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Abstract

A block Markov chain is a Markov chain whose state space can be partitioned into a finite number
f clusters such that the transition probabilities only depend on the clusters. Block Markov chains thus
erve as a model for Markov chains with communities. This paper establishes limiting laws for the
ingular value distributions of the empirical transition matrix and empirical frequency matrix associated
o a sample path of the block Markov chain whenever the length of the sample path is Θ(n2) with n
he size of the state space.

The proof approach is split into two parts. First, we introduce a class of symmetric random matrices
ith dependent entries called approximately uncorrelated random matrices with variance profile. We

stablish their limiting eigenvalue distributions by means of the moment method. Second, we develop
coupling argument to show that this general-purpose result applies to the singular value distributions

ssociated with the block Markov chain.
2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

SC: 60B20; 60J10

eywords: Block Markov chains; Random matrices; Approximately uncorrelated; Variance profile; Poisson limit
theorem

1. Introduction

Understanding hidden structures that underlie sequential data is an important challenge in
ata science. Not only do these structures give insight into the complex process which generates
he data; once the structure is determined, any subsequent analysis can benefit from a reduction
n dimensionality.
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An attribute of sequential data is that past and future samples are dependent. Many tools
or data analysis however have only been analyzed for independent data, because dependencies
ake the mathematical analysis of a system more difficult. Still, one can simply apply a

ool originally designed for independent data and hope for insights. The conclusions one
erives assuming independence will in the best scenario, but not necessarily, coincide with
he conclusions that one would have derived in the appropriate dependent setting.

One such tool of the trade are spectral methods [1,7,70,72]. The term spectral methods refers
ere to any algorithm that makes use of the eigenvalues and eigenvectors of a matrix built from
he data. Eigenvalues and eigenvectors are indeed routinely used to understand the underlying
tructure in data. If, for instance, the empirical eigenvalue distribution does not match the
heoretical predictions associated with some model, then this may signify that the model is

issing some important component of the process which generated the data [48,56,64,68].
nother example occurs in principal component analysis, where the eigenvalue distribution
f an empirical covariance matrix can be used to detect the appropriate number of principal
omponents [46,74]. If the matrix which is built from the data is non-Hermitian then algorithms
ypically employ singular values and singular vectors instead of eigenvalues and eigenvectors.
ere recall that the i th largest singular value si (M) of a square real matrix M is defined in

erms of the i th largest eigenvalue of M MT as si (M) := (λi (M MT))1/2.
We are specifically interested in the singular value distribution of the sample frequency

matrix

N̂X := (N̂X,i j )n
i, j=1 where N̂X,i j :=

ℓ−1∑
t=0

1X t =i,X t+1= j (1)

built from a dependent data sequence X0, X1, . . . , Xℓ taking values in {1, . . . , n} for some
positive integer n ∈ Z≥1. The term singular value distribution of N̂X here refers to the measure
νN̂X

defined by

νN̂X
([a, b]) :=

1
n

#{i ∈ {1, . . . , n} : a ≤ si (N̂X ) ≤ b} (2)

or any a < b. While the singular value distribution of a random matrix is well understood when
he elements are independent, this is not so when the matrix is constructed from dependent
equential data as is the case for N̂X .

This paper models the sequential data X0, X1, . . . , Xℓ as being generated by a block
arkov chain. Block Markov chains are a model for dependent sequential data with an

nderlying community structure and have been used to develop and analyze community
etection algorithms for sequential data; see [66,77]. Besides these two papers and the present
aper, the only other rigorous analysis of the spectral properties of N̂X when X is a block
arkov chain can be found in [67]. There, an asymptotic distance between the K largest

ingular values and the n − K smallest singular values is established.
The current paper establishes a limiting law for the singular value distribution of block

arkovian random matrices such as N̂X as the size n of the state space tends to infinity and
he length of the data sequence satisfies ℓ = Θ(n2). For example, Theorem 1.1 describes the
imiting law associated to N̂X , which is visualized in Fig. 2. Theorem 1.1 furthermore implies
hat the singular value distribution in block Markovian random matrices behaves as one would
redict assuming the entries N̂X,i j are independent. This gives some legitimacy to the practice of
ssuming some independence, particularly when the dependencies are asymptotically equivalent
o those of a block Markov chain and the data sequence is sufficiently long. One can however
454
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Fig. 1. Visualization of a block Markov chain on K = 3 clusters with p = [[0.9, 0.1, 0], [0, 0.1, 0.9], [0.3, 0.7, 0]].
he thick arrows visualize the cluster transition probabilities pk,l and the thin arrows visualise the transitions
X t , X t+1) of a sample path (X t )ℓt=0. The starting point X0 was chosen to lie in the leftmost cluster V1.

ot ignore the Markovian dependence entirely since it causes the frequencies for different
ransitions to have different distributions. Indeed, the singular value distribution following from
heorem 1.1 does not necessarily agree with the singular value distribution which one would
nd assuming that the different entries N̂X,i j are identically distributed.

We next state our main results in Section 1.1. This is followed by an overview of the
iterature in Section 2. Section 3 then provides notation and preliminaries in preparation of the
roofs. Proof outlines are given in Section 4, and a brief comparison between our theoretical
redictions and the singular value distribution obtained from an actual dataset is done in
ection 5. Finally, all details for the proof are provided in Section 6.

.1. Results

Our main object of study, which will subsequently be formally defined, are Markov chains
hich have a community structure. More precisely, the transition probabilities between states

hould only depend on the communities to which these states belong.
Fix a positive integer K ∈ Z≥1. For any n ∈ Z≥K , pick a partition (Vk)K

k=1 of V := {1, . . . , n}

onsisting only of nonempty sets. Let p be the transition matrix for an irreducible acyclic
arkov chain on {1, . . . , K } with equilibrium distribution π . The block Markov chain with

luster transition matrix p and clusters (Vk)K
k=1 is then the Markov chain on V with transition

robability Pi, j := px,y/#Vy for every i ∈ Vx and j ∈ Vy . Fig. 1 schematically depicts a block
arkov chain.
In the subsequent results we are concerned with the asymptotic regime where n tends to

nfinity. Fix a sequence of strictly positive real numbers α := (α1, . . . , αK ) with
∑K

k=1 αk = 1
nd assume that for every k ∈ {1, . . . , K } it holds that #Vk = αkn + o(n). Let X := (X t )ℓt=0
enote a sample path from the block Markov chain with an arbitrary starting distribution for

X0 and with length ℓ = λn2
+ o(n2) for some fixed λ ∈ R>0. Recall the definition of the

mpirical frequency matrix N̂X from (1) and note that N̂X,i j counts the number of traversals
f edge (i, j). The empirical transition matrix P̂X associated with the sample path is given by

P̂X := (P̂X,i j )n
i, j=1 where P̂X,i j :=

N̂X,i j∑n
k=1 N̂X,ik

. (3)

t will be shown in Corollary 6.10 that there is no division by zero in (3) asymptotically almost
urely.
455
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Fig. 2. On the left: N̂X /
√

n and a frequency-based histogram of the singular values (bars) compared to our theoreti-
cal predictions (solid line). On the right:

√
n P̂X and its singular values. These figures were made by sampling a path

ith n = 1000, ℓ = 2n2, α = (0.5, 0.4, 0.1) and cluster transition matrix p = [[0.9, 0.1, 0], [0, 0.1, 0.9], [0.3, 0.7, 0]].
he systems of equations in Theorems 1.1 and 1.2 were solved using the algorithm in [39, Proposition 4.1] after
hich we used the Stieltjes inversion formula (4) to recover the measures.

Some terminology is required to state the main results. The Stieltjes transform of a finite
onzero measure µ on R is the analytic function s : C+

→ C− given by s(z) =
∫

1/(z −

x)dµ(x) where C+
:= {z ∈ C : Im(z) > 0} is the upper half-plane and C−

:= {z ∈ C :

m(z) < 0} is the lower half-plane. Let us remark that some authors refer to the Stieltjes
ransform by another name such as Cauchy transform or Cauchy–Stieltjes transform. Further,
et us warn that some authors employ a convention which differs by a minus sign from the
otation employed here; they instead consider the map z ↦→

∫
1/(x − z)dµ(x). The relevance

f the Stieltjes transform for our purposes is that µ can be recovered from s(z) by the Stieltjes
nversion formula [8, Theorem B.8.] which states that for any continuity points a < b

µ([a, b]) = −
1
π

lim
ε→0+

∫ b

a
Im(s(x +

√
−1ε))dx . (4)

sequence of random measures µn on R is said to converge weakly in probability to a finite
easure µ if

∫
f (x)dµn(x) →

∫
f (x)dµ(x) in probability for every continuous bounded

unction f ∈ Cb(R). Finally, the symmetrization of a measure µ on R≥0 is the measure sym(µ)
n R given by A ↦→ (µ(A ∩ R≥0) + µ((−A) ∩ R≥0))/2 where A ranges over all measurable

subsets of R and −A := {−a : a ∈ A}.
Visualizations of the following results are shown in Fig. 2.

Theorem 1.1. The empirical singular value distribution νN̂X /
√

n converges weakly in proba-
ility to a compactly supported probability measure ν on R≥0. Moreover, the symmetrization
ym(ν) has Stieltjes transform s(z) =

∑K
i=1 αi (ai (z) + aK+i (z))/2 where a1, . . . , a2K are the

nique analytic functions from C+ to C− such that the following system of equations is satisfied

ai (z)−1
= z −

K∑
j=1

λπ (i)α−1
i pi, j aK+ j (z) (5)

ai+K (z)−1
= z −

K∑
j=1

λπ ( j)α−1
i p j,i a j (z) (6)
or i = 1, . . . , K .
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Theorem 1.2. The empirical singular value distribution ν√
n P̂X

converges weakly in probability
o a compactly supported probability measure ν on R≥0. Moreover, the symmetrization sym(ν)
as Stieltjes transform s(z) =

∑K
i=1 αi (ai (z) + aK+i (z))/2 where a1, . . . , a2K are the unique

nalytic functions from C+ to C− such that the following system of equations is satisfied

ai (z)−1
= z −

K∑
j=1

λ−1π (i)−1αi pi, j aK+ j (z) (7)

ai+K (z)−1
= z −

K∑
j=1

λ−1π ( j)−1α−1
i α2

j p j,i a j (z) (8)

or i = 1, . . . , K .

Observe that the limiting law described in Theorem 1.1 is the same as occurs for a
andom matrix M with mean-zero independent entries matching the variance profile of N̂X
79, Theorem 6.1]. By matching variance profile, it is here meant that Var[Mi j ] = Var[N̂X,i j ] for
ll i, j . Similarly, the limiting law in Theorem 1.2 corresponds to the limiting law of a random
atrix with independent entries which instead matches the variance profile of

√
n P̂X . This

ints at an underlying more general universality principle, which is commonplace in random
atrix theory. Informally, universality states that the spectrum of a random matrix often only

epends on the variance of the entries.
Indeed, the first step of our proof establishes a precise version of this universality statement

n Corollary 4.3. The proof strategy is essentially a modification of the moment method.
ore specifically, we generalize a result from [40] concerning the eigenvalue distributions of

pproximately uncorrelated random matrices to include the possibility of a variance profile.
he explicit description of the Stieltjes transform of the limiting laws relies on [79].

The second step of our proof establishes that this general-purpose universality principle
pplies to the block Markovian random matrices N̂X and P̂X . Proposition 4.7 contains the
orresponding result. The key difficulty is to control the dependence. To this end, we use a
oupling-based approach which is original to this paper and in fact the main new ingredient
o establish the results. The reader is referred to Proposition 4.8 for a special case of
roposition 4.7 whose proof contains the key ideas.

For future research, an investigation into what happens when the sample path is much
horter, i.e., ℓ = o(n2), can be considered. We anticipate that the results of this paper can
e extended to such regimes, in which the empirical frequency matrix is sparser. Nontrivial
odifications would however be required in the part of the proof which relies on the moment
ethod. This is because, in a sparse random matrix, normalizing for the variance causes all

igher moments of the entries to diverge. This issue can already be observed at the level of
scalar random variable. Namely consider a sequence of Bernoulli random variables ξn with

robability of success pn = o(1) as n tends to infinity, and set ζn := (ξn − pn)/
√

pn(1 − pn).
Then Var[ζn] = 1 whereas E[ζ 3

n ] = Θ(p−1/2
n ) diverges.

. Related literature

.1. Block Markov chains

Block Markov chains are the Markov chain analogue of the stochastic block model, and can
imilarly be used as a benchmark to investigate community detection problems. Community
etection has been studied extensively within the context of the stochastic block model, and
457
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we refer interested readers to [35] for an overview. Community detection problems within the
context of block Markov chains received attention more recently [30,31,66,77,78,80].

Spectral clustering algorithms for learning low-rank structures in Markov chains from
rajectories that specifically utilize the sample frequency matrix N̂X or the empirical transition

atrix P̂X have been analyzed in [66,77]. The fact that N̂X and P̂X have previously been used
n the context of community detection algorithms for Markov chains is also what motivated
s to consider these two specific matrices. One could in principle however also build different
atrices from the data. Appropriately modified, the methods of the current paper should still

pply and thereby allow one to derive the associated singular value distributions.
In order to compare algorithmic performance to an information-theoretical lower bound on

he detection error rate satisfied under any clustering algorithm, [66] required a sufficiently
harp upper bound to the largest singular value of N̂X − E[N̂X ]. The singular values of N̂X

ere recently also considered in [67]. It is established there that N̂X has K informative singular
alues of size Θ(ℓ/n), and that the remaining n − K singular values are O(

√
ℓ/n). Besides the

ense regime ℓ = Ω (n2), the sparser regimes ℓ = Ω (n ln n) and ℓ = ω(n) are also considered
n [66,67].

.2. Random matrices generated by stochastic processes

The spectral distributions of matrices whose entries are sampled by means of a stochastic
rocess, such as a Markov chain, were considered in [22,34,53,54,60,62]. These results are
imilar to ours in that the randomness is due to the sampling noise of the stochastic process,
ut differ in the precise construction of the matrix.

Sample covariance matrices for time series have been considered in [9,10,44,55,61,75].
et us note that covariance matrices of time series can also be viewed as an instance of the
forementioned study of random matrices with entries sampled from a stochastic process by
onsideration of the entries of the data matrix. Sample autocovariance matrices of time series
ave been considered in [12,17,18,49,50,76].

.3. Coupling arguments

The critical new ingredient in our proof are the coupling arguments which are used to
stablish Proposition 4.7. Coupling arguments are a natural way to deal with the dependence
n a Markov chain. They have been used in this setting since the seminal paper [29]. Coupling
rguments in random matrix theory are however not common place; exceptions we are aware
f are [9,11].

.4. Approximately uncorrelated random matrices

A class of self-adjoint random matrices with dependent entries and decaying covariances,
alled approximately uncorrelated random matrices, was studied in [40]. The authors establish
hat the empirical eigenvalue distribution of an approximately uncorrelated random matrix
onverges weakly in probability to the semicircular law. Our Corollary 4.3 generalizes their
pproach to admit the possibility that not all entries have the same variance. Improved results
o convergence weakly almost surely are established in [19,33] under additional assumptions.
t would be interesting to establish similar results in the presence of variance profiles (see the

emarks preceding Proposition 6.16).
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2.5. Random matrices with a variance profile

Let M be a random matrix with independent centered entries and variance profile Si j :=

ar[Mi j ]. The classical results on the spectral properties of random matrices assume that this
ariance profile is constant, but extensions to nonconstant variance profiles have also been
onsidered [2,4,27,28,32,37].

It is typically necessary to assume that the variance profile has tractable asymptotic behavior.
ne notion of tractable asymptotic behavior may be found by employing notions from
raphon theory [23,26,79]. In this case the variance profile converges to an integrable function

W : [0, 1]2
→ R. Let us note that results characterizing eigenvalue distributions in this

setting historically preceded the graphon-theoretic terminology; see [71]. Graphon theory was
originally developed in [52] as limiting objects for sequences of dense graphs.

Systems of self-consistent equations as in Theorem 1.1 frequently occur in the theory of ran-
dom matrices with variance profiles [32,71,79]. However, solving these equations to determine
an explicit expression for the Stieltjes transform s(z) is rarely possible. A numerical method

ased on an iteration of contraction maps has been developed in the field of operator-valued
ree probability theory [39].

.6. Poisson limit theorems for Markov chains

The variance profiles in our block Markovian setting follow from a Poisson limit theorem;
ee Theorem 4.5. This is in turn deduced from a nonasymptotic Poisson approximation theorem;
ee Theorem 6.11. Poisson limit theorems for Markov chains are a topic of study in their own
ight. We refer to [69, Section 2.3] and [38, Section 5] for an overview of the literature.

Distinct from the literature, the emphasis of Theorem 6.11 lies on the fact that the state space
s growing. Compare this e.g. to [63] which concerns the number of visits to an increasingly rare
ylindrical set in the sample path of a Markov chain on a fixed finite state space. Theorem 6.11’s

proof relies on a general Poisson approximation result for sums of dependent random variables
from [6] which in turn relies on a method from [24].

2.7. Random transition matrices

There has been recent interest in the spectral properties of random walks in a random
environment. The setting of [15] is to first sample a random n × n matrix M of independent
and identically distributed nonnegative real random variables of finite variance, and to then
construct the random transition matrix P := D−1 M with D the diagonal matrix containing the
row sums of M . The results then concern limiting laws for the singular value distribution and
eigenvalue distribution of

√
n P . Different models for random transition matrices have been

onsidered in [13,14,16,20,21,25,42,43,47,56,58,81].
Our study of P̂X differs from the study of P in the source of randomness: the randomness in

P̂X is due to the observation noise in the sampled Markov chain in a deterministic environment
hereas the randomness in P is due to a perfect observation of a random environment. Our

ituation involves the additional subtlety that one has to deal with the dependence intrinsic
o the sampling noise of a Markov chain. It should however be mentioned that many of the
forementioned results also concern the distribution of eigenvalues, while we study singular
alues.
459
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3. Notation and preliminaries

3.1. Block Markov chains

Block Markov chains were defined in Section 1.1. Denote σ : V → {1, . . . , K } for the map
hich sends any v ∈ Vk to the cluster index k. Note that the definition of a block Markov

hain implies that ΣX := (σ (X t ))ℓt=0 is a Markov chain on the space of clusters {1, . . . , K }

ith transition matrix p.
Recall that it is assumed that |#Vk −αkn| = o(n) with αk > 0 for all k ∈ {1, . . . , K }. Further,

ecall that the Vk are assumed to be nonempty for all n. Hence, there exists some αmin ∈ R>0,
ndependent of n, such that #Vk > αminn for all k ∈ {1, . . . , K }.

We denote EX := (EX,t )ℓt=1 for the chain of edges EX,t := (X t−1, X t ) associated with X .

.2. Graphs

All graphs in this paper are assumed to be finite and are allowed to have self-loops or multi-
le edges. We use the term simple to refer to the case where self-loops or multiple edges are not
llowed. An ordered tree is a simple rooted tree such that every vertex is equipped with a total
rder on its descendants. The collection of all ordered trees on k +1 vertices is denoted by Tk .

For any n ∈ Z≥1 we denote E⃗n for the set of directed edges {1, . . . , n}
2 corresponding to

he state space V := {1, . . . , n}. Given a directed edge e = (i, j) and an n × n matrix M we
enote Me := Mi j . For two vectors of integers m, m ′

∈ ZR we denote m ≤ m ′ if mi ≤ m ′

i for
ll i ∈ {1, . . . , R}.

.3. Graphon theory

A graphon is an integrable map W : [0, 1]2
→ R which is symmetric, meaning that

W (x, y) = W (y, x) for all x, y ∈ [0, 1]. We denote W0 for the collection of graphons W
uch that 0 ≤ W (x, y) ≤ 1 for all x, y ∈ [0, 1].

The cut norm on a graphon W is defined by ∥W∥□ := supS,T ⊆[0,1] |
∫

S×T W (x, y)dxdy|

here the supremum runs over all measurable subsets S, T of [0, 1]. The cut metric δ□ on the
pace of graphons is defined by

δ□(W, W ′) := inf
φ

∥W φ
− W ′

∥□ (9)

here the infimum runs over all measure preserving bijections φ : [0, 1] → [0, 1] and
W φ(x, y) := W (φ(x), φ(y)).

Given a symmetric matrix M ∈ Rn×n one can define a graphon W M by setting

W M (x, y) := Mi j if (x, y) ∈

[ i − 1
n

,
i
n

)
×

[ j − 1
n

,
j
n

)
. (10)

he graphon W M can be assigned values on the boundaries x = 1 and y = 1 by extending
ontinuously.

.4. Measure theory

Recall that the Stieltjes transform of a finite measure on R, weak convergence in probability
of random measures, and the symmetrization of a measure on R were defined in Section 1.1.
≥0
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For two probability measures µ and ν on a countable space V , we can define the total variation
distance as

dTV(µ, ν) :=
1
2

∑
x∈V

|µ(x) − ν(x)|. (11)

Whenever the kth moment of a measure µ on R exists, k ∈ Z≥0, the kth moment will
e denoted as mk(µ) :=

∫
xkdµ(x). Note that the definition of the empirical singular value

istribution of an n × n real matrix M with singular values s1(M) ≥ · · · ≥ sn(M) from (2) can
e rephrased as stating that νM is the measure on R≥0 given by νM := n−1∑n

i=1 δsi (M) where
si (M) denotes a point mass at si (M). The empirical eigenvalue distribution µA of an n × n
ymmetric matrix A with eigenvalues λ1(A) ≥ · · · ≥ λn(A) is similarly defined as the measure
n R given by µA := n−1∑n

i=1 δλi (A).
Denote the Hermitian dilation of M by

H (M) :=

(
0 M

MT 0

)
. (12)

ote that the eigenvalues of H (M) are s1(M), −s1(M), . . ., sn(M), −sn(M). Hence, µH (M) =

sym(νM ) where sym(νM ) denotes the symmetrization of the measure νM .

3.5. Compressed notation for conditional probability

Let A, B, C, D ∈ F be events in some probability space (Ω ,F ,P) with P(C ∩ D) ̸= 0.
We will on a few occasions encounter long expressions involving the associated conditional
probability. To preserve readability we may then also use the following compressed notation

P(A, B | C, D) =: P
(

A

B

⏐⏐⏐⏐ C

D

)
. (13)

Similar notation may be used for conditional expectation and unconditional probability.

3.6. Asymptotic notation

We employ the usual conventions for big-O notation: Let (xn)∞n=0 and (yn)∞n=0 be two
sequences of real numbers. Then xn = O(yn) if and only if there exist C, n0 > 0 such that
|xn| ≤ C |yn| for all n ≥ n0. Similarly, xn = o(yn) if and only if for every C > 0 there exists
some n0 such that |xn| ≤ C |yn| for all n ≥ n0; and xn = Ω (yn) if and only if there exist

, n0 > 0 such that |xn| ≥ C |yn| for all n ≥ n0. Finally, xn = Θ(yn) if and only if xn = O(yn)
as well as xn = Ω (yn).

If (xn)∞n=0 depends on some parameters a, b, then the possible dependence of the constants
on the parameters is expressed in the notation. For example, xn = Oa(yn) means that there
exist C, n0 > 0 possibly dependent on a but not on b such that |xn| ≤ C |yn| for all n ≥ n0.
When emphasizing like such, the parameters a, b are assumed not to depend on n.

4. Proof outline

Our proof of Theorems 1.1 and 1.2 consists of two parts: a general-purpose universality
result and a reduction argument.

The first part of our proof is given in Section 4.1 where we generalize the results concerning
eigenvalues of approximately uncorrelated random matrices from [40] to admit the possibility
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of a variance profile. The corresponding general-purpose universality results are Theorem 4.2
and Corollary 4.3. Similar results for matrices with variance profile have previously also
appeared in [79, Theorem 3.2 and Theorem 3.4] under the assumption that the entries
are independent. The combination of variance profiles with dependence, i.e., the notion of
approximately uncorrelated random matrices with a variance profile, is new.

The second part of our proof is given in Section 4.2 and consists of a reduction to
orollary 4.3. This involves two key difficulties. First, we need to determine the variance
rofiles associated with the block Markovian random matrices N̂X and P̂X . These variance
rofiles are established using Theorem 4.5, which states that N̂X,i j is asymptotically Poisson
istributed with a rate that depends only on the clusters to which i and j belong. Second,
e need to establish that the block Markovian random matrices are in the approximately
ncorrelated universality regime. To do so, we develop a coupling argument which shows that
he covariance between the number of traversals of different edges decays sufficiently quickly;
ee Proposition 4.7 for the corresponding result.

.1. Eigenvalue distributions of approximately uncorrelated random matrices with variance
rofile

The results in this section concern the eigenvalues of a symmetric matrix whereas we are
nterested in the singular values of the matrices N̂X and P̂X . To this end, let us remind the
eader of the fact that the study of singular values of any matrix can be reduced to the study
f the eigenvalues of a symmetric matrix by a Hermitian dilation (recall (12)).

efinition 4.1. A family of symmetric random matrices (An)∞n=1 is said to be approximately
ncorrelated with variance profile if, for any non-negative integers 0 ≤ r ≤ R and
1, . . . , m R ∈ Z≥0 with mi = 1 for i = 1, . . . , r , it holds that

max
∀k ̸=l:{ik , jk }̸={il , jl }

⏐⏐⏐E [Am1
n,i1 j1

· · · Am R
n,iR jR

]⏐⏐⏐ = Om,R(n−r/2) (14)

nd

max
∀k ̸=l:{ik , jk }̸={il , jl }

⏐⏐E[A2
n,i1 j1

· · · A2
n,iR jR

]
−
∏R

k=1E
[
A2

n,ik jk

]⏐⏐ = oR(1) (15)

here the maxima run over all values of (i1, j1), . . . , (iR, jR) ∈ {1, . . . , n}
2 with {ik, jk} ̸=

il , jl} for all k ̸= l.

In order to identify a limit of the empirical eigenvalue distribution µAn/
√

n it is necessary
o assume that the variance profile has tractable asymptotic behavior. We follow the approach
aken in [79, Theorem 3.2] and employ the homomorphism density. The homomorphism density
rom a simple graph F = (V, E) on V = {1, . . . , R} to a symmetric matrix M ∈ Rn×n is
efined by

t(F, M) :=
1

nR

n∑
i1,...,iR=1

∏
{v,w}∈E

Miv ,iw . (16)

he name homomorphism density may be explained by the fact that if A is the adjacency
atrix of a graph G, then t(F, A) counts the number of graph homomorphisms of F to G. A

detailed proof for the following result may be found in Section 6.1.
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Theorem 4.2. Let (An)∞n=1 be a family of symmetric random matrices which are approximately
ncorrelated with variance profile Sn := (Var[An,i j ])n

i, j=1. Assume that for every ordered tree
T ∈ ∪

∞

m=0Tm it holds that t(T, Sn) has a limit as n → ∞. Then, the empirical eigenvalue
istribution of µAn/

√
n converges weakly in probability to the unique probability measure µ

hose moments are given by

m2m(µ) =

∑
T ∈Tm

lim
n→∞

t(T, Sn), m2m+1(µ) = 0, (17)

or every m ∈ Z≥0. Moreover, µ is compactly supported.

roof sketch. Just as in the classical moment method, the key step is to show that
[mk(µAn/

√
n)] = mk(µ) + ok(1) for every k ∈ Z≥0. Observe that

E[mk(µAn/
√

n)] = n−1−k/2E[Tr(Ak
n)] (18)

= n−1−k/2
n∑

i1,...,ik=1

E[An,i1i2 An,i2i3 · · · An,ik−1ik An,ik i1 ] (19)

or every k ∈ Z≥0. Given a sequence of indices i := (i1, . . . , ik, i1), which occurs on the
ight-hand side of (19), let G i := (V (i), E(i)) denote the induced undirected graph with vertex
et V (i) := {i1, . . . , ik} and edge set E(i) := {{i1, i2}, {i2, i3}, . . . , {ik, i1}}. Viewing i as a cycle
n G i , let r1(i) be the number of edges which are traversed exactly once and let r2(i) be the
umber of edges which are traversed exactly twice. Note that we could in principle also define
3(i), r4(i), . . ., but these quantities will not be relevant in the proof.

Consider P(i) := E[An,i1i2 · · · An,ik i1 ]. In a classical application of the moment method,
ne has assumed that all entries An,i j with i ≤ j are independent and centered. Under such
ssumptions, it immediately follows that P(i) = 0 whenever r1(i) > 0. The entries of An are
owever not independent in our case. It may thus be that P(i) ̸= 0. Instead, one has to rely
n part (14) in the definition of an approximately uncorrelated random matrix to deduce that

P(i) is small whenever r1(i) is large. Combined with a bound on the number of terms with
1(i) = r , which is stated in Lemma 6.4 and established in [40], this is still sufficient to argue
hat the contribution of the terms with r1(i) > 0 is asymptotically negligible.

When k = 2m + 1 is odd, the number of terms with r1(i) = 0 in (19) is of a smaller
rder than the normalizing factor n−1−k/2. This yields that n−1−k/2E[Tr(Ak

n)] = ok(1) for all
dd values of k. When k = 2m is even, the asymptotics are dominated by the contribution
f those P(i) for which G i is a tree and r2(i) = k/2. This leads to the conclusion that
−1−k/2E[Tr(Ak

n)] =
∑

T ∈Tm
t(T, Sn) + ok(1). □

Note that Theorem 4.2 also applies to random matrices with independent entries. Corre-
pondingly, the limit µ may be explicitly identified whenever it is known for independent
andom matrices with the same variance profile. The following corollary is an instance of this
rinciple and uses the description provided in [79, Theorem 3.4] for eigenvalues of matrices
ith independent entries. The details for the reduction argument are provided in Section 6.2.

orollary 4.3. Let (An)∞n=1 be a family of symmetric random matrices which are approximately
ncorrelated with variance profile Sn := (Var[An,i j ])n

i, j=1. Assume that there exists some
raphon W ∈ W0 such that δ□(W Sn , W ) → 0. Then, the empirical eigenvalue distribution
An/

√
n converges weakly in probability to the probability measure µ whose Stieltjes transform

(z) is given by
463
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s(z) =

∫ 1

0
a(z, x)dx (20)

here a(z, x) is the unique analytic function from C+
× [0, 1] to C− satisfying the following

self-consistent equation

a(z, x)−1
= z −

∫ 1

0
W (x, y)a(z, y)dy. (21)

.2. Block Markovian random matrices are approximately uncorrelated with variance profile

The proof of Theorems 1.1 and 1.2 now amounts to a reduction to Corollary 4.3 which is
one in three steps. First, in Section 4.2.1 we argue that we may recenter the matrices and
e may assume that X starts from its equilibrium distribution. Second, in Section 4.2.2 we
etermine the variance profiles by means of a Poisson limit theorem. Finally, in Section 4.2.3
e show that the random matrices are in the approximately uncorrelated regime which is
one using a coupling argument. The key ideas for the coupling argument are demonstrated in
ection 4.2.4.

.2.1. Reduction to centered random matrices when starting in equilibrium
A sample path (Z t )ℓt=0 of a Markov chain Z on the state space V is said to have initial

distribution ι : V → [0, 1] if P(Z0 = v) = ι(v) for all v ∈ V . Assume that Z is irreducible and
acyclic so that it has an equilibrium distribution ΠZ . Then, Z is said to start in equilibrium if
it has initial distribution ΠZ .

Let D̂X denote the n × n diagonal matrix whose i th diagonal value is the sum of the values
on the i th row of N̂X :

D̂X,i i :=

n∑
j=1

N̂X,i j . (22)

Observe that we can write the definition of the empirical transition matrix in (3) as P̂X =

D̂−1
X N̂X .
The following lemma, whose proof is provided in Section 6.3.1 based on perturbative

arguments, allows us to make the following two reductions. First, we may recenter N̂X and
pretend as if D̂X is a deterministic matrix. Second, we may assume that X starts in equilibrium.

Lemma 4.4. Let X := (X t )ℓt=0 and Y := (Yt )ℓt=0 be sample paths from the block Markov
chain where X starts in equilibrium and Y has an arbitrary initial distribution. Denote
MX := N̂X − E[N̂X ] and Q X := diag((ℓ + 1)ΠX )−1 MX .

(i) Assume that νMX /
√

n converges weakly in probability to a probability measure ν. Then,
νN̂Y /

√
n converges weakly in probability to ν.

(ii) Assume that ν√
nQ X converges weakly in probability to a probability measure ν. Then,

ν√
n P̂Y

converges weakly in probability to ν.

The strategy is now to apply Corollary 4.3 with An =
√

2H (MX ) or An =
√

2H (nQ X )
here X is a block Markov chain which starts in equilibrium.
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4.2.2. Determination of the variance profile
The limiting variance profile of N̂X can be established by a direct calculation which shows

hat the covariance between the different terms of N̂X,e =
∑ℓ

t=1 1EX,t =e is asymptotically
egligible. We instead take a different route: one that yields the stronger claim that N̂X,e satisfies
Poisson limit theorem and is conceptually more satisfying.

heorem 4.5. Assume that X starts in equilibrium. Fix some k1, k2 ∈ {1, . . . , K } with
pk1,k2 > 0 and let (en)∞n=1 be a sequence of directed edges with en ∈ Vk1 × Vk2 for all n.
hen N̂X,en converges in distribution to a Poisson distribution with rate λπ (k1)α−1

k1
α−1

k2
pk1,k2 .

A proof is provided in Section 6.3.2 where one can also find a nonasymptotic Theorem 6.11
hich gives a precise upper bound on the total variation distance of N̂X,en to a Poisson
istribution. The proof relies on a reduction to a general Poisson approximation theorem for
ums of dependent random variables from [6].

Let us remark that the proof of Theorem 4.5 may also be used to derive a Poisson limit
heorem in different scaling regimes than the running assumption ℓ = Θ(n2) and #Vk = Θ(n).

ore precisely, a Poisson limit theorem holds whenever ℓ and #Vk1 × #Vk2 tend to infinity in
uch a fashion that (#Vk1#Vk2 )−1ℓ converges to a nonzero constant. For example, N̂X,en also
atisfies a Poisson limit theorem in a block Markov chain with two clusters of size #V1 = Θ(1)
nd #V2 = ℓ = ω(1) respectively.

The variance profile of N̂X now follows by a tightness argument which is provided in
ection 6.3.3.

orollary 4.6. Let en be as in Theorem 4.5 and assume that X starts in equilibrium. Then,
s n tends to infinity, it holds that Var[N̂X,en ] = λπ (k1)α−1

k1
α−1

k2
pk1,k2 + ok1,k2 (1).

Graphon limits for the variance profiles of
√

2H (MX ) and
√

2H (nQ X ) are immediate from
orollary 4.6. To be precise, by (10) and (12) the variance profile of

√
2H (MX ) converges to

the graphon

WM (x, y) =

⎧⎪⎨⎪⎩
2λπ (i)α−1

i α−1
j pi, j if (2x, 2y − 1) ∈ [ci , ci+1) × [c j , c j+1),

2λπ ( j)α−1
i α−1

j p j,i if (2x − 1, 2y) ∈ [ci , ci+1) × [c j , c j+1),
0 otherwise

(23)

ith respect to the cut metric (9). Here, ci :=
∑i−1

k=1 αk and i, j ∈ {1, . . . , K }. Similarly, note
hat ΠX (v) = π (σ (v))/(nασ (v)) + o(1) so that the variance profile of

√
2H (nQ X ) converges to

he graphon WQ specified by

WQ(x, y) =

⎧⎪⎨⎪⎩
2λ−1π (i)−1αiα

−1
j pi, j if (2x, 2y − 1) ∈ [ci , ci+1) × [c j , c j+1),

2λ−1π ( j)−1α−1
i α j p j,i if (2x − 1, 2y) ∈ [ci , ci+1) × [c j , c j+1),

0 otherwise.
(24)

.2.3. Approximately uncorrelated
It remains to show that H (MX ) and H (nQ X ) are approximately uncorrelated with variance

rofiles. In fact, since nQ X is derived from MX by rescaling with n diag((ℓ + 1)ΠX )−1, which
s a deterministic diagonal matrix with entries of size Θ(1), it is sufficient to establish that

H (MX ) is approximately uncorrelated with variance profile.
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Proposition 4.7. Assume that X starts in equilibrium. Then the sequence of self-adjoint
andom matrices H (MX ) is approximately uncorrelated with variance profile.

Recall that Definition 4.1 of approximately uncorrelated random matrices with a variance
rofile consists of two properties, namely (14) and (15). The proof for Proposition 4.7 given
n Section 6.3.4 thus comes down to a verification of these two properties: (14) is verified in
roposition 6.15 and (15) is verified in Proposition 6.14.

The proof of Theorems 1.1 and 1.2 is then complete. Indeed, by using the Hermitian dilation
n (12) and the preliminary reduction from Lemma 4.4, it is sufficient to establish limiting laws
or the eigenvalues of

√
2H (MX )/

√
2n and

√
2H (nQ X )/

√
2n when X starts in equilibrium.

his case follows from Corollary 4.3 with the limiting variance profiles in (23) and (24).

.2.4. Demonstration of the coupling argument
Proposition 4.7 is the most important ingredient for our results. Let us provide an example

or the method of proof by establishing a special case of (14): the covariance between two
ntries decays at an appropriate rate.

roposition 4.8. Assume that X starts in equilibrium. Then,

max
e1 ̸=e2

|E[MX,e1 MX,e2 ]| = O(n−1) (25)

here the maximum runs over all pairs of distinct edges e1, e2 ∈ E⃗n .

Proof. The proof is split into parts. The main ideas are contained in Part 2 and Part 3. In Part 2
we observe that it is sufficient to understand how much the expectation of N̂X,e2 changes when
it is conditioned on a traversal of e1 at some predetermined time. This effect of conditioning
on a traversal is then understood by a coupling argument in Part 3.

Part 1: Preliminary reduction to K ≥ 5

We claim that there is no loss in generality in assuming that K ≥ 5. The idea is to split a
luster into pieces.

Since #VK = αK n + o(n) it may be assumed that #VK ≥ 5. Define a new partition of the
tate space V into nonempty sets (V ′

i )
K+4
i=1 by V ′

i := Vi for i < K and by taking (V ′

i )
K+4
i=K to be

partition of VK into nonempty sets. It can here be ensured that we remain in the asymptotic
egime where the clusters have size Θ(n). Indeed, this for instance follows if the subdivision
f VK is taken to be into clusters of roughly equal size so that the ratio #V ′

i /#VK tends to 1/5
or every i ∈ {K , . . . , K + 4}. Further define a (K + 4) × (K + 4) stochastic matrix p′ by
p′

i, j := (#V ′

j/#Vmin{K , j})pmin{K ,i},min{K , j} for all i, j = 1, . . . , K + 4.
The reduction to K ≥ 5 now follows by observing that the clusters (V ′

i )
K+4
i=1 and cluster

ransition matrix p′ define exactly the same block Markov chain as we started with. Indeed, if
P ′

i, j denotes the transition probabilities of the ‘new’ block Markov chain then for any i ∈ V ′
x

nd j ∈ V ′
y it holds that

P ′

i, j =
1

#V ′
p′

x,y =
1

#V ′

#V ′
y

#V
pmin{K ,x},min{K ,y} = Pi, j . (26)
y y min{K ,y}
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Fig. 3. Visualization of the construction of the chain Y in the proof of Proposition 4.8 by gluing an edge e1 onto
X at time t1. The clusters of the block Markov chain allow us to ensure that E[L+

− L−] is O(1) which causes the
expected difference E[N̂Y,e2 − N̂X,e2 ] to be small because a traversal of e2 in this small period of time is unlikely.

Part 2: Rewriting E[MX,e1 MX,e2 ]

Pick two distinct edges e1, e2 ∈ E⃗n . Recall from Section 3.1 that EX = (EX,t )ℓt=1 denotes
the induced Markov chain of edges EX,t = (X t−1, X t ). It may be assumed that e1 is such that
P(EX,1 = e1) ̸= 0, otherwise MX,e1 = 0 and there is nothing to prove.

Recall that MX = N̂X − E[N̂X ] and write N̂X,e1 =
∑ℓ

t1=1 1EX,t1 =e1 to find that

E[MX,e1 MX,e2 ] = E[N̂X,e1 MX,e2 ] − E[N̂X,e1 ]E[MX,e2 ] (27)

=

ℓ∑
t1=1

P(EX,t1 = e1)
(
E[N̂X,e2 | EX,t1 = e1] − E[N̂X,e2 ]

)
. (28)

ote that all edges whose starting point and ending point have the same clusters as the
tarting point and ending point of e1 respectively are equally likely to be traversed at time
1. There are at least α2

minn2 such edges. Hence, P(EX,t1 = e1) ≤ α−2
minn−2. Considering

hat there are ℓ = Θ(n2) terms on the right-hand side of (28), it remains to be shown that
[N̂X,e2 | EX,t1 = e1] − E[N̂X,e2 ] = O(n−1) uniformly in t1.

art 3: Construction of coupled chains (X, Y )

Recall that we ensured that K ≥ 5. In particular there exists some k ∈ {1, . . . , K } such
hat Vk does not contain any endpoint of e1 and e2. To study the difference E[N̂X,e2 | EX,t1 =

1] − E[N̂X,e2 ] we construct a pair of chains (X, Y ); see Fig. 3 for a visualization.

(i) Sample an infinitely long path X̃ := (X̃ t )∞t=−∞
from the block Markov chain and

independently sample an infinitely long path Ỹ := (Ỹt )∞t=−∞
from the block Markov

chain conditioned on EỸ ,t1 = e1. Note that it is possible to sample at negative times
by means of a time reversal of the Markov chain. Such time reversal exists by the
assumption that the Markov chain associated with p is irreducible and acyclic.

(ii) Define

T −
:= t1 − sup{t ∈ Z<t1 : X̃ t ∈ Vk, Ỹt ∈ Vk}, (29)

T +
:= inf{t ∈ Z>t1 : X̃ t ∈ Vk, Ỹt ∈ Vk} − t1 (30)

and note that T − and T + are finite with probability one due to the assumption that the
Markov chain associated with p is irreducible and acyclic. Let L−

:= max{0, t1 − T −
}

and L+
:= min{ℓ, t1 + T +

}.
(iii) Let X := (X̃ t )ℓt=0. Define Yt := (Yt )ℓt=0 by Yt = Ỹt for t ∈ {L−, . . . , L+

} and Yt = X̃ t
otherwise.

By construction, X is a sample path from the block Markov chain whereas Y is a sample
path of the block Markov chain conditioned on the event E = e . Now, by the law of total
Y,t1 1

467



J. Sanders and A. Van Werde Stochastic Processes and their Applications 158 (2023) 453–504

P

S
t

W
o

f
p
t
e
i
b

T

P

p
a
B
f
t

expectation

E[N̂X,e2 | EX,t1 = e1] − E[N̂X,e2 ] = E[N̂Y,e2 − N̂X,e2 ] (31)

=

ℓ∑
ℓ−,ℓ+=1

P(L−
= ℓ−, L+

= ℓ+)E[N̂Y,e2 − N̂X,e2 | L−
= ℓ−, L+

= ℓ+]. (32)

art 4: |E[N̂Y,e2 − N̂X,e2 | L−
= ℓ−, L+

= ℓ+]| ≤ 2α−1
minn−1(ℓ+

− ℓ−)

Let ∆X :=
∑L+

t=L−+1 1EX,t =e2 denote the number of times e2 was traversed by (X t )L+

t=L− .
imilarly, let ∆Y :=

∑L+

t=L−+1 1EY,t =e2 . Since Vk does not contain any endpoint of e2, it holds
hat N̂Y,e2 − N̂X,e2 = ∆Y − ∆X . Therefore

|E[N̂Y,e2 − N̂X,e2 | L−
= ℓ−, L+

= ℓ+]| (33)

≤ E[∆X | L−
= ℓ−, L+

= ℓ+] + E[∆Y | L−
= ℓ−, L+

= ℓ+].

e will establish a bound on the conditional expectation of ∆Y by using its definition in terms
f 1EY,t =e2 . To this end we claim that

P(EY,t = e2 | L−
= ℓ−, L+

= ℓ+) ≤ α−1
minn−1 (34)

or any t ∈ {1, . . . , ℓ}. In case t = t1, the left-hand side of (34) is zero and there is nothing to
rove. Now consider the case where t ̸= t1. For any edge e whose starting point is equal to
he starting point of e2 and whose ending point is in the same cluster as the ending point of
2 it holds that P(EY,t = e | L−

= ℓ−, L+
= ℓ+) = P(EY,t = e2 | L−

= ℓ−, L+
= ℓ+). This

mplies (34) whenever t > t1 since there are at least αminn such edges e. The case t < t1 may
e deduced similarly by reversing the roles of the ending point and the starting point of e.

Combine (34) with the fact that ∆Y =
∑L+

t=L−+1 1EY,t =e2 to conclude that

E[∆Y | L−
= ℓ−, L+

= ℓ+] =

ℓ+∑
t=ℓ−+1

P(EY,t = e2 | L−
= ℓ−, L+

= ℓ+) (35)

≤ α−1
minn−1(ℓ+

− ℓ−). (36)

he same conclusion applies to ∆X . Combine finally with (32) and (33) to deduce that

|E[N̂X,e2 | EX,t1 = e1] − E[N̂X,e2 ]| ≤ 2α−1
minn−1E[L+

− L−]. (37)

art 5: E[L+
− L−] = O(1)

Note that E[L+
− L−] ≤ E[T +] + E[T −]. Here, E[T +] and E[T −] are finite con-

stants which do not depend on n. Indeed, consider the product Markov chain Σ+

(X,Y ) :=

(σ (X t1+t ), σ (Yt1+t ))∞t=0 on the space {1, . . . , K } × {1, . . . , K }. Then T + is the first strictly
ositive time Σ+

(X,Y ) is in (k, k). Recall that the transition dynamics p for σ (X t ) and σ (Yt ) are
ssumed to be acyclic and irreducible. It follows that P(T + > t) shows exponential decay in t .
ecause there are only K 2 possibilities for the initial state Σ+

(X,Y ),0 it follows that E[T +] ≤ B+

or some constant B+
∈ R>0 which does not depend on e1, e2 or n. A similar argument shows

hat E[T −] ≤ B− for some B−
∈ R>0.

From (28) and (37) it now follows that

E[M M ] ≤ 2ℓ(B+
+ B−)α−3 n−3. (38)
X,e1 X,e2 min
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Observe that the right-hand side of (38) is independent of e1, e2. Since ℓ = Θ(n2) this concludes
he proof. □

. Numerical experiment on Manhattan taxi trips

We will now demonstrate that Theorems 1.1 and 1.2 can give nontrivial predictions for
he singular value distributions on an actual dataset. Specifically, we will analyze the first six

onths of 2016 in the New York City yellow cab dataset [57]. Each datapoint contains the
ick-up and drop-off location of one trip. Here, pick-up locations are typically close to drop-
ff locations so that the dataset may be modeled as a fragmented sample path of a Markov
hain.

Spectral clusterings using the Markovian structure of this dataset have previously been
nalyzed in [77]. Our preprocessing is similar to what was done in [77], and is as follows.
he map is subdivided into a fine grid and we trim all states which have been visited fewer

han 200 times. We further remove all self-transitions. This results in a state space of size
= 4486 with ℓ = 55 × 106 transitions.
Note that ℓ/n2

≈ 2.7. This empirical observation allows us to make a relevant remark
oncerning our theoretical assumption ℓ = Θ(n2). Some of our readers may namely be familiar
ith the literature on random graphs. It is an empirical observation that most real-world graphs

re sparse. This sparsity is correspondingly a key difficulty which one should interact with in
he setting of random graphs. Sparsity is not irrelevant in the setting of sequential data but it has
different meaning; it relates to the amount of time that the process was observed. As opposed

o random graphs it is not unusual to encounter dense sequential data in the real world. The
ey novel difficulty is rather that sequential data has dependence. This is precisely the difficulty
hich our proofs interact with; recall the coupling argument in the proof of Proposition 4.8.
A clustering (V̂k)K

k=1 is found by applying both steps from the algorithm in [66] with K = 4
lusters; the result is displayed on the left-hand side of Fig. 4. Having obtained these clusters
e may estimate the parameters of the block Markov chain as

λ̂ =
ℓ

n2 , α̂k =
#V̂k

n
, π̂k =

∑
i∈V

∑
j∈V̂k

N̂X,i j∑
i∈V

∑
j∈V N̂X,i j

, p̂k1,k2 =

∑
i∈V̂k1

∑
j∈V̂k2

N̂X,i j∑
i∈V̂k1

∑
j∈V N̂X,i j

.

hese parameters may be substituted in Theorems 1.1 and 1.2 to yield predictions for the
ingular value distributions of N̂X and P̂X . The theoretical predictions and the empirical
bservations are displayed in Fig. 4. For comparison, we have also displayed the quarter
ircle law which is the universal law for the singular values of a random matrix with
ndependent entries and identical variance. In other words, the quarter circle law is the
rediction corresponding to K = 1.

Taking into account the fact that we used just K = 4 clusters, we conclude that the
redictions match the shape of the singular value distributions fairly well. Observe that the
uarter circle law does not even match the general shape of the distributions: the quarter circle
aw has a concave density whereas the observed empirical distributions have convex densities.

. Proofs

.1. Proof of Theorem 4.2

We work under the assumptions of Theorem 4.2. This is to say that (An)∞n=1 is a family of

ymmetric n × n random matrices which are approximately uncorrelated with variance profile.
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Fig. 4. On the left: Manhattan and the four clusters in purple, blue, green and red. In the middle: N̂X /
√

n and a
requency-based histogram of the singular values compared to our theoretical predictions and the quarter-circle law
ith density (πλ̂)−1(4λ̂− x2)1/21x∈[0,2

√
λ]. On the right:

√
n P̂X and its singular values compared to our theoretical

redictions and the quarter-circle law with density π−1λ̂(4/λ̂ − x2)1/21x∈[0,2/
√

λ]. The systems of equations in
heorems 1.1 and 1.2 were solved using the algorithm in [39, Proposition 4.1] after which we used the Stieltjes

nversion formula (4) to recover the measures.

ecall that for any fixed ordered tree T ∈ Tk it is assumed that t(T, Sn) has a limit as n → ∞

here Sn = (Var(An,i j ))n
i, j=1 denotes the variance profile of An .

The proof of Theorem 4.2 comes down to a modification of the proof in [40] to include
he variance profile. Let us start by including some background on the moment method. These
esults are well-known and included for the reader’s convenience.

The following lemma is implicit in the proof of the Wigner semicircle law in [5, Section 2.1].
ee particularly the remarks following Lemma 2.1.7 in [5, Section 2.1.2] and the application
f Chebyshev’s inequality in the first sentence of [5, Section 2.1.4].

emma 6.1. Let (µn)∞n=1 be a sequence of random probability measures on R and let µ be
deterministic and compactly supported probability measure on R. If, for every k ∈ Z≥0,

E[mk(µn)] = mk(µ) + ok(1); Var[mk(µn)] = ok(1), (39)

hen µn converges weakly in probability to µ.

The following result is moreover a direct consequence of the Stone–Weierstrass theorem
nd the Riesz representation theorem [65, Theorem 2.14].

emma 6.2. For any compactly supported probability measure µ it holds that the sequence
f moments (mk(µ))∞k=0 satisfies the following properties:

(i) It holds that m0(µ) = 1.
(ii) For any k ∈ Z≥0 the Hankel matrix (mi+ j (µ))k

i, j=0 is positive semi-definite.
(iii) There exists a constant c ∈ R>0 such that |mk(µ)| ≤ ck for all k ∈ Z≥0.

oreover, for any sequence of real number (mk)∞k=0 satisfying these properties there exists a
nique probability measure µ with (mk(µ))∞k=0 = (mk)∞k=0 and this measure µ is compactly
upported.

emma 6.3. There exists a unique probability measure µ whose moments are given by

m2m(µ) =

∑
T ∈Tm

lim
n→∞

t(T, Sn); m2m+1(µ) = 0, (40)
or every m ∈ Z≥0. Moreover, µ is compactly supported.
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Proof. The existence of such a probability measure µ is known [79, Theorem 3.2]. However,
it is not explicitly stated in [79] that µ is compactly supported so, for the sake of completeness,
let us provide an argument based on Lemma 6.2.

The condition that m0(µ) = 1 is satisfied since µ is a probability measure. Further, the
ositive semi-definiteness of the Hankel matrix (mi+ j (µ))k

i, j=0 for every k ∈ Z≥0 is equivalent
o the trivial statement that

∫
p(x)p(x)dµ(x) ≥ 0 for every polynomial p(x) ∈ C[x]. It remains

o show that the moments of µ are exponentially bounded.
It follows from (14) in the definition of an approximately uncorrelated random matrix with a

ariance profile that maxi, j=1,...,n Sn,i j ≤ c1. Therefore, using the definition of homomorphism
ensities in (16) it holds that for every m ∈ Z≥0 and any ordered tree T ∈ Tm ,

t(T, Sn) ≤ cm
1 . (41)

t holds that #Tm = Cm where Cm is the mth Catalan number. It is known that there exists
ome c2 ∈ R>0 such that Cm ≤ cm

2 for all m ∈ Z≥0. Hence,∑
T ∈Tm

t(T, Sn) ≤ cm
2 cm

1 ≤ c2m
3 (42)

or some constant c3 ∈ R>0 and all m ≥ 1. (42) provides an exponential bound on the rate
of growth of the even moments m2m(µ). Further, recall that we already know that m0(µ) = 1
nd m2m+1 = 0. It follows that mk(µ) ≤ ck

3 for all k ∈ Z≥0. Conclude by Lemma 6.2 that µ is
ompactly supported and unique. □

We adapt the same notation as in the sketch of Theorem 4.2. This is to say that given
ntegers i := (i1, . . . , ik, i1) with i j ∈ {1, . . . , n} for every j = 1, . . . , k we denote
he induced undirected graph with vertex set V (i) := {i1, . . . , ik} and edge set E(i) :=

{i1, i2}, {i2, i3}, . . . , {ik, i1}} by G i = (V (i), E(i)). Viewing i as a cycle on G i we let r1(i)
e the number of edges which are traversed exactly once and r2(i) be the number of edges
hich are traversed exactly twice. Finally, we define P(i) := E[An,i1i2 · · · An,ik i1 ].
The following combinatorial result will be essential.

emma 6.4 ([40, Corollary 10]). With i as above it holds that #V (i) ≤ (k + r1(i))/2 + 1 with
trict inequality whenever r1(i) > 0.

emma 6.5. For any m ∈ Z≥0 it holds that

E[m2m+1(µAn/
√

n)] = om(1), (43)

E[m2m(µAn/
√

n)] =

∑
T ∈Tm

t(T, Sn) + om(1). (44)

roof. Let k ∈ Z≥0 be a positive integer and recall the expansion for E[mk(µAn/
√

n)] in (19).
Let i := (i1, . . . , ik, i1) be a sequence of integers as occurs on the right-hand side of (19).
By property (14) in the definition of an approximately uncorrelated random matrix it holds
that P(i) = Ok(n−r/2) whenever r1(i) = r . By the part concerning the strict inequality in
Lemma 6.4 we have that for any r ∈ Z>0 there are ok(n(k+r )/2+1) terms on the right-hand side
of (19) with r1(i) = r . This means that only the terms with r1(i) = 0 survive the normalization

y n−1−k/2:

E[mk(µAn/
√

n)] = n−1−k/2
∑

P(i) + ok(1). (45)

i :r1(i)=0
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Fig. 5. Visualization of a sequence of integers i for which P(i) has an asymptotically relevant contribution to (45).
he corresponding undirected graph Gi is the tree found by identifying the doubled edges.

ote that G i is connected. Hence, for any i with r1(i) = 0 it has to hold that #V (i) ≤ k/2 + 1
ith equality if and only if k is even, G i is a tree and r2(i) = k/2. In particular, for k odd there

re ok(n1+k/2) terms on the right-hand side of (45). Hence, for any m ∈ Z≥0 taking k = 2m +1
ields that

E[m2m+1(µAn/
√

n)] = om(1). (46)

ow let k = 2m be even. As above, the contribution of the terms for which G i is not a tree or
2(i) ̸= m is asymptotically negligible. Consider some sequence of indices i = (i1, . . . , ik, i1)
or which G i is a tree and r2(i) = m. An example of such a sequence i is depicted in Fig. 5.
quip G i with the unique order such that i is the path traversed by depth-first search.

Now,

E[m2m(µAn/
√

n)] = n−1−(2m)/2
∑

T ∈Tm

∑
i :Gi ∼=T

P(i) + om(1) (47)

where the isomorphism condition is to be considered in the space of ordered trees.
The ordering on any T ∈ Tm induces a canonical numbering of the vertex set corresponding

to the order of visits in depth-first search. This is to say that it can be assumed that V (T ) =

{1, . . . , m + 1}. Denote E(T ) for the set of edges. Note that the collection of sequences of
indices i with G i ∼= T is in bijection with the collection of injective labelings l i

: V (T ) →

1, . . . , n}. The assumption that An is approximately uncorrelated with variance profile Sn then
mplies that P(i) =

∏
{v,w}∈E(T ) Sn,li

v li
w
+om(1). Note that there are Om(nm+1) injective labelings

f V (T ) and only Om(nm) labelings which are not injective. Hence, the sum over all i with
G i ∼= T is asymptotically equivalent to a sum over all (not necessarily injective) labelings
: V (T ) → {1, . . . , n}:

n−1−(2m)/2
∑

i :Gi ∼=T

P(i) = n−1−(2m)/2
n∑

l1,...,lm+1=1

∏
{v,w}∈E(T )

Sn,lv lw + om(1) (48)

= t(T, Sn) + om(1). (49)

ote that (16) was used in the second step. By (47) it now follows that for every m ∈ Z≥0

E[m2m(µAn/
√

n)] =

∑
T ∈Tm

t(T, Sn) + om(1). (50)

ombine (46) and (50) to conclude the proof. □

emma 6.6. For any k ∈ Z it holds that Var[m (µ √ )] = o (1).
≥0 k An/ n k
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Fig. 6. Visualization of a pair of sequences of integers i, j with V (i)∩V ( j) ̸= ∅ as occur in the proof of Lemma 6.6.
hile not depicted it is possible that i and j are also equal at other vertices than iℓ1 = jℓ2 .

roof. Recall that

Var[mk(µAn/
√

n)] = E[mk(µAn/
√

n)2] − E[mk(µAn/
√

n)]2. (51)

The limit of E[mk(µAn/
√

n)]2 is known by Lemma 6.5. Hence, it suffices to show that
[mk(µAn/

√
n)2] converges to the same limit. For any k ∈ Z≥0,

E[mk(µAn/
√

n)2] = n−2−kE[(Tr Ak
n)2] (52)

= n−2−k
n∑

i1,...,ik=1

n∑
j1,..., jk=1

E[An,i1i2 An,i2i3 · · · An,ik i1 An, j1 j2 An, j2, j3 · · · An, jk j1 ]. (53)

Let i := (i1, . . . , ik, i1) and j := ( j1, . . . , jk, j1) be sequences of integers which occur in (53).
Define G i, j := (V (i) ∪ V ( j), E(i) ∪ E( j)). Let P(i, j) := E[An,i1i2 · · · An, jk j1 ] be the term
occurring on the right-hand side of (53).

First, consider those sequences of indices i, j for which V (i) ∩ V ( j) ̸= ∅. Then i, j can
e merged: let l1 ∈ {1, . . . , k} be the minimal index such that il1 ∈ { j1, . . . , jr } and let

2 ∈ {1, . . . , k} be the minimal index such that jl2 = il1 and set

ℓi, j := (i1, i2, . . . , il1 , jl2+1, . . . , jk, j1, j2, . . . , jl2 , il1+1, . . . , ik, i1). (54)

resulting sequence is schematically depicted in Fig. 6.
By definition of approximately uncorrelated it holds that P(i, j) = Ok(n−r/2) whenever

1(ℓi, j ) = r . Further, it follows from Lemma 6.4 that #(V (i) ∪ V ( j)) ≤ (2k + r1(ℓi, j ))/2 + 1.
ence, for any r ∈ Z≥0 there are Ok((2k+r )/2+1) terms with V (i)∩V ( j) ̸= ∅ and r1(ℓi, j ) = r .
his implies that the contribution is asymptotically negligible:

n−2−k
∑

i, j :V (i)∩V ( j)̸=∅

P(i, j) = Ok(n−1). (55)

The argument to deal with the terms with V (i)∩ V ( j) = ∅ is identical to the argument used
n the proof of Lemma 6.5. In particular, it can be established that

n−2−k
∑

i, j :V (i)∩V ( j)=∅

P(i, j) =

{
ok(1) if k is odd,(∑

T ∈Tk/2
t(T, Sn)

)2
+ ok(1) if k is even,

(56)

here it is used that the contribution of those pairs of trees G i , G j which were removed by
estricting our attention to the case of V (i) ∩ V ( j) = ∅ is asymptotically negligible due to the
act that there are only Ok(nk+1) values of i, j with V (i) ∩ V ( j) ̸= ∅ and r2(i) = r2( j) = k/2.

Combine (55), (56), and the limit established in Lemma 6.5 for E[mk(µAn/
√

n)]2 to deduce
that Var[m (µ √ )] = o (1). □
k An/ n k
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Proof of Theorem 4.2. By Lemma 6.3 there exists a compactly supported probability measure
µ with the specified moments. The result is now immediate by Lemma 6.1 whose assumptions
were verified in Lemmas 6.5 and 6.6. □

.2. Proof of Corollary 4.3

roof. Recall that it is assumed that δ□(W Sn , W ) → 0. Then, by [51, Theorem 11.5], it holds
hat t(F, W Sn ) converges as n → ∞ for every fixed tree. Consequently, by Theorem 4.2, it
olds that µAn/

√
n converges weakly in probability to some limit µ and it remains to show that

the Stieltjes transform of µ is given by (21).
To this end remark that Theorem 4.2 also applies to random matrices with independent

entries. Consequently, if we consider a sequence of random matrices Bn with independent
entries and the same variance profile as An , then also µBn/

√
n converges weakly in probability

o µ. The desired shape for the Stieltjes transform now follows from Theorem 4.2 by
79, Theorem 3.4] which provides the same description for the Stieltjes transform in the case
f a random matrix with independent entries. The assumption that maxi j=1,...,n Sn,i j = O(1)
n [79] is satisfied since (14) in the definition of an approximately uncorrelated random matrix
mplies that maxi, j=1,...,n E[A2

n,i j ] = O(1).
Let us remark that it may not be clear from the statement of [79, Theorem 3.4.] that the

codomain of a(z, x) should be C−. This specification of codomain is however important to
uarantee uniqueness of the solution to the self-consistent equation (21); see [3, Theorem 2.1
nd subsequent remarks]. The fact that the codomain should be C− is implicit in the final
entence of the proof of [79, Theorem 3.4] which makes reference to [3, Theorem 2.1]. Let us
rovide some additional details for this final sentence of the proof in [79] so as to make the
odomain explicit.

The proof of [79, Theorem 3.4] begins by specifying the function by means of a Laurent
eries, namely a(z, x) :=

∑
∞

k=0 β2k(x)z−2k−1 for certain explicit coefficients β2k(x), in
79, Equation (3.4)] after which it is deduced that (20) and (21) are satisfied by the
rovided Laurent series. On the other hand, by using a geometric series at z = ∞ in
3, (2.8)], one can see that the unique solution ã(z, x) to (21) with codomain C− also admits
Laurent series, namely ã(z, x) =

∑
∞

k=1 bk(x)z−k . Let us warn here that the convention for
the Stieltjes transform which was used in [3] differs by a minus sign from the convention
which was used here and in [79]. One should correspondingly take mx (z) = −a(z, x) when
pplying [3, Theorem 2.1]. This difference by a sign also explains why the codomain in [3] is
+ whereas we claim that the appropriate codomain is C−.
Now observe that a Laurent series of the form

∑
∞

k=1 ck(x)z−k satisfies (21) if and only if
1(x) = 1, c2(x) = 0, and

ck(x) =

∫ 1

0
W (x, y)

k−2∑
j=1

ck− j−1(x)c j (y)dy for all k ≥ 3. (57)

his implies that the coefficients of the Laurent series of a(z, x) and ã(z, x) have to be equal
ince both functions satisfy (21). It follows that a(z, x) and ã(z, x) are equal in a neighborhood
f z = ∞ and consequently everywhere on C+ by the identity theorem for analytic functions.
his shows that the function a(z, x) provided in [79, Equation (3.4)] indeed has codomain
−. □
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6.3. Proofs for Theorems 1.1 and 1.2

It remains to establish the claims which were announced in the proof outline in Section 4.2.
his means that we have to prove the following statements: (i) The preliminary reduction

o centered random matrices starting in equilibrium in Lemma 4.4. (ii) The Poisson limit
heorem 4.5 and its Corollary 4.6 concerning the variance profile of N̂X . (iii) The statement

hat H (MX ) is approximately uncorrelated with variance profile from Proposition 4.7.

6.3.1. Proof of preliminary reductions in Lemma 4.4
Recall from Section 3.4 that νA denotes the empirical singular value distribution of a matrix

A.

Lemma 6.7. Let An be a sequence of random n ×n matrices such that νAn converges weakly
n probability to some probability measure ν.

(i) Let Bn be a sequence of random n × n matrices such that 1
n ∥Bn∥

2
F converges to 0 in

probability. Then νAn+Bn converges weakly in probability to ν.
(ii) Let Cn be a sequence of random symmetric n×n matrices such that 1

n rank(Cn) converges
to 0 in probability. Then νAn+Cn converges weakly in probability to ν.

(iii) Let Dn be a sequence of random diagonal n×n matrices such that ∥Dn−Id ∥op converges
to 0 in probability. Then νDn An converges weakly in probability to ν.

roof. Statement (i) follows after a Hermitian dilation (12) from [8, Corollary A.41], see
lso [73, Exercise 2.4.3]. Statement (ii) follows after a Hermitian dilation from [8, Theorem
.43], see also [73, Exercise 2.4.4]. Let us now provide a proof for the statement (iii).
Pick some arbitrarily small ε > 0. It has to be shown that

P
(
|
∫

f (x)dνDn An (x) −
∫

f (x)dν(x)| > ε
)

= o(1) (58)

or every continuous bounded function f ∈ Cb(R). Since ν and νDn An are probability measures
e may further restrict ourselves to the case where f is compactly supported. This follows by

onsideration of f g with g a bump function; see e.g. [45, Proof of Lemma 6.21]. Let c f ∈ R>0

e a sufficiently large constant so that supp( f ) ⊆ [−c f , c f ]. By f being compactly supported
nd continuous it follows that f is uniformly continuous. There therefore exists some δ > 0
uch that | f (x) − f (y)| < ε/2 whenever |x − y| < δ.

Observe that ∥Dn∥op ≤ 1 + ∥Dn − Id ∥op and ∥D−1
n ∥

−1
op ≥ 1 − ∥Dn − Id ∥op. Further,

t follows from [41, Theorem 3.3.16(d)] that σi (Dn An) ≤ ∥Dn∥opσi (An) and σi (Dn An) ≥

∥D−1
n ∥

−1
op σi (An). When combined this yields that σi (Dn An) − σi (An) ≤ ∥Dn − Id ∥opσi (An)

and σi (Dn An) −σi (An) ≥ −∥Dn − Id ∥opσi (An), respectively. This is equivalent to saying that

|σi (Dn An) − σi (An)| ≤ ∥Dn − Id ∥opσi (An). (59)

Since ∥Dn − Id ∥op converges to zero in probability it holds that

P
(
∥Dn − Id ∥op < min{δ/2c f , 1/2}

)
= 1 − o(1). (60)

Deduce from (59) that whenever the event contained on the left-hand side of (60) holds, it
follows that σi (Dn An) > c f for any i with σi (An) > 2c f and that |σi (Dn An) − σi (An)| < δ

for any i with σ (A ) ≤ 2c . Therefore, whenever the event contained on the left-hand side
i n f
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of (60) holds, it follows that⏐⏐∫ f (x)dνDn An (x) −
∫

f (x)dνAn (x)
⏐⏐ ≤

1
n

∑
i :σi (An )≤2c f

| f (σi (Dn An)) − f (σi (An))|

<
ε

2
. (61)

e used here that supp( f ) ⊆ [−c f , c f ]. Combine (60) with (61) and the assumption that

An converges to ν weakly in probability to conclude that (58) holds. This concludes the
roof. □

We will ultimately use Lemma 6.7(iii) with Dn := D̂−1
X diag((ℓ+ 1)ΠX ) to replace D̂X by a

eterministic matrix. This requires that D̂X ≈ diag((ℓ+1)ΠX ), which will be shown by means
f a concentration inequality that follows from the short mixing times of block Markov chains.

Let Z be a Markov chain on the state space V which is irreducible and acyclic. For any
∈ [0, 1) the ε-mixing time of Z is defined as t Z

mix(ε) := min{t ∈ Z≥0 : d(t) ≤ ε} where

d(t) := sup
z∈V

dTV(P(Z t = − | Z0 = z),ΠZ ) (62)

nd dTV denotes the total variation distance defined in (11). Set t Z
mix := t Z

mix(1/4). Observe that
since X is a block Markov chain it holds that t X

mix ≤ max{tΣX
mix , 1} where ΣX,t := σ (X t ) is the

induced Markov chain on the clusters {1, . . . , K }. Observe furthermore that the dynamics of
ΣX are independent of n by definition of a block Markov chain, so that tΣX

mix is a constant. Thus
t X
mix = O(1).

We will rely on a concentration inequality from [59] which we reproduce here for the
reader’s convenience. Similar proofs for concentration in block Markov chains using this
concentration inequality may be found in [66,67].

The concentration inequality is provided in terms of an invariant γ Z
ps called the pseudo-

spectral gap:

γ Z
ps := max

i∈Z≥1

1 − λ2((P∗

Z )i P i
Z )

i
where P∗

Z := diag(ΠZ )−1 PT
Z diag(ΠZ ). (63)

ere PZ denotes the transition matrix of the Markov chain Z and PT
Z is the transpose of this

atrix. The pseudo-spectral gap is closely related to the mixing time:

1
2t Z

mix
≤ γ Z

ps ≤
1 + 2 ln(2) + ln(1/ mini∈V ΠZ (i))

t Z
mix

(64)

y [59, Proposition 3.4] whose assumptions are satisfied because Z is trivially uniformly
ergodic as an irreducible and acyclic chain on a finite state space.

For any function f : V → R denote EΠZ [ f ] and VarΠZ [ f ] for the expectation and variance
of the random variable f (Z0), respectively, where Z0 has distribution ΠZ . The following
proposition occurs in [59] in a more general setting with possibly infinite state spaces. We

state the result here for the reader’s convenience since it will be used multiple times.
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Proposition 6.8 ([59, Theorem 3.4]). Let Z be an irreducible and acyclic Markov chain on
starting in equilibrium. Consider a function f : V → R on the state space such that

f (z) − EΠZ [ f ]| ≤ C for all z ∈ V . Then, with S :=
∑ℓ

t=0 f (Z t ), it holds that

P(|S − E[S]| > r ) ≤ 2 exp

(
−

r2γ Z
ps

8(ℓ + 1 + 1/γ Z
ps ) VarΠZ [ f ] + 20rC

)
(65)

or all r ∈ R≥0.

emma 6.9. Let X := (X t )ℓt=0 be a sample path of the block Markov chain with an arbitrary
nitial distribution. Then, there exist constants c4, c5 ∈ R>0 not depending on the initial
istribution such that

P(|D̂X,i i − (ℓ + 1)ΠX (i)| >
√

nt) ≤ c4 exp(−c5t) (66)

or all i = 1, . . . , n.

roof. Let κ ∈ {1, . . . , K } be a random variable following π which is independent of X .
efine

T := inf{t ∈ Z≥1 : σ (X t ) = κ}. (67)

bserve that since the Markov chain associated with p is assumed to be irreducible and acyclic,
t follows that P(T > t) ≤ c6 exp(−c7t) for some c6, c7 ∈ R>0 which are independent of n and
he initial state X0.

Write S1 :=
∑T −1

t=0 f (X t ) −
∑ℓ+T

t=ℓ+1 f (X t ) and S2 :=
∑ℓ+T

t=T f (X t ) where f (x) = 1x=i . We
may apply Proposition 6.8 to derive a concentration inequality for S2. Observe that

| f (x) − EΠX [ f ]| ≤ 1 and VarΠX [ f ] = ΠX (i)(1 − ΠX (i)) ≤ c8n−1 (68)

or some c8 ∈ R>0. Recall that t X
mix = O(1). Correspondingly, by (64), it follows that there

xists some constant c9 ∈ R>0 such that γ X
ps ≥ c9. By Proposition 6.8 and the fact that

= Θ(n2), we find that for any r ∈ R>0

P(|S2 − (ℓ + 1)ΠX (i)| >
√

nr )

≤ 2 exp

(
−

nr2γ X
ps

8(ℓ + 1 + 1/γ X
ps ) VarΠX [ f ] + 20

√
nr

)
(69)

≤ c10 exp(−c11r ). (70)

he constant c11 ∈ R>0 is chosen so that c11 ≤ nγ X
ps /(8(ℓ + 1 + 1/γ X

ps ) VarΠX [ f ] + 20
√

n) for
ll n and the constant c10 ≥ 2 is chosen so that c10 exp(−c11r ) ≥ 1 whenever r ≤ 1.

Further, since T has exponential decay and f ≤ 1, there exist constants c12, c13 ∈ R>0 such
hat

P(S1 >
√

nr ) ≤ P(T ≥
√

nr/2) ≤ c12 exp(−c13
√

nr ). (71)

he desired result now follows by the triangle inequality and the fact that |D̂X,i i−
∑ℓ

i=0 f (X t )| ≤

. □

The following corollary is immediate by the union bound and the fact that (ℓ + 1)ΠX has

ntries of size Θ(n).
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Corollary 6.10. Let X := (X t )ℓt=0 be a sample path from the block Markov chain with an
rbitrary initial distribution. Then ∥ diag((ℓ + 1)ΠX )−1 D̂X − Id ∥op converges to zero almost
urely as n tends to infinity. In particular, asymptotically, D̂X is invertible almost surely and

P̂X thus well-defined.

Let us now proceed to the proof of Lemma 4.4. Recall that Lemma 4.4 concerns a reduction
o centered random matrices when starting the chain from equilibrium.

roof of Lemma 4.4. Let X̃ := (X̃ t )∞t=0 and Ỹ := (Ỹt )∞t=0 denote infinitely long sample paths
f the block Markov chain where X̃ starts in equilibrium and Ỹ has some arbitrary initial
istribution. Define

T := inf{t ∈ Z≥1 : σ (X̃ t ) = σ (Ỹt )} (72)

nd observe that since the Markov chain associated with p is irreducible and acyclic, it holds
hat P(T > t) ≤ c14 exp(−c15t) for some constants c14, c15 ∈ R>0 which are independent of n.
et X := (X t )ℓt=0 be the path defined by X t = X̃ t for all t < T and X t = Ỹt for all t ≥ T .
urther, let Y := (Ỹt )ℓt=0 be the truncation of Ỹ to length ℓ + 1. Observe that X is a sample
ath from the block Markov chain starting in equilibrium whereas Y is a sample path from
he block Markov chain with an arbitrary initial distribution. The desired results concern the
ingular value distributions associated with Y .

Set

Bn :=
N̂Y − N̂X

√
n

and Cn :=
E[N̂X ]
√

n
, (73)

nd observe that N̂Y /
√

n = MX/
√

n + Bn + Cn almost surely. The first claim now follows by
emma 6.7 since ∥Bn∥

2
F/n ≤ (2T/

√
n)2/n converges to zero in probability and rank(Cn) ≤ K .

For the second claim set Dn := D̂−1
Y diag((ℓ + 1)ΠX ) and observe that

√
n P̂Y =

Dn
√

n diag((ℓ + 1)ΠX )−1 N̂Y . By Corollary 6.10 and the continuity of M ↦→ M−1 in the
eighborhood of Id it holds that ∥Dn − Id ∥op converges to zero in probability. Hence, it is
ufficient to establish that the singular value distribution of

√
n diag((ℓ + 1)ΠX )−1 N̂Y has the

esired weak limit in probability by Lemma 6.7(iii).
In this regard observe that, with notation as in (73),

√
n diag((ℓ + 1)ΠX )−1 N̂Y (74)

=
√

nQ X + n diag((ℓ + 1)ΠX )−1 Bn + n diag((ℓ + 1)ΠX )−1Cn.

ere, it holds that

∥n diag((ℓ + 1)ΠX )−1 Bn∥
2
F/n ≤ ∥n diag((ℓ + 1)ΠX )−1

∥
2
op∥Bn∥

2
F/n. (75)

ence, since we already know that ∥Bn∥
2
F/n converges to zero in probability and since

n diag((ℓ + 1)ΠX )−1
∥op = Θ(1) it follows that ∥n diag((ℓ + 1)ΠX )−1 Bn∥

2
F/n converges to

ero in probability. Furthermore,

rank(n diag((ℓ + 1)ΠX )−1Cn) ≤ rank(Cn) ≤ K . (76)

pply Lemma 6.7 to (74) to conclude the proof. □
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6.3.2. Proof of the Poisson limit Theorem 4.5
We will extract Theorem 4.5 from a nonasymptotic result. For such a nonasymptotic result

ne has to precisely quantify the mixing behavior of the chain of clusters ΣX = (σ (X t ))ℓt=0.
or our purposes this is most naturally done in terms of the relative pointwise distance.

Let Z be a Markov chain on the state space V which is irreducible and acyclic. The relative
ointwise distance ∆Z (r ) after r ∈ Z≥1 steps is given by

∆Z (r ) := max
x,y∈V

|P(Zr = y | Z0 = x) − ΠZ (y)|
ΠZ (y)

. (77)

ote that ∆Z (r ) is related to the quantity d(r ) from (62) which was used to define the mixing
time. Indeed, a direct calculation with the definitions shows that

0 ≤ ∆Z (r ) ≤
maxx,y∈V |P(Zr = y | Z0 = x) − ΠZ (y)|

miny∈V ΠZ (y)
= (min

y∈V
ΠZ (y))−1d(r ). (78)

Theorem 6.11. Let X = (X t )ℓt=0 be a sample path from a block Markov chain which starts in
equilibrium. Pick some ε ∈ [0, 1/2] and r0 ∈ Z≥1 such that ∆ΣX (r ) ≤ ε for all r ≥ r0. Then,
for any k1, k2 ∈ {1, . . . , K } and e ∈ Vk1 × Vk2 which is not a self-loop

dTV

(
P(N̂X,e = −), Poisson

(ℓπ (k1)pk1,k2

#Vk1#Vk2

))
(79)

≤ ℓπ (k1)pk1,k2

(
4r0 − 1

(#Vk1 )2(#Vk2 )2 +
12ε

#Vk1#Vk2

)
,

nd for any self-loop e ∈ Vk1 × Vk1

dTV

(
P(N̂X,e = −), Poisson

(ℓπ (k1)pk1,k1

(#Vk1 )2

))
(80)

≤ ℓπ (k1)pk1,k1

(
4r0 − 1
(#Vk1 )4 +

2
(#Vk1 )3 +

12ε

(#Vk1 )2

)
.

roof. The proof consists of the following parts. Part 1 introduces notation which is used in [6]
o quantify local and long-range dependence. The parameters quantifying the local dependence
re estimated in Part 2. Finally, the parameter quantifying long-range dependence is estimated
n Part 3.

art 1: Notation for local and long-range dependence

For every t ∈ {1, . . . , ℓ} let Br0 (t) := {t ′
∈ {1, . . . , ℓ} : |t ′

− t | ≤ r0} and consider the
ollowing parameters which quantify local and long-range dependencies:

pt := P(EX,t = e),

pt,t ′ := P(EX,t = e, EX,t ′ = e),

st := E
[⏐⏐P(EX,t = e | (1EX,t ′=e

)t ′∈{1,...,ℓ}\Br0 (t)
)
− pt

⏐⏐]. (81)

pplying [6, Theorem 1] to the sum of dependent random variables N̂X,e =
∑ℓ

t=1 1EX,t =e

ields that

dTV

(
P(N̂X,e = −), Poisson

(ℓπ (k1)pk1,k2
))

≤ b1 + b2 + b3. (82)

#Vk1#Vk2
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where

b1 :=

ℓ∑
t=1

∑
t ′∈Br0 (t)

ptpt ′ , b2 :=

ℓ∑
t=1

∑
t ′∈Br0 (t)\{t}

pt,t ′ , b3 :=

ℓ∑
t=1

st . (83)

ere we used that the definition in [6] for total variation distance differs from our definition
11) by a factor two. Indeed, observe that supA⊆Z≥0

|µ(A) − ν(A)| =
1
2

∑
x∈Z≥0

|µ(x) − ν(x)|
or any two probability measures µ and ν using that the supremum is realized by A = {x ∈

≥0 : µ(x) ≥ ν(x)}.

art 2: Bounding the local dependence contributions (b1 and b2)

By definition of X as a block Markov chain it holds that for any t ∈ {1, . . . , ℓ}

pt =
P(ΣX,t−1 = k1,ΣX,t = k2)

#Vk1#Vk2

=
π (k1)pk1,k2

#Vk1#Vk2

. (84)

rom (84) it follows that

b1 ≤ ℓ(2r0 + 1)
π (k1)2 p2

k1,k2

(#Vk1 )2(#Vk2 )2 ≤ ℓπ (k1)pk1,k2

2r0 + 1
(#Vk1 )2(#Vk2 )2 (85)

here it was used that π (k1)pk1,k2 ≤ 1. It holds for any t, t ′
∈ {1, . . . , ℓ} with |t − t ′

| > 1 that

pt,t ′ =
P(ΣX,t−1 = k1,ΣX,t = k2,ΣX,t ′−1 = k1,ΣX,t ′ = k2)

(#Vk1 )2(#Vk2 )2 (86)

≤
π (k1)pk1,k2

(#Vk1 )2(#Vk2 )2 . (87)

or t ′
∈ {t + 1, t − 1} it may similarly be deduced that if e is a self-loop then pt,t ′ ≤

(k1)pk1,k1 (#Vk1 )−3 and if e is not a self-loop then pt,t ′ = 0. Hence,

b2 ≤

⎧⎨⎩ℓπ (k1)pk1,k1

( 2
(#Vk1 )3 +

2r0−2
(#Vk1 )4

)
if e is a self-loop,

ℓπ (k1)pk1,k2
2r0−2

(#Vk1 )2(#Vk2 )2 otherwise.
(88)

art 3: Bounding the long-range dependence contribution (b3)

The first step in this part will be to control st in terms of a simpler quantity; this step is
achieved in (92). Thereafter, control over (92) is achieved in (101) and we deduce the desired
bound for b3 in (105).

Recall that X is uniformly distributed in
∏ℓ

t=0 VsX,t given that ΣX = sX . It follows that
EX,t =e is conditionally independent of (1EX,t =e)t ′∈{1,...,ℓ}\Br0 (t) given ΣX,t−r0−1 and ΣX,t+r0 . (If
− r0 − 1 < 0 one can use a time reversal to make sense of ΣX,t−r0−1; a time reversal exists
ince ΣX is assumed to be irreducible and acyclic.) Hence, by the law of total probability

P
(
EX,t = e | (1EX,t =e)t ′∈{1,...,ℓ}\Br0 (t)

)
(89)

=

∑
s1,s2∈{1,...,K }

P
(
ΣX,t−r0−1 = s1,ΣX,t+r0 = s2 | (1EX,t =e)t ′∈{1,...,ℓ}\Br0 (t)

)
× P(E = e | Σ = s ,Σ = s ).
X,t X,t−r0−1 1 X,t+r0 2
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On the other hand, we may write

pt (90)

= pt

∑
s1,s2∈{1,...,K }

P
(
ΣX,t−r0−1 = s1,ΣX,t+r0 = s2 | (1EX,t =e)t ′∈{1,...,ℓ}\Br0 (t)

)
.

bserve that

E
[
P(ΣX,t−r0−1 = s1,ΣX,t+r0 = s2 |(1EX,t =e)t ′∈{1,...,ℓ}\Br0 (t))

]
(91)

= P(ΣX,t−r0−1 = s1,ΣX,t+r0 = s2).

Therefore, by using the triangle inequality on st ’s definition together with (89)–(91), it follows
that

st ≤

∑
s1,s2∈{1,...,K }

P(ΣX,t−r0−1 = s1,ΣX,t+r0 = s2) (92)

×
⏐⏐P(EX,t = e | ΣX,t−r0−1 = s1,ΣX,t+r0 = s2) − pt

⏐⏐.
Observe that for any s1, s2 ∈ {1, . . . , K } with P(ΣX,t+r0 = s2 | ΣX,t−r0−1 = s1) > 0, the
definition of conditional probability yields that

P(EX,t = e | ΣX,t−r0−1 = s1,ΣX,t+r0 = s2) (93)

=
P(EX,t = e,ΣX,t+r0 = s2 | ΣX,t−r0−1 = s1)

P(ΣX,t+r0 = s2 | ΣX,t−r0−1 = s1)
.

ere, by definition of a block Markov chain

P(EX,t = e,ΣX,t+r0 = s2 | ΣX,t−r0−1 = s1) (94)

=
P(ΣX,t−1 = k1,ΣX,t = k2,ΣX,t+r0 = s2 | ΣX,t−r0−1 = s1)

#Vk1#Vk2

.

oreover, the Markov property applied to ΣX yields that

P(ΣX,t−1 = k1,ΣX,t = k2,ΣX,t+r0 = s2 | ΣX,t−r0−1 = s1) (95)

= P(ΣX t−1 = k1 | ΣX,t−r0−1 = s1)pk1,k2P(ΣX,t+r0 = s2 | ΣX,t = k2).

ombining (93), (94) and (95) yields that

P(EX,t = e | ΣX,t−r0−1 = s1,ΣX,t+r0 = s2) (96)

=
pk1,k2

#Vk1#Vk2

P(ΣX,t−1 = k1 | ΣX,t−r0−1 = s1)P(ΣX,t+r0 = s2 | ΣX,t = k2)
P(ΣX,t+r0 = s2 | ΣX,t−r0−1 = s1)

.

Let us introduce the following notation:

δ(a)
s1,s2

:=
P(ΣX,t+r0 = s2 | ΣX,t−r0−1 = s1) − π (s2)

π (s2)
, (97)

δ
(b)
s1,k1

:=
P(ΣX,t−1 = k1 | ΣX,t−r0−1 = s1) − π (k1)

π (k1)
, (98)

δ
(c)
k2,s2

:=
P(ΣX,t+r0 = s2 | ΣX,t = k2) − π (s2)

. (99)

π (s2)
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Substituting (97)–(99) into (96) yields

P(EX,t = e | ΣX,t−r0−1 =s1,ΣX,t+r0 = s2) (100)

=
π (k1)pk1,k2

#Vk1#Vk2

(1 + δ
(b)
s1,k1

)(1 + δ
(c)
k2,s2

)

1 + δ
(a)
s1,s2

. (101)

ote that by our assumption and the definition of relative pointwise distance, |δ(a)
s1,s2

| ≤ ε ≤ 1/2.
ence by Taylor’s theorem⏐⏐⏐⏐1 −

1

1 + δ
(a)
s1,s2

⏐⏐⏐⏐ ≤ ε max
x∈[−1/2,1/2]

(
1

1 + x

)2

≤ 4ε. (102)

imilarly, it holds that |δ
(b)
s1,k1

| ≤ ε ≤ 1/2 and |δ
(c)
k2,s2

| ≤ ε ≤ 1/2. In particular |(1 + δ
(b)
s1,k1

)(1 +

δ
(c)
k2,s2

)| ≤ 9/4 and

|1 − (1 + δ
(b)
s1,k1

)(1 + δ
(c)
k2,s2

)| ≤ 3ε. (103)

Bound (101) using (84), (102), (103) to find that

|P(EX,t = e | ΣX,t−r0−1 = s1,ΣX,t+r0 = s2) − pt | ≤
π (k1)pk1,k2

#Vk1#Vk2

· 12ε. (104)

ence by (92) and the definition of b3,

b3 ≤ ℓπ (k1)pk1,k2

12ε

#Vk1#Vk2

. (105)

This concludes the proof: the estimates for b1, b2 and b3 from (85), (88) and (105) can be
substituted in (82) to yield the desired result. □

Proof of Theorem 4.5. Note that the total variation distance in (11) metrizes convergence in
distribution. This is to say that N̂X,en converges in distribution if and only if P(N̂X,en = −)
converges with respect to the metric dTV.

Recall that ΣX is assumed to be irreducible and acyclic. Hence, by (78) it holds that ∆ΣX (r )
decays exponentially in r . Recall that ℓ = λn2

+ o(n2) and #Vk = αkn + o(n). In particular
#Vk1#Vk2 )−1ℓ converges to α−1

k1
α−1

k2
λ as n tends to infinity. The result now follows by taking

0 = log(#Vk1#Vk2 ) in Theorem 6.11. □

6.3.3. Proof of Corollary 4.6 on the variance profile
Due to the decomposition Var[N̂X,en ] = E[N̂ 2

X,en
] − E[N̂X,en ]2 the following result implies

orollary 4.6.

emma 6.12. Assume that X starts in equilibrium. Let en be as in Theorem 4.5, and Y a
oisson distributed random variable with rate λπ (k1)α−1

k1
α−1

k2
pk1,k2 . Then for every m ∈ Z≥0 it

olds that, as n tends to infinity,

E
[

N̂ m
X,en

]
= E

[
Y m]

+ om(1). (106)

roof. We have already established in Theorem 4.5 that N̂X,en converges in distribution to Y .
ence, to derive convergence of the moments it suffices to verify that for every m ∈ Z≥0 it
olds that the sequence of random variables N̂ m+1 is uniformly integrable [36, 7.10. (15)].
X,en
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We will apply Proposition 6.8 to the Markov chain of edges EX := (EX,t )ℓt=1 with the
function f (e) = 1e=en . Observe that

| f − EΠEX
[ f ]| ≤ 1; VarΠEX

[ f ] = ΠEX (en)(1 − ΠEX (en)) ≤ α−2
minn−2. (107)

ote that EX induces a chain ΣEX on the reduced space {1, . . . , K } × {1, . . . , K } and that
EX
mix ≤ max{2, t

ΣEX
mix } by X being a block Markov chain. Since X is a block Markov chain

t follows that the dynamics of ΣEX do not depend on n. It follows that t
ΣEX
mix is a constant.

orrespondingly, by (64) it holds that 1/γ
EX

ps = O(1). Hence, since ℓ = Θ(n2), Proposition 6.8
ields that

P(|N̂X,en − ℓπ (k1)(#Vk1 )−1(#Vk2 )−1 pk1,k2 | > r )

≤ 2 exp

(
−

r2γ
EX

ps

8(ℓ + 1/γ
EX

ps ) VarΠEX
[ f ] + 20r

)
(108)

≤ c17 exp(−c16r ) (109)

or some c16, c17 ∈ R>0 which do not depend on n. The constant c16 ∈ R>0 is chosen so that
c16 ≤ γ

EX
ps /(8(ℓ + 1/γ

EX
ps ) VarΠEX

[ f ] + 20) for all n and the constant c17 ≥ 2 is chosen so
that c17 exp(−c16r ) ≥ 1 whenever r ≤ 1. Note that ℓπ (k1)(#Vk1 )−1(#Vk2 )−1 pk1,k2 converges to

finite constant as n tends to infinity. Hence, for some sufficiently large constant c18 ∈ R>0

P(N̂X,en > r ) ≤ c18 exp(−c16r ). (110)

n particular,

E[N̂ m+1
X,en

] =

∞∑
r=1

rm+1P(N̂X,en = r ) (111)

≤ c18

∞∑
r=1

rm+1 exp(−c16(r − 1)) (112)

he right-hand side of (112) is finite and independent of n. This shows that N̂ m+1
X,en

is uniformly
ntegrable and concludes the proof. □

orollary 6.13. Assume that X starts in equilibrium. Then, for all m ∈ Z≥0 it holds that as
tends to infinity maxe∈E⃗n

|E[N̂ m
X,e]| = Om(1).

roof. Observe that E[N̂ m
X,e] can only take K 2 possible values depending on the clusters of

he endpoints of e. Hence, the result follows from Lemma 6.12. □

.3.4. Proof of Proposition 4.7 on H (MX ) being approximately uncorrelated
Recall Definition 4.1 of an approximately uncorrelated random matrix with a variance

rofile. The definition consists of two statements: (14) and (15). These two parts are established
n Propositions 6.15 and 6.14 respectively.

roposition 6.14. Assume that X starts in equilibrium and let R ∈ Z≥1. Then, for all m ∈ ZR
≥0

t holds that as n tends to infinity

max
⏐⏐⏐E [Mm1

X,e1
· · · Mm R

X,eR

]
− E

[
Mm1

X,e1

]
· · ·E

[
Mm R

X,eR

]⏐⏐⏐ = om,R(1). (113)

e1,...,eR∈E⃗n
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Fig. 7. Visualization of the merging process in the construction of X and Y during the proof of Proposition 6.14.
he fragments X i and Y i are allowed to diverge whenever either one uses e1. This ensures that all information
bout Y using e1 is erased from X . Otherwise, the fragments are merged by taking X i

= Y i . This ensures that the
wo chains are often equal because using e1 is a rare event. The cluster structure is exploited to ensure that the
ndpoints of the short fragments X i and Y i can be glued after diverging.

roof. We proceed by induction on R. The base-case R = 1 is trivial. Now assume that R > 1
nd that the claim is known to hold for any product with strictly less than R edges e j .

The proof is subdivided in three main steps. First, we construct a pair of Markov chains
X, Y which are equal most of the time but are sometimes allowed to diverge. The goal of this
rocess is to ensure two properties: (i) It holds that MX,e j ≈ MY,e j for every j ∈ {2, . . . , R}.
ii) It holds that X is independent of MY,e1 . The approximation from the first item may be used
o show that

E[Mm1
Y,e1

Mm2
Y,e2

· · · Mm R
Y,eR

] ≈ E[Mm1
Y,e1

Mm2
X,e2

· · · Mm R
X,eR

]. (114)

he independence from the second item allows us to factorize

E[Mm1
Y,e1

Mm2
X,e2

· · · Mm R
X,eR

] = E[Mm1
Y,e1

]E[Mm2
X,e2

· · · Mm R
X,eR

]. (115)

ombined, (114) and (115) yield that E[Mm1
Y,e1

· · · Mm R
Y,eR

] equals E[Mm1
Y,e1

]E[Mm2
X,e2

· · · Mm R
X,eR

]
p to some error term. The induction hypothesis then yields the desired result provided we
how that the error term is small. A bound on the size of the error terms is established in the
hird step.

Some preliminary reductions are applicable. Firstly, precisely as in Part 1 of the proof of
roposition 4.8, it can be assumed that K ≥ 2R +1 by splitting a cluster into pieces of asymp-

otically equal proportions. Further, the value of E[Mm1
X,e1

· · · Mm R
X,eR

] − E[Mm1
X,e1

] · · ·E[Mm R
X,eR

]
an only depend on the isomorphism type of the labeled directed subgraph G induced by
e1, . . . , eR} with vertex-labels given by the clusters and edge-labels by the index j of e j . As

tends to infinity the number of possible isomorphism types for G remains bounded. Hence,
e can fix some isomorphism type for G. Informally, this allows us to pretend that the edges

1, . . . , eR ∈ E⃗n stay fixed as n tends to infinity. Due to the induction hypothesis it may also
e assumed that the e j are distinct.

art 1: Construction of Markov chains (X, Y )

Recall that it was ensured that K ≥ 2R + 1. Hence, there exists some k ∈ {1, . . . , K } such
hat Vk does not contain any endpoint of e j for j = 1, . . . , R.

Use the following procedure to construct a triple of sample paths (X̃ , Ỹ , Z̃ ) with random
ength ≥ ℓ + 1. These will be trimmed to paths X, Y and Z of length exactly equal to ℓ + 1
fterwards. See Fig. 7 for a visualization of the construction.

(i) Sample two independent infinite paths (X̃0
t )∞t=0 and (Z̃0

t )∞t=0 from the block Markov chain
starting in equilibrium. Due to the assumption that the Markov chain associated with p
484
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is irreducible and acyclic it holds that T0 := inf{t ≥ 1 : X̃0
t ∈ Vk, Z̃0

t ∈ Vk} is finite with
probability one.
Set (X̃ t )

T0−1
t=0 := (X̃0

t )T0−1
t=0 and (Ỹt )

T0−1
t=0 = (Z̃ t )

T0−1
t=0 := (Z̃0

t )T0−1
t=0 .

(ii) For i = 1, . . . , ℓ extend X̃ , Ỹ and Z̃ by using the following procedure.

(a) Sample two independent infinite paths (X̃ i
t )

∞

t=0 and (Z̃ i
t )

∞

t=0 from the block Markov
chain with X̃ i

0 = Z̃ i
0 chosen uniformly at random in Vk .

(b) Let Ti := inf{t ∈ Z≥1 : X̃ i
t ∈ Vk, Z̃ i

t ∈ Vk}. Due to the assumption that the
Markov chain associated with p is irreducible and acyclic it will hold that Ti is
finite with probability one.

(c) If e1 was traversed by (X̃ i
t )

Ti −1
t=0 or (Z̃ i

t )
Ti −1
t=0 then let (Ỹ i

t )Ti −1
t=0 := (Z̃ i

t )
Ti −1
t=0 . Else, let

(Ỹ i
t )Ti −1

t=0 := (X̃ i
t )

Ti −1
t=0 .

(d) Append (X̃ i
t )

Ti −1
t=0 , (Ỹ i

t )Ti −1
t=0 and (Z̃ i

t )
Ti −1
t=0 to the previously constructed parts of X̃ , Ỹ

and Z̃ respectively. This is to say that we define X̃ t+
∑i−1

j=0 T j
:= X̃ i

t , Ỹt+
∑i−1

j=0 T j
:=

Ỹ i
t and Z̃ t+

∑i−1
j=0 T j

:= Z̃ i
t for t = 0, . . . , Ti − 1.

The sampled paths X i
:= (X̃ i

t )
Ti −1
t=0 , Y i

:= (Ỹ i
t )Ti −1

t=0 and Z i
:= (Z̃ i

t )
Ti −1
t=0 used in the

onstruction of X̃ , Ỹ and Z̃ will be called fragments. For any i = 1, . . . , ℓ the i th fragments
are said to be merged if (X̃ i

t )
Ti −1
t=0 and (Z̃ i

t )
Ti −1
t=0 did not traverse e1. Denote X := (X̃ t )ℓt=0, Y :=

Ỹt )ℓt=0 and Z := (Z̃ t )ℓt=0 for the truncations to length ℓ + 1. Note that these are block Markov
hains from the specified model.

We further claim that X is independent of MY,e1 . Let us remark that this is due to the special
ole of e1 in the above construction; it will typically not be true that X is independent of MY,e′

or any other edge e′
̸= e1. Indeed, let W̃ be the path found from Z̃ by replacing Z̃∑i

j=0 Ti

ith a uniformly random node in Vk for every i = 0, . . . , ℓ − 1. Then X is independent of
W := (W̃t )ℓt=0. In particular X will be independent of MW,e1 since this is a function of W . Now
ote that MY,e1 is equal to MW,e1 by definition of Y and the fact that Vk was chosen not to

contain any of the endpoints of e1. This establishes that X is independent of MY,e1 as desired.

Part 2: Approximate factorization of E[Mm1
Y,e1

· · · Mm R
Y,eR

]

For any j = 2, . . . , R define ∆ j to be the difference between the number of times e j was
sed in Y and X , that is,

∆ j := N̂Y,e j − N̂X,e j . (116)

bserve that MY,e j = MX,e j + ∆ j for every j ≥ 2 since E[N̂Y,e j ] = E[N̂X,e j ]; after
ll X and Y have the same distribution. Substitute the binomial expansion for every factor

M
m j
Y,e j

= (MX,e j + ∆ j )m j in Mm2
Y,e2

· · · Mm R
Y,eR

and use the fact that MY,e1 is independent of the
MX,e j with j ≥ 2 to find that

E[Mm1
Y,e1

Mm2
Y,e2

· · · Mm R
Y,eR

] − E[Mm1
Y,e1

]E[Mm2
X,e2

· · · Mm R
X,eR

] (117)

=

∑
0≤m′≤m

cm′E
[

Mm1
Y,e1

R∏
j=2

∆
m′

j
j

R∏
j=2

M
m j −m′

j
X,e j

]
where the summation runs over vectors of integers of length R and the cm′ are absolute
constants with cm′ = 0 whenever m ′

j = 0 for all j ≥ 2. Note that Mm2
X,e2

· · · Mm R
X,eR

is a product
with R − 1 factors. It follows that the induction hypothesis is applicable to E[Mm2

· · · Mm R ]
X,e2 X,eR
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so that it remains to show that E[Mm1
Y,e1

∏R
j=2 ∆

m′
j

j
∏R

j=2 M
m j −m′

j
X,e j

] = om,R(1) whenever m ′

j ≥ 1
or some j ≥ 2.

By the Cauchy–Schwarz inequality it holds that⏐⏐⏐⏐E[Mm1
Y,e1

R∏
j=2

∆
m′

j
j

R∏
j=2

M
m j −m′

j
X,e j

]⏐⏐⏐⏐ ≤

√E
[ R∏

j=2

∆
2m′

j
j

]
E
[

M2m1
Y,e1

R∏
j=2

M
2(m j −m′

j )
X,e j

]
. (118)

ue to the independence of X on MY,e1 we can write

E
[

M2m1
Y,e1

R∏
j=2

M
2(m j −m′

j )
X,e j

]
= E

[
M2m1

Y,e1

]
E
[ R∏

j=2

M
2(m j −m′

j )
X,e j

]
(119)

hich is Om(1) by Corollary 6.13 and the induction hypothesis. It remains to show that

[
∏R

j=2 ∆
2m′

j
j ] = om′ (1).

Define Mi to be the event where X i and Y i were merged and denote ¬Mi for the
omplement of this event. For any fixed j ≥ 2 let ∆X, j := N̂X0,e j

+
∑ℓ

i=1 1¬Mi N̂X i ,e j
denote

he number of times when X̃ used edge e j in a fragment where X and Y were not merged and
efine ∆Y, j similarly. Then

|∆ j | = |N̂Y,e j − N̂X,e j | ≤ ∆Y, j + ∆X, j . (120)

ubstitute the definitions of ∆X, j and ∆Y, j in the resulting bound
∏R

j=2 ∆
2m′

j
j ≤

∏R
j=2(∆Y, j +

X, j )
2m′

j and expand the monomial expression. Then, the Cauchy–Schwarz inequality reduces
s to the statement that E[N̂ q

X0,e j
] = oq (1) and E[(

∑ℓ
i=1 1¬Mi N̂X i ,e j

)q ] = oq (1) for any q ∈

≥1 where it was used that Y has the same distribution as X . These claims are established in the
ext part of the proof. In fact, we will establish the stronger claims that E[N̂ q

X i ,e j
] = Oq (n−2)

or any (i, j) ∈ {0, 1} × {1, . . . , R} and E[(
∑ℓ

i=1 1¬Mi N̂X i ,e j
)q ] = Oq (n−1) for any i ≥ 1.

art 3: Bounding E[N q
X i ,e j

] and E[(
∑ℓ

i=1 1¬Mi N̂X i ,e j
)q ]

Part 3.1: E[N q
X i ,e j

] = Oq (n−2)

Fix some (i, j) ∈ {0, 1} × {1, . . . , R} and q ∈ Z≥1. By the law of total expectation

E[N̂ q
X i ,e j

] =

∞∑
t=1

P(Ti = t)E[N̂ q
X i ,e j

| Ti = t]. (121)

se N̂X i ,e j
=
∑Ti

t=1 1EXi ,t =e j to derive the following bound

E[N̂ q
X i ,e j

| Ti = t] =

t∑
t1,...,tq=1

P(EX i ,t1 = e j , . . . , EX i ,tq = e j | Ti = t) (122)

≤

t∑
t1,...,tq=1

P(EX i ,t1 = e j | Ti = t). (123)

or any edge e whose starting and ending point are in the same clusters as the starting and
nding point of e j it holds that P(EX i ,t1 = e | Ti = t) = P(EX i ,t1 = e j | Ti = t). There are at
east α2 n2 such edges so it follows that P(E = e | T = t) ≤ α−2 n−2.
min X i ,t1 j i min
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(123) now yields that

E[N̂ q
X i ,e j

| Ti = t] ≤ α−2
minn−2tq . (124)

y (121) and (124) it follows that

E[N̂ q
X i ,e j

] ≤ α−2
minn−2E[T q

i ]. (125)

ere, E[T q
i ] is a finite constant which does not depend on n. Indeed, consider the product

hain Σ(X̃ i ,Z̃ i ) := (σ (X̃ i
t ), σ (Z̃ i

t ))
∞

t=0 on the space of clusters {1, . . . , K } × {1, . . . , K }. Then Ti

s the first strictly positive time Σ(X̃ i ,Z̃ i ) is in (k, k). In particular, E[T q
i ] is independent of n.

he fact that E[T q
i ] is finite is immediate from the fact that P(Ti > t) shows exponential decay

n t since the Markov chain associated with p is assumed to be irreducible and acyclic. This
oncludes the proof of the statement that E[N q

X i ,e j
] = Oq (n−2).

art 3.2: E[(
∑ℓ

i=1 1¬Mi N̂X i ,e j
)q ] = Oq (n−1)

Observe that for any q ∈ Z≥1

E
[( ℓ∑

i=1

1¬Mi N̂X i ,e j

)q]
=

ℓ∑
i1,...,iq=1

E
[ q∏

l=1

1¬Mil
N̂X il ,e j

]
(126)

=

q∑
d=1

∑
#{i1,...,iq }=d

E
[ q∏

l=1

1¬Mil
N̂X il ,e j

]
(127)

here the second sum in (127) runs over all values of i1, . . . , iq ∈ {1, . . . , ℓ} with #{i1, . . . , iq} =

.
Note that the random variables 1¬Mi N̂X i ,e j

with i ≥ 1 are independent and identically
istributed due to the fact that Vk was chosen not to contain any endpoint of e1 or e j .
orrespondingly, a term with d distinct il values on the right-hand side of (127) may be

actorized as
∏d

l=1 E[1¬M1 N̂ ql
X1,e j

] for some q1, . . . , ql ∈ {1, . . . , q}. Since N̂X1,e j
≥ 1 it holds

hat E[1¬M1 N̂ ql
X1,e j

] ≤ E[1¬M1 N̂ q
X1,e j

]. Consequently, we may bound (127) as

E
[( ℓ∑

i=1

1¬Mi N̂X i ,e j

)q]
≤

q∑
d=1

cq,dℓ
dE
[
1¬M1 N̂ q

X1,e j

]d

(128)

or some absolute constants cq,d ∈ R>0. Since ℓ = Θ(n2) it now suffices to show that
[1¬M1 N̂ q

X1,e j
] = Oq (n−3). This will be shown by an argument resembling Part 3.1.

By the law of total expectation

E[1¬M1 N̂ q
X1,e j

] (129)

=

∞∑
t=1

P(T1 = t)P(¬M1 | T1 = t)E[N̂ q
X1,e j

| T1 = t, ¬M1].

he union bound implies that P(A | ∪iBi ) ≤
∑

i P(A | Bi ) for any countable collection of
vents A,Bi with P(Bi ) ̸= 0. Observe that

¬M = ∪ {E 1 = e and t ≤ T } ∪ {E 1 = e and t ≤ T }. (130)
1 t0∈Z≥1 X ,t0 1 0 1 Z ,t0 1 0 1
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Therefore, since N̂ q
X1,e j

=
∑T1

t1=1 1EX1,t1
=e j

E[N̂ q
X1,e j

| T1 = t, ¬M1]

=

t∑
t1,...,tq=1

P(EX1,t1 = e j , . . . , EX1,tq = e j | T1 = t, ¬M1) (131)

≤

t∑
t1,...,tq=1

( ∑
t0

P(EX1,t1 = e j | T1 = t, EX1,t0 = e1) (132)

+

∑
t0

P(EX1,t1 = e j | T1 = t, EZ1,t0 = e1)
)

(133)

here the second sum in (132) runs over all t0 ∈ {1, . . . , t} with P(T1 = t, EX1,t0 = e1) ̸= 0
nd the sum in (133) runs over all t0 ∈ {1, . . . , t} with P(T1 = t, EZ1,t0 = e1) ̸= 0. First
onsider the terms with EZ1,t0 = e1. Note that there are at least α2

minn2 edges e whose starting
oint and ending point have the same clusters as the starting point and ending point of e j
espectively. Conditional on T1 = t and EZ1,t0 = e1 any such edge e is equally likely to be
raversed at time t1 by X1. It follows that P(EX1,t1 = e j | T1 = t, EZ1,t0 = e1) ≤ α−2

minn−2.
Let us now consider the terms with EX1,t0 = e1. When |t0 − t1| > 1 the foregoing argument

pplies word-for-word and yields that P(EX1,t1 = e j | T1 = t, EX1,t0 = e1) ≤ α−2
minn−2. The

ases t0 = t1 − 1 and t0 = t1 + 1 require a modification.
When t0 = t1 − 1 note that there at least αminn edges e whose ending point is in the same

luster as the ending point of e j and whose starting point is equal to the starting point of e j .
onditional on T1 = t and EX1,t0 = e1 any such edge e is equally likely to be traversed at time

1. Hence, P(EX1,t1 = e j | T1 = t, EX1,t0 = e1) ≤ α−1
minn−1 for all t0 = t1 − 1.

Similarly, when t0 = t1 + 1 note that there are at least αminn edges e whose starting point
s in the same cluster as the starting point of e j and whose ending point is equal to the ending
oint of e j . Conditional on T1 = t and EX1,t0 = e1 any such edge e is equally likely to be
raversed at time t1. Hence, P(EX1,t1 = e j | T1 = t, EX1,t0 = e1) ≤ α−1

minn−1 for all t0 = t1 + 1.
Using these bounds in (132) yields that

E[N̂ q
X1,e j

| T1 = t, ¬M1] ≤ 2α−2
minn−1tq+1. (134)

bserve that P(¬M1 | T1 = t) ≤ E[N̂X1,e1
+ N̂Z1,e1

| T1 = t]. Note that X1 and Z1 follow the
ame distribution and apply (124) with q = 1 to deduce that

P(¬M1 | T1 = t) ≤ 2E[N̂X1,e1
| T1 = t] ≤ 2α−2

minn−2t (135)

ence, (129), (134) and (135) yield that

E[1¬M1 N̂ q
X1,e j

] ≤ 4α−4
minn−3E[T q+2

1 ] (136)

here, as in Part 3.1, it holds that E[T q+2
1 ] is a finite constant which does not depend on

. Hence, E[1¬M1 N̂ q
X1,e j

] = Θq (n−3) which may be combined with (128) and the fact that

= Θ(n−2) to deduce the desired result:

E
[( ℓ∑

i=1

1¬Mi N̂X i ,e j

)q]
= Oq (n−1). (137)
his concludes the proof. □
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Fig. 8. Visualization of some configurations of edges occurring in E⃗ R
n,r ′ for varying values of r ′ when R = 3. The

isualized configurations are not exhaustive. Observe that E⃗ R
n,R = E⃗ R

n,R−1 ⊆ E⃗ R
n,R−2 ⊆ · · · ⊆ E⃗ R

n,0 as is immediate
from the definition.

Proposition 6.15. Assume that X starts in equilibrium and let 0 ≤ r ≤ R be positive integers.
Then, for any m ∈ ZR

≥0 with mi = 1 for i = 1, . . . , r , it holds that as n tends to infinity

max
∀i ̸= j :ei ̸=e j

⏐⏐⏐E [Mm1
X,e1

· · · Mm R
X,eR

]⏐⏐⏐ = Om,R(n−⌈r/2⌉) (138)

where the maximum runs over all sequences of distinct edges e1, . . . , eR ∈ E⃗n .

We will prove a better bound than Proposition 6.15. Recall from Section 2.4 that [33] im-
proved the convergence in probability of [40] to convergence almost surely provided additional
assumptions. It turns out that the most immediate generalization of their results would be too
restrictive to include block Markov chains because the correlations in Proposition 6.15 do not
decay sufficiently quickly.

The correlation between edges ei and e j is maximal when the ending point of ei is equal
to the starting point of e j . Correspondingly, Proposition 6.15 can be improved when there are
many edges whose ending point is not the starting point of some other edge. This improvement
could be a point of departure to strengthen Theorems 1.1 and 1.2 to convergence almost surely.

For any positive integers 0 ≤ r ′
≤ R let E⃗ R

n,r ′ denote the collection of sequences of distinct
edges e1, . . . , eR ∈ E⃗n such that for every i ∈ {1, . . . , r ′

} it holds that the ending point of ei
is not the starting point of any edge e j with j ∈ {1, . . . , R} \ {i} and the starting point of ei is

ot the ending point of any edge e j with j ∈ {1, . . . , R} \ {i}.
See Fig. 8 for an example with R = 3. The following proposition includes Proposition 6.15

s the special case with r ′
= 0.

roposition 6.16. Assume that X starts in equilibrium and let 0 ≤ r ′
≤ r ≤ R be positive

ntegers. Then, for any m ∈ ZR
≥0 with mi = 1 for i = 1, . . . , r , it holds that as n tends to

nfinity

max
(e1,...,eR )∈E⃗ R

n,r ′

⏐⏐⏐E [Mm1
X,e1

· · · Mm R
X,eR

]⏐⏐⏐ = Om,R(n−⌈r/2⌉−⌈r ′/2⌉). (139)

roof. This proof combines the proof of Proposition 4.8 with an inductive argument as
as used in the proof of Proposition 6.14. The main technical difference is that we can no

onger use the Cauchy–Schwarz inequality during the inductive step as in (118): the resulting
quares would reduce r to zero which weakens the conclusion of the induction hypothesis.
nstead, the step analogous to (118) will employ conditional independence. The price we pay
or this argument is that it necessitates a stronger induction hypothesis to account for the added
onditioning.
489



J. Sanders and A. Van Werde Stochastic Processes and their Applications 158 (2023) 453–504

p

t

f
e

w

The same preliminary reductions as in the proof of Proposition 6.14 are applicable. Firstly,
recisely as in Part 1 of the proof of Proposition 4.8, it can be assumed that K ≥ 2R + 1

by splitting a cluster into pieces of asymptotically equal proportions. Further, by fixing an
isomorphism type for the labeled directed graph G induced by {e1, . . . , eR} we may again
pretend that the edges e1, . . . , eR stay fixed as n tends to infinity.

Part 1: Set-up of the inductive argument

Recall that it is ensured that K ≥ 2R + 1. Hence, there exists some k ∈ {1, . . . , K } such
hat Vk does not contain any endpoint of e j for j = 1, . . . , R.

For any d ∈ Z≥0, ℓ′
≤ ℓ and τ ∈ {0, . . . , ℓ′

}
d denote VX,τ for the event where Xτi ∈ Vk

or every i = 1, . . . , d . When d = 0 it is to be understood that VX,τ refers to the universal
vent. In particular, P(VX,τ ) = 1 in this case. Fix some d, ℓ′ and τ with P(VX,τ ) > 0 and let

Y := (Yt )ℓ
′

t=0 be a sample path from the block Markov chain conditioned on the event VY,τ . We
ill show that there exists a constant c19 ∈ R≥0, depending on d but not on ℓ′ or τ , such that

E[Mm1
Y,e1

· · · Mm R
Y,eR

] ≤ c19n−⌈r/2⌉−⌈r ′/2⌉. (140)

Taking d = 0 and ℓ′
= ℓ then recovers the proposition.

The proof of the claim proceeds by induction on r . This is why we require (140) to hold
for any d ∈ Z≥0 and ℓ′

≤ ℓ even though the proposition only concerns the case with d = 0
and ℓ′

= ℓ: we will modify d and ℓ′ when reducing r in the inductive step. The argument for
the base case r = 0 is provided in Part 4.1. Now let r > 1 and assume that (140) is known to
hold for any smaller value of r .

Recall that m1 = 1 and N̂Y,e1 =
∑ℓ′

t1=1 1EY,t1 =e1 . Therefore,

E[Mm1
Y,e1

· · · Mm R
Y,eR

] = E[N̂Y,e1 Mm2
Y,e2

· · · Mm R
Y,eR

] − E[N̂Y,e1 ]E[Mm2
Y,e2

· · · Mm R
Y,eR

]

=

ℓ′∑
t1=1

(
E[1EY,t1 =e1 Mm2

Y,e2
· · · Mm R

Y,eR
] − E[1EY,t1 =e1 ]E[Mm2

Y,e2
· · · Mm R

Y,eR
]
)

=

ℓ′∑
t1=1

P(EY,t1 = e1)
(
E[Mm2

Y,e2
· · · Mm R

Y,eR
| EY,t1 = e1] − E[Mm2

Y,e2
· · · Mm R

Y,eR
]
)
. (141)

Note that there are at least α2
minn2 edges e for which the starting and ending point are in the

same clusters as the starting and ending point of e1 respectively. These edges e are equally
likely to be traversed at time t1 by Y . It follows that

P(EY,t1 = e1) ≤ α−2
minn−2. (142)

It remains to show that the effect of conditioning on EY,t1 = e1 in (141) has a small
effect on Mm2

Y,e2
· · · Mm R

Y,eR
. That is, it has to be shown that E[Mm2

Y,e2
· · · Mm R

Y,eR
| EY,t1 =

e1] ≈ E[Mm2
Y,e2

· · · Mm R
Y,eR

] with approximation error uniform over all t1 ∈ {1, . . . , ℓ′
} with

P(EY,t1 = e1) > 0. Fix such a value of t1.

Part 2: Construction of chains (Y, Y ′, Z )

Use the following procedure to construct a triple of chains (Y, Y ′, Z ) with Y, Z of length
ℓ′

+ 1 and Y ′ of a random length at most ℓ′
+ 1. See also Fig. 9 for a visualization of the

construction.

(i) Sample an infinitely long path (Ỹt )∞t=−∞
from the block Markov chain conditioned

on V . Sample (W̃ )∞ as an infinitely long path from the block Markov chain
Ỹ ,τ t t=−∞
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Fig. 9. Visualization of the construction of the chains Y and Z in the proof of Proposition 6.16. The chain Y ′ is
ound from Y by cutting out the piece between L− and L+. Both chains are conditioned to be in cluster Vk at
imes τi but Z has the additional condition of using edge e1 at time t1. The visualized process of gluing e1 onto

Y exploits the cluster structure to ensure that L+
− L− is small.

conditioned on EW̃ ,t1 = e1 and VW̃ ,τ . Note that it is possible to sample at negative
times by use of a time reversal which exists by the assumption that the Markov chain
associated with p is acyclic and irreducible.

(ii) Define

T −
:= t1 − sup{t ∈ Z<t1 : Ỹt ∈ Vk, W̃t ∈ Vk} (143)

T +
:= inf{t ∈ Z>t1 : Ỹt ∈ Vk, W̃t ∈ Vk} − t1 (144)

and note that these values are finite with probability one by the assumption that the
Markov chain associated with p is irreducible and acyclic. Let L−

:= max{0, t1 − T −
}

and L+
:= min{ℓ′, t1 + T +

}.
(iii) Let Y := (Ỹt )ℓ

′

t=0 and define Z := (Z t )ℓ
′

t=0 by Z t = W̃t for t ∈ {L−, . . . , L+
} and Z t = Ỹt

otherwise. Define Y ′ to be the path of length ℓ′
− (L+

− L−) + 1 ≤ ℓ + 1 found by
concatenating (Ỹt )L−

t=0 and (Ỹt )ℓ
′

t=L++1. Thus, Y ′ is equal to Y except for the fact that a
piece was cut out.

bserve that Y and Z are paths of length ℓ′
+ 1 from the block Markov chain conditioned

n VY,τ and the block Markov chain conditioned on VZ ,τ and EZ ,t1 = e1, respectively.
orrespondingly, N̂Z ,e j has the same distribution as N̂Y,e j conditioned on the event EY,t1 = e1.

art 3: Bounding E[Mm2
Y,e2

· · · Mm R
Y,eR

| EY,t1 = e1] − E[Mm2
Y,e2

· · · Mm R
Y,eR

]

We continue with the notation of the previous part, in particular t1 and τ are still considered
to be fixed.

The distribution of Y ′ is obscure unless one conditions on L− and L+: even the length of
Y ′ is random without this conditioning. In particular, the usual notation MX = N̂X −E[N̂X ] is
not so useful for Y ′ because E[N̂Y ′ ] averages out the critical dependence on L+ and L−. For
this reason it is convenient to define a variant of MY ′ which takes L− and L+ into account:

M̊Y ′ := N̂Y ′ − E[N̂Y ′ | L+, L ′]. (145)

For j = 2, . . . , R define ∆Y, j := N̂Y,e j − N̂Y ′,e j , ∆Z , j := N̂Z ,e j − N̂Y ′,e j and set

EY, j := ∆Y, j − (E[N̂Y,e j ] − E[N̂Y ′,e j | L−, L+]), (146)

EZ , j := ∆Z , j − (E[N̂Y,e j ] − E[N̂Y ′,e j | L−, L+]). (147)
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Observe that MY,e j = M̊Y ′,e j + EY, j . Moreover, MY,e j conditioned on EY,t1 = e1 has the same
distribution as N̂Z ,e j − E[N̂Y,e j ] = M̊Y ′,e j + EZ , j . Correspondingly,

E[Mm2
Y,e2

· · · Mm R
Y,eR

|EY,t1 = e1] − E[Mm2
Y,e2

· · · Mm R
Y,eR

] (148)

= E
[ R∏

j=2

(M̊Y ′,e j + EZ , j )m j −

R∏
j=2

(M̊Y ′,e j + EY, j )m j

]
.

he key observation is that the leading-order terms in the expansion of the right-hand side
f (148) cancel out. This is to say that

E[Mm2
Y,e2

· · ·Mm R
Y,eR

| EY,t1 = e1] − E[Mm2
Y,e2

· · · Mm R
Y,eR

] (149)

=

∑
0≤m′≤m

cm′

(
E
[ R∏

j=2

E
m′

j
Z , j M̊

m j −m′
j

Y ′,e j

]
− E

[ R∏
j=2

E
m′

j
Y, j M̊

m j −m′
j

Y ′,e j

])
here the summation runs over vectors of positive integers m ′

∈ Zr
≥0 and the cm′ are absolute

constants with cm′ = 0 if m ′

j = 0 for all j ∈ {2, . . . , R}.
Fix some m ′

∈ Zr with m ′

j ̸= 0 for some j ∈ {2, . . . , R}. We will consider the terms with
EZ , j in (149); those with EY, j may be treated identically. By the law of total expectation,

E
[ R∏

j=2

E
m′

j
Z , j M̊

m j −m′
j

Y ′,e j

]
=

∑
ℓ+>ℓ−

P
(

L−
= ℓ−

L+
= ℓ+

)
E
[ R∏

j=2

E
m′

j
Z , j M̊

m j −m′
j

Y ′,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
. (150)

he compressed notation for conditional expectation employed in (150) was formally intro-
uced in Section 3.5. Recall that Vk was chosen not to contain any endpoint of e1, . . . , eR . In
articular ∆Z , j is a function of the values of Z̃ t for t ∈ {L−

+ 1, . . . , L+
− 1} whereas M̊Y ′,e j

s a function of the values of Ỹt with t ∈ {0, . . . , L−
− 1, L+

+ 1, . . . , ℓ′
}. Further, conditional

n L−
= ℓ− and L+

= ℓ+ it holds that E[N̂Y ′,e j | L−, L+] is a deterministic scalar. Recall

he definition for EZ , j in (147) and conclude that
∏R

j=2 E
m′

j
Z , j is conditionally independent of

R
j=2 M̊

m j −m′
j

Y ′,e j
given L−

= ℓ− and L+
= ℓ+. Hence,

E
[ R∏

j=2

E
m′

j
Z , j M̊

m j −m′
j

Y ′,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
(151)

= E
[ R∏

j=2

E
m′

j
Z , j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
E
[ R∏

j=2

M̊
m j −m′

j
Y ′,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
.

e will use the induction hypothesis (140) to deal with
∏R

j=2 M̊
m j −m′

j
Y ′,e j

. Let Y ′′ denote a random
ath which is distributed as Y ′ conditioned on L−

= ℓ− and L+
= ℓ+. Recall the notation for

M̊Y ′,e j in (145) and conclude that
∏R

j=2 M̊
m j −m′

j
Y ′,e j

conditioned on L−
= ℓ− and L+

= ℓ+ has

he same distribution as
∏R

j=2 M
m j −m′

j
Y ′′,e j

. Observe that Y ′′ is a path of length ℓ′
− (ℓ+

− ℓ−) + 1
rom the block Markov chain conditioned on VY ′′,τ ′ where τ ′ is the vector of length d + 1
uch that τ ′

d+1 = ℓ− and for i = 1, . . . , d it holds that τ ′

i = τi if τi ∈ {0, . . . , ℓ−
} and

′
= max{ℓ−

+ τ − ℓ+, ℓ−
} otherwise. The induction hypothesis (140) is applicable and, by
i i
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inspection of the exponents mi − m ′

i with i ∈ {1, . . . , r ′
}, we may conclude that

E
[ R∏

j=2

M̊
m j −m′

j
Y ′,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
= Om,R,d

(
n− f1(r,m′)− f2(r,r ′,m′)

)
(152)

ith f1(r, m ′) := ⌈(r − #{ j ∈ {2, . . . , r} : m ′

j = 1} − 1)/2⌉ and f2(r, r ′, m ′) := ⌈(r ′
− #{ j ∈

{2, . . . , r ′
} : m ′

j = 1} − 1)/2⌉.
In Part 4.3 we will show that there exists some constant c20 ∈ R>0, which does not depend

on t1 or τ , such that⏐⏐⏐⏐E[ R∏
j=2

E
m′

j
Z , j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]⏐⏐⏐⏐ ≤ c20n−g1(m′)−g2(m′,r ′)(ℓ+
− ℓ−)3∥m′

∥1 (153)

here g1(m ′) := #{ j ∈ {2, . . . , R} : m ′

j ̸= 0} and

g2(m ′, r ′) =

⎧⎪⎨⎪⎩
0 if g1(m ′) = 0 or r ′

= 0,

g3(m ′, r ′) + 1 if 0 ≤ g3(m ′, r ′) < g1(m ′) and r ′ > 0,

g3(m ′, r ′) if 0 < g3(m ′, r ′) = g1(m ′) and r ′ > 0,

(154)

here g3(m ′, r ′) := #{ j ∈ {2, . . . , r ′
} : m ′

j ̸= 0}. It will then follow from (150)–(153) that
here exists a constant c21 ∈ R>0 such that⏐⏐⏐⏐E[ R∏

j=2

E
m′

j
Z , j M̊

m j −m′
j

Y ′,e j

]⏐⏐⏐⏐ (155)

≤ c21n−( f1(r,m′)+g1(m′))−( f2(r,r ′,m′)+g2(m′,r ′))E[(L+
− L−)3∥m′

∥1 ].

bserve that for any positive integers q1, q2 ∈ Z≥0 it holds that ⌈(q1−q2−1)/2⌉+max{1, q2} ≥

q1/2⌉. The condition below (149) stating that cm′ = 0 when m ′

j = 0 for all j ∈ {2, . . . , R}

nsures that g1(m ′) ≥ max{1, #{ j ∈ {2, . . . , r} : m ′

j = 1}} for all terms with cm′ ̸= 0. Therefore,
sing the definition of f1,

f1(r, m ′) + g1(m ′) ≥ ⌈r/2⌉ (156)

or all terms with cm′ ̸= 0 in (149). Note that f2(r, r ′, m ′) + g2(m ′, r ′) = 0 when r ′
= 0. If

′ > 0, note that g2(m ′, r ′) ≥ max{1, #{ j ∈ {2, . . . , r ′
} : m ′

j = 1}} for all terms in (149) with
cm′ ̸= 0. Hence, using the definition of f2,

f2(r, r ′, m ′) + g2(m ′, r ′) ≥ ⌈r ′/2⌉ (157)

or all terms with cm′ ̸= 0 in (149).
It will be shown in Part 4.2 that E[(T +)q ] = Oq,d (1) for any q ∈ Z≥0 and a similar

conclusion holds for T −. Note that it is here also claimed that the bound is uniform in t1
nd τ provided that d is fixed. Now observe that (L+

− L−)3∥m′
∥1 ≤ (T +

+ T −)3∥m′
∥1 . Expand

T +
+ T −)3∥m′

∥1 and apply the Cauchy–Schwarz inequality to the resulting monomial terms to
erive that E[(L+

− L−)3∥m′
∥1 ] = Om′,d (1).

It now follows by (149) and (155)–(157) that there exists a constant c22 ∈ R>0 such that

E[Mm2
Y,e2

· · · Mm R
Y,eR

| EY,t1 = e1] − E[Mm2
Y,e2

· · · Mm R
Y,eR

] ≤ c22n−⌈r/2⌉−⌈r ′/2⌉. (158)

iven that there are ℓ′
≤ ℓ = Θ(n2) terms in (141) and that P(EY,e1 = e1) = O(n−2) by (142)

t follows that there exists a constant c23 ∈ R>0 such that
m1 m R −⌈r/2⌉−⌈r ′/2⌉
|E[MY,e1
· · · MY,eR

]| ≤ c23n (159)
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which is the desired result.

Part 4: Remaining Bounds

Part 4.1: Base case: r = 0

Recall that we still have to prove that (140) holds for the base case r = 0. By repeated
pplication of the Cauchy–Schwarz inequality the claim is reduced to the statement that
[Mq

Y,e j
] = Oq,d (1) for any j ∈ {2, . . . , R} and q ∈ Z≥0. By definition MY,e j = N̂Y,e j −

[N̂Y,e j ] so it suffices to show that E[N̂ q ′

Y,e j
] = Oq ′,d (1) for any q ′

∈ Z≥0. Further, since N̂Y,e j

an only increase when one extends Y to a longer path it may be assumed that ℓ′
= ℓ. In this

ase Y follows the same distribution as X conditioned on the event VX,τ .
We claim that for any fixed d there exists a constant c24 ∈ R>0 independent of n such that

or any τ ∈ {0, . . . , ℓ′
}

d with P(VX,τ ) > 0 it holds that

P(VX,τ ) ≥ c24. (160)

ndeed, assume without loss of generality that the τi are nondecreasing in i . Since X starts in
quilibrium it then holds that

P(VX,τ ) = P(Xτ1 ∈ Vk)
d−1∏
i=1

P(Xτi+1 ∈ Vk | Xτi ∈Vk ) (161)

= π (k)
d−1∏
i=1

pτi+1−τi (k, k). (162)

his implies (160) since, by the Markov chain associated with p being irreducible and acyclic,
t holds that pt (k, k) tends to π (k) as t tends to infinity and it holds that π (k) > 0.

By the law of total expectation it follows that

E[N̂ q ′

Y,e j
] = E[N̂ q ′

X,e j
| VX,τ ] (163)

≤ c−1
24 E[N̂ q ′

X,e j
] (164)

hich establishes the desired result since E[N̂ q ′

X,e j
] = Oq ′ (1) by Corollary 6.13.

art 4.2: E[(T +)q ] = Oq,d (1)

Let q ∈ Z≥0 and recall the definition of T + in (144). Consider the product chain Σ+

(Ỹ ,W̃ )
=

(σ (Ỹt1+t ), σ (W̃t1+t ))∞t=0 on the space of clusters {1, . . . , K } × {1, . . . , K }. Then T + is the first
strictly positive time Σ+

(Ỹ ,W̃ )
is in (k, k). Sample infinitely long sample paths V := (Vt )∞t=0 and

V ′
:= (V ′

t )∞t=0 from the block Markov chain with V ′ conditioned on V ′
t1

being the ending point
f e1. Consider the product chain Σ+

(V,V ′) = (σ (Vt1+t ), σ (V ′
t1+t ))

∞

t=0 on the space of clusters
1, . . . , K }×{1, . . . , K }. Denote T +

V,V ′ for the first strictly positive time Σ+

(V,V ′) is in (k, k). By
he Markov chain associated with p being irreducible and acyclic it holds that P(T +

V,V ′ > t)
hows exponential decay in t . In particular, E[(T +

V,V ′ )q ] is finite and independent of n.
Now observe that Σ+

(Ỹ ,W̃ )
has the same distribution as Σ+

(V,V ′) conditioned on the events
V,τ and VV ′,τ . By (160) there exists a constant c24 ∈ R>0 independent of n and t1 such that
(VV,τ ) ≥ c24 for all τ ∈ {0, . . . , ℓ′

}
d with P(VV,τ ) > 0. It can similarly be deduced that there

′
′ d

′
xists a constant c25 ∈ R>0 such that P(VV ,τ ) ≥ c25 for all τ ∈ {0, . . . , ℓ } with P(VV ,τ ) > 0.
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Now, by the law of total expectation and the fact that VV ′,τ is independent of VV,τ

E[(T +)q ] = E[(T +

V,V ′ )q
| VV,τ ,VV ′,τ ] (165)

≤ (c24c25)−1E[(T +

V,V ′ )q ] (166)

hich establishes the desired result.

art 4.3: |E[
∏R

j=2 E
q j
Z , j | L−

= ℓ−, L+
= ℓ+]| ≤ c20n−g1(q)−g2(q,r ′)(ℓ+

− ℓ−)3∥q∥1

Consider some fixed q ∈ ZR
≥0 and ℓ−, ℓ+

∈ Z≥0 with P(L−
= ℓ−, L+

= ℓ+) > 0. Let us
emark that the following arguments also apply when Z is replaced by Y . In fact, the process

Y is easier to deal with since Z is conditioned to be at e1 at time t1.
Recall the definition for EZ , j in (147). Note that conditional on L+

= ℓ+ and L−
=

−, it holds that E[N̂Y,e j ] − E[N̂Y ′,e j | L−, L+] is a deterministic scalar. Therefore, after
ubstituting the definition of EZ , j in

∏R
j=2 E

q j
Z , j and by then expanding in terms of ∆Z , j and

[N̂Y,e j ] − E[N̂Y ′,e j | L−, L+] it follows that

E
[ R∏

j=2

Eq j
Z , j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
(167)

=

∑
0≤q ′≤q

cq ′E
[ R∏

j=2

∆
q ′

j
Z , j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

] R∏
j=2

(
E
[

N̂Y,e j

]
− E

[
N̂Y ′,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

])q j −q ′
j

or certain absolute constants cq ′ . The sum runs here over vectors of integers of length R.

Fix some 0 ≤ q ′
≤ q and let us establish a bound on E[

∏R
j=2 ∆

q ′
j

Z , j | L−
= ℓ−, L+

= ℓ+].

bserve that the product
∏R

j=2 ∆
q ′

j
Z , j can only be nonzero if ∆Z , j ̸= 0 for every j with q ′

j ̸= 0.
ecall from (154) that g1(q ′) is the number of nonzero q ′

j with j ∈ {2, . . . , R} and g3(q ′, r ′)

s the number of nonzero q ′

j with j ∈ {2, . . . , r ′
}. Hence the product

∏R
j=2 ∆

q ′
j

Z , j can only be
onzero if

∑R
j=2 1∆Z , j >0 ≥ g1(q ′) and

∑r ′

j=2 1∆Z , j >0 ≥ g3(q ′, r ′). Therefore, by the law of
otal expectation

E
[ R∏

j=2

∆
q ′

j
Z , j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
= P

( ∑R
j=21∆Z , j >0 ≥ g1(q ′)∑r ′

j=21∆Z , j >0 ≥ g3(q ′, r ′)

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

)
(168)

× E
[ R∏

j=2

∆
q ′

j
Z , j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

,

∑R
j=21∆Z , j >0 ≥ g1(q ′)∑r ′

j=21∆Z , j >0 ≥ g3(q ′, r ′)

]
.

t follows from
∏R

j=2 ∆
q ′

j
Z , j ≤ (L+

− L−)∥q ′
∥1 that

E
[ R∏

j=2

∆
q ′

j
Z , j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

,

∑R
j=21∆Z , j >0 ≥ g1(q ′)∑r ′

j=21∆Z , j >0 ≥ g3(q ′, r ′)

]
≤ (ℓ+

− ℓ−)∥q ′
∥1 . (169)

he goal thus becomes to establish a bound on the probability on the right-hand side of (168).
his bound will be established in two steps. First, we show that the event described by the
robability implies that (Z t )t∈{ℓ−,...,ℓ+}\{t1,t1−1} has to visit the endpoints of e2, . . . , eR often.
his step is achieved in (182). Second, we show that visiting many endpoints is a rare event.

his step is achieved in (190).
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Fig. 10. Visualization of some ‘worst case’ realizations of Z for which
∑R

j=2 1Te j ̸=∅ ≥ g1(q ′) and
∑r ′

j=2 1Te j ̸=∅ ≥

g3(q ′, r ′) when g1(q ′) = R − 1 = 3 and g3(q ′, r ′) = r ′ varies. The points contributing to #(∪R
j=2T

′
e j

\ {t1, t1 − 1})
re circled. Note that the number of circled points increases as r ′ does so. Indeed, r ′ > 0 avoids losing points
ue to the exclusion of {t1, t1 − 1} whereas r ′

≥ j with j ≥ 2 avoids losses due to the possibility that e j shares
ndpoints with the other ei .

For every j ∈ {1, . . . , R} consider the following collections of times which measure when
e are in e j or its endpoints

Te j := {t ∈ {ℓ−
+ 1, . . . , ℓ+

} : EZ ,t = e j }, T ′

e j
:= ∪t∈Te j

{t, t − 1}. (170)

bserve that in this notation it holds that ∆Z , j = #Te j . Hence, the probability on the right-hand
ide of (168) may be rewritten as

P
( ∑R

j=21∆Z , j >0 ≥ g1(q ′)∑r ′

j=21∆Z , j >0 ≥ g3(q ′, r ′)

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

)
(171)

= P
( ∑R

j=21Te j ̸=∅ ≥ g1(q ′)∑r ′

j=21Te j ̸=∅ ≥ g3(q ′, r ′)

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

)
.

e claim that whenever the event described in the probability on the right-hand side of (171)
olds, it follows that #(∪R

j=2T ′
e j

\ {t1, t1 − 1}) ≥ g1(q ′) + g2(q ′, r ′). The key difficulty is that
he sets T ′

e1
, . . ., T ′

eR
may not be disjoint due to the fact that the e j can share endpoints; see

ig. 10.
Recall the definition of E⃗ R

n,r ′ from the paragraph preceding Proposition 6.16. It follows that
or every (i, j) ∈ {1, . . . , R} × {1, . . . , r ′

} with i ̸= j it holds that T ′
ei

∩ T ′
e j

= ∅. Hence,

#
( R⋃

j=2

T ′

e j
\ {t1, t1 − 1}

)
(172)

=

r ′∑
j=2

#
(
T ′

e j
\ {t1, t1 − 1}

)
+ #

( R⋃
j=r ′+1

T ′

e j
\ {t1, t1 − 1}

)
(173)

=

r ′∑
j=2

#T ′

e j
+ #

( R⋃
j=r ′+1

T ′

e j
\ {t1, t1 − 1}

)
(174)

here in (174) we used that {t , t − 1} ⊆ T ′ .
1 1 e1
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Note that for every j ∈ {2, . . . , R} with Te j ̸= ∅ it holds that #T ′
e j

≥ 2. Thus, it follows
hat

r ′∑
j=2

#T ′

e j
≥ 2

r ′∑
j=2

1Te j ̸=∅. (175)

hen r ′ > 0 it holds that T ′
e1

is disjoint from T ′
e j

for every j ∈ {2, . . . , R}. In particular
{t1, t1 − 1} is disjoint from T ′

e j
for every j ∈ {2, . . . , R}. Hence,

R⋃
j=r ′+1

T ′

e j
\ {t1, t1 − 1} =

R⋃
j=r ′+1

T ′

e j
, if r ′ > 0. (176)

Whenever ∪
R
j=r ′+1Te j ̸= ∅ we can construct a subset of ∪

R
j=r ′+1T

′
e j

as

{
min

{
t − 1 : t ∈

R⋃
j=r ′+1

Te j

}}
∪

R⋃
j=r ′+1

Te j ⊆

R⋃
j=r ′+1

T ′

e j
. (177)

bserve that the left-hand side of (177) is a union of disjoint sets due to the fact that e2, . . . , eR

re distinct edges. It now follows from (176) that if r ′ > 0,

#
( R⋃

j=r ′+1

T ′

e j
\ {t1, t1 − 1}

)
≥ 1(∪R

j=r ′+1
Te j )̸=∅

+

R∑
j=r ′+1

#Te j (178)

≥ 1(∪R
j=r ′+1

Te j )̸=∅
+

R∑
j=r ′+1

1Te j ̸=∅. (179)

When r ′
= 0 we still have an injection from ∪

R
j=r ′+1Te j into ∪

R
j=r ′+1T

′
e j

\ {t1, t1 − 1} defined
by t ↦→ t1t>t1 + (t − 1)1t<t1 . Hence,

#
( R⋃

j=r ′+1

T ′

e j
\ {t1, t1 − 1}

)
≥ #

( R⋃
j=r ′+1

Te j

)
≥

R∑
j=r ′+1

1Te j ̸=∅. (180)

Combine (174)–(180) to deduce that

#
( R⋃

j=2

T ′

e j
\ {t1, t1 − 1}

)
(181)

≥

⎧⎨⎩
∑R

j=2 1Te j ̸=∅ +
∑r ′

j=2 1Te j ̸=∅ + 1(∪R
j=r ′+1

Te j )̸=∅
if r ′ > 0,∑R

j=2 1Te j ̸=∅ if r ′
= 0.

ecall the condition described in the probability on the right-hand side of (171). Note that
henever this condition holds it follows that

∑R
j=2 1Te j ̸=∅ ≥ g1(q ′) and

∑r ′

j=2 1Te j ̸=∅ +

(∪R
j=r ′+1

Te j )̸=∅
≥ g3(q ′, r ′) + 1g1(q ′)>g3(q ′,r ′). Further, recall from (154) that the definition of

g in terms of g has three cases. Now, using (181) in (171) and checking each case from the
2 3
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definition of g2 individually we find that

P
( ∑R

j=21∆Z , j >0 ≥ g1(q ′)∑r ′

j=21∆Z , j >0 ≥ g3(q ′, r ′)

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

)
(182)

≤ P
(

#
( R⋃

j=2

T ′

e j
\ {t1, t1 − 1}

)
≥ g1(q ′) + g2(q ′, r ′)

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

)
.

et us denote V (e2, . . . , eR) for the set of cardinality ≤ 2(R − 1) consisting of the endpoints
f the edges e2, . . . , eR . Observe that #(∪R

j=2T ′
e j

\ {t1, t1 − 1}) ≥ g1(q ′) + g2(q ′, r ′) implies
hat there exists some T ′

⊆ {ℓ−, . . . , ℓ+
} \ {t1, t1 − 1} with #T ′

= g1(q ′) + g2(q ′, r ′) such that
Z t ′ ∈ V (e2, . . . , eR) for all t ′

∈ T ′. Consequently, by the union bound

P
(

#
( R⋃

j=2

T ′

e j
\ {t1, t1 − 1}

)
≥ g1(q ′) + g2(q ′, r ′)

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

)
(183)

≤

∑
#T ′=g1(q ′)+g2(q ′,r ′)

P
(

{Z t ′ : t ′
∈ T ′

} ⊆ V (e2, . . . , eR)
⏐⏐⏐⏐ L−

= ℓ−

L+
= ℓ+

)
(184)

here the sum runs over all subsets T ′
⊆ {ℓ−, . . . , ℓ+

}\{t1, t1−1} with #T ′
= g1(q ′)+g2(q ′, r ′).

ix such a subset T ′ and denote ΣZ := (σ (Z t ))ℓ
′

t=0 for chain of clusters associated to Z . Then,
he law of total probability yields that

P
(

{Z t ′ : t ′
∈ T ′

} ⊆ V (e2, . . . , eR)
⏐⏐⏐⏐ L−

= ℓ−

L+
= ℓ+

)
(185)

=

∑
sZ

P
(
ΣZ = sZ

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

)
P
(

{Z t ′ : t ′
∈ T ′

} ⊆ V (e2, . . . , eR)
⏐⏐⏐⏐ ΣZ = sZ

)
here the sum runs over all sZ ⊆ {1, . . . , K }

ℓ′
+1 with P(ΣZ = sZ | L−

= ℓ−, L+
= ℓ+) ̸= 0.

ow, observe that (Z t )t∈{0,...,ℓ′}\{t1,t1−1} is uniformly distributed in
∏

t∈{0,...,ℓ′}\{t1,t1−1}
VsZ ,t given

hat ΣZ = sZ . Hence, by using that #V (e2, . . . , eR) ≤ 2(R − 1) and #Vk ≥ αminn for every
∈ {1, . . . , K }

P
(
{Z t ′ : t ′

∈ T ′
} ⊆ V (e2, . . . , eR) | ΣZ = sZ

)
(186)

=

∏
t ′∈T ′

#(V (e2, . . . , eR) ∩ VsZ ,t ′
)

#VsZ ,t ′

(187)

≤ (2(R − 1)α−1
minn−1)g1(q ′)+g2(q ′,r ′) (188)

≤ c26n−g1(q ′)−g2(q ′,r ′) (189)

here we defined c26 := max0≤q ′≤q (2(R − 1)α−1
min)g1(q ′)+g2(q ′,r ′). Now, by (183)–(189) with the

ound
(

ℓ+
−ℓ−

−1
g1(q ′)+g2(q ′,r ′)

)
≤ (ℓ+

− ℓ−)g1(q ′)+g2(q ′,r ′) for the number of terms in the sum of (183)

P
(

#
( R⋃

j=2

T ′

e j
\ {t1, t1 − 1}

)
≥ g1(q ′) + g2(q ′, r ′)

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

)
(190)

≤ c26n−(g1(q ′)+g2(q ′,r ′))(ℓ+
− ℓ−)g1(q ′)+g2(q ′,r ′).
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Combine (168), (169) and (182) with the bound (190) to conclude that

E
[ R∏

j=2

∆
q ′

j
Z , j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
≤ c26(ℓ+

− ℓ−)3∥q ′
∥1n−(g1(q ′)+g2(q ′,r ′)) (191)

here it was used that g1(q ′) ≤ ∥q ′
∥1 and g2(q ′) ≤ ∥q ′

∥1. This establishes the desired upper

ound for the conditional expectation of
∏R

j=2 ∆
q ′

j
Z , j .

Let us remark that the only property about the chain Z which was used in the foregoing
rgument is that (Z t )t∈{0,...,ℓ′}\{t1,t1−1} is uniformly distributed in

∏
t∈{0,...,ℓ′}\{t1,t1−1}

VsZ when
onditioned on ΣZ = sZ . Hence, the conclusion (191) also applies to other chains with this
roperty such as Y . This is to say that by repeating the argument for (191) word-for-word one
nds a constant c27 ∈ R>0 such that

E
[ R∏

j=2

∆
q ′

j
Y, j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
≤ c27(ℓ+

− ℓ−)3∥q ′
∥1n−(g1(q ′)+g2(q ′,r ′)) (192)

or any 0 ≤ q ′
≤ q.

Next, we consider the factors (E[N̂Y,e j ] − E[N̂Y ′,e j | L−
= ℓ−, L+

= ℓ+]) in (167). Fix
ome j ∈ {2, . . . , R} and observe that

E[N̂Y,e j ]−E
[

N̂Y ′,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
=

(
E[N̂Y,e j ] − E

[
N̂Y,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

])
+

(
E
[

N̂Y,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
− E

[
N̂Y ′,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

])
. (193)

ere, since N̂Y,e j − N̂Y ′,e j = ∆Y, j , the bound (192) yields a constant c28 ∈ R>0 such that

E
[

N̂Y,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
− E

[
N̂Y ′,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
= E

[
∆Y, j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]
. (194)

≤

{
c28n−1(ℓ+

− ℓ−)3 if r ′
= 0,

c28n−2(ℓ+
− ℓ−)3 if r ′ > 0.

(195)

t remains to consider the term E[N̂Y,e j ] − E[N̂Y,e j | L−
= ℓ−, L+

= ℓ+] in (193). This term
ay be studied by means of a coupling argument. Construct a path G of length ℓ′

+1 by using
he following procedure:

(i) Let Ỹ := (Ỹt )∞t=−∞
be the path used in the construction of Y in Part 2. Independently

sample G̃ := (G̃ t )∞t=−∞
from the same distribution as Ỹ conditioned on L−

= ℓ− and
L+

= ℓ+.
(ii) Define

T̃ −
= ℓ−

− sup{t ∈ Z<ℓ− : Ỹt ∈ Vk, G̃ ∈ Vk} (196)

T̃ +
= inf{t ∈ Z>ℓ+ : Ỹt ∈ Vk, G̃ t ∈ Vk} − ℓ+ (197)

and note that these values are finite with probability one by the assumption that the
Markov chain associated with p is irreducible and acyclic. Let L̃−

= max{0, ℓ−
− T̃ −

}

and L̃+
= min{ℓ′, ℓ+

+ T̃ +
}.

(iii) Define G := (G )ℓ
′

by G := G̃ for t ∈ {L̃−, . . . , L̃+
} and G = Ỹ otherwise.
t t=0 t t t t
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Note that G is here implicitly dependent on ℓ− and ℓ+ but this is suppressed in the notation.
ndeed, G has the same distribution as Y conditioned on L−

= ℓ− and L+
= ℓ+. For any

j ∈ {2, . . . , R} let ∆̃G, j and ∆̃Y, j denote the number of times (G t )L̃+

t=L̃−
and (Yt )L̃+

t=L̃−
traversed

dge e j . Then,⏐⏐⏐⏐E[N̂Y,e j

]
− E

[
N̂Y,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]⏐⏐⏐⏐ =

⏐⏐⏐⏐E[N̂Y,e j − N̂G,e j

]⏐⏐⏐⏐ (198)

≤ |E[∆̃Y, j ]| + |E[∆̃G, j ]|. (199)

s in (192) it may be established that for any ℓ̃+, ℓ̃−
∈ Z≥0 with P(L̃+

= ℓ̃+, L̃−
= ℓ̃−) > 0

t holds that⏐⏐⏐⏐E[∆̃Y, j

⏐⏐⏐⏐ L̃−
= ℓ̃−

L̃+
= ℓ̃+

]⏐⏐⏐⏐ ≤

{
c28n−1(ℓ̃+

− ℓ̃−)3 if r ′
= 0,

c28n−2(ℓ̃+
− ℓ̃−)3 if r ′ > 0.

(200)

y the law of total expectation it now follows that

|E[∆̃Y, j ]| ≤

{
c28n−1E[(L̃+

− L̃−)3] if r ′
= 0,

c28n−2E[(L̃+
− L̃−)3] if r ′ > 0,

(201)

nd a similar conclusion applies to ∆̃G, j .
We claim that E[(T̃ +)m] = Om(1) and similarly E[(T̃ −)m] = Om(1) for any m ∈ Z≥0.

ndeed, this may be deduced as in (166) by consideration of Σ+

(Ỹ ,G̃)
:= (σ (Ỹℓ++t ), σ (G̃ℓ++t ))∞t=0,

Ṽ := (Ṽt )∞t=0 and Ṽ ′
:= (Ṽt )∞t=0 where Ṽ is sample path from the block Markov chain and Ṽ ′

s sample path from the block Markov chain conditioned on the event Ṽℓ+ ∈ Vk . Next, use a
inomial expansion on L̃+

− L̃−
= ℓ+

− ℓ−
+ (T̃ +

+ T̃ −) to write

E[(L̃+
− L̃−)3] =

3∑
m=0

(
3
m

)
E
[
(T̃ +

+ T̃ −)m](ℓ+
− ℓ−)3−m (202)

=

3∑
m=0

(
3
m

) m∑
m′=0

(
m
m ′

)
E
[
(T̃ +)m′

(T̃ −)m−m′]
(ℓ+

− ℓ−)3−m (203)

he coefficients E[(T̃ +)m′

(T̃ −)m−m′

] in (203) are Om,m′ (1) by the Cauchy–Schwarz in-
quality. Therefore, since (ℓ+

− ℓ−) ≥ 1, there exists some constant c29 ∈ R>0 such
hat

E[(L̃+
− L̃−)3] ≤ c29(ℓ+

− ℓ−)3. (204)

y (199)—(204) it follows that there exists some constant c30 ∈ R>0 such that⏐⏐⏐⏐E[N̂Y,e j

]
− E

[
N̂Y,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]⏐⏐⏐⏐ ≤

{
c30n−1(ℓ+

− ℓ−)3 if r ′
= 0,

c30n−2(ℓ+
− ℓ−)3 if r ′ > 0.

(205)

y (193), (195) and (205) we may conclude that⏐⏐⏐⏐E[N̂Y,e j ] − E
[

N̂Y ′,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]⏐⏐⏐⏐ ≤

{
c31n−1(ℓ+

− ℓ−)3 if r ′
= 0,

−2 + − 3 ′
(206)
c31n (ℓ − ℓ ) if r > 0.
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for some constant c31 ∈ R>0. Combine (191) and (206) to find a constant c32 ∈ R>0 such that
for any 0 ≤ q ′

≤ q

E
[ R∏

j=2

∆
q ′

j
Z , j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

] R∏
j=2

(
E
[

N̂Y,e j

]
− E

[
N̂Y ′,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

])q j −q ′
j

(207)

≤

{
c32n−g1(q ′)−g2(q ′,r ′)−

∑R
j=2(q j −q ′

j )(ℓ+
− ℓ−)3∥q∥1 if r ′

= 0,

c32n−g1(q ′)−g2(q ′,r ′)−2
∑R

j=2(q j −q ′
j )(ℓ+

− ℓ−)3∥q∥1 if r ′ > 0,
(208)

where it was used that ∥q ′
∥1 + ∥q − q ′

∥1 = ∥q∥1. Recall the definition of g1 and g2 in (154)
and observe that each additional nonzero coordinate in q ′ increases g1(q ′) + g2(q ′, r ′) by at
most 1 + 1r ′>0. Hence, the worst bound in (208) is attained at q ′

= q and we may conclude
that

E
[ R∏

j=2

∆
q ′

j
Z , j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

] R∏
j=2

(
E
[

N̂Y,e j

]
− E

[
N̂Y ′,e j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

])q j −q ′
j

(209)

≤ c32n−g1(q)−g2(q,r ′)(ℓ+
− ℓ−)3∥q∥1 . (210)

Plug (210) into (167) to find a constant c33 ∈ R>0 such that⏐⏐⏐⏐E[ R∏
j=2

Eq j
Z , j

⏐⏐⏐⏐ L−
= ℓ−

L+
= ℓ+

]⏐⏐⏐⏐ ≤ c33n−g1(q)−g2(q,r ′)(ℓ+
− ℓ−)3∥q∥1 (211)

which is the desired result. □
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