the integer variables. The solution of 
this relaxed model provides the estimated operational point 
(V re0

mϕtV
im0

mϕt ) needed to solve the proposed MILP model. 
Then, the proposed MILP model is solved for each scenario 
independently, and the optimal customer export limit γt is de‐
fined, as shown in Fig. 5. After this, Monte Carlo simula‐
tions are executed in OpenDSS [38] to assess the LV distri‐
bution network performance with the obtained customer ex‐
port limits. For this Monte Carlo simulation, a total of 350 
scenarios are considered, which are generated using ad‐
vanced statistical models [39]. To cope with a study case 
that caters for most technical issues, the MILP model is exe‐
cuted for a summer weekday and limited to sunlight hours 
(06:45 to 18:30). 100% PV penetration in terms of the num‐
ber of residential users with PV systems is considered. Nev‐
ertheless, to extend the proposed model to cope with uncer‐
tainty related to the size and location of the PV systems, the 
selection process of the residential users with PV systems 
and their PV size can also be randomized, executed in a pre-
processing stage. This process can be done until the Monte 
Carlo convergence criterion (presented next) is reached. Re‐
sults below are also presented for several values of the ro‐
bustness criterion of DSO discussed in Secion III-C.

A. Optimal Customer Export Limit

Figure 6 shows the mean and the standard deviations of 
the optimal customer export limit γt for the time step 12:30, 
which corresponds to one of the time steps with the highest 

irradiance. In total, 350 Monte Carlo scenarios are executed. 
However, as can be observed in Fig. 6, after 300 scenarios, 
the mean of γt has an error lower than 0.15% when com‐
pared with the value after 350 simulated scenarios, which al‐
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lows concluding that 300 scenarios are sufficient for the con‐
vergence of the Monte Carlo simulation process.

To analyze the obtained results in terms of the optimal 
customer export limit γt, Fig. 7 presents the experimental cu‐
mulative distribution function (CDF) for the time step at 
12: 30. As can be observed in Fig. 7, the optimal customer 
export limit γt is found to be below 100% in more than 40% 
of the total simulated scenarios. These scenarios are charac‐
terized by having high PV generation due to high irradiance, 
and as a consequence, overvoltage issues can be observed if 
the PV injection to the distribution network is not limited. 

The observed peak value (close to γt = 100) in Fig. 7 for 
the empirical CDF is because in more than 60% of the simu‐
lated scenarios, the customer export limit is equal to 100%. 
These scenarios are characterized by low irradiance or high 
consumption, thus, no voltage issues are observed and there 
is no need to define a lower export limit. This can be more 
easily observed in Fig. 5, in which the optimal customer ex‐
port limit γt is shown for all the simulated Monte Carlo sce‐
narios during the sunlight hours (06:45 to 18:30). Based on 
Fig. 5, notice that the customer export limit is found to be 
below 100% mostly during the period between 09:00 and 16:
00, i.e., these are the hours with irradiance values not equal 
to zero. In the scenarios with low irradiance, and as expect‐
ed, the optimal PV customer export limit is found to be 
100% as no overvoltage issue is observed. For the time step 
at 12: 30, as shown in Fig. 7, the optimal customer export 
limit γt that complies with the technical constraints in 100% 
of the simulated scenarios is γt = 58.20%, while the ones that 

comply with the 95% and 90% of the scenarios are γt =
58.60% and γt = 58.78%, respectively.

Figure 8 presents the optimal customer export limit ob‐
tained from MILP model for all the time steps of the simu‐
lated time periods from 06:45 to 18:30. Results are present‐
ed for three robustness criteria, which guarantee that 100%, 
95%, and 90% of the simulated scenarios comply with the 
technical constraints, repsectively. Notice that as the robust‐
ness criterion is reduced from 100% to 90%, i. e., allowing 
overvoltage issues in a maximum of 10% of the simulated 
scenarios, the estimated optimal customer export limit in‐
creases. This increase is more notorious in the time steps 
when irradiances (PV generation) are likely to be lower, 
such as in the early morning or late afternoon. For instance, 
at 16: 00, as the robustness criterion is relaxed, the optimal 
customer export limit γt goes from 56.61% to 58.24% in the 
case of robustness of 100%, and to 100% in the cases of ro‐
bustness of 95% and 90%, respectively. Compared with the 
low irradiation period (early morning and late evening), the 
customer export limit decreases by more than 40% during 
the high irradiation period (08:45 to 16:30), as shown in Fig. 
8 (blue line). However, we also see a very minimal increase 
in the customer export limit during the late afternoon, when 
the solar irradiance is usually the highest. The increase is be‐
low 1% compared with the start of the high irradiance peri‐
od (08:45), and can be accounted for the low customer self-
demand (P D

mϕt) for residential users during the afternoon pe‐
riod due to work. As λtµP G

mϕt -P D
mϕt, the collective de‐

crease in customer demand can increase the export limit min‐
imally if it still does not violate the network constraints. Al‐
so, this increase can happen due to occasional overcasts due 
to the clouds during that period of time, which in turn de‐
creases solar irradiation.

In order to estimate the impact of the introduction of the 
optimal customer export limit on the operation of the distri‐
bution system, Table I presents a comparison of the total 
mean PV generation, the total mean power losses, and total 
mean export active power, for different robustness criteria. 
The introduction of the customer export limit reduces the 
amount of total active power supplied by the PV systems by 
about 6.85% on average, with respect to the total amount of 
active power generated by the PV systems if no customer ex‐
port limit is defined. Furthermore, as can be observed in Ta‐
ble I, that as expected, when the robustness criterion is re‐
laxed and as the customer export limit increases, a higher 
amount of PV generation can be supplied by the PV sys‐
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tems. Specifically, for the cases of 95% and 90% for robust‐
ness criterion, the total active power supplied is estimated to 
be 6.44% and 6.35% (on average), respectively, lower than 
the total amount of PV generated by the system if no cus‐
tomer export limit is defined.

B. User’s Operation Under Defined Export Limit

To show the operation of a customer under the defined ex‐
port limit, Fig. 9 shows the active power consumption, the 
PV generation (with and without defining an export limit), 
power exportt limit, as well as the total export power by the 
user located at node 179 (user 179) of the distribution sys‐
tem, for a high irradiance and low consumption scenario. Ad‐
ditionally, Fig. 10 shows the voltage magnitude of the same 
user for the same scenario. Notice in Fig. 3 that user 179 is 
the one located at the end of one of the largest feeders of 
the distribution system, thus, this user is more likely to expe‐
rience overvoltage issues (recall that the distribution system 
has 100% PV penetration). As can be observed in Fig. 9, af‐
ter 08:45 and before 16:30, when the defined customer ex‐
port limits drop from 100% to the value shown in Fig. 8 
(for the case of the robustness of 100%), the total net power 
(i. e., generation minus consumption) of the user is limited 
accordingly. This limitation in the export power guarantees 
that the voltage magnitude of the user is below the maxi‐
mum value allowed by regulations, as shown in Fig. 10. No‐
tice in Fig. 10 that if the exported power is not limited, the 
voltage magnitude of this user would reach the maximum 
value of 1.13 p. u.. Nevertheless, in a real implementation, 
such high voltage magnitude will never be experienced by 
the user as the protection mechanism of the PV inverter 
would have disconnected the PV system, reducing the total 
export energy to zero.
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Fig. 9.　Active power consumption, PV generation (with and without a defi‐
nition of an export limit), power export limit, and total active power export‐
ed by user 179 in a scenario of high irradiance and low consumption simu‐
lated in OpenDSS.

To show the effectiveness of the definition of the custom‐
er export limit under different robustness criteria, and ensure 

that the voltage magnitude values are within the expected 
limits in the defined maximum number of scenarios, Fig. 11 
shows the CDF of the voltage magnitude of the user 179 ob‐
tained from the Monte Carlo simulation executed in 
OpenDSS. For the case with robustness of 100%, and as ex‐
pected, no voltage violation is observed at any time step in 
any of the 350 simulated scenarios for users. For the cases 
with robustnesses of 95% and 90%, the total number of sce‐
narios with voltage magnitude violations are estimated to be 
3.14% and 7.43%, respectively. Recall that if the robustness 
criterion is set to be 95%, a maximum of 5% of the scenari‐
os are allowed to have voltage violation. The maximum volt‐
age magnitude observed for each robustness criterion is also 
shown in Fig. 11. Hence, the effectiveness of the proposed 
model to properly define the customer export limit is validat‐
ed since the number of scenarios is below the maximum de‐
fined for each robustness criterion.

C. Error Assessment

To assess the error introduced by the proposed lineariza‐
tions/approximations, a comparison of the results with the so‐
lutions obtained by different models is presented in Table II. 
Here, a scenario with high irradiance is considered. The solu‐
tion provided by the nonlinear programming (NLP) model is 
obtained after solving the original MINLP model and consid‐
ering the binary variables, i. e., δmt, as the same as defined 
by the solution provided by the proposed MILP model. This 
approach reduces the original MINLP model to a nonlinear 
formulation. Although this procedure might not provide the 
optimal solution of the MINLP model, it guarantees a fair 
comparison procedure between the MINLP and the MILP 
model. This procedure is performed in a standard fashion in 
the literature to compare MINLP and MILP models 
[27], [40].

According to the results presented in Table II, the largest 
error obtained for the voltage magnitude is lower than 
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Fig. 10.　Voltage magnitude of user 179 with and without export limit in a 
scenario of high irradiance and low consumption simulated in OpenDSS.

TABLE I
MEAN RESULTS FOR DIFFERENT ROBUSTNESS CRITERIA

Robustness 
criterion (%)

100

95

90

PV generation 
(kW)

9114.81

9154.60

9163.28

Mean power 
loss (kW)

281.67

285.03

285.77

Mean exported 
active power (kW)

7939.65

7976.09

7984.02
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Fig. 11.　CDF of voltage magnitude of user 179 obtained from Monte Car‐
lo simulation process in OpenDSS considering different robustness criteria 
for customer export limit.
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0.08% for all phases. These lower errors validate the accura‐
cy of the proposed approximations applied to simplify the 
power flow formulation in the MINLP model and the ap‐
proach used to estimate operational point (V re0

mϕtV
im0

mϕt ). More‐
over, the largest error obtained for the total active power sup‐
plied by the distribution transformer is below 1.34%. Larger 
maximum errors are obtained if the MINLP and MILP mod‐
els are compared with OpenDSS, i. e., below 0.5% for the 
voltage magnitude. This difference can be attributed to the 
low detailed model used by the MINLP and MILP formula‐
tions to model the distribution transformer when compared 
with OpenDSS. In Table II, the solution obtained by the 
MILP and the MINLP models has also been compared with 
the one provided by an approximated SOCP formulation. As 
shown in Table II, the voltage magnitude estimated by both 
models (the MILP model and the SOCP model) are in accor‐
dance, validating the solution provided by the proposed 
MILP formulation. In addition, the maximum error of the 
voltage magnitude when comparing the MINLP and the 
SOCP models is below 0.12%. In this case, as the largest er‐
ror obtained for the total active power supplied by the distri‐
bution transformer is below 1.99%, the quality of the solu‐
tion obtained by the proposed MILP formulation is validated.

Finally, in terms of computational time, to solve the pro‐
posed MILP model, a total of 4.28 s (CPU time) is required, 
while a total of 3.40 s is required for the NLP model (after fix‐
ing the binary variables). These results show that the proposed 
model can be solved fast enough for practical applications.

V. CONCLUSION 

An MINLP model to define the customer export limit in 
PV-rich LV distribution networks is presented. A new set of 
accurate linearizations is introduced in order to turn the pro‐
posed model into an MILP formulation that can be solved 
using commercial solvers. An extension to consider stochas‐
tic scenarios is also presented. The proposed model is tested 
in a real distribution network using a database of real resi‐
dential smart meter measurements. To assess the quality of 
the obtained solution, Monte Carlo simulations are executed 
in OpenDSS. According to the obtained results, the proposed 
model is able to successfully estimate the optimal customer 
export limit that guarantees the minimum PV curtailment 
and comply with the technical constraints. Nevertheless, as 
defining a customer export limit might discourage the instal‐
lation of new and large-size PV systems or even be seen as 
an inefficient approach, this should not be seen as a long-
term solution. Instead, the proposed model can be used by 

the DSOs to characterize and identify the networks with the 
lowest export limit. Then, long-term actions aiming to in‐
crease the PV hosting capacity of the distribution networks 
might be implemented. In this sense, a more comprehensive 
approach, comparing the long-term economic impact of im‐
posing an export limit or implementing a local or coordinat‐
ed voltage control strategy, is required. Finally, the compari‐
son results between the MINLP and the proposed MILP 
model are also presented to assess the accuracy of the pro‐
posed linearizations. Negligible errors are obtained when 
comparing the proposed MILP model with the original MIN‐
LP formulation.
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