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Abstract Animals are capable of robust and reli-
able control in unstructured environments, where they
effortlessly overcome the uncertainty of interaction and
are capable of exploiting singularities. These condi-
tions are a well-known challenge for robots due to
the limitations of projected dynamics, which requires
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accurate modelling and is susceptible to singulari-
ties. This work proposes a compliant passive con-
trol method for redundant manipulators based on a
superimposition of multiple passive task-space con-
trollers in a hierarchy without requiring any knowledge
of the robot dynamics. The proposed control frame-
work of passive controllers is inherently stable, numer-
ically well-conditioned (as no matrix inversions are
required), and computationally inexpensive (as no opti-
misation is used). This method leverages and intro-
duces a novel stiffness profile for a recently proposed
passive controller with smooth transitions between the
divergence and convergence phases making it partic-
ularly suitable when multiple passive controllers are
combined through superimposition. The experimental
results demonstrate that the proposed method achieves
sub-centimetre tracking performance during demand-
ing dynamic tasks with fast-changing references, while
remaining safe to interact with and robust to singular-
ities. The data further show that the robot can fully
take advantage of the redundancy to maintain the pri-
mary task accuracy while compensating for unknown
environmental interactions, which is not possible from
current frameworks that require accurate contact infor-
mation.

Keywords Impedance control · Interaction control ·
Model-free control
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1 Introduction

Redundant robots—which have more degrees of free-
dom (DoF) than required for a task—have been widely
studied and deployed due to their intrinsic versatility.
The higher dimensionality of the joint configuration
space with respect to (w.r.t) the task-space makes these
systems more adaptable as multiple solutions can be
found.

However, this flexibility introduces a higher com-
plexity for both planning and control that rapidly
increases with the system and task dimensionality. For
example, computing the joint configuration from a
task-space pose, i.e. inverse kinematics (IK), becomes
increasingly more challenging with the increase of
the redundancy dimension [1]. This problem is also
encountered when dealing with the inverse dynamics
problem, which is used to derive the control laws used
in interaction control [1–3].

On the other hand, biological systems reliably inter-
act with uncertain dynamics despite their highly redun-
dant structures, which are also characterised by the
highly nonlinear dynamics introduced by soft tissues,
such as muscles and connective tissues. To address
these inverse problems, multiple optimisation frame-
works and approaches to deal with challenges aris-
ing from numerical conditioning have been developed.
Currently, inverse problems for soft robots1 and opti-
misation of the task-space dynamics are still open prob-
lems [4]. A recent approach to robustness for achiev-
ing task-space compliancebehaviours includes systems
for increasing the robustness of projections through
software by modulating/adapting the references [2].
This robustness can also be achieved by exploiting
more complex hardware design that embeds variable
mechanical compliance directly into the robot struc-
ture and its actuation [3]. As an example, Keppler et
al. have proposed a control architecture that enables to
retain both robustness and accurate tracking [3], while
related work has algorithmically optimised the spa-
tiotemporal modulation of impedance to achieve tasks
more efficiently [5]. These approaches take advantage
of hardware equipped with variable stiffness actuators
(VSAs)—these systems allow better exploitation of the
hardware to achieve more dynamic movements; how-

1 Here, soft robots are used to refer to both systems made from
non-rigid materials and those with compliant control, e.g. col-
laborative robots.

ever, this comes with increased complexity and cost of
motion planning in addition to the need for very accu-
rate modelling of the VSA structures.

Inverse kinematics solutions and task-space dynam-
ics projections are required for controlling redundant
robots and they share similar challenges, as analysed
in depth in [6,7]. In summary, both problems rely on
the inversion of the Jacobian matrix, which is non-
square in redundant manipulator due to the differ-
ent task and joint-space dimensions [1]. The pseudo-
inverse is a transformation that solves such a prob-
lem. It separates the information regarding robot states
into two orthogonal sub-spaces (task-space and null-
space), which are not expected to exchange informa-
tion (i.e. energy). Therefore, retaining the orthogonal-
ity between these two sub-spaces is paramount for the
algorithms’ stability [6,7]. Maintaining this orthogo-
nality depends on both the robot kinematics and the
task—which can be quite difficult to achieve and main-
tain, especially during highly variable situations, such
as sudden changes in contacts and dynamic interactions
(Fig. 1). As one example, the dynamically consistent
inverse obtains orthogonality via the minimisation of
the kinetic energy projected by the null-space into the
task-space [7]. These methods have found application
in many architectures exploiting null-space projection
to control redundant manipulators; however, they all
face the same problem of the degeneration of the pro-
jection close to singularities [8–10].

Passive controllers have been proposed to theo-
retically guarantee interaction stability under uncer-
tain interaction conditions, using for instance virtual
tanks as energy storage (i.e. path integral) for the non-
conservative energy of the controller. However, their
passive behaviour trades off tracking performances to
retain the safety of interaction, making this framework
difficult to deploy in highly variable environments [8].
The result presented in their manuscript focuses on
verifying passivity and safety of interaction and does
not provide a clear quantitative analysis of task-space
tracking performance. However, based on the plots of
the Cartesian tracking error (Fig. 5 in [8]) reported for
the simulation results for a 4-DoF planar manipulator,
it seems that it can be expected about 1cm residual
pose error in the best case scenario (i.e. when there
is energy available in the tank). Moreover, virtual tank
impedance controllers are only passive if there is energy
left in their virtual tanks. Due to passivity constraints,
the tanks’ energy can only be charged from external
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Fig. 1 Stack of passive controllers executing a reference motion
to follow a line trajectory while an unknown external distur-
bance is introduced to the elbow joint. The controller adapts
safely and compliantly to the disturbance and degrades track-
ing performance gracefully. The end-effector controller �hee =
K (�̃xe)�̃xe = K (�̃xe)(�xed − �xe) ensures that the end-effector accu-
rately follows the trajectory. The secondary controller on the

elbow �hele = K (�̃xel )�̃xel = K (�̃xel )(�xeld − �xel ), being less stiff,

ensures the robot can deform and recover in the null-space in
response to external perturbations. In this case, the external per-
turbation (�fExt ) is applied by the human pushing a box against the
link connecting the shoulder joints to the elbow joint. The control
signal is the joint torque vector computed by the superimposition
of the two controllers �τ tot = J Te �hee + J Tel �hele , where J Te and J Tel
are the end-effector and the elbow Jacobians, respectively

energy sources [8]. Realising passive control is made
even more difficult when dealing with null-space and
task-space controllers. In fact, as they are orthogonal
to each other, tracking the total energy exchanged by
the manipulator is challenging [11]. Another challenge
to the stability of virtual tank controllers is to maintain
the orthogonality between null-space and task-spaces
during highly variable tasks. Higher nonlinearity in the
dynamics reduces the accuracy in the computation of
the orthogonal projection that, consequentially, gener-
ates unaccounted energy transfer between the two sub-
spaces [7,11].

This work investigates the possibility of using the
superimposition of passive task-space controllers to
drive redundant manipulators rather than relying on
null-space controllers, cf. Fig. 1. Conceptually, this fol-
lows the idea to generate task-space wrenches at multi-
ple links and map them back to joint-level torques. To
do so, the proposed solution will not need to rely on
any mathematical projections (and implicitly, matrix
inversions) required by the null-space projections. Vir-
tual mechanical constraints are instead generated using

the superimposition of task-space controllers to control
task-space and the redundant degrees of freedom of
the manipulators. However, implementing such a solu-
tion will require a controller framework that is intrinsi-
cally stable. The recently proposed fractal impedance
controller (FIC) [11] is a passive controller meet-
ing this requirement. It relies upon a nonlinear stiff-
ness behaviour in the task-space to track the energy
exchanged between the robot and the environment and
treats the unexpected energy flow from the null-space
as an external perturbation. The controller uses the
concept of fractal impedance for the implementation
of a passive controller that can provide good perfor-
mances in both trajectory and force tracking. Thereby,
it detaches the robot stability from the postural optimi-
sation,which are currently bounded for interaction con-
trollers relying on quadratic programming (QP) optimi-
sation [2]. Furthermore, the proposed method is inde-
pendent of any specific type of actuation and thus can
be used in any torque/force-controlled robot.
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In summary, the contributions are:

1. Superimposition of Passive Task-Space Controllers
to preserve the primary task by sacrificing redun-
dancy tasks through the exploitation of themechan-
ical redundancy. The priority of the controller is
determined by the maximum force exertable by the
controller, as will be explained in Sect. 2. As the
framework only relies on the forward computation
of kinematics and geometric Jacobian, it is numeri-
cally stable and computationally inexpensive. Fur-
ther, it can be used with uncertain and imprecise
dynamics models as it only relies on the kinemat-
ics model (2.5).

2. Proposal of a new force profile for a fractal attractor
which enables a smooth transition between conver-
gence and divergence phases 2.4.

3. Validation of the proposed approach both in simula-
tion to test contact interaction with unknown obsta-
cles and in real hardware experiments 3 to evaluate
reference tracking performance for fast reference
motion 4. As all open parameters have a physically
tractable meaning and the controller is intrinsically
stable, online tuning can safely be performed.

The intention is to release the implementation for
simulation and hardware experiments open source with
the publication of this manuscript.

2 Method

The null-space of a redundant manipulator is the set
of solutions that do not lead to a variation in the task
output, e.g. the set of joint-space configurations that
achieve the same end-effector pose. On highly redun-
dant robots, null-space optimisation frameworks are
used to identify the optimal joint-space configuration
for a given task. The null-space can then be used to ful-
fil redundancy tasks, e.g. to minimise energy or differ-
ence to a nominal configuration, or to adapt to changes
imposed by the environment. A popular approach is
stack-of-tasks (SoT) optimisation methods [12]. SoT
approaches are iterative algorithms which apply null-
space optimisation to a hierarchy of tasks: Subsequent
tasks are projected onto and solved in the null-space
of the higher-order task. As thus, this hierarchical
approach guarantees that lower-order tasks do not lead
to a deterioration in performance (or violation of) a
higher-order task. Their main limitation, however, is

that null-space projections are inserted in the control
loop, rendering the controllers susceptible to numerical
instability connected with the null-space projections.

The proposed method, shown in Fig. 1, aims to
remove null-space projections from the control loop.
Null-space projections are used to account for the exter-
nal interaction in the whole-body control optimisation
problem [2]. This type of formulation requires not only
to make a priori assumptions on the environmental
interaction, but it also renders the controller stability
dependent on their accuracy. Thus, the controller sta-
bility is highly susceptible to erroneous assumptions
[2].

The proposed method unravels the co-dependency
between stability and assumptions made on the exter-
nal environment by using the superimposition of task-
space controllers that generate virtual force fields (i.e.
soft mechanical constraints) that pull the robot towards
the desired configuration. This is a different approach
to handling redundancy compared to the null-space
approach. The superimposition of the controller will
bias the robot to move towards a certain preferred pos-
ture, without guaranteeing that this particular configu-
ration will be reached. In fact, the controller will con-
tinuously maintain a mechanical equilibrium between
the virtual forces and the environmental interaction
without requiring any assumption on the environmental
interaction. This implies that the controller is robust to
unknown environmental interactions, but is not guar-
anteed to be in a global optimum. However, it is likely
to settle in the closest minimum in the system’s ener-
getic manifold (i.e. the closest state with mechani-
cal equilibrium). In contrast to weighted optimisa-
tion approaches, the particular structure of the fractal
attractor (cf. Sect. 2.4) in this passive control approach
ensures that the hierarchy of tasks is maintained, and
a large violation of a lower-order task does not lead to
performance deterioration in a higher-order task.

In synthesis, the relative strength of these virtual
constraints will determine the trade-off between the
tasks assigned to the controllers and, consequentially,
the order in which the task accuracy will be sacrificed.
While this method can be applied with any type of
task-space controller, using passive controllers guar-
antees stability by independently verifying that all the
superimposed controllers are stable. Among the dif-
ferent passive controllers, the fractal impedance con-
troller thanks to its explicit formulation of the tasks
in terms of virtual mechanical constraints (i.e. desired
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force/displacement behaviour) enables direct control of
the controller trade-off policies.

The proposed approach makes use of the kineto-
static duality to address the inverse problem, which is
recapped in Sect. 2.1. The fractal impedance controller
is described in Sect. 2.3, for which a novel force pro-
file is introduced that has a more robust formulation,
which is essential when using multiple superimposed
tasks in Sect. 2.4. Finally, the concept of superim-
position for the control of redundant robots is intro-
duced in Sect. 2.5. The proposed framework is able
to track task-space references for each of the tasks
individually. For the experiments, these were obtained
from an inverse-kinematics-based postural optimisa-
tion (Sect. 2.6), however, highlighting that the task-
space targets for the individual tasks can be obtained
from any planning method and do not affect the pro-
posed control approach.

2.1 Inverse problem and kineto-static duality

The inverse problem is not possible for the redundant
robots due to the asymmetry of the problem dimension-
ality [1,7,13,14]. However, an approximate solution
can be identified by introducing constraints to the equa-
tion using theMoore–Penrose inverse or pseudoinverse
[1,7,13]. Thus, it became an essential tool for solv-
ing inverse kinematic and projected inverse dynamics
in redundant robots [1,7,14]. These constraints of the
pseudoinverse define a set, called null-space, made of
all the possible states in generalised coordinates (i.e.
joint-space) for which the robot’s end-effector remains
static. Thus, the constraint introduced is the minimi-
sation of the end-effector twist (i.e. linear and angu-
lar velocities) [1,7,13] to deal with the redundancy.
Kathib has proposed to scale this approach with the
robot’s inertia that changes the optimisation criterion to
the minimisation of the kinetic energy projected in the
task-space [1,7,13,14]. These characteristics make the
control of the null-space critical in torque-controlled
robots allowing the modulation of the robot manip-
ulability and interaction response to interactions that
bypass the end-effector.

The generalised inverse of A ∈ R
n×m is defined

as any matrix G ∈ R
m×n that satisfies the following

equations:{
�a = G�b + (In − GA)�aε = G�b + P�aε

AGA − A = 0
(1)

where �a ∈ R
n , �b ∈ R

m , �aε ∈ R
n and In ∈ R

n×n is the
identity matrix. P is a projection matrix that projects
a generic vector aε into the null-space of A, N (A).
It is also worth noting that Equation 1 is a solution
for A�a = �b[1,2]. Redundant robots are more versatile
than non-redundant systems; however, they do not have
a bijective transformation between generalised coordi-
nates and task-space. Thus, control algorithms rely on
numerical optimisation to solve the inverse problem
and identify viable strategies. This is task-dependent
and degenerates when A drops rank (i.e. det (A) = 0)
[2,7,15]. Specifically, the rank of the inverse projection
matrix drops if the robot is in a singular configuration
or the task constraints are violated (e.g. unexpected
sudden loss of contact) [7].

The idea of taking advantage of the kineto-static
duality to address the inverse problem has been intro-
duced with the concept of Port-Hamiltonian control in
[16]. In fact, the kinematic joint-space information can
be used to derive task-space behaviour and task-space
force interaction can be used to relate back to joint-
space torques:{

�ν = J�̇q
�τ = JT�h (2)

where J ∈ R
n×m is the geometric Jacobian matrix,

�ν ∈ R
n is the end-effector twist, �̇q ∈ R

m is the joint
velocities’ vector, �h ∈ R

n is the end-effector wrench
and �τ ∈ R

m is the joint torques’ vector [1].

2.2 Passive and active systems

A passive system is a system that either conserves or
dissipates its energy [11,17]. An active system is a sys-
tem that is capable of generating energy [11,17]. There-
fore, a controlled system can be defined passive as long
as all the energy the controllers generate is either con-
servative or dissipated via non-conservative terms (i.e.
damping). It is worth noting that what are commonly
referred to as energy generators are systems transform-
ing one form of energy into another. For example, a
petrol engine transforms the chemical energy in the fuel
into mechanical energy. As a matter of fact, all known
physical systems are passive, but this does not apply to
all controllers [11,17]. A benefit of passive systems is
that the superimposition of multiple stable passive sys-
tems retains both properties [11,17,18], which decou-
ples the stability problem, making the problem com-
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plexity scale linearly rather than exponentially with the
system dimension.

A controller is passive if it does not track the system
velocity term because acceleration and position terms
are associated with conservative energy forms, kinetic
and potential energy, respectively [11].

Amono-dimensional system, in itsmost general for-
mulation, is described by the following equation:

M(x̃) ¨̃x − D(x̃, ẋ)ẋ + K (x̃)x̃ = fExt (3)

where M(x̃) is the inertia, D(x̃, ẋ) is a positively
defined damping, K (x̃) is a nonlinear stiffness, x is
the system measured trajectory, and x̃ = xd − x is the
error between the desired trajectory (xd ) and x .

The equation of a mono-dimensional active con-
troller can be in its most general form is

M(x̃) ¨̃x + D(x̃, ẋ) ˙̃x + K (x̃)x̃ = fExt (4)

2.2.1 Passivisation of an active system

An active system can be passivised using a conserva-
tive observer, known as a virtual tank, which is a path
integral that acts as a virtual spring tracking the non-
conservative energy exchanged by the robot [11,17].
The energy in the virtual tank defines the maximum
amount of non-conservative energy that the controller
can use to track velocities without violating passivity
[11,17]. However, being path integrals, virtual tanks
retain the issues associated with model errors and inte-
gration drift of any other numerical integration in a
discrete domain [11]. A redundant system’s passivisa-
tion is more challenging than in a fully defined system
due to the need to rely on Eq. 1 to transform the infor-
mation between task-space and joint-space, being the
null-space not observable in the task-space [1,11,17].
Tank-based controllers increase interaction robustness,
compared to traditional interaction controllers, by sac-
rificing tracking accuracy when the virtual tank runs
out of energy. Nevertheless, they still introduce a path
integral that requires tracking all the energy exchanged
that could be neglected if using a passive controller. For
example, the robot centrifugal and centripetal forces
(i.e. Coriolis Matrix) are passive forces introduced
by the relative movements between the robot links
reference frame [1]. These components of the robot
dynamic equation are derived from the kinetic energy
that can be discarded when computing the system’s
energy without controllers (i.e. Lagrangian) [1] and

when the robot is controlled using passive controllers
[11]. Finally, another limit that passivised and active
controllers shared is they need tomeasure all the energy
exchanged with the environment to guarantee stability;
thus, they rely on the accuracy of the contact models
and sensing, which is one of the major concerns in their
robustness [2,11,12,15,17,19]. Figure 2 illustrates the
difference between active, passive and passivised sys-
tems based on the tracking of the velocity error ( ˙̃x).

2.3 Fractal impedance controller

The FIC controls the robot as a nonlinear mass–spring
system and generates the attractor in Fig. 6a around
the desired state [11]. The fractal attractor allows to
nonlinear impedance profile that cannot run with tra-
ditional impedance controllers. These nonlinear pro-
files enable high tracking accuracy without requiring
velocity tracking, thus allowing the controller passiv-
ity to be retained without compromising accuracy [11].
The equivalentmechanical systemequation for the con-
trolled robot is:

�c(�q)�̈x + n(�q, �̇q) + K(�̃x)�̃x = �fExt (5)

where �c(�q) is the projection of the task-space iner-
tia matrix at the end-effector, n(�q, �̇q) is the nonlin-
ear robot dynamics, and �fExt is the external force.
�̃x = �xd − �x is the pose error, where �xd is the desired
state and �x is the current state. The FIC command in
Eq. 5 is �he = K(�̃x)�̃x. The state-dependent stiffness gain
K(�̃x) is derived from the desired end-effector interac-
tion properties (i.e. force/displacement), which can be
regulated online without affecting stability [11]. The
nonlinear stiffness of the controller is evaluated inde-
pendently for each of the controller dimensions, and
it is anisotropic between the divergence (i.e. tracking
error is increasing) and the convergence (i.e. track-
ing error is decreasing) phases [11]. Intuitively, during
the divergence phase, the energy is accumulated in the
spring and, subsequently, released in convergence. The
attractor is implemented using a switching behaviour
that introduces an additional nonlinear spring which
triggers when the system starts converging (i.e. zero
crossing of �̇x). The updated impedance conserves the
energy accumulated in the controller while diverging,
and it redistributes the energy altering the trajectory
during the convergence, as shown in Fig. 3. Therefore,
the stability of the controller is guaranteed by the frac-
tal attractor (Fig. 3). This determines the passivity of
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Fig. 2 Difference between the passive, active, and passivised
system based on the evolution of the absolute value of the veloc-
ity error ( ˙̃x). A passive system is always passive because themag-
nitude of the system velocity is always greater than the desired
velocity ẋd = 0. An active system is active when |ẋ | < |ẋd | �= 0,

and it is passive when |ẋ | > |ẋd | �= 0. A passivised system
behaves as an active system when there is energy in the tank
and a passive one when it runs out of stored energy. Thus, when
the tank is out of energy, a passivised controller compromises
tracking accuracy to retain stability

the controller and the online adaptability; it is indepen-
dent of the chosen impedance. For further details about
the properties and stability of the fractal attractor, the
reader can refer to [11].

For each DoF in the task-space, the FIC is given
in Algorithm 1. The control torques (�τctr) can be cal-
culated from �he ∈ R

6 using (2). Differently from
the FIC control scheme introduced in [11] on a sharp
force/torque saturation, this manuscript introduces a
more versatile force profile. The new force profile
allows to independently tune the linear, nonlinear and

saturation behaviours of the controller wrench, making
it easier to tune the controller for different tasks.

2.4 Sigmoidal force profile for fractal impedance

The FIC relies on a stiffness profile. The profile pro-
posed in [11] results in fast changes in stiffness, and
only allows limited task-dependent tuning of the pro-
file. The sole requirement for guaranteeing the FIC sta-
bility is that the force profile is a continuous upper-
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Fig. 3 a Attractor’s phase portrait—fractal impedance con-
troller using the proposed spring (2.4), which, differently from
the linear spring, has a compliant region near the fixed point in the
desired state. The trajectories beyond x̃ > 0.3 have been omitted
b Proposed force profile. c Energy profile associated with the
proposed force profile

Algorithm 1 Mono-dimensional FIC
input : Convergence/Divergence, x̃ , x̃max
output: he

1 if diverging from xd then
2 he = FK(x̃) = Kd(x̃)x̃

3 else
4 he = Kc(x̃max)(0.5x̃max − x̃)

where:

Kd(x̃) = FK
x̃

is the stiffness during divergence

Kc(x̃) = 4EK(x̃max)

x̃2max
is the stiffness during convergence

x̃max is the maximum error recorded at the end of the divergence
phase
EK is the energy associated with x̃max

bounded function [11]. Therefore, a sigmoidal force
profile is proposed for an easier definition of the stiff-
ness profile, allowing users to better adapt the robot
impedance behaviour to the different tasks. Similarly
to the profile proposed by [11], the sigmoidal profile is
fully determined based on the maximum force (FMax)
to be exerted at a chosen position error (|x̃ | = x̃b).
Here, the position error is defined as the difference
between the desired end-effector pose and the cur-
rent pose (x̃ = xd − x). An additional displacement
parameter (|x̃ | = x̃0) is added. It describes the mini-
mumdisplacement to activate the nonlinear impedance,
as shown in Fig. 3b. The proposed force profile thus
becomes:

FK =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K0 x̃, |x̃ | < x̃0

sgn(x̃)(�F(1 − e−(|x̃ |−x̃0)/b)+
+K0 x̃0), x̃0 ≤ |x̃ | < x̃b

sgn(x̃)FMax, Otherwise

(6)

where K0 is the constant stiffness, b = (x̃b − x̃0)/S
is the characteristic length, S determines the shape of
the sigmoid curve and �F = (FMax − K0.x̃0). In this
work, S = 20 ensures force saturation before x̃b.

The proposed force profile can further be associated
with an energy (Fig. 4b) that is an unbounded Lipschitz
function. It, therefore, respects the requirement for Lya-
punov’s stability by the fractal attractor controller [11].
For the proposed force profile, this becomes:

EK =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5K0 x̃
2, |x̃ | < x̃0

FMax|x̃ |−
+FMax x̃0 + (K0 x̃

2
0 )/2−

+
(
1 − e−(|x̃ |−x̃0)/b

)
b�F, x̃0 ≤ |x̃ | < x̃b

FMax|x̃ |−
+FMax x̃0 + (K0 x̃

2
0 )/2−

+
(
1 − e−(x̃b−x̃0)/b

)
b�F, Otherwise

(7)

2.5 Controller superimposition for the control of
redundant robots

The proposed method aims to achieve a hierarchy of
tasks by using virtual soft mechanical constraints gen-
erated by the superimposition of task-space controllers
that drive the robot to assume a commanded reference
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posture. The benefit of using impedance controllers
based on fractal impedance is that their passivity allows
for superimpositionwithout compromising overall sys-
tem stability. Therefore, the total torque vector (�τ tot)
can be computed by the superimposition of controllers
as:

�τ tot = ∑n
i=1 J

T
i
�hie (8)

where Ji and �hei are the Jacobian and the wrench gen-
erated by the impedance controller of the i th-link, as
depicted in Fig. 1 for our experiments that has a con-
troller on the end-effector and another in the elbow
joint. As a consequence of Eq. 8, the controller com-
mand does not contain any inversion of the Jacobian
matrix, which renders the proposed method robust to
drops in Jacobian rank (i.e. singularities). This is the
main difference between a superimposition of FIC con-
trollers and the artificial potential field, which would
require performing a nonlinear inverse optimisation to
verify stability.

2.6 Postural optimisation

For the scope of this paper, an optimisation-based
inverse kinematics algorithm is used to obtain the ref-
erence configuration (postural optimisation). In partic-
ular, the optimisation identifies the joint configuration
q which minimises the cost to achieve the desired tar-
get task-space 6-DoF pose as obtained from forward
kinematics using EXOTica [20]. Redundancy resolu-
tion either uses regularisation to a nominal target con-
figuration or an energy minimisation proxy. First-order
methods are leveraged to solve the unconstrained opti-
misation problem and use forward kinematics to sub-
sequently extract the task-space references for the indi-
vidual superimposed controllers. In place of this pos-
tural optimisation, more comprehensive planners and
frameworks could be used to provide and update the
reference configurations.

3 Evaluation

The proposed method is evaluated using a 7-DoF
torque-controlled Kuka LWR3+2 manipulator in both

2 A description of the robot can be found at
web.inf.ed.ac.uk/slmc/lab-resources/hardware.

simulation and hardware experiments. The same super-
imposition of two task-space controllers has been
applied in both cases: A 6-DoF FIC controller at the
end-effector (7th link) and a 3-DoF FIC controller at
the elbow (4th link of the Kuka URDF) for postural
control.

To generate pose references for each of the con-
trollers, an optimisation to obtain a configuration sat-
isfying the end-effector reference is used. Specifi-
cally, one-step variant of approximate inference control
(AICO) is used [21]. Note while the end-effector pose
reference can be passed in directly to the end-effector
controller, a postural optimisation is used in this case to
obtain a pose reference for the null-space or additional
superimposed controllers. The reference pose for each
of the controllers is extracted using forward kinematics.

3.1 Reference trajectories

The figure-of-8 (i.e. lemniscate) trajectory has been
selected to show the dynamic behaviour of the robot.
The trajectory is composed of two orthogonal sinu-
soidal trajectories. The vertical trajectory has an ampli-
tude of 0.2m and the transverse trajectory ampli-
tude is 0.1m. The figure-of-8 trajectory is particularly
demanding due to its multiple velocity inversions and
wide joint movement range, thus introducing high vari-
ability of both the Jacobian and the inertial behaviour
of the robot. The figure-of-8 reference motion is tested
in both simulation and hardware experiments.

The hardware experiments also test a sinusoidal tra-
jectory with an amplitude of 0.5m and velocities up to
about 0.7m s−1. The straight-line experiment enabled
us to test interaction and robustness at higher speeds.

3.2 Simulation experiments

The robot simulations are in the Gazebo physics sim-
ulator and apply the superimposition of passive task-
space controllers control scheme directly without com-
pensating for gravity, Coriolis, or other dynamic effects
(in contrast to [11]), i.e. as a model-free compliant
controller. The simulation experiments compare nom-
inal tracking performance with an interaction scenario
where an unsensed environment obstacle has been
introduced, cf. Fig. 5.
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Fig. 4 Diagram of the proposed method. �xed is the desired pose
of the end-effector. �xeld is the desired pose of the elbow. �xe is the
current pose of the end-effector. �xel is the pose of the elbow. �hee is
the desired wrench of the end-effector. �hele is the desired wrench

of the elbow. �τ e are the joint torques generated by the controller
at the end-effector for the primary task. �τ el are the joint torques
generated by the controller at the elbow for the secondary task.
�τ tot is the torque command sent to the robot. �q are the joint
positions

Fig. 5 Interaction with an unsensed object in simulation. The
planned reference motion is shown with an alpha value while
the robot state in simulation is shown in solid, with the trace of

the end-effector for both overlaid. Note the controller remains in
contact and follows the surface of the obstacle

3.3 Hardware experiments

The hardware experiments are conducted with a Kuka
LWR3+ robot. The manipulator is controlled using
the Fast Research Interface (FRI) at 333.3Hz in joint
impedance mode with all gains set to zero to enable
feed-forward torque control. Note unlike the simula-
tion experiments the Kuka’s built-in controller com-
pensates for dynamic effects and gravity. On the real
robot, the tracking of the figure-of-8 trajectory has
also been tested with and without a human operator
applying random perturbations. The values used in the
controller for the simulation and the experiments are
reported in Table 1. It shall also be noted that during
the experiment, it has been kept the minimum set of
controlled DoF required to fully control the 3-DoF of
redundancy for the assigned tasks, being the task invari-
ant to the configuration of the 7th DoF due to the sym-
metric geometry of the end-effector in the manipulator
(Fig. 1).

4 Results

To complement the plots in this section, the reader
is recommended to watch the supplementary video
demonstrating the tracking and interaction both in sim-
ulation and hardware experiments. It has also been
included a sequence demonstrating the safe behaviour
of the controller during calibration of the FIC parame-
ters given in Table 1.

The simulation results are shown in Fig. 6 for the
free motion, and in Fig. 7 for the interaction behaviour
with the obstacle. They show that the robot can be
successfully controlledwithout dynamic compensation
and that it can achieve dexterous dynamic behaviours.
The tracking root mean square error (RMSE) at
the end-effector is recorded without interaction as
RMSEx = 5.6mm,RMSEy = 4.6mm, andRMSEz =
6.1mm. For simulation with interaction with an obsta-
cle: RMSEx = 13.2mm, RMSEy = 4.2mm, and
RMSEz = 5.5mm. That is, the tracking performance
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Table 1 FIC parameters used for simulation and hardware experiments

Elbow controller End-effector controller

x y z x y z θx θy θz

Simulations

x0 (m or rad) .01 .01 .01 .005 .005 .005 .057 .057 .057

xb (m or rad) .011 .011 .011 .006 .006 .006 .63 .63 .63

FMax (N or Nm) 50 50 50 150 150 150 100 100 100

K0 (Nm−1 or Nm rad−1) 5000 5000 5000 5000 5000 5000 100 100 100

Robot

x0 (m or rad) .01 .01 .01 .06 .06 .06 NA NA NA

xb (m or rad) .011 .011 .011 .08 .08 .08 NA NA NA

FMax (N or Nm) 10 10 10 100 100 100 NA NA NA

K0 (Nm−1 or Nm rad−1) 630 630 630 800 800 800 NA NA NA

XY Z Euler angles are used for describing the system orientation. The NA indicates controllers that have not been used in the robot
experiment because the orientation controllers are redundant in the considered robot due to the end-effector symmetry

Fig. 6 Simulation: Fast figure-of-8, no interaction. In a and b,
reference and executed trajectories are blue and orange, respec-
tively. Note as the simulation experiments are fully model-free
(i.e. without gravity or nonlinear effects compensation), the plot-
ted torques are higher compared with Fig. 8 as the FIC automati-

cally compensates for gravity and dynamic effects. This demon-
strates that the proposed controller can handle gravity/nonlinear
effects compensation as external disturbances Fext without the
need for a dynamics model

Fig. 7 Simulation: Fast figure-of-8, interaction with unsensed
obstacle (cf. Fig. 5). In a and b, reference and executed trajec-
tories are blue and orange, respectively. The stack of passive
task-space controllers compensates for the obstacle using the

redundancy task by smoothly sliding across its surface, cf. (b).
Note that despite the interaction there are no torque spikes beyond
the system limits or instability, cf. (c)

123



C. Tiseo et al.

Fig. 8 Hardware experiments: Fast figure-of-8, no interaction. In a and b, reference and executed trajectories are blue and orange,
respectively. The controller tracks the reference closely for both the primary and redundancy tasks

Fig. 9 Hardware experiments: Fast figure-of-8, with random interaction. In a and b, reference and executed trajectories are blue and
orange, respectively. Note the significant external joint torque forces compared with Fig. 8 due to the interaction/perturbations

degrades in one dimension impacted by the obstacle
(x), while being virtually unaffected in y and z.

The experimental data for the hardware experiments
of the figure-of-8 trajectory are shown in Figs. 8 and 9.
The errors recorded during free motion are: RMSEx =
7.6 mm, RMSEy = 1.5 mm, and RMSEz = 8.6
mm. The perturbations do not affect the tracking per-
formance at the end-effector task, but they are fully
compensated by the deflection from the redundancy
task target at the elbow joint, as shown in Fig. 9b.
The RMSE during interaction is RMSEx = 20.3 mm,
RMSEy = 7.9 mm, and RMSEz = 9.1 mm.

The results for the straight-line trajectory experi-
ment (Figs. 10 and 11) show the ability of the controller
to complete the task and reject perturbations by reduc-
ing tracking on the redundancy task. The errors are
RMSEx = 6.1mm,RMSEy = 4.6mm, andRMSEz =
6.7 mm. The RMSE for interaction is RMSEx = 9.6
mm, RMSEy = 7.7 mm, and RMSEz = 7.3 mm.

It shall also be remarked how the robot remained
safe to interact with despite the high joint feed-forward

torques involved in the motions, which reached ≈ 30
Nm for both the figure-of-8 trajectory and the linear
trajectory.

5 Discussion

The results show the proposed method enables an
intrinsically stable control framework for redundant
robots which does not rely on inverse dynamics and
projection matrices. The proposed method is robust to
unknown environmental interactions and singularities,
where safe means that the robot does not show erratic
behaviours even while perturbed or when there is a
sudden change in the desired task (e.g. sudden accel-
eration/deceleration). The RMSE data show how the
robot keeps the minimum tracking accuracy (i.e. max-
imum error) contained under 1cm for the unperturbed
experiments, which is in line with the task requirement
set in the controller parameters x̃b = 1.1 cm. These
results are in line with the results obtained in [11], and
they are lower than other impedance controller frame-
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works that usually have an error of a few centimetres,
as can be seen in Fig. 7 in [6] and Fig. 5 in [8].

The introductionof significant perturbationdegrades
the minimum tracking accuracy to 2cm, but the con-
troller remains stable, and it is able to recover once
the perturbation ends. It shall be remembered that the
trade-off between accuracy and robustness is a known
trade-off in interaction control frameworks [22]. While
admittance control may provide better accuracy, it
requires accurate knowledge of interaction force inten-
sity and direction in all the points of contact with the
environment. On the other hand, impedance controllers
provide better safety of interaction but sacrifice track-
ing accuracy in favour of compliance [2,22]. Variable
impedance controllers have been proposed as a solution
to this dilemma, but the stability requirements on the
impedance updates are often very stringent and diffi-
cult to retain under highly variable environmental con-
ditions [19,23]. The proposed framework provides the
best of both worlds providing good tracking accuracy
while retaining the robustness typical of impedance
controllers; furthermore, it enables online adjustment
of the impedance profiles [11].

The data also confirm the hypothesis that redundant
robot interaction behaviour can be accurately defined
without any a priori knowledge of the system dynamics
model, being Eq. 8 the control command. The simula-
tion experiments show that the tracking performance
in this work is similar to the results reported in [11]
that relied on a compensation of the robot dynamics
and the use of a null-space controller. This latest result
is particularly important because robots’ mechanical
properties such as inertia and joints friction matrices
are often difficult to retrieve and highly unreliable [4].
The knowledge of the actuation characteristics and the
kinematic structure are still necessary for the imple-
mentation of the proposed method. However, they are
both normally accurate and easier to obtain if not avail-
able.

The FICgenerates an asymptotically stable potential
field around the target state that enables the direct super-
imposition of multiple controllers without compromis-
ing the system stability. The controller superimposi-
tion generates a force field that acts as a trade-off cost
function determining the preferred path of motion in
the robot’s configuration space. The force upper bound
of the controllers guarantees that the loss of accuracy
in the main task is contained x̃b until the condition
is compatible with the mechanical characteristics of

the system. Especially, if it is considered that the pro-
posed method is a compliant postural controller, where
accurate tracking is subordinate to the robustness of
interaction. In other words, the controller stabilises the
robot around the desired posture relying on the nonlin-
ear stiffness profile to compensate for its nonlinear and
environmental interaction, sacrificing the redundancy
task before degrading the end-effector task beyond the
selected accuracy. This is confirmed by both the simu-
lation and the experimental data, showing how the FIC
tries and successfully keeps the accuracy under 0.11cm
in unperturbed conditions. The data also describe that
the controller fully sacrifices the redundancy task in the
attempt to retain the same accuracy while experiencing
external perturbations that exceed its mechanical lim-
its, as shown in Figs. 7, 9, and 11.

The data show that the proposedmethod can achieve
a highly dynamic interaction using variable impedance
at the controller level. The FIC also enables online tun-
ing of the impedance behaviour and is robust to reduce
bandwidth in the feedback signals [11], allowing to
switch from rigid to soft behaviours seemingly. Nev-
ertheless, the performances are strictly related to the
physical hardware capabilities, and a higher band-pass
in the mechanics of the robot implies a higher stiffness
to mass ratio. Therefore, it will be interesting to study
these capabilities by deploying in hardware equipped
with VSA to conduct a systematic experiment on these
properties. Furthermore, it may also enable the switch-
ing from a model-based (e.g. the one proposed in [3])
to a data-driven control of their nonlinear actuators’
dynamics. It is worth also noting that, at the current
stage, it is impossible to compare the proposed method
with VSA control architectures due to their different
hardware requirements.Nevertheless, it can be said that
both of them achieve nonlinear impedance behaviour
and robustness to highly dynamic interactions. The
fractal impedance controller hardware requirements
are less stringent, and it has a simpler formulation. The
results presented in [3] indicate that the DLR robot can
achieve a stiffer behaviour. However, it is impossible to
discriminate if they are connected solely to hardware
superiority or if there is also a controller component in
play.

The superimposition of task-space controllers also
opens new possibilities for improving controllability
and dexterity for compliant robots, developing human
motor control theory, and robust control architecture
for learning algorithms. In fact, the dynamics of soft
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Fig. 10 Hardware experiments: Straight line reference, no inter-
action: The robot tracks the task-space references for both the
primary and redundancy task closely joint configurations are sac-

rificed. In a and b, reference and executed trajectories are blue
and orange, respectively

Fig. 11 Hardware experiments: Straight line reference (con-
trolled via a slider in the graphic interface in the interval 0.4 m
s−1 to 0.7 m s−1), with interaction: Robot joint trajectories and
effort during interaction experiments. The robot joints diverged
significantly from the planned configuration, and reached posi-

tion across singularities without any evident impact on the robot
performance in terms of robustness and stability. In a and b, ref-
erence and executed trajectories are blue and orange, respectively

robots are even more challenging to model than rigid
dynamics [4], as the dynamic modelling of robots is
founded on the assumption of rigidity [1]. Regarding
human motor control having a framework that enables
robustness and dexterity of interaction will overcome
the current limitation of the passive motion paradigm
(PMP) model, which still relies on inverse matrices for
trajectory optimisation [24]. Finally, the learning algo-
rithms are currently facing the challenges of perform-
ing a system identification to guarantee the stability of
the learned behaviour. The proposed method removes
this challenge, and the learning component can focus on
learning how to synchronise the task-space controller
to maximise the efficiency and dexterity of the robot.

6 Conclusions

Theexperimental results confirmed theproposedhypoth-
esis that it is possible to control a redundant robot
with a superimposition of task-space controllers. This

approach renders the architecture intrinsically robust to
singularity and fully passive, which guarantees stabil-
ity. It is important to properly balance the strength of
the controllers to guarantee that the redundancy tasks
do not interfere with the end-effector controller, which
may result challenging under certain conditions. Nev-
ertheless, unbalanced controllersmay interferewith the
action efficacy but not with the robustness and stability
of interaction.

The proposed framework does not require any a
priori knowledge of the system dynamics parameters
(i.e. inertia, friction, and gravity). It is suited for appli-
cations where the stability of interaction with unpre-
dictable environments is more critical than the track-
ing accuracy. Future work will focus on improving the
coordination among the redundancy task-space con-
trollers to improve the tracking accuracy of the end-
effector task when coupling effects are introduced.
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