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Abstract: To maximize crop production, reference evapotranspiration (ET0) measurement is crucial for
managing water resources and planning crop water needs. The FAO-PM56 method is recommended
globally for estimating ET0 and evaluating alternative methods due to its extensive theoretical
foundation. Numerous meteorological parameters, needed for ET0 estimation, are difficult to obtain
in developing countries. Therefore, alternative ways to estimate ET0 using fewer climatic data are
of critical importance. To estimate ET0 with alternative methods, difference climatic parameters
of temperatures, relative humidity (maximum and minimum), sunshine hours, and wind speed
for a period of 20 years from 1996 to 2015 were used in the study. The data were recorded by
11 meteorological observatories situated in various climatic regions of Pakistan. The significance
of the climatic parameters used was evaluated using sensitivity analysis. The machine learning
techniques of single decision tree (SDT), tree boost (TB) and decision tree forest (DTF) were used
to perform sensitivity analysis. The outcomes indicated that DTF-based models estimated ET0

with higher accuracy and fewer climatic variables as compared to other ML techniques used in the
study. The DTF technique, with Model 15 as input, outperformed other techniques for the most
part of the performance metrics (i.e., NSE = 0.93, R2 = 0.96 and RMSE = 0.48 mm/month). The
results indicated that the DTF with fewer climatic variables of mean relative humidity, wind speed
and minimum temperature could estimate ET0 accurately and outperformed other ML techniques.
Additionally, a non-linear ensemble (NLE) of ML techniques was further used to estimate ET0 using
the best input combination (i.e., Model 15). It was seen that the applied non-linear ensemble (NLE)
approach enhanced modelling accuracy as compared to a stand-alone application of ML techniques
(R2 Multan = 0.97, R2 Skardu = 0.99, R2 ISB = 0.98, R2 Bahawalpur = 0.98 etc.). The study results
affirmed the use of an ensemble model for ET0 estimation and suggest applying it in other parts of
the world to validate model performance.

Keywords: reference evapotranspiration; machine learning techniques; ensemble approach; limited
meteorological data

1. Introduction

Estimation of reference evapotranspiration (ET0) has become momentous and nec-
essary. It is considered a crucial parameter due to its boundless and extensive range of
applications in hydrological studies. These studies are used to estimate the amount of
water crops will need, making irrigation scheduling possible, stimulating crop yield, and
enabling better planning and management of water resources [1]. Accurate estimation
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of ET0 values has gained higher importance in agro-meteorological, hydrological and
water-balance studies. In the interaction between flora, atmosphere, and soil, ET0 is an
important variable. Also, it can provide an accurate quantification for planning cropland
water consumption [2] and effective irrigation [3].

Evapotranspiration is the term for the overall loss of moisture (water) caused by
evaporation from surfaces like soil and plants [4]. The moisture loss from a well-irrigated
grassy surface is referred to as “reference evapotranspiration” (ET0) [5]. By using in situ
monitoring-based experimental techniques such as the lysimeter method, the Bowen ratio-
energy balance methodology, or eddy covariance devices, ET0 can be measured directly [6].
A weighing lysimetric method that was based on the phenomena of water gain and loss
to estimate ET0 directly was used by the author of [7]. This method gained significant
importance among direct methods (eddy covariance system, Bowen ratio) and was widely
used in scientific studies [8]. The high capital, operating, and maintenance expenses
of these techniques may restrict their practical application. Therefore, the best option
for quantification is to rely on an indirect technique. Utilizing empirical models, such
as those based on temperature, radiation, mass transfer, and other variables, is one of
these indirect strategies. Nearly all empirical models determine ET0. This is due to the
difficulty of determining ET for each crop. As a result, crop coefficients are used to estimate
crop evapotranspiration (ETc) of each desired crop once ET0 is first determined using
indirect methods. To accurately estimate ET0, several attempts have been undertaken. The
Penman–Monteith (FAO PM56) approach, however, was developed by Allen in 1998, and
he validated it in a variety of climatic conditions. The FAO PM56 method is recommended
by the United Nations Food and Agriculture Organization (FAO) as the primary reference
approach for determining ET0 and validating other techniques [9–11]. Many locations
throughout the world do not have the entire set of meteorological data needed to calculate
ET0 using the FAO PM56 method. A substantial obstacle to estimating ET0 using the
FAO PM56 approach is the lack of accessibility to all required information, uncertainty in
dependability of climatic data, and unavailability of climatic data for many locations [12,13].

Recent research [14,15] reproduced FAO PM56 ET0 using machine learning (ML) by
utilizing a comprehensive set of climatic data, revealing the links and interrelationships
among the variables. Similarly, the results of a deep learning neural network model using
only one predictor parameter of solar radiation and FAO PM56 for estimating ET0 were
compared [16]. In a semi-arid location, the authors of [14] reported that Rs was the most
important meteorological variable in determining ET0. It is possible to substitute the
variable Rs with the number of sunny hours (n); however, this is not always a viable
option. It is also supported by the authors of [17] who investigated the potential of a
deep factorization machine, gradient boosting techniques, and three tree-based ML models for
modeling daily ET0 in the context of a daily time series. According to previous studies [18–20], sunny
hours have a stronger relationship with net radiation (Rn) than any other meteorological
variable. As a result, this study chose N as an alternative to Rs [21,22]. The phenomenon of
net radiation holds significant implications for the thermal characteristics of the Earth’s
surface, thus constituting a crucial variable in the examination of land-surface phenomena
and the wider topic of global climate change. Rn is the difference between inbound and
outbound radiation (i.e., reflected shortwave radiation) at the surface of earth.

In practical applications, employing stand-alone AI models to process complex datasets
can result in inadequate predictive capabilities. This limitation stems from the inability of
an individual model to learn the diverse array of intricate patterns in data. The outcome can
be suboptimal predictions. An ensemble of stand-alone prediction models can be used to
get around this problem, yielding promising outcomes that surpass the performance of an
individual model [23]. These are used to reduce single ML model bias and variance [24,25].
Ensemble of different ML models over the individual model yield best results as stated by
the author of [26]. The authors of [27] have recommended the ensemble of ML models as
they found better results in comparison to an individual model. The following literature
highlighted the use of an ensemble approach reported recently in the literature.
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The findings of the authors of [28] clearly depicted that ensembles of ML models have
the capacity to increase the efficiency of individual models. By applying the ensemble
approach, they have improved the efficiency of Artificial Intelligence (AI) models and em-
pirical models up to 22% and 55%, respectively. Furthermore, they also found AI ensemble
modeling superior to the empirical models. The ensemble-based genetic programming
model was also utilized by the authors of [29] to measure the degree of unpredictability
related to the model architecture. The findings support the idea that quantifying the struc-
tural ambiguity of the model may be carried out thoroughly, objectively, and realistically by
using the projections of these ensemble models. To forecast the model’s dependability, the
authors of [30] examined three linear ensembles and one non-linear ensemble technique.
The non-linear ensemble surpassed all the other ensembles and the individual statistical
and intelligent methods, according to the research. The ensembles created here can also be
utilized to replace current techniques in effective ways.

Despite the ease with which weather data are being made accessible recently, many
locations still lack reliable and consistent weather information. Insufficient weather obser-
vatories were established in Pakistan (the subject of our study), and climatic information
for various sites was observed to be inadequate for calculating crop water needs based
on ET0. Consequently, conventional techniques (like PM56) are not suitable to be used
owing to exorbitant requirements of input or the absence of weather-related variables, such
as Rs. The development of approaches depending on lesser weather-related data inputs
and the advancement of ML algorithms for the estimation of ET0 with limited climate data
become tasks of great significance. ML is among the finest solutions for developing an
ET0 model for this purpose. However, the formation of an ML model that can be tested
versus a target variable using an established set of input parameters is a key and essential
issue that was successfully solved in this work. With less climate data, the constructed
ML models were tested at several test sites to confirm their accuracy in predicting ET0.
Moreover, in stand-alone applications, the ML models were prone to poor performance due
to their inability to capture the trends and abruptly changing elements, which often reduced
modelling performance. The objective of the ensemble technique, as shown by its notation,
is to achieve distinctive characteristics for the component models that will result in the
varied patterns that are displayed in the dataset [31]. In addition, an ensemble of various
ML models increases the predictive ability of the model to draw input–output relations
perfectly [32,33]. The selection of the best model to use in an ensemble depends on the out-
comes of comparative analysis of the stand-alone performance of the models. The machine
learning models with better performance are selected and ensembled into a conjunction
to leverage the strengths of each model. The current study unifies the three tree-based
techniques (TB, SDT and DTF) using an MLP-based non-linear ensemble through a parallel
combination of the machine learning models. This implication enables the ensemble model
to leverage the strength of each technique to enhance the final modelling accuracy.

In view of the above-discussed literature, it is evident that a reliable ensemble of
machine learning models can significantly decrease parametric requirements to accurately
predict reference evapotranspiration. Most of the existing literature focuses on making
hydrological predictions or forecasts by direct modeling from input space to output space,
therefore ensemble modelling is still a growing research direction in the field of hydrology.
In the context of evapotranspiration estimation, an ensemble of tree-based machine learning
techniques is a novel application. Therefore, this study aims to apply a tree-based ML
ensemble approach for ET0 estimation with the following objectives: (i) apply sensitivity
analysis using tree-based ML techniques to identify the best indicators of ET0 in order to
reduce parametric requirements (ii) develop an ensemble model and improve ET0 estima-
tion, (iii) investigate ensemble model performance at various climatic stations. In addition,
the studies conducted on ET0 estimation using ML techniques have been limited to the
analysis of only one climatic station or region. For example, the authors of [34] investigated
a hybrid neural network approach in a semi-arid station only, and recommended using
at least one climatic station from arid, semi-arid and humid regions to propose a general-
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ized conclusion of the developed ensemble approach. Thus, the current study includes
climatic stations from each selected region to investigate the performance of the developed
tree-based ensemble ML approach.

2. Materials and Methods
2.1. Study Area and Datasets

In this study, 11 climatic stations located in different climatic regions of Pakistan have
been studied. The input climatic parameters and daily average values of ET0 were recorded
on a monthly basis in Bhakkar, Jhang, Toba Tek (T.T) Singh, Sahiwal, D.G Khan, Bahawalpur,
Rahim Yar (R.Y) Khan, and Jacobabad as arid regions, while Multan, Islamabad, and
Skardu were considered as hyper arid, semi-arid, and humid regions, respectively [35]. The
monthly dataset duration of climatic stations and their climatic conditions corresponding to
each region are explicitly mentioned in Table 1. Figure 1 indicates the geographic position
of all the selected climatic stations. Blue dots represent climatic stations near to Multan
Station (purple dot), while red dots represent distant climatic stations.

Table 1. Dataset duration and climatic characteristic of selected stations.

Sr. No. Station Name Latitude Longitude Duration Years Climatic Region

1 Multan 30.2705 71.5024 1996–2015 20 Hyper Arid

2 Jhang 31.2781 72.3317 2004–2017 14 Arid

3 T.T. Sing 30.9709 72.4826 2009–2017 9 Arid

4 Sahiwal 30.6682 73.1114 2005–2017 13 Arid

5 Bahawalpur 29.3544 71.6911 1987–2016 30 Arid

6 R.Y. Khan 28.4212 70.2989 2002–2017 16 Arid

7 D.G. Khan 30.0489 70.6455 2003–2017 15 Arid

8 Bhakkar 31.6082 71.0854 2010–2017 8 Arid

9 Jacobabad 28.2823 68.4472 2004–2016 12 Arid

10 Islamabad 33.6844 73.0479 2004–2016 12 Semi-Arid

11 Skardu 35.3247 75.5510 2004–2016 12 Humid
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2.2. Methodology

Firstly, the climatic data of Multan station (1996–2015) were divided into 70% training
and 30% testing sets and SDT, TB and DTF were applied to estimate ET0. This division of
data into training and testing is practiced by most of the researchers in hydrology [36,37]
and is also regarded as a simplified form of the V-fold rule of data partition [38]. Different
input combinations of meteorological parameters i.e., Tmin, Tmax, Tmean, RHmean, (u(x)),
and n, were formed and used as input in the selected tree-based ML model.

Afterward, an effective input parameter combination for ET0 estimation was selected
by developing, training, and testing tree-based ML models (i.e., SDT, TB, and DTF) at
Multan station, using input combinations. The tree-based linear and non-linear ensemble
models were developed using the multi-layer perceptron (MLP) technique. Lastly, the
performance of the developed tree-based ensemble model was tested in different weather
stations located in various climatic regions (arid, semi-arid, humid) to validate the ensemble
model’s results (for details: Sections 4.3 and 4.4). For this purpose, monthly data of climate
parameters for the selected stations were applied as input to estimate ET0 values using a
tree-based ensemble model. The FAO-PM56 Method, which is described in Section 2.2.1,
was used to calculate the ET0 value that is indicated in Table 2. The statistical summary of
the dataset for all the selected climatic stations is summarized in Table 2. In this section,
we will further discuss the FAO-PM56 method and machine learning techniques used to
estimate ET0. Further, we will also explain the development of non-linear ensemble models
based on the best-performing machine learning technique.

Table 2. Climatic data of other Stations.

Statistical Parameters
Tmax Tmin RHmean U (x) n ET0

◦C ◦C % Knots hour/day Mean (mm/day)

Multan

Mean 32.43 18.85 56.56 6.07 7.48 4.78

Median 34.70 20.20 59.00 5.50 7.69 4.75

Maximum 43.80 30.60 80.00 18.78 11.25 10.30

Minimum 18.00 3.80 28.00 0.00 3.13 1.10

Std. Dev. 7.39 8.62 11.83 3.97 1.47 2.61

Toba Tek Singh (T.T. Singh)

Mean 31.7 17.5 65.2 0.83 6.1 3.36

Median 34.3 18.8 67.5 0.7 6.8 3.5

Maximum 41.7 28.4 82.5 2.45 9.7 6.7

Minimum 16.9 2.7 39.5 0.00 0.00 1.00

Std. Dev. 7.13 8.17 10.82 0.61 2.44 1.64

Sahiwal

Mean 31.47 17.55 61.34 1.75 7.33 4.20

Median 34.00 18.60 64.00 1.65 8.00 4.20

Maximum 42.00 28.00 82.00 4.25 10.50 7.50

Minimum 16.40 3.20 33.00 0.10 0.00 1.40

Std. Dev. 7.38 7.90 11.14 0.89 2.56 1.74

Raheem Yar Khan (R.Y. Khan)

Mean 34.29 18.65 57.54 2.20 0.00 4.62

Median 36.60 20.05 59.75 2.15 0.00 4.40

Maximum 44.90 29.60 83.00 7.10 0.00 10.40
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Table 2. Cont.

Statistical Parameters
Tmax Tmin RHmean U (x) n ET0

◦C ◦C % Knots hour/day Mean (mm/day)

Raheem Yar Khan (R.Y. Khan)

Minimum 19.90 4.40 31.00 0.15 0.00 1.40

Std. Dev. 7.39 8.09 10.32 1.25 0.00 2.22

Jhang

Mean 31.71 17.50 62.16 1.01 8.08 4.04

Median 34.15 18.55 65.00 0.90 8.37 4.00

Maximum 42.10 29.00 82.50 3.10 11.34 8.50

Minimum 16.90 3.40 35.00 0.00 3.44 0.90

Std. Dev. 7.17 8.27 11.39 0.73 1.67 2.16

Dera Ghazi Khan (D.G Khan)

Mean 32.49 19.05 57.08 3.25 7.36 4.79

Median 35.00 20.45 60.00 3.25 8.41 4.95

Maximum 43.70 30.20 76.00 6.10 10.62 9.30

Minimum 17.60 5.00 24.50 0.80 1.37 1.50

Std. Dev. 7.45 7.98 10.66 1.08 2.97 2.13

Bhakkar

Mean 32.59 17.61 60.30 1.02 3.46 3.62

Median 34.60 19.10 62.50 0.95 0.00 3.50

Maximum 44.70 29.50 87.00 3.20 10.10 7.60

Minimum 17.50 3.20 34.00 0.10 0.00 0.90

Std. Dev. 8.01 8.49 11.08 0.67 3.92 1.90

Bahawalpur

Mean 32.49 24.46 20.52 4.98 5.08 4.95

Median 33.00 24.70 5.05 4.10 5.80 5.10

Maximum 44.90 29.60 63.00 11.00 11.40 10.50

Minimum 19.90 4.40 34.00 0.10 0.00 1.50

Std. Dev. 12.43 13.88 20.59 3.36 3.46 2.06

Jacobabad

Mean 33.82 20.29 41.80 2.91 7.64 4.45

Maximum 45.45 30.75 72.85 7.10 8.45 8.98

Minimum 19.95 6.35 12.85 0.15 6.85 1.22

Std Dev. 7.28 7.83 13.55 1.50 0.44 1.93

Islamabad

Mean 28.62 14.16 49.68 1.61 7.30 3.40

Maximum 40.15 25.35 73.85 7.44 11.15 8.19

Minimum 15.05 −2.90 22.85 0.05 5.35 1.73

Std. Dev. 6.41 7.70 11.07 1.31 1.40 0.76

Skardu

Mean 19.14 4.13 39.21 2.46 5.98 3.22

Maximum 9.24 19.40 81.00 2.04 1.81 2.04
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Table 2. Cont.

Statistical Parameters
Tmax Tmin RHmean U (x) n ET0

◦C ◦C % Knots hour/day Mean (mm/day)

Skardu

Minimum −2.70 −17.90 14.00 0.15 2.55 0.37

Std. Dev. 9.60 8.14 14.56 8.54 1.95 2.12

2.2.1. FAO-PM56 Method

Using Allen’s [5] FAO-56 PM approach, the ET0 values for the Multan Station during
the course of the research period were calculated using the meteorological variables:

ET0 =

0.408∆(Rn − G) + γ × 900
Tmean+273

× U2 × (es − ea)

∆ + γ(1 + 0.34u2)
(1)

es =
(emin + emax)

2
(2)

ea =

(
emin ×

(
(RHmax)

100

)
+ emax ×

(
(RHmin)

100

))
2

(3)

U2 =
ws × 4.87 × 1000

3600 × emin(67.8 × 3 − 5.42)
(4)

where ET0 is calculated in mm/day, Rn is representing the net radiation (MJ/m2 day) at the
surface of the crop, soil heat flux density is represented by G (MJ/m2 day, mean average
temperature in ◦C is shown by the parameter Tmean, U2 denotes the wind speed (m/s), es
ea, emin and emax represents the saturation actual, minimum and maximum vapor pressure
(kPa). Finally, ∆ and G are the vapor pressure curve slope (kPa/◦C) and psychometric
constant (kPa/◦C), respectively.

2.2.2. Tree-Based Machine Learning Techniques

Tree-based machine learning approaches have a setup that resembles a tree and nu-
merous nodes which are further responsible for examining and categorizing the given
dataset [39,40]. The objective of this work was to identify the most useful climatic parame-
ters for ET0 estimation using the techniques of TB, SDT, and DTF. The SDT consists of one
decision tree while TB and DTF are designed on multiple trees. The difference between TB
and DTF originates from the transfer of error from the previous tree to the next (i.e., series
combination) in TB and the parallel combination in DTF. The background and applied
procedure of these techniques can be found in [41]. In addition to finding optimal values,
the ML techniques based on superlative algorithms are of critical importance. The selected
ML algorithms corresponding to the applied tree-based techniques are given in Table 3.

Table 3. Summary of Applied Machine Learning Techniques.

ML Techniques Learning Algorithm
Optimal Values of Prime Parameters

Rows in Node Tree Level Node Size

SDT Iterative Dichotomiser 3 (ID3) 5 10 10

TB Gradient Boosting Algorithm (GBA) 400 5 5

DTF Random Forest Algorithm (RFA) 200 50 2
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2.2.3. Development of Ensemble Models

A concept of ensemble process was employed which united the single output of
each ML model by means of an arbitration process to attain an accurate target value by
improving its performance [30]. The author of [42] has explained the arbitration process
while complete detail regarding ensemble modeling with its diversity and size is elaborated
in [43]. Ensemble modeling has fractionized into different types: (a) linear ensemble
(b) non-linear ensemble. Linear ensemble (LE) includes Stack regression [44], weighted
average [45], and simple average methods [46], while a combination of ML techniques
is called a non-linear ensemble (NLE). The non-linear ensemble method is favored and
preferred over the linear ensemble method according to recent studies. Linear ensemble
methods have the advantage of computational simplicity over NLEs, whereas the latter are
sought as having greater predictive accuracy as compared to linear ensemble methods. In
addition, the authors of [28] have found NLE modelling superior in comparison to NLE
for ET0 estimation using pan evaporation data. They have also intricated the superior
characteristics of NLEs over an LE ensemble approach and henceforth recommend applying
NLEs to obtain significant results.

The ensemble modeling in this study was organized via one linear (simple averaging)
and non-linear (combined ML techniques) ensemble method in order to make better com-
parison and a strong case. NLE methods combine the predictions of individual tree-based
models using a non-linear function i.e., bagging or boosting. The non-linear function can
be a weighted sum of the individual model predictions, or it can involve more complex op-
erations such as decision trees, neural networks, or kernel methods. Non-linear ensembles
can capture more complex relationships between the attributes of the input and the desired
variable, and this can result in higher predictive accuracy compared to linear ensembles. In
the linear ensemble (LE), a simple averaging method is carried out as:

ETLE =
1
N ∑N

i=1 ETi (5)

Here, ETLE, ETi, and N indicate the results of the ensemble model, the combination of
the single model and the total number of selected models, respectively.

On the other hand, the outcome of each selected ML model has been accounted for
and then further used as a predictor (input) in another chosen ML model to acquire entire
ensemble results. In this study, a multi-layer perceptron (MLP) has employed the selected
ensemble model. The NLE-ET0 is estimated based on the ET0 outputs of the ML models
(SDT, TB, DTF) as:

ETNLE = f (ETSDT , ETTB, ETDTF) (6)

Here, ETSDT, ETTB, and ETDTF present predicted ET0 by SDT, TB and DTF models,
respectively; while ETNLE is ensemble ET0 obtained by a non-linear ensemble (NLE) tech-
nique. The process continued until each subset had been analyzed once during validation.
The general ensemble procedure can be seen in Figure 2.
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Researchers [35,47] have confirmed the performance of the MLP (type of ANN) model
over other AI models in the selection of a non-linear ensemble approach. For each ML
model, the prime parameters of training algorithms, the number of iterations, convergence
value and execution times always play a critical role [28]. Thus, this study has employed
MLP as an ensemble model to obtain overall ensemble results. The parametric values for
the selected ensemble model are given in Table 4 as recommended by the authors of [35].

Table 4. Parametric values for selected MLP ensemble model.

Parameters Values Parameters Values

Number of layers 3 Number of Iterations 10,000

Min to max neurons 2–20 Convergence tolerance −1.00 × 10−5

Neurons in hidden layer 6 Minimum improvement delta −1.00 × 10−6

Hidden layer Function Sigmoid Minimum gradient −1.00 × 10−7

Output layer function Linear Maximum execution time 0

By calculating the Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2),
and root mean squared error (RMSE), the performance of these models was examined. The
error values indicate deviation error from the mean-ET0 value. In addition, the lowest
deviation error from the mean, and highest effectiveness of climatic parameters on ET0
was observed [28]. The RMSE value for each model was calculated using Equation (7),
while Equations (8) and (9) were used to determine the Nash–Sutcliffe Efficiency (NSE) and
coefficient of determination (R2). The RMSE, NSE, and R2 values of both the training and
testing datasets are summarized in Tables 5–7, respectively.

RMSE =

√
∑N

i=1
(ET obs − ETest)

2

N
(7)

NSE = 1 − ∑n
i=1(ETobs − ETest)

2

∑n
i=1
(
ETobs − ETobs

)2 (8)

R2 =
[n[∑n

i=1 (ETobs ∗ ETest)− (∑n
i=1 ETobs)(∑

n
i=1 ETest)]]

2[
n∑n

i=1 ETobs
2 − (ETest)

2
]
−
[
n∑n

i=1 ETest
2 − (ETest)

2
] (9)

Table 5. Results of RMSE (mm/month) for all the meteorological input combinations.

Model Meteorological Input Dataset
SDT TB DTF

Training Testing Training Testing Training Testing

Model 1 Tmin, Tmax, RHmean, u(x), n 0.55 0.66 0.39 0.46 0.38 0.54

Model 2 RHmean, n 1.05 1.74 1.12 1.41 1.14 1.9

Model 3 RHmean, n, u(x) 0.79 1.76 0.61 1.64 0.68 1.39

Model 4 RHmean, u(x) 0.79 1.76 0.6 1.63 0.36 1.7

Model 5 Tmax, Tmin, n, u(x) 0.42 0.62 0.32 0.4 0.22 0.51

Model 6 Tmax, RHmean, n, u(x) 0.38 0.97 0.3 0.87 0.18 1.06

Model 7 Tmax, RHmean, u(x) 0.38 0.97 0.29 0.86 0.2 1.23

Model 8 Tmax, Tmin, RHmean, n 0.4 0.83 0.39 1.21 0.25 1.04

Model 9 Tmax, Tmin, RHmean, n, u(x) 0.32 0.83 0.27 0.82 0.18 0.81

Model 10 Tmean, RHmean, n, u(x) 0.45 0.64 0.29 0.95 0.18 0.99

Model 11 Tmean, RHmean, u(x) 0.45 0.64 0.28 0.95 0.18 1.18
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Table 5. Cont.

Model Meteorological Input Dataset
SDT TB DTF

Training Testing Training Testing Training Testing

Model 12 Tmean, RHmean 0.52 0.7 0.41 1.21 0.27 1.5

Model 13 Tmean, n 0.55 0.64 0.6 0.64 0.62 0.74

Model 14 Tmean, RHmean, n 0.52 0.7 0.42 1.21 0.51 1.31

Model 15 Tmin, RHmean, u(x) 0.48 0.58 0.38 0.42 0.24 0.48

Model 16 Tmin, RHmean, n, u(x) 0.45 1.17 0.29 1.11 0.19 1

Model 17 Tmean, u(x) 0.45 1.17 0.29 1.12 0.2 1.17

Table 6. Results of NSE for all the meteorological input combinations.

Model Meteorological Input Dataset
SDT TB DTF

Training Testing Training Testing Training Testing

Model 1 Tmin, Tmax, RHmean, u(x), n 0.97 0.93 0.95 0.94 0.99 0.98

Model 2 RHmean, n 0.71 0.68 0.66 0.58 0.65 0.54

Model 3 RHmean, n, u(x) 0.83 0.4 0.9 0.42 0.88 0.44

Model 4 RHmean, u(x) 0.83 0.5 0.9 0.43 0.94 0.46

Model 5 Tmax, Tmin, n, u(x) 0.95 0.89 0.93 0.91 0.95 0.82

Model 6 Tmax, RHmean, n, u(x) 0.96 0.73 0.98 0.78 0.95 0.68

Model 7 Tmax, RHmean, u(x) 0.96 0.73 0.98 0.78 0.94 0.56

Model 8 Tmax, Tmin, RHmean, n 0.96 0.8 0.96 0.58 0.92 0.68

Model 9 Tmax, Tmin, RHmean, n, u(x) 0.97 0.8 0.98 0.81 0.93 0.81

Model 10 Tmean, RHmean, n, u(x) 0.94 0.88 0.98 0.72 0.94 0.71

Model 11 Tmean, RHmean, u(x) 0.94 0.88 0.98 0.74 0.94 0.6

Model 12 Tmean, RHmean 0.93 0.86 0.96 0.58 0.92 0.35

Model 13 Tmean, n 0.92 0.88 0.9 0.88 0.9 0.84

Model 14 Tmean, RHmean, n 0.93 0.86 0.95 0.58 0.93 0.5

Model 15 Tmin, RHmean, u(x) 0.94 0.90 0.96 0.91 0.98 0.93

Model 16 Tmin, RHmean, n, u(x) 0.94 0.61 0.98 0.64 0.95 0.71

Model 17 Tmean, u(x) 0.94 0.61 0.98 0.64 0.93 0.6

Table 7. Results of R2 for all the meteorological input combinations.

Model Meteorological Input Dataset
SDT TB DTF

Training Testing Training Testing Training Testing

Model 1 Tmin, Tmax, RHmean, u(x), n 0.96 0.95 0.96 0.95 0.97 0.96

Model 2 RHmean, n 0.69 0.66 0.64 0.57 0.64 0.53

Model 3 RHmean, n, u(x) 0.81 0.39 0.88 0.41 0.86 0.43

Model 4 RHmean, u(x) 0.81 0.49 0.88 0.42 0.92 0.45

Model 5 Tmax, Tmin, n, u(x) 0.93 0.87 0.91 0.89 0.93 0.80

Model 6 Tmax, RHmean, n, u(x) 0.94 0.71 0.96 0.76 0.93 0.66

Model 7 Tmax, RHmean, u(x) 0.94 0.71 0.96 0.76 0.92 0.55
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Table 7. Cont.

Model Meteorological Input Dataset
SDT TB DTF

Training Testing Training Testing Training Testing

Model 8 Tmax, Tmin, RHmean, n 0.94 0.78 0.94 0.57 0.90 0.66

Model 9 Tmax, Tmin, RHmean, n, u(x) 0.95 0.78 0.96 0.79 0.91 0.79

Model 10 Tmean, RHmean, n, u(x) 0.92 0.86 0.96 0.70 0.92 0.69

Model 11 Tmean, RHmean, u(x) 0.92 0.86 0.96 0.72 0.92 0.59

Model 12 Tmean, RHmean 0.91 0.84 0.94 0.57 0.90 0.34

Model 13 Tmean, n 0.90 0.86 0.88 0.86 0.88 0.82

Model 14 Tmean, RHmean, n 0.91 0.84 0.93 0.57 0.91 0.49

Model 15 Tmin, RHmean, u(x) 0.96 0.93 0.95 0.94 0.97 0.96

Model 16 Tmin, RHmean, n, u(x) 0.92 0.60 0.96 0.63 0.93 0.69

Model 17 Tmean, u(x) 0.92 0.60 0.96 0.63 0.91 0.59

The value of RMSE is always positive as of the squaring function used in its math-
ematical formula. An increase in the divergence between observations and predictions
results in an increase in RMSE value. The results obtained with a high RMSE value from
the model are always ignored and not acceptable. Conversely, an output of low RMSE from
the selected model has been chosen for perfect fit. If the value approaches 0, it shows the
perfect fit of the model. Figure 3 refers to the flow chart of best input combination selection
and a non-linear ensemble of tree-based techniques for ET0 estimation.
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Figure 3. Flow chart of best input combination selection and non-linear ensemble of tree-based
techniques for ET0 estimation.

3. Results
3.1. Determination of Effective Climatic Parameters

A total of 17 models based on different meteorological-input datasets were tried using
selected ML techniques for ET0 estimation at Multan station. It can be observed in Table 5
that model 15 having Tmin, RHmean, u(x) among all the models had the least RMSE
value which indicated less deviation from ET0-mean values. However, the TB technique
outperformed in testing as RMSE was recorded at 0.42 mm/month while 0.48 mm/month
and 0.58 mm/month were calculated in the case of DTF and SDT, respectively. The testing
NSE values observed for TB, DTF, and SDT while using Model 15 were 0.91, 0.93 and
0.90, respectively. Hence, DTF performed best in estimating ET0 using the selected input
combination. Similarly, Table 6 summarizes the NSE values of 17 SDT, TB and DTF models
with 17 input combinations, whereas Table 7 presents the summary of results in terms
of R2.

To validate the results of ET0 estimation at Multan station (summarized in Tables 5–7),
comparison of RMSE results obtained through tree-based techniques (SDT, TB and DTF) is
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graphically presented in Figure 4 to determine effective meteorological input combinations
on ET0 estimation. It can be observed from Figure 4a that testing RMSEs for Model 1, Model
5, Model 10, Model 11, Model 13, and Model 15 under the SDT technique were found to
be less than 0.7 mm/month. On the other hand, deviations in ET0 values were observed
above 50% from the mean value when meteorological input combinations based on other
models were used in SDT for ET0 estimation. The testing RMSEs for Model 1, Model 5,
Model 13, and Model 15 under TB recorded less than 0.7 mm/month for ET0 estimation
among all other applied models as shown in Figure 4b. For DTF, only Model 1, Model 5,
and Model 15 generated testing RMSEs less than 0.7 mm/month as observed in Figure 4c.
Similarly, Figure 5 graphically presents the performance of SDT, TB and DTF models in
terms of NSE. Model 1 is based on the maximum number of climatic variables including
Tmin, Tmax, RHmean, u(x), and n, while Model 5 uses Tmax, Tmin, n, and u(x), as input
variables. Therefore, Model 15, having the minimum number of variables, is rendered as
the best input combination.

The reason behind this is that some models did not contain temperature as an in-
put parameter which generated more residuals in resulting values and hence the error
recorded was highest. For Multan station, which has an arid climatic nature, the change in
temperature affected ET0 and was considered an effective parameter for ET0 estimation.
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various models.
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Figure 5. Training and testing results of NSE for (a) SDT, (b) TB, and (c) DTF based on input to
various models.

The above results could be summarized as applied tree-based ML techniques with
Model 15 having a total of three input parameters (Tmin, RHmean, u(x)) which outper-
formed other models and generated the best results for ET0 estimation. As the FAO-PM56
method is not only reliant on meteorological and aerodynamic parameters but also requires
local calibration, in this situation tree-based techniques dependent on only meteorological
parameters are the best alternative way to estimate ET0. Thus, a scatter plot of SDT, TB and
DTF techniques’ performance in the testing phase using the Model 15 input combination
against the FAO-PM56 method was plotted and is presented in Figure 6. The obtained
results indicated that Model 15 with only 3 climatic parameters (Tmin, RHmean, u(x))
generated less variance and the R2 obtained is higher. For the TB-based model with input
combination 15, an R2 value of 0.93 was observed during the testing phase. For SDT, this
value was 0.94 and for DTF, it was 0.96. These observations of R2 also validated our above
results which indicated that the RMSE value increased as the number of non-effective
climatic parameters increased as input in applied tree-based techniques.
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Figure 6. Regression comparison of SDT, TB and DTF with FAO-PM56 method.

3.2. Ensemble Model Results

After the comparative analysis of DTF, TB and SDT performance at all seventeen input
combinations, the best technique of DTF with Model 15 as the input combination was
selected for ensemble. The ensemble of an individual technique enhanced the capability
of the target value and generated close results to the actual value. In addition, the output
obtained from the ensemble approach captured seasonal variations in the best way and
generated good results against target values. The current study applied one linear (simple
averaging) and non-linear (combined ML techniques) ensemble approach to estimate ET0.
The obtained results are shown in Figure 7. Simple linear ensemble-based ET0 (LE-ET0)
shows less accuracy (i.e., R2 = 0.89) than that of non-linear ensemble-based ET0 (NLE-ET0)
(i.e., R2 = 0.97) with respect to PM-ET0. Similarly, the RMSE of LE-ET0 (RMSE = 0.38
mm/month) is higher than that of NLE-ET0 (RMSE = 0.18 mm/month).
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Figure 7. ET0 Comparison of LE and NLE approaches with FAO-PM56 for Model 15 at Multan station.

3.3. Testing of the NLE Method at Nearby Climate Stations

In this section, comparison of NLE and FAO-PM56 is presented by considering climatic
data from adjacent stations in southern Punjab. These climatic stations include Bhakkar,
DG Khan, Jhang, RY Khan, Sahiwal, TT Singh and Bahawalpur. The selected Model 15,
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with an input combination of Tmin, RHmean and u(x), was used as input to estimate ET0
by applying an NLE approach and compared with the FAO-PM56 method. The obtained
results for selected climatic stations are shown in Figure 8. At Bhakkar station, an MLP-
based NLE model was able to reproduce the PM-method ET0 with a small estimation error
(i.e., RMSE = 0.34 mm/month) and high similarity (i.e., R2 = 0.96). Similarly, values of
RMSE at DG Khan, Jhang, RY Khan, Sahiwal, TT Singh, and Bahawalpur stations were 0.38,
0.36, 0.36, 0.25, 0.32, and 0.33 (mm/month), respectively, whereas R2 values were observed
to be above 0.96 at all stations.
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It can be perceived from Figure 8 that ET0 obtained through an NLE approach com-
pared well with the FAO-PM56 method. The shape of the trend for each climatic station in
Figure 7 indicated: (1) available data duration of climatic stations; (2) winter and summer
seasons. The higher and lower peaks of ET0 in the results indicated climatic variation over
the selected periods. The random data duration of adjacent climatic stations was selected
to investigate the seasonal changes over the selected period. At each climatic station, the
NLE approach overlapped with FAO-PM56 results and generated supreme results.

3.4. Testing of NLE Approaches in Faraway Climatic Stations

To investigate NLE performance in other climatic regions, three climatic stations,
namely, Jacobabad (arid region); Islamabad (semi-arid region) and Skardu (humid region)
were analyzed. Only the effective input meteorological parameters of Tmin, RHmean,
and u(x) were used as input (Table 5) to estimate ET0 by applying an NLE approach and
compared with the FAO-PM56 method. It was noted in Figure 9 that ET0 estimated by
NLE approach compared well with the FAO-PM56 method. The higher and lower peaks
of ET0 at each selected station with the NLE and FAO-PM56 method closely overlapped.
This indicated that ET0 obtained through the NLE approach is reliable and acceptable with
the use of limited climatic data. Similar to adjacent stations, NLE-based ET0 showed an
excellent resemblance to PM-based ET0. The RMSE values for Jacobabad, Islamabad, and
Skardu were 0.37, 0.32, and 0.19 (mm/month), respectively. The R2 scores ranged between
0.96 at Jacobabad and 0.99 at Skardu stations.
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3.5. Discussion

In this study, firstly, the findings indicated that DTF outperformed TB and SDT in
estimating ET0 using climatic parameter-based combinations as input to machine learning
models. The climatic data of different weather stations, across diverse climate zones of
Pakistan, was used. Earlier, for estimation of ET0, TB was found to outperform SDT and DTF
in Pakistan and other countries including the USA, New Zealand, and China [35,47–50]. However,
DTF has been found to be an effective machine learning techniques in other hydrological
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applications including rainfall-runoff modelling [51,52]. This result is inconsistent with
past investigations in the case of ET0 and with hydrological applications generally. This
contradiction is possibly due to the greater number of climatic variables involved in the
estimation of ET0 as compared to other hydrological applications.

Secondly, an ensemble of machine learning models has been found to enhance mod-
elling performance and accuracy. The ensemble of SDT, TB and DTF by using MLP
enhanced the accuracy of ET0 estimation with minimum parametric requirements. Earlier
studies have also shown that an adequate ensemble of machine learning techniques can
increase modelling performance as compared to stand-alone applications. Therefore, this
finding of the current study is consistent with those of other researchers [28–30,32,33].

Thirdly, mean relative humidity, mean temperature, and wind speed were found to
be critical indicators of ET0 in our study. The study’s findings supported the assertion
made by the authors of [28] that increased air moisture content causes relative humidity
to have greater impact in wet locations; as a result, when the aridity index increases, air
moisture content is constrained, and its effects are less. Temperature and relative humidity
were discovered to be the most important predictors of ET0 in a study [53]. In another
study [54], the effect of weather parameters on ET0 estimation in Esfahan province in Iran
was investigated. The study concluded that minimum air temperature, sunshine hours, and
relative humidity formed effective parameters for ET0 estimation in this region. Similarly, it
was observed by the authors of [49] that climatic variables related to relative humidity had
a significant influence on ML modelling of ET0. Including relative humidity in machine
learning-based models increased performance by up to 24%. These earlier observations
support our finding on the selection of the best input combination.

However, it is recommended to employ ML over empirical and locally calibrated mod-
els in cases where climatic data is unavailable, inconsistent or of poor quality. Calibration
of ML models in the training phase is critical to avoid over- or underestimation of ET0
values. ET0 is underrated with more training data, but it is overestimated with less training
data. The use of models based on machine learning techniques with minimum information
requires sufficient training. Therefore, in order to test the efficacy of the ML-ET0 models
generated, this study evaluated ML models in diverse climates. The data requirements for
the current study, “Using the FAO PM56 and ML models for ET0 estimation,” are displayed
in Table 8.

Table 8. Data required for the Et0 estimation using the FAO PM56 and ML models.

Input Data Tmin Tmax RHmin RHmax RHmean U(x) N Rn
Aerodynamic Factors Adopted

Methodology(Rn, es, ea, emin, emax,
∆, Z, and G)

Climatic and aerodynamic ** ** ** ** ** ** ** ** ** FAO PM56

Effective variables ** xx xx xx ** ** xx xx xx ML models

**—parameters required for ET0 estimation. xx—parameters used in the best input combination.

FAO PM56 may be observed in Table 8 to depend on numerous characteristics that
are difficult to obtain, especially in poor countries. As an alternative to the FAO PM56
approach, ML models use fewer parameters that yield the best ET0 value.

4. Conclusions

The research effort that was carried out to create an ensemble-based machine learning
model to predict ET0 with scant climate data is discussed in this paper. The lengthy process
and significant data requirements (not readily accessible in some scenarios) for determining
ET0 using the FAO-PM56 approach, which is recommended, served as the impetus for
the study. The study’s findings demonstrate that it is possible to predict ET0 from extant
climatic data using a tree-based model. It has been shown that the mean relative humidity,
minimum temperature, and wind speed are the three most important inputs for a precise
determination of ET0 using a tree-based model. This effective input was supported by a
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sensitivity analysis of the input parameters on ET0 carried out using tree-based models,
where the lowest RMSE and maximum R2 values were obtained. According to the study’s
findings, tree-based models can still predict ET0 precisely even when just data for these
three variables are provided. Furthermore, an ensemble approach was applied to improve
ET0 estimation using only three effective inputs (Tmin, RHmean, u(x)) and the results showed
considerable improvement in ET0 estimation. The performance of this ensemble model was
further investigated in seven adjacent and four faraway climatic stations of the selected
study area to include different climatic effects from diverse climatic regions. The obtained
results of the ensemble model indicate its usefulness and reliability as the obtained ET0
was well correlated with the standard FAO-PM56 method. Lastly, the study proposed to
develop different ensemble ML techniques for ET0 estimation in other parts of the world.

Because ML strategies can handle system uncertainty, the ensemble stays superior,
which implies that when a single ML methodology performs poorly, an ensemble approach
will have more potential for improvements. Additionally, when a single ML approach
performs well, ensemble modelling produces findings of a high caliber, and when a stand-
alone ML technique performs poorly, improved results may be obtained. The approach we
have suggested for estimating ET0 has to be applied in a number of places with diverse
climatic conditions. The crucial thing to remember is that applying this ensemble approach
in many parts of the world will assist in increasing its veracity and accuracy, and more
recent machine learning approaches built on cutting-edge algorithms offer fodder for
further study. This study proposes that an ensemble approach can be used by combining
other ML techniques such as ANFIS, SVM, GMDH and CCNN on ET0 estimation. The
most significant factor in applying an ensemble approach is the use in all parts of the world
to determine its efficiency and reliability, specifically in areas that have limited climatic
data. In addition, the current study used climatic data on a monthly basis, therefore we
recommend future research should be focused to develop an ensemble model based on data
on a daily basis to increase the accuracy and generalizability of the developed ensemble
model for ET0 estimation.
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