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Abstract

Given a graph G = (V,E), a subset S ⊆ V is 2-dominating if every vertex in S
has at least two neighbors in S. The minimum cardinality of such a set is called
the 2-domination number of G. Consider a process in discrete time that, starting
with an initial set of marked vertices S, at each step marks all unmarked vertices
having two marked neighbors. In such a process, the minimum number of initial
vertices in S such that eventually all vertices are marked is called the P3-hull
number of G. In this work, we explore a polyhedral relation between these two
parameters and, in addition, we provide new families of valid inequalities for
the associated polytopes. Finally, we give explicit descriptions of the polytopes
associated to these problems when G is a path, a cycle, a complete graph, or a
tree.

Keywords: polyhedral combinatorics, P3-convexity, hull-number,
2-domination number.

Let G = (V,E) be a simple connected graph, with vertex set V and edge
set E. We say that a subset S ⊆ V is P3-convex if N2(S) := S ∪ {v ∈ V :
|N(v) ∩ S| ≥ 2} ⊆ S. In other words, P3-paths (i.e., paths with three vertices)
starting and ending in S are included in S. The collection C of P3-convex sets in
V is a discrete convexity in G, in the sense that ∅ and V belong to C, and that
C is closed under intersections (see [1]). This convexity is called P3-convexity.
Several parameters related to this discrete convexity have been studied in the
last few years, like the P3-convexity number (the maximum cardinality of a
proper P3-convex subset) and the P3-hull number of G, denoted by hull(G),
namely the minimum cardinality of a subset S such that its P3-convex hull is
V , where the P3-convex hull of a subset S is the minimal P3-convex set that
contains S.
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The decision problem associated to the calculation of the P3-hull number
of a graph is NP-complete in the general case (see [2], [3]) and polynomial for
certain families of graphs like trees and cographs (see [2]).

Another interesting parameter associated to the P3-convexity is the P3-
interval number of G, or simply P3-number, defined as the minimum cardinality
of a subset S ⊆ V such that S ∪ {i ∈ V : |N(i) ∩ S| ≥ 2} = V , in other words,
the minimum cardinality of a subset S ⊆ V such that every vertex in V is either
in S or has at least two neighbors in S. This parameter is also known in the
literature as the 2-domination number of G and we shall denote it by γ2(G).

The concept of k-domination number, defined as the minimum cardinality of
a subset S ⊆ V such that |S ∩N(v)| ≥ k for every v ∈ V \S, was introduced by
Fink and Jacobson in [4]. It is a natural generalization of the well-known domi-
nation number of G, γ(G), the minimum cardinality of a dominating set, i.e., a
set S ⊆ V such that |N(i)∩S| ≥ 1 for every i ∈ V \S. Domination in graph the-
ory has been a widely studied issue both from a graph theoretical point of view
and from a polyhedral approach (see for example [5] and [6]). The computation
of γ2(G) is NP-hard for a general graph G (see [2] or [7]), remains NP-hard for
bipartite and chordal graphs ([8]), and is solvable in polynomial time for trees
and some grids (see [2]). This parameter as many other generalizations of the
domination number continue to be investigated because of their applications
in diverse areas such as logistics and networks design, resource allocation, and
telecommunications. However, up to our knowledge, there are very few works
that resort to polyhedral approaches, even for particular cases (see for instance
[9]), and none of them deal with the parameters that we are interested in.

As integer programming and cutting-plane algorithms have shown to be
successful at solving many NP-hard combinatorial optimization problems, we
are interested in a polyhedral study of both parameters. In a previous work,
([10]), we presented an integer linear programming formulation for the P3-hull
number calculation and we started a study of the associated polytope. In this
work we continue that study as well as its relationship with the polyhedral study
of the 2-domination number calculation.

This paper is organized as follows. In Section 1 we give some basic def-
initions, we describe the integer programming models for the computation of
both parameters, and we state some results from [10] that we shall need in the
following sections. Then, we explore the polyhedral relation between both pa-
rameters (Section 2) and we study facet-defining inequalities for the associated
polytopes (Section 3). Furthermore, we give complete minimal descriptions of
these polytopes for paths, cycles, completes graphs, and trees (Section 4).

1. Preliminaries

Throughout this paper G = (V,E) will be a simple, connected and undi-
rected graph with vertex set V and edge set E. For every i ∈ V , N(i) will be
the open neighborhood of i and we will denote by V1 ⊆ V the subset of vertices
with degree 1 in G. We label the vertices of G such that V = {1, . . . , n} ∪ V1,
with deg(i) ≥ 2 for i = 1, . . . , n. Also we will denote Ci := |N(i) ∩ V1|, i.e.,
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the number of neighbors of the vertex i with degree 1, for i = 1, . . . , n. For
j = 1, . . . , k, we denote the j-th canonical vector in Rk by Ej .

Definition 1.1. We say that S ⊆ V is a 2-dominating set of G if every vertex
i ∈ V \S has at least two neighbors in S, i.e., |N(i)∩S| ≥ 2. The 2-domination
number of G, denoted by γ2(G), is the minimum cardinality of a 2-dominating
set of G.

Since every vertex i ∈ V1 should belong to any 2-dominating set, we can
associate to each vertex i ∈ V \V1 a binary variable xi, and then

γ2(G) = |V1|+ min
n∑
i=1

xi

subject to

2 ≤ 2xi +
∑

j∈N(i)\V1

xj + Ci for i = 1, . . . , n and (1)

xi ∈ {0, 1} for i = 1, . . . , n. (2)

Definition 1.2. The 2-domination polytope of G is

P2dom(G) := convex hull{x ∈ {0, 1}n : x verifies (1)}.

The 2-domination number of a graph is a natural generalization of the well-
known domination number, but it also appears naturally in the context of dis-
crete convexities, as we shall see bellow.

Definition 1.3. A collection C ⊆ 2V is a discrete convexity in G if ∅ ∈ C,
V ∈ C, and C1 ∩ C2 ∈ C if C1 and C2 belong to C. Every set S ∈ C is called a
convex set in G. If S ⊆ V , we define the convex hull of S, denoted by hullC(S),
to be the minimal convex set containing S.

Several discrete convexities can be defined using different types of paths.
Formally, if P := {p : p is a u − v path, for u 6= v ∈ V } and P ′ ⊆ P we can
define a discrete convexity associated to P ′, the P ′-convexity in G, as follows.

Definition 1.4. We say that S ⊆ V is convex with respect to P ′ or P ′-convex
(and we omit P ′ when it is clear by the context) if, for u, v ∈ S, u 6= v, we
have that I[u, v] := {w ∈ p : p is a u − v path in P ′} ⊆ S. In other words,

I(S) :=
⋃

u,v∈S
I[u, v] ⊆ S.

Definition 1.5. If S ⊆ V , the P ′-convex hull of S, hullP′(S), is the minimal
(with respect to set inclusion) P ′-convex set that contains S.

It is easy to see that the class of the convex sets defined by the path set P ′ is
a discrete convexity in G, and we can define the following associated parameters.
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Definition 1.6. If S ⊆ V and P ′ ⊆ P, then

• the P ′-interval number of G (or simply P ′-number) is the minimum car-
dinality of a subset such that I(S) = V .

• the P ′-hull number of G is the minimum cardinality of a subset such that
its convex hull is V .

We can find in the literature several works dedicated to the study of the
convexities arising when P ′ is the subset of paths of 3 vertices (the P3-convexity),
the induced paths of 3 vertices (the P∗-convexity) or the shortest paths (geodetic
convexity). In this work, we focus on the P3-convexity.

Definition 1.7. We say that S ⊆ V is P3-convex if N2(S) := S ∪ {i ∈ V :
|N(i) ∩ S| ≥ 2} ⊆ S.

This definition is equivalent to Definition 1.4 for P ′ the set of P3-paths in
G and, furthermore, the 2-domination number γ2(G) is the P3-interval number
of G. Now we shall formally define the P3-hull number of a graph, in order to
describe an integer programming formulation to compute it.

Definition 1.8. If N0
2 (S) := S and Nr

2 (S) := N2(Nr−1
2 (S)) for r ≥ 1, then

the P3-convex hull of S is Nr
2 (S) with r ∈ N such that Nr

2 (S) = Nr+1
2 (S) (i.e.,

the minimal P3-convex set containing S). We say that S ⊆ V is a 2-conversion
set in G if its P3-convex hull is V . The P3-hull number of G, hull(G), is the
minimum cardinality of a 2-conversion set.

We can associate, to each 2-conversion set S ⊆ V , the parameter δ(S) :=
min{r ≥ 0 : Nr

2 (S) = Nr+1
2 (S)} (see [10]), so a 2-dominating set is a 2-

conversion set with δ(S) ≤ 1, and then we have the obvious inequality hull(G) ≤
γ2(G). Conversely, if S ⊆ V is a 2-conversion set then N

δ(S)−1
2 (S) is a 2-

dominating set. It is easy to see that δ(S) ≤ m := n + |V1| −max{2, |V1|} for
every 2-conversion set S.

We shall briefly describe the IP model introduced in [10] for the computation
of the P3-hull number of a graph. Let xit be a binary variable associated to
each vertex i ∈ V \V1 (i.e., deg(i) ≥ 2) for t = 0, . . . ,m− 1. Then, we have that

hull(G) = |V1|+ min
n∑
i=1

xi0

subject to

2xi(t+1) ≤ 2xit +
∑

j∈N(i)\V1

xjt + Ci for i = 1, . . . , n, t = 1, . . . ,m− 2 (3)

2 ≤ 2xi(m−1) +
∑

j∈N(i)\V1

xj(m−1) + Ci for i = 1, . . . , n (4)
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and
xit ∈ {0, 1} for i = 1, . . . , n, t = 1, . . . ,m− 1. (5)

Definition 1.9. We define the P3-hull number polytope of G as

Phull(G) := convex hull{x ∈ {0, 1}nm : x verifies (3) and (4)}. (6)

The following definition will be useful in the sequel.

Definition 1.10. Let G = (V,E) be a graph and x ∈ {0, 1}nm be a feasible
solution of (3) and (4). For t = 0, . . . ,m − 1, we define the support of x at t,
Sxt ⊆ V , as

Sxt = {i ∈ V \V1 : xit = 1} ∪ V1. (7)

2. The polytopes

In [10], we have proved that Phull(G) has complete dimension. In this section
we explore the relationship between the polytopes Phull(G) and P2dom(G). The
following theorem allows us to lift facet-defining inequalities of P2dom(G) to
facet-defining inequalities of Phull(G). More precisely, it shows that the facet-
defining inequalities of Phull(G) that involve only the last n variables are exactly
the facet-defining inequalities of P2dom(G). From now on, a vector x ∈ Rnm will
be written in the form x = (xt)0≤t≤m−1 where xt = (xit)

n
i=1 for t = 0, . . . ,m−1.

Theorem 2.1. Let π : Rnm → Rn be the projection map defined by

π((xt)0≤t≤m−1) = xm−1.

Then

1. π(Phull(G)) = P2dom(G) and both polytopes are full-dimensional.

2. Furthermore, the inequality

n∑
i=1

λixi(m−1) ≤ λ0 (8)

is a facet-defining (resp. valid) inequality for Phull(G) if and only if

n∑
i=1

λixi ≤ λ0 (9)

is a facet-defining (resp. valid) inequality for P2dom(G).

Proof. 1 . The inclusion π(Phull(G)) ⊆ P2dom(G) is obvious considering the
projection of a feasible solution of (3) and (4), and then is valid for the projection
of any vector of Phull(G), since P2dom(G) is convex. On the other hand, if
xm−1 ∈ {0, 1}n verifies (1), it is easy to see that the vector π−1(xm−1) ∈ Rnm
defined as π−1(xm−1) = (xt)0≤t≤m−1 such that xit = 1 for 1 ≤ i ≤ n, 0 ≤
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t ≤ m− 2 (i.e., the coordinates of π−1(xm−1) equal 1 for t = 0, . . . ,m − 2 and
it coincides with xm−1 for t = m − 1), verifies (3) and (4). This implies that
π(Phull(G)) ⊇ P2dom(G) and then the equality holds.

Furthermore, both polytopes are full-dimensional because, if Eit is the it-
canonical vector in Rnm for (i, t) ∈ Z := {1, n} × {0,m − 1}, then the set of
vectors {

∑
(i,t)∈Z Eit} ∪ {

∑
(i,t)6=(i0,t0)

Eit : (i0, t0) ∈ Z} ⊂ Rnm and the set of

their projections onto Rn, are affinely independent in Phull(G) and P2dom(G)
respectively.

2 . Suppose that (8) is a valid inequality for Phull(G). If x ∈ P2dom(G), by
1 . there exists (xt)0≤t≤m−1 ∈ Phull(G) such that xm−1 = x and then x verifies
(9), so this inequality is valid for P2dom(G). Analogously, if (9) is valid for
P2dom(G), then (8) is valid for Phull(G). Now, let

Fhull := Phull(G) ∩ {x ∈ Rnm :

n∑
i=1

λixi(m−1) = λ0}

and

F2dom := P2dom(G) ∩ {x ∈ Rn :

n∑
i=1

λixi = λ0}.

Suppose that Fhull is a facet of Phull(G) and dim(F2dom) ≤ n− 2, then

F2dom ⊆ {x ∈ Rn :
n∑
i=1

αixi = α0}

for some (α1, . . . , αn, α0) not a multiple of (λ1, ..., λn, λ0). This implies that

Fhull ⊆ {x ∈ Rnm :

n∑
i=1

λixi(m−1) = λ0} ∩ {x ∈ Rnm :

n∑
i=1

αixi(m−1) = α0},

which is not possible being Fhull a facet of (the full-dimensional polytope)
Phull(G). For the converse implication, suppose that F2dom is a facet of P2dom(G)
and Fhull ⊆ H = {x ∈ Rnm :

∑
(i,t)∈Z αitxit = α} for an hyperplane H in

Rnm. Let x1 be a feasible solution in F2dom, then the vectors

• π−1(x1) (defined as π−1(x1) := (xt)0≤t≤m−1 such that xm−1 = x1 and
xit = 1 for 0 ≤ t ≤ m− 2 and 1 ≤ i ≤ n), and

• π−1(x1) − Eit (with Eit the it-canonical vector in Rnm) for 1 ≤ i ≤ n,
0 ≤ t ≤ m− 2

are feasible solutions in Fhull, and then they have to verify the equation defining
H. Replacing them in the mentioned equation and subtracting, we can see that
αi0t0 = 0 for 1 ≤ i0 ≤ n and 0 ≤ t0 ≤ m− 2. So, we have

Fhull ⊆ H = {x ∈ Rnm :
n∑
i=1

αi(m−1)xi(m−1) = α0}
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and then

F2dom ⊆ {x ∈ Rn :
n∑
i=1

αi(m−1)xi = α0}.

Since we are supposing that F2dom is a facet of P2dom(G), we have that
(α1(m−1), . . . , αn(m−1), α0) is a multiple of (λ1, . . . , λn, λ0), and then the equa-
tion defining H is a multiple of the equation defining Fhull. This completes the
proof.

Theorem 2.1 can be generalized to more than one time interval. To this end,
we introduce the following definition, which generalizes the parameters γ2(G)
and hull(G).

Definition 2.1. For k = 1, ...,m we define γk2 := min{|S| : hull(S) = V and δ(S) ≤
k}. This parameter can be calculated as

γk2 (G) = |V1|+ min
n∑
i=1

xi(m−k)

s.t. constraints (3) for t = m− k, ...,m− 2, constraints (4), and xit ∈ {0, 1} for
i = 1, ..., n and t = m− k, ...,m− 1. We define the associated polytope

Pk(G) := convex hull{(xt)m−k≤t≤m−1 ∈ {0, 1}nk :

xt verifies (3) for t = m− k, ...,m− 1, and xm−1 verifies (4)}.

The following is a general version of Theorem 2.1 whose proof is completely
analogous.

Theorem 2.2. Let πk : Rnm → Rnk be the projection map defined by π((xt)0≤t≤m−1) =
(xt)m−k≤t≤m−1 for 1 ≤ k ≤ m. Then

1. Pk(G) = πk(Phull(G)) is a full-dimensional polytope in Rnk for 1 ≤ k ≤
m,

2.
∑m−1
t=m−k

∑n
i=1 λixit ≤ λ is a facet-defining (resp. valid) inequality for

Phull(G) if and only if it is a facet-defining (resp. valid) inequality for
Pk(G).

3. Valid inequalities and facets

A polyhedral study of Phull(G) was started in [10], establishing necessary
and sufficient conditions in order that the inequalities (3), (4), and the variable
bounds be facet-defining for Phull(G). In addition, we have introduced two
families of inequalities, namely the co-convex inequalities∑

i∈C
xit ≥ 1, (10)
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where C ⊆ V is a co-convex set (i.e., C is P3-convex), and the neighborhood
inequalities

xi(t+1) ≤ xit +
∑

j∈N(i)\{k}

xjt, (11)

where k ∈ N(i). Both inequalities induce facets of Phull(G) if appropriate
hypotheses are enforced.

We now present a family of valid inequalities for Phull(G) and P2dom(G) that
generalizes the co-convex inequalities (10), and we establish conditions ensuring
that they are facet-defining.

Definition 3.1. Let k ∈ {1, . . . ,m−1}. The set C ⊆ V \V1 is k-quasi-co-convex
in G if Nk

2 (C) 6= V . For a k-quasi-co-convex set C, the inequality∑
i∈C

xi(m−k) ≥ 1 (12)

is called the k-quasi-co-convex inequality associated with C.

The k-quasi-co-convex inequalities are trivially valid for Phull(G). A simple
example of a 1-quasi co-convex set is Nij := N [i]\{j} if i ∈ V1 and j ∈ N(i) or
N [i]∩V1 = {j}. The corresponding 1-quasi co-convex inequalities coincide with
the neighborhood inequalities defined in [10] for t = m− 1, since for this value
of t, xt+1 = 1. In the next two theorems we characterize the quasi co-convex
sets C such that the associated inequalities (12) are facet-defining for Phull(G).

Theorem 3.1. Let C ⊆ V \V1 be a k-quasi-co-convex set. If the inequality (12)
is facet-defining for Phull(G) then

1. C is a minimal k-quasi co-convex set in G,

2. for every j ∈ C\V1 there exists ij ∈ C such that Nk
2 (C ∪ {ij}\{j}) = V ,

3. for every j ∈ V \V1 and 1 ≤ r ≤ k − 1 there exists ijr ∈ C such that
Nk−r

2 (Nr
2 (C ∪ {ijr})\{j}) = V .

Proof. Suppose that C1 ⊂ C and C1 is k-quasi co-convex. Then

FC := {x ∈ Phull(G) :
∑
i∈C

xi(m−k) = 1} ⊂ {x ∈ Phull(G) :
∑
i∈C1

xi(m−k) = 1}

which is not possible being FC a facet of (the full-dimensional polytope) Phull(G).
Furthermore, if there exists j ∈ C\V1 such that Nk

2 (C ∪ {i}\{j}) 6= V for
all i ∈ C, then

FC ⊂ {x ∈ Phull(G) : xj(m−k) = 1}

(since otherwise any solution in FC cannot mark all of V in k steps), contra-
dicting again the fact that FC is a facet of Phull(G). Analogously, if there exists
j ∈ V \V1 and r ∈ {1, . . . , k − 1} such that Nk−r

2 (Nr
2 (C ∪ {i})\{j}) 6= V for all

i ∈ C, then a similar argument shows that

FC ⊂ {x ∈ Phull(G) : xj(m−k+r) = 1},
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again contradicting the facetness of (12).

In order to establish and prove sufficient conditions ensuring that the k-cuasi
convex inequality be facet-defining, we need the following result.

Lemma 3.1. Let C be a k-quasi co-convex set in G, then C is minimal if and
only if Nk

2 (C ∪ {i}) = V for every i ∈ C.

Proof. If there exists i ∈ C such that Nk
2 (C ∪ {i}) 6= V then the set C\{i} is a

proper subset of C and is k-quasi co-convex, contradicting the minimality of C.
The same argument establishes the converse implication.

Theorem 3.2. If C ⊆ V is a k-quasi co-convex set such that C verifies the
conditions 1. and 2. of Theorem 3.1 and for every j ∈ V \V1, 1 ≤ r ≤ k−1 there
exists ijr ∈ C such that j ∈ Nr

2 (C ∪ {ijr}) and Nk−r
2 (Nr

2 (C ∪ {ijr})\{j}) = V ,
then the associated inequality (12) is facet-defining for Phull(G).

Proof. Let FC be the face of Phull(G) defined by the valid inequality (12). As
a consequence of the previous lemma, for each i ∈ C, we can define xi ∈ Rnm,
a feasible solution in FC such that Sx

i

0 = · · · = Sx
i

m−k−1 = V , Sx
i

m−k = C ∪ {i},
Sx

i

m−k+1 = N2(C ∪ {i}),. . . , Sxi

m−1 = Nk−1
2 (C ∪ {i}). Now, suppose that

FC ⊆ H := {x ∈ Rnm :
∑

(j,s)∈Z

λjsxjs = λ}, (13)

with Z = [1, . . . , n] × [0, . . . ,m − 1]. Let 1 ≤ j ≤ n and 0 ≤ s ≤ m − k − 1.
Suppose that i = 1 ∈ C, then x1 and x1−Ejs, where Ejs is the js-th canonical
vector in Rnm, are feasible solutions in FC , so, replacing these solutions in the
equation (13) defining the hyperplane H and subtracting, we have that λjs = 0.

Now, take 1 ≤ j ≤ n and r = k − 1. By hypothesis, there exists ij(k−1) ∈ C
such that j ∈ Nk−1

2 (C ∪{ij(k−1)}) and N2(Nk−1
2 (C ∪{ij(k−1)})\{j}) = V , then

xij(k−1) and xij(k−1)−Ej(m−1) are feasible solutions in FC and then λj(m−1) = 0.
Repeating this argument for r = k − 2, . . . , 1, we prove that λj(m−2) = · · · =

λj(m−k+1) = 0. By the hypothesis 2. of Theorem 3.1, for j ∈ C\V1 there exists
ij ∈ C such that xij and xij − Ej(m−k) are feasible solutions in FC and then
λj(m−k) = 0.

Finally, the hyperplane containing FC (see (13)), is defined by the equation∑
j∈C λj(m−k)xj(m−k) = λ. Since all the feasible solutions xi with i ∈ C have

to verify this last equation, by replacing them and subtracting we have that
λj(m−k) = λ for every j ∈ C, proving that this equation is a multiple of the
equation that defines FC . Then, we have proved that FC is a facet of Phull(G).

Figure 1 below illustrates a tree T and a 2-quasi co-convex set {1, 2, 3}
satisfying the conditions of Theorem 3.2, hence the inequality x12+x22+x32 ≥ 1
is facet-defining for Phull(T ).

For the particular case of the 1-quasi co-convex sets, we have the following
simpler version of the previous result.
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Figure 1: The k-quasi-co-convex inequality x12 + x22 + x32 ≥ 1 is facet-defining for this
instance.

Theorem 3.3. Let C ⊆ V \V1 be a 1-quasi-co-convex set, the corresponding
inequality (12) is facet-defining for Phull(G) if and only if

• N2(C ∪ {i}) = V for all i ∈ C, and

• for every j ∈ C\V1 there exists ij ∈ C such that N2(C ∪ {ij}\{j}) = V .

By Theorem 2.1 we have the following immediate result for the 2-domination
polytope.

Theorem 3.4. Let C ⊆ V \V1 be a 1-quasi-co-convex set, the corresponding
inequality

∑
i∈C xi ≥ 1 is facet-defining for P2dom(G) if and only if

• N2(C ∪ {i}) = V for all i ∈ C, and

• for every j ∈ C\V1 there exists ij ∈ C such that N2(C ∪ {ij}\{j}) = V .

We finish this section defining a family of trivially valid inequalities for
Phull(G).

Definition 3.2. For k = 0, ...,m− 1, the inequality∑
i∈V1

xi(m−k) ≥ γk2 (G)− |V1|. (14)

is called the k-rank inequality (see Definition 2.1).

In the next section we shall resort to the rank inequalities for cycles, in this
case we have the following result.

Lemma 3.2. Let Cn be a cycle with n vertices and 0 ≤ t ≤ n − 3. The rank
inequality

n∑
i=1

xit ≥
⌈n

2

⌉
(15)

is facet-defining for Phull(Cn) if and only if n is odd.
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Proof. It is easy to see that the subset of vertices {2k − 1 : 1 ≤ k ≤
⌈
n
2

⌉
}

is 2-dominating for Cn, so γn−2−t(Cn) ≤
⌈
n
2

⌉
for t = 0, . . . , n − 3 (recall that

m = n − 2). Furthermore, for every 2-dominating set S ⊆ {1, . . . , n} of Cn we
have that |S ∩{2k− 1, 2k}| ≥ 1 (otherwise N2(S) ⊆ S), then γn−2−t(Cn) ≥

⌈
n
2

⌉
for t = 0, . . . , n− 3 and then the equality holds.

Now suppose that n is odd and fix t0 ∈ {0, . . . , n − 3}. Suppose also that
the face

Ft0 := P (Cn) ∩ {x ∈ Rn(n−2) :
n∑
i=1

xit0 =
n+ 1

2
}

verifies that
Ft0 ⊆ B = {x ∈ Rn(n−2) :

∑
(i,t)∈Z

λitxit = λ}.

For every i = 1, . . . , n, we define xi = (xit)0≤t≤n−2 ∈ Rn(n−2) the feasible
solution in Phull(Cn) such that xit =

∑n
k=1Ek for t 6= t0, where Ek is the k-th

canonical vector in Rn, and for t = t0,

xit0 :=


∑n−1

2

k= i+1
2

E2k +
∑ i−1

2

k=0E2k+1 if i is odd,

∑n−1
2

k= i
2

E2k+1 +
∑ i

2

k=1E2k if i is even.

That is to say, for each odd i the active vertices of xi in t0 correspond to odd
indices from 1 to i and even indices from i + 1 to n − 1, meanwhile for each
even i the active vertices in t0 correspond to the even indices from 2 to i and
the odd ones from i+ 1 to n. It is easy to see that these n solutions belong to
Ft0 , and that the same occurs for the vectors of the form {x1 − Eit : 0 ≤ t ≤
n− 3, t 6= t0, 1 ≤ i ≤ n}, where Eit is the it-th canonical vector in Rn(n−2). So
x1 and x1 − Eit verify the equation defining B and then we have that λit = 0
for 1 ≤ i ≤ n, 0 ≤ t ≤ n− 2, t 6= t0. Then

B = {x ∈ Rn(n−2) :

n∑
i=1

λit0xit0 = λ}.

By replacing x1 and x3 in the equation defining B and subtracting the resulting
equations, we obtain that λ2t0 = λ3t0 . Repeating this procedure with x3 and
x5, it follows that λ4t0 = λ5t0 . In general, by replacing x1, x3, . . . , xn in the
mentioned equation and subtracting, we have that λ2 = λ3, . . . , λ(n−1)t0 = λnt0 .
On the other hand, by replacing x2, x4, . . . , xn−1 in the equation defining B and
subtracting, we have that λ3t0 = λ4t0 , λ5t0 = λ6t0 , . . . , λ(n−2)t0 = λ(n−1)t0 .
Finally, if we replace x1 and xn−1 in the same equation and subtract we obtain
λ1t0 = λnt0 . Thus

B = {x ∈ Rn(n−2) :
n∑
i=1

λ1t0xit0 = λ1t0
(n+ 1)

2
}.

11



That is to say, the equation defining B is a multiple of the equation defining
Ft0 , this implies that Ft0 is a facet of Phull(Cn) if n is odd. If n is even, it is
easy to see that

Ft0 = P (Cn) ∩ {x ∈ Rn(n−2) :
n∑
i=1

xit0 =
n

2
} ⊆ {x ∈ Rn(n−2) : x1t0 + x2t0 = 1}.

This inclusion is due to the fact that

2
n∑
i=1

xit0 = x1t0 + xnt0 +
n−1∑
i=1

(x(i+1)t0 + xit0) = n,

and, since {i, i + 1} and {n, 1} are co-convex sets for i = 1, . . . , n − 1, we have
that x(i+1)t0 + xit0 ≥ 1 for all i = 1, . . . , n − 1, x1t0 + xnt0 ≥ 1 and then each
term is equal to 1. This implies that Ft0 is not a facet of Phull(Cn) for an even
n.

4. Complete descriptions

In this section we present complete and minimal descriptions of Phull(G) and
P2dom(G) when the graph G is a path, a cycle, or a complete graph. In the case
that G is a tree, we show a complete description of P2dom(G) (also providing a
partial description of Phull(G), using Theorem 2.1).

4.1. Paths

If the graph G is a path of length n+2, the following theorem shows that the
co-convex inequalities associated to the co-convex sets {i, i+1} and the variable
bounds xit ≤ 1 are sufficient in order to provide a complete description of the
associated polytope.

Theorem 4.1. Let Pn+2 be a path with V \V1 = {1, ..., n}. Then, a complete

minimal description of Phull(Pn+2) ⊆ Rn2

is given by

xit + x(i+1)t ≥ 1 for 0 ≤ t ≤ n− 1, 1 ≤ i ≤ n− 1, (16)

xit ≤ 1 for 0 ≤ t ≤ n− 1, 1 ≤ i ≤ n. (17)

Proof. Let P ⊆ Rn2

be the polyhedron defined as

P := {x ∈ Rn
2

: xit + x(i+1)t ≥ 1 for 0 ≤ t ≤ n− 1, 1 ≤ i ≤ n− 1, (18)

xit ≤ 1 for 0 ≤ t ≤ n− 1, 1 ≤ i ≤ n}. (19)

For i = 1, ..., n − 1, the sets {i, i + 1} ⊆ V \V1 are P3-co-convex and they
verify the conditions of Theorem 3.2. This implies that the inequalities (16) are
valid and facet-defining for 0 ≤ t ≤ n − 1. The inequalities xit ≤ 1 are also
facet-defining for all i and t, thus Phull(Pn+2) ⊆ P .

12



We shall prove that the extreme points of P are integral and, also, they are
solutions of the model constraints, which in this case are

2x1(t+1) ≤ 2x1t + x2t + 1 for 0 ≤ t ≤ n− 2, (20)

2xn(t+1) ≤ 2xnt + x(n−1)t + 1 for 0 ≤ t ≤ n− 2, (21)

2xi(t+1) ≤ 2xit + x(i−1)t + x(i+1)t for 0 ≤ t ≤ n− 2, 2 ≤ i ≤ n− 1, (22)

2 ≤ 2x1(n−1) + x2(n−1) + 1, (23)

2 ≤ 2xn(n−1) + x(n−1)(n−1) + 1, (24)

2 ≤ 2xi(n−1) + x(i−1)(n−1) + x(i+1)(n−1) for 2 ≤ i ≤ n− 1, (25)

0 ≤ xit ≤ 1 for 0 ≤ t ≤ n− 1, 1 ≤ i ≤ n. (26)

If x ∈ P then xit ≥ 1− x(i+1)t ≥ 0 and xnt ≥ 1− x(n−1)t ≥ 0 for 1 ≤ i ≤ n− 1,
0 ≤ t ≤ n − 1, hence x verifies the variable bounds of the model. Besides, for
2 ≤ i ≤ n− 1, 0 ≤ t ≤ n− 1,

2 ≤ (xit + x(i+1)t) + (xit + x(i−1)t) = 2xit + x(i+1)t + x(i−1)t.

In particular, for t = n−1 we have that x verifies inequalities (25) and, using that
2 ≥ 2xi(t+1), the inequalities (22) are fulfilled too. Analogously, for 0 ≤ t ≤ n−1,

2 ≤ (x1t + x2t) + (x1t + 1) = 2x1t + x2t + 1 and

2 ≤ (xnt + x(n−1)t) + (xnt + 1) = 2xnt + x(n−1)t + 1,

hence x verifies (20), (21), (23), and (24).

We shall prove now that P is integral. Let A ∈ {0, 1}n(n−1)×n2

be the
matrix corresponding to the coefficients of the co-convex inequalities (16). Is
easy to see that A is an interval matrix (the nonzero coefficients in each row are
consecutive) and then it is totally unimodular. Moreover, (AT ,−I)T is totally

unimodular too and then the polytope {x ∈ Rn2

+ : Ax ≥ b, −Ix ≥ b̂} where

b = (1, ..., 1)T and b̂ = (−1, ...,−1)T , is an integral polytope (see [11]) and then
it coincides with P (Pn+2).

By Theorem 2.1 we have the following direct corollary.

Corollary 4.1. A complete minimal description of P2dom(Pn+2) ⊆ Rn is given
by

xi + x(i+1) ≥ 1 for 1 ≤ i ≤ n− 1,

xi(n−1) ≤ 1 for 1 ≤ i ≤ n.

4.2. Cycles

In this section we present a complete description of the polytope Phull(Cn)
for Cn the cycle with n vertices. In this case it is necessary to distinguish between
even and odd values of n.
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We shall use the following result, that can be found in [11], Corolary 2.8,
Section III.1.

Lemma 4.1. Let A be a (0, 1,−1) matrix with no more than two nonzero ele-
ments in each column. Then A is totally unimodular if and only if the rows of
A can be partitioned into two subsets Q1 and Q2 such that if a column contains
two nonzero elements, the following statements are true:

a. If both nonzero elements have the same sign, then one is in a row con-
tained in Q1 and the other is in a row contained in Q2

b. If the two nonzero elements have opposite sign, then both are in rows
contained in the same subset.

Theorem 4.2. Let Cn be a cycle with n vertices, with n even and n ≥ 4. A
complete minimal description of Phull(Cn) ⊆ Rn(n−2) is given by

xit + x(i+1)t ≥ 1 for 0 ≤ t ≤ n− 3, 1 ≤ i ≤ n− 1, (27)

xnt + x1t ≥ 1 for 0 ≤ t ≤ n− 3, (28)

xit ≤ 1 for 0 ≤ t ≤ n− 3, 1 ≤ i ≤ n. (29)

Proof. Let P̂ ⊂ Rn(n−2) be the polytope

P̂ := {x ∈ Rn(n−2) : xit + x(i+1)t ≥ 1 for 0 ≤ t ≤ n− 3, 1 ≤ i ≤ n− 1,

xnt + x1t ≥ 1 for 0 ≤ t ≤ n− 3,

xit ≤ 1 for 0 ≤ t ≤ n− 3, 1 ≤ i ≤ n}.

Considering the co-convex sets {i, i + 1} and {1, n}, it is easy to see that

P (Cn) ⊆ P̂ and that the corresponding inequalities (27), (28), and (29) are
facet-defining.

We shall prove that P̂ is an integral polytope. Let A ∈ Rn(n−2)×n(n−2) be
the matrix of the coefficients of the co-convex inequalities defining P̂ , that is to
say, for i = 1, . . . , n− 1 and t = 0. . . . , n− 2 the only nonzero coefficients of the
it-th row of A correspond to the it-th and (i+ 1)t-th columns of A, meanwhile,
for i = n they correspond to the 1-th and n-th columns. Since n is even, it
is easy to see that the matrix A is totally unimodular, because its rows can
be partitioned into two subsets Q1 (whose elements are the odd rows) and Q2

(whose elements are the even rows) such that the rows corresponding to the two
nonzero entries of a column are not in the same Qi and then, by Lemma 4.1,
the matrix A is totally unimodular and, in this case, P̂ is integral. It is easy to
see that the points of P̂ verify the inequalities of the model (we omit the details
of the proof because it is completely analogous to the proof of Theorem 4.1).

This shows that P̂ = P (Cn).

The argumentation used in the previous theorem to prove the unimodularity
of the matrix of coefficients of the co-convex inequalities cannot be used when
n is odd. Indeed, for odd cycles it is necessary to add the rank inequalities in
order to get the complete description of the corresponding polytope.
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Theorem 4.3. Let Cn be a cycle with n vertices, with n odd and n ≥ 5. Then,
a complete and minimal description of Phull(Cn) ⊆ Rn(n−2) is given by

n∑
i=1

xit ≥
n+ 1

2
for 0 ≤ t ≤ n− 3, (30)

xit + x(i+1)t ≥ 1 for 0 ≤ t ≤ n− 3, 1 ≤ i ≤ n− 1, (31)

xnt + x1t ≥ 1 for 0 ≤ t ≤ n− 3, (32)

xit ≤ 1 for 0 ≤ t ≤ n− 3, 1 ≤ i ≤ n. (33)

Proof. Let P̂ be the polyhedron in Rn(n−2) defined by the above inequalities.
We know that Phull(Cn) ⊆ P̂ and also that the inequalities are facet-defining

for Phull(Cn). We shall prove that P̂ is integral and that its points verify the
inequalities defining Phull(Cn).

Notice that P̂ = P0×· · ·×Pn−3 with Pt ⊆ Rn the polytope in Rn defined by
the inequalities 2

∑n
i=1 xit ≥ n+ 1, xit + x(i+1)t ≥ 1 for 1 ≤ i ≤ n (n+ 1 := 1)

and xit ≤ 1 for 1 ≤ i ≤ n and t = 0, . . . , n− 3 (in particular, dim(Pt) = n). Let

x = (xt)0≤t≤n−3 be an extreme point of P̂ , then each xt is an extreme point of
Pt for 0 ≤ t ≤ n−3. We shall prove that every xt ∈ Rn has integer coordinates.

Claim: If xt = (xit)1≤i≤n is an extreme point of Pt for t = 0, . . . , n − 3, then
there exists 1 ≤ i ≤ n such that xit = 1.

Proof of the claim. We know that xt is the solution of a system Ax = b where A
is an n × n non-singular submatrix of coefficients of n inequalities defining Pt.
Suppose that xit 6= 1 for all 1 ≤ i ≤ n, then we have the following possibilities.

• xit+x(i+1)t = 1 for 1 ≤ i ≤ n, in this case xit = 1
2 , but this is not possible

since this vector does not verify the rank inequality because
n∑
i=1

xit = n
2 <

n+1
2 ,

• xit + x(i+1)t = 1 for 1 ≤ i ≤ n, i 6= j for some j, suppose j = n, then

xt = (x1t, 1− x1t, x1t, 1− x1t, ..., x1t) and
n∑
i=1

xit = n−1
2 + x1t = n+1

2 then

x1t = 1. For j 6= n we can repeat the previous argument and prove that
x(j+1)t = 1.

We have reached a contradiction in both cases, so we have proved that each
extreme point xt is contained in a facet of Pt of the form

Fi = Pt ∩ {x ∈ Rn : xit = 1}. ♦

Finally, we shall prove that the extreme points of Fi are integral. Suppose
that i = 1, then xt = (1, π(xt)) where π(xt) ∈ Rn−1 is an extreme point of the
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polyhedron

π(Pt) = {x ∈ Rn−1 :
n∑
j=2

xjt ≥
n− 1

2
,

xit + x(i+1)t ≥ 1 for 2 ≤ i ≤ n− 1,

x2t ≥ 0,

xnt ≥ 0,

xit ≤ 1 for 2 ≤ i ≤ n}
= {x ∈ Rn−1 : xit + x(i+1)t ≥ 1 for 2 ≤ i ≤ n− 1,

xit ≤ 1 for 2 ≤ i ≤ n},

which has integral extreme points because its coefficient matrix is totally uni-
modular. Once again, we omit to prove that the points in P̂ verify the model
inequalities defining Phull(Cn) because it is analogous to the proofs of the pre-
vious theorems.

By Theorem 2.1 we have the following immediate corollary.

Corollary 4.2. Let Cn be a cycle with n vertices, for n ≥ 4. Then, if n is even,
a complete and minimal description of P2dom(Cn) ⊆ Rn is given by

xi + xi+1 ≥ 1 for 1 ≤ i ≤ n− 1,

xn + x1 ≥ 1,

xi ≤ 1 for 1 ≤ i ≤ n− 2,

and, if n is odd, it is necessary to add the inequality

n∑
i=1

xi ≥
n+ 1

2
.

4.3. Complete graphs

For a complete graph, the rank inequalities and the variable bounds are suf-
ficient in order to provide a complete and minimal description of the associated
polytope.

Theorem 4.4. Let Kn be the complete graph with n vertices, for n ≥ 4. Then,
a complete and minimal description for Phull(Kn) ⊆ Rn(n−2) is given by

n∑
i=1

xit ≥ 2 for 0 ≤ t ≤ n− 3, (34)

0 ≤ xit ≤ 1 for 0 ≤ t ≤ n− 3, 1 ≤ i ≤ n. (35)

Proof. The inequalities (34) are trivially valid and facet-defining for Phull(Kn),
hence this polytope is included in
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P := {x ∈ Rn(n−2) :
n∑
i=1

xit ≥ 2 for 0 ≤ t ≤ n− 3, (36)

0 ≤ xit ≤ 1 for 0 ≤ t ≤ n− 3, 1 ≤ i ≤ n}. (37)

We shall prove that P is integral and that its points verify the model in-
equalities, which in this case are

2xi(t+1) ≤ 2xit +
∑
j 6=i

xjt for 1 ≤ i ≤ n and 0 ≤ t ≤ n− 3,

2 ≤ 2xi(n−3) +
∑
j 6=i

xj(n−3) for 1 ≤ i ≤ n.

Take x ∈ P and fix 1 ≤ i ≤ n and 0 ≤ t ≤ n − 3. By the inequalities (34) and
(35),

xit +
n∑
j=1

xjt = 2xit +
∑
j 6=i

xit ≥ xit + 2 ≥ 2 ≥ 2xi(t+1),

hence the inequalities of the model are satisfied by x.
In order to prove the integrality of P , consider the matrix A ∈ {0, 1}(n−2)×n(n−2)

such that at̂,it = 0 for t̂ 6= t and at,it = 1 for 1 ≤ i ≤ n (i.e., A is the matrix of
coefficients of the first n−2 inequalities). This matrix is an interval matrix and
then is totally unimodular. So (AT , I,−I)T is totally unimodular too and then

the polytope {x ∈ Rn(n−2)+ : Ax ≥ b, Ix ≥ b′,−Ix ≥ b′′} where b = (2, . . . , 2)T ,
b′ = (0, . . . , 0)T and b′′ = (−1, . . . ,−1)T , is an integral polytope that coincides
with Phull(Kn).

Once again, we have the following immediate corollary.

Corollary 4.3. Let Kn be the complete graph with n vertices, for n ≥ 4. Then,
a complete and minimal description of P2dom(Kn) ⊆ Rn is given by

n∑
i=1

xi ≥ 2,

0 ≤ xi ≤ 1 for 1 ≤ i ≤ n.

4.4. 2-domination polytope for trees

In this section, we shall provide a complete description of the 2-domination
polytope P2dom(T ) when T is a tree. By Theorem 2.1, the inequalities involved
in this description are also facet-defining inequalities for the hull number poly-
tope.

We first introduce some notations that we need in the sequel. Let T be a
tree, with V \V1 = {1, ..., n}. We define the following partition of V \V1.

• Let A ⊆ V \V1 be the set of vertices of T of degree 2.
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• Let B ⊆ V \V1 be the set of vertices i of T such that deg(i) ≥ 3 and there
exist at least two vertices j1, j2 ∈ N(i) with deg(jk) ≤ 2 for k = 1, 2. We
denote B1 ⊆ B to the set of vertices in i ∈ B such that N(i)∩A = ∅ (i.e.,
every neighbor of i is a leaf or has degree at least three).

• Let C ⊆ V \V1 be the set of vertices i of T such that deg(i) ≥ 3 and there
exists a unique j ∈ N(i) with deg(j) ≤ 2. We denote C1 ⊆ C to the set of
vertices in i ∈ C such that N(i) ∩ A = ∅ (i.e., the neighbors of i are one
leaf and the rest have degree at least three).

• Let D ⊆ V \V1 be the set of vertices i of T such that deg(j) ≥ 3 for all
j ∈ N [i].

The following lemma shows facet-defining inequalities associated to the dif-
ferent classes of vertices of T .

Lemma 4.2. Let T be a tree, with V \V1 = {1, ..., n}.

1. For each i ∈ A, i.e., deg(i) = 2, the sets Rij := {i, j} are 1-quasi-co-
convex for every j ∈ N(i)\V1. Furthermore, the corresponding valid in-
equalities xi + xj ≥ 1 are facet-defining for P2dom(T ).

2. For each i ∈ D, i.e., deg(i) ≥ 3 and deg(j) ≥ 3 for every j ∈ N(i),
the sets Qij = N [i]\{j} are 1-quasi-co-convex in V . Furthermore, the
corresponding valid inequalities

∑
k∈N [i]\{j} xk ≥ 1 are facet-defining for

P2dom(T ). For these vertices i, also the corresponding inequality of the
model 2xi+

∑
j∈N(i) xj ≥ 2 (that we shall call Mi) and the variable bound

xi ≥ 0 are facet-defining for P2dom(T ).

3. For each i ∈ C, i.e., deg(i) ≥ 3 and i has exactly one neighbor j with de-
gree at most 2, then the set Si = N [i]\{j} is 1-quasi-co-convex in V . Fur-
thermore, the corresponding valid inequality

∑
k∈N [i]\{j} xk ≥ 1 is facet-

defining for P2dom(T ). If deg(j) = 1 (i.e., j is a leaf and then i ∈ C1) the
variable bound xi ≥ 0 is a facet-defining inequality too.

Proof. The proof is immediate and follows from Theorem 3.3.

For the sake of simplicity, and when it is clear by the context, we shall call Rij
to the inequality xi+xj ≥ 1 associated with the set {i, j} for i ∈ A. Analogously,
if i ∈ D and j ∈ N(i), Qij will denote the facet-defining inequality defined in
Lemma 4.2 and the same for i ∈ C and the inequality Si. The inequalities
defined in the previous lemma together with the upper variable bound provide
a complete and minimal description of the polytope P2dom(T ).

Theorem 4.5. Let T be a tree. Then, a complete and minimal description of
P2dom(T ) is given by the following inequalities,
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Rij : xi + xj ≥ 1 for i ∈ A, j ∈ N(i) or i ∈ B ∪ C, j ∈ N(i) ∩A,

Si : xi +
∑

j∈N(i)\(V1∪A)

xj ≥ 1 for i ∈ C,

Mi : 2xi +
∑

j∈N(i)

xj ≥ 2 for i ∈ D,

Qik : xi +
∑

j∈N(i)\{k}

xj ≥ 1 for i ∈ D, k ∈ N(i),

Ei : xi ≥ 0 for i ∈ B1 ∪ C1 ∪D,
xi ≤ 1 for i ∈ V \V1.

In the sequel, we shall denote the polytope defined by the above inequalities
by PT . We need the following lemmas in order to prove the Theorem 4.5.

Lemma 4.3. The inequalities Es : xs ≥ 0 are valid for PT , for every s ∈ V \V1.

Proof. For s ∈ B1 ∪ C1 ∪D the result is trivial. For s ∈ A ∪ (B\B1) ∪ (C\C1),
each x ∈ PT has to verify that xs +xj ≥ 1 for some j ∈ V \V1, and then xs ≥ 0,
because xj ≤ 1 is valid.

Lemma 4.4. If x ∈ Rn is an extreme nonzero point of PT , then there exists a
vertex i, 1 ≤ i ≤ n, such that xi = 1.

Proof. Suppose that xi < 1 for all 1 ≤ i ≤ n. Let us consider an arbitrary root
of T , not a leaf, that we call vertex 1. We enumerate the rest of the vertices in
V \V1 so that i < j for every i, j ∈ V such that dist(i, 1) < dist(j, 1).

Let P be the set of all the inequalities of the form Rij , Si,Mi and Qik defined
in the statement of Theorem 4.5, and Pi ⊆ P be the subset corresponding to a
vertex i, i.e.,

Pi = {Rij : j ∈ N(i)\V1 and i < j} for i ∈ A, (38)

Pi = {Rij : j ∈ N(i), j ∈ A and i < j} for i ∈ B, (39)

Pi = Si ∪ {Rij : j ∈ N(i), j ∈ A and i < j} for i ∈ C, and (40)

Pi = Mi ∪ {Qik : j ∈ N(i)} for i ∈ D. (41)

Analogously, if P= (resp. P<) is the subset of inequalities in the description of
PT that x verifies with equality (resp. strict inequality), we define P=

0 ⊆ P=

the subset of the inequalities Ei : xi ≥ 0, and P=
i ⊆ P=\P=

0 defined as
P=
i = Pi ∩ P=.

We define the support of each subset of inequalities Pi, σi, as the subset of
V \V1 whose elements are the vertices such that their corresponding variable has
a nonzero coefficient in some inequality of Pi, i.e.,

• if i ∈ A: σi = {i} ∪ {j ∈ N(i)\V1 : j > i}, and σi = ∅ if {j ∈ N(i)\V1 :
j > i} = ∅,
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• if i ∈ B: σi = {i} ∩ ({j ∈ N(i) : j > i} ∪ A), and σi = ∅ if {j ∈ N(i) :
j > i} ∩A = ∅,

• if i ∈ C: σi = N [i], and σi = N [i] ∩ {j ≥ i} if the parent of i (neighbor of
i with a smaller index than i) that we call p(i), verifies that p(i) ∈ A,

• if i ∈ D: σi = N [i].

We can see that, if P(i) ⊆ V is the subset of predecessors of i (vertices in
the path joining i and the root 1), then

V \V1 =
⋃

1≤i≤n

σi\ ∪j∈P(i) σj

(defining σP(1) = ∅), and that this union is disjoint. Let F be the subset of
vertices i in V \V1 such that the corresponding coordinate xi is fractional, if we
call Fi = F ∩ σi\ ∪j∈P(i) σj then |F | =

∑n
i=1 |Fi|.

As x is an extreme point of PT then rank(P=) = n, so there exists a basis
B such that P=

0 ⊆ B and, if Bi = B ∩ P=
i , then |P=

0 |+
∑n
i=1 |Bi| = n.

Claim 1. If j ∈ V such that deg(j) = 2 or deg(k) = 2 for some k ∈ N(j) then
xj is fractional (i.e., xj 6= 0 or, equivalently, j ∈ F ).

Proof of Claim 1. Since xj + xk ≥ 1 for some k ∈ N(j) and xk < 1 then
0 < xj < 1. ♦

As a consequence of Claim 1, if a vertex i ∈ F (i.e., xi = 0) then i ∈
B1 ∪ C1 ∪ D, and then xi ≥ 0 is a facet-defining inequality, involved in the
description of PT , and then we have that Ei ∈ P=

0 . As we are assuming that
n = |{s ∈ V \V1 : xs = 0}|+ |F | = |P=

0 |+ |F | then, if x is an extreme point, we
have that

|F | =
n∑
i=1

|Bi|. (42)

Claim 2. If j ∈ C (i.e., deg(j) ≥ 3 and deg(k) ≤ 2 for exactly one k ∈ N(j))
then there exist at least two fractional coordinates xl and xs for l, s ∈ N [j]\{k},
i.e., l, s ∈ F .

Proof of Claim 2. Since xj +
∑
l∈N [j]\{k} xl ≥ 1 at least two terms must be

nonzero, hence fractional. ♦

Claim 3. If j ∈ D (i.e., deg(l) ≥ 3 for l ∈ N [j]) then

1. if xj = 0, there exist at least three fractional coordinates xl with l ∈ N(j).
Furthermore, Qjk ∈ P< for all k ∈ N(j). In particular, |Bj | ≤ 1 because
P=
j ⊆ {Mj}.

2. If xj is fractional then j has at least two neighbors with fractional coordi-
nates. Furthermore, if Qjk and Qjl belong to P= then Es ∈ P=

0 for every
s ∈ N(j)\{k, l}. In particular Qjs ∈ P< for all s ∈ N(j)\{k, l} and Mj is
a linear combination of the facet-defining inequalities Qjk, Qjl and xs ≥ 0
in P=, thus, we have that |Bj | ≤ 2.
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Proof of Claim 3.

1. Since x has to verify Mj , then
∑
s∈N(j) xs ≥ 2, and this is only possible if

at least three terms are different from zero, because xi < 1. Furthermore,
if Qjk ∈ P= for some k ∈ N(j), then

∑
s∈N(j)\k xs = 1 and then, by

replacing in Mj , we get xk = 1, which we are supposing that is not
possible.

2. As Qjk : xj +
∑
l∈N(j)\{k} xl ≥ 1 is valid, there exists at least one l 6= k

such that xl 6= 0, but x has to verify Qjl too, and then another coordinate
must be fractional. Now suppose that Qjk and Qjl belong to P=, i.e.,

xj +
∑

s∈N(j)\{k}

xs = xj +
∑

s∈N(j)\{l}

xs = 1.

Adding the equations we have that,

2xj + 2
∑

s∈N(j)\{l,k}

xs + xk + xl = 2xj +
∑

s∈N(j)

xs +
∑

s∈N(j)\{l,k}

xs = 2,

which is only possible if Mj ∈ P= and
∑
s∈N(j)\{l,k} xs = 0. By Claim

1, the vertices s have no neighbors of degree 2, and then xs ≥ 0 is facet-
defining for s ∈ N(j)\{l, k}. Furthermore, we have seen that Qjk +Qjl =
Mj +

∑
s∈N(j)\{k,l}Es. ♦

Now we will use the previous claims. By grouping the vertices of T in an
appropriate way we shall deduce that |F | >

∑n
i=1 |Bi|, contradicting (42), and

then x cannot be an extreme point. We shall analyze |Fi| and |Bi| when i = 1
is the root of T and, on the other hand, when i > 1.

• If 1 ∈ A, then |B1| ≤ 2 < |F1| = 3 (when 1 ∈ A\A1) or |B1| ≤ 1 < |F1| = 2
if a child of 1 (a neighbor which is greater than 1) is a leaf (i.e., 1 ∈ A1).
If i ∈ A and i > 1, then |Bi| ≤ 1 = |Fi| = 1 (because |Pi| = 1), and then
|P=
i | ≤ 1, and σi = {i, c(i)} where c(i) is the child of i, and i ∈ σp(i) so

σi\σp(i) = c(i), which belongs to F by Claim 1.

• If 1 ∈ B, then |B1| ≤ |N(1) ∩ A| < |N(1) ∩ A| + 1 ≤ |F1| (because the
vertex 1 and all its neighbors of degree 2 have fractional coordinates by
Claim 1) or |B1| = 0 ≤ |F1| if N(1) ∩ A = ∅ (i.e., 1 ∈ B1). If i ∈ B and
i > 1, then |Bi| ≤ |N(i) ∩ A| − 1 ≤ |Fi| if p(i) ∈ A, |Bi| ≤ |N(i) ∩ A| <
|N(i) ∩ A| + 1 ≤ |Fi| if p(i) ∈ B (because p(i) /∈ σp(i) in this case) and
|Bi| ≤ |N(i) ∩A| ≤ |Fi| if p(i) ∈ C ∪D.

• If 1 ∈ C1, then |B1| ≤ 1 and by Claim 2, |F1| ≥ 2. If i ∈ C1 and i > 1
then |Fi| ≥ 1.

For i ∈ C\C1 or i ∈ D it is not true that |Bi| ≤ |Fi|. Nevertheless, the next
observation will be useful in order to appropriately group vertices and obtain a
similar result.

Claim 4. Let i1 ∈ C ∪D such that |Bi1 | = 2 and |Fi1 | = 1, then
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1. i1 > 1,

2. p(i1) ∈ C ∪D,

3. |Bp(i1)| ≤ 1,

4. |Bp(i1)|+
∑

1≤k≤r |Bik | ≤ |Fp(i1)|+
∑

1≤k≤r |Fik | for {i2, ..., ir} the subset
of vertices having the same parent than i1 (siblings of i1), that belong to
C ∪ D and verify that |Bik | = 2 and |Fik | = 1. If p(i) = 1, the above
inequality is strict.

Proof of Claim 4. If i1 = 1 ∈ (C\C1) ∪ D then |Fi1 | ≥ 2, then i1 > 1. If
p(i1) ∈ A then i1 ∈ C\C1 and |Bi1 | ≤ 1, if p(i1) ∈ B then |Fi1 | ≥ 2, then
p(i1) ∈ C ∪D. Notice that, by Claim 2 and Claim 3, |Bi| ≤ 2 and |Fi| ≥ 1 for
all i ∈ C ∪D.

Now we prove item 3. We first analyze the case i1 and p(i1) ∈ C. As x
has to verify Si1 with equality and there is only one nonzero variable in Fi1
corresponding to the neighbor of i1 of degree 2, then x verifies xp(i1) + xi1 = 1.
So, if Sp(i1) ∈ Bp(i1), then the variables corresponding to siblings of i1 with
degree at least 3 have to be zero, and then Sp(i1) is a linear combination of Si1
and facets Es ∈ P=

0 , which is not possible, since B is a basis. Then |Bp(i1)| ≤ 1.
The proofs for the rest of the cases are analogous.

Finally, we prove item 4. Suppose that there exists i2 ∈ C ∪D, a sibling of
i1 such that |Bi2 | = 2 and |Fi2 | = 1. Notice that, in this case, xi1 and xi2 are
fractional, otherwise |Fi1 | > 1.

• Let i1, i2 ∈ D. In this case there is only one child of i1 (a vertex whose
parent is i1), c(i1), and one child of i2, c(i2), such that the corresponding
variable in x is nonzero. Then x has to verify xi1 +xp(i1) = 1, xi1 +xc(i1) =
1, xi2 + xp(i1) = 1 and xi2 + xc(i2) = 1. Then, we have the following
possibilities.

– If p(i1) ∈ D, Bp(i1) = ∅, because Mp(i1), Qp(i1)i1 and Qp(i1)i2 are
linear combinations of the equations above and facets Es ∈ P=

0 ,
and Qp(i1)k /∈ P= for k 6= i1, i2. On the other hand, |Fp(i1)| ≥ 2
(or at least 3 if p(i1) = 1), and then |Bp(i1)| + |Bi1 | + |Bi2 | = 4 ≤
|Fp(i1)| + |Fi1 | + |Fi2 |. If there are more siblings of i1, ij ∈ C ∪ D,
j = 3, . . . , r, such that |Bij | = 2 and |Fij | = 1 then |Fp(i1)| ≥ r (or
|Fp(i1)| ≥ 1 + r if p(i1) = 1), and then |Bp(i1)|+

∑
1≤k≤r |Bik | = 2r ≤

|Fp(i1)|+
∑

1≤k≤r |Fik | and the inequality is strict if p(i1) = 1.

– If p(i1) ∈ C, Sp(i1) /∈ P=
p(i1)

and then |Bp(i1)| = 1 and |Fp(i1)| ≥ 3 (if

Rp(i1)j ∈ P=
p(i1)

) or |Bp(i1)| = 0 and |Fp(i1)| ≥ 2. If p(i1) = 1, then

|Bp(i1)| ≤ 1 and |Fp(i1)| ≥ 3. Then, |Bp(i1)| + |Bi1 | + |Bi2 | = 5 ≤
|Fp(i1)|+ |Fi1 |+ |Fi2 | or |Bp(i1)|+ |Bi1 |+ |Bi2 | = 4 ≤ |Fp(i1)|+ |Fi1 |+
|Fi2 |.

• Let i1, i2 ∈ C\C1. In this case x has to verify xi1 + xp(i1) = 1 and
xi2 +xp(i1) = 1, because the only child with a nonzero associated variable
is the one of degree 2, and then we can proceed as in the previous item.
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• The proof is analogous for i1 ∈ D and i2 ∈ C\C1. ♦

Now we consider the following partition of V \V1.

• For every i1 ∈ C∪D such that |Bi1 | = 2 and |Fi1 | = 1, denote by i = p(i1),
we define Ai := {i, i1, ...ir} where {i2, ..., ir} is the subset of siblings of i1
included in C ∪D verifying that |Bik | = 2 and |Fik | = 1.

• For a vertex j such that j /∈ Ai for none of the sets defined in the previous
item, we define Aj = {j}.

Let s be the number of different sets Ai. By the previous results we have
that ∑

i∈A1

|Bi| <
∑
i∈A1

|Fi| and
∑
i∈Aj

|Bi| ≤
∑
i∈Aj

|Fi| for j = 2, . . . , s.

Then

|B| =
s∑
j=1

∑
i∈Aj

|Bi| <
n∑
i=1

|Fi| = |F |

contradicting the equality (42), which must be valid if x is an extreme point.

Now we are able to prove the main result.

Proof. Proof of Theorem 4.5.

By Lemma 4.2, the inequalities Rij , Si, Mi, Qik, Ei and xi ≤ 1 defined in
the statement of the theorem are facet-defining for P2dom(T ). In order to prove
that the description is complete it suffices to show that the extreme points of the
polyhedron PT defined by these inequalities are integral and satisfy the model
constraints (4).

Claim 1 The points of PT verify the inequalities (4).

Proof of Claim 1. Let x = (x1, . . . , xn) ∈ PT . For a vertex i ∈ {1, . . . , n}, we
shall suppose that Ci ≤ 1 because otherwise the inequality (4) for i is redundant.
Then we have the following options,

Case 1 deg(i) = 2 and Ci = 0 (i.e., i ∈ A and does not have neighbors that are
leafs): in this case, N(i) = {j, k} ⊆ V \V1 and then x verifies xi + xj ≥ 1
and xi+xk ≥ 1. Adding these inequalities we have that 2xi+xj +xk ≥ 2.

Case 2 deg(i) = 2 and Ci = 1 (i.e., i ∈ A1 has exactly one neighbor that is a
leaf): in this case, if N(i)\V1 = {j} then x verifies xi + xj ≥ 1. Then, as
xi ≥ 0, 2xi + xj ≥ 1.

Case 3 deg(i) ≥ 3 and deg(j) ≥ 3 for all j ∈ N(i) (i.e., i ∈ D): in this case the
inequality (4) of the model appears in the description of PT .

Case 4 deg(i) ≥ 3 and deg(j) ≥ 3 for j ∈ N(i)\{k} and deg(k) = 2 (i.e., i ∈ C):
in this case we have that x verifies xi+

∑
j∈N(i)\{k} xj ≥ 1 and xi+xk ≥ 1,

thus 2xi +
∑
j∈N(i) xj ≥ 2.
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Case 5 deg(i) ≥ 3 and deg(j) ≥ 3 for j ∈ N(i)\{k} and deg(k) = 1 (i.e., i ∈
C1): in this case we have that xi +

∑
j∈N(i)\{k} xj ≥ 1 and, as xi ≥ 0,

2xi +
∑
j∈N(i)\{k} xj ≥ 1.

Case 6 deg(i) ≥ 3, Ci = 0 and i has at lest two neighbors of degree 2 (i.e., i ∈ B):
in this case xi+xj ≥ 1, xj+xk ≥ 1, then 2xi+xj+xk ≥ 2. Then, as xl ≥ 0
for all l ∈ N(i)\V1 and deg(l) ≥ 3, 2xi+xj+xk+

∑
l∈N(i)\V1 : deg(l)≥3 xl ≥

2. If C1 = 1, xi + xj ≥ 1 and then 2xi + xj +
∑
l∈N(i)\V1 : deg(l)≥3 xl ≥ 1.

♦

Claim 2 The polytope PT is integral.

Proof of claim 2. We proceed by induction in n = |V (T )\V1(T )|.

1. If n = 1, then T is a star and then PT is the segment 0 ≤ x ≤ 1 whose
extremes are x = 0 and x = 1, both integer.

2. Let x ∈ PT be an extreme point. By the previous lemma, there exists (at
least) a vertex i0 such that xi0 = 1. For {i1, ..., ik} = N(i0)\V1, let Tj be
the connected component of V (T )\{i0} containing ij and adding i0 as a
leaf. It is clear that Tj is a tree, and |V (Tj)\V1(Tj)| < n for j = 1, · · · , k.
So, by inductive hypothesis, the extreme points of PTj are integer. In order
to finish the proof we will show that πk(x) is an extreme point of Tj for
j = 1, · · · , k, where πk is the projection map of Rn onto the coordinates
corresponding to V (Tj)\V1(Tj). Let j = 1 and suppose that π1(x) ∈ Rs
is not an extreme point of PT1 , in this case there exists 0 < α < 1 and
two feasible solutions y, z ∈ PT1 such that π1(x) = αy + (1 − α)z. We
define y ∈ Rn such that yi = yi for i ∈ V (T1)\V1(T1), yi0 = 1 and yi = xi
for the rest of the vertices in V (T )\V1(T ), and in a similar way we define
z ∈ Rn. We shall prove that they are both feasible solutions in PT , i.e.,
that y, and then z, verifies the inequalities defining PT .
On the one hand, if I is an inequality involved in the description of PT
(i.e., I ∈ PT ), and the support of I (vertices whose corresponding variable
has a nonzero coefficient in I) is included in V (T1), then y verifies I since
these variables coincide with those of x, which is a feasible solution in PT .
On the other hand, every inequality of the form Ri0j , Si0 , Mi0 or Qi0k
is verified by y, because yi0 = 1, and some of them are involved in the
description of PT depending on i0 ∈ A,B,C or D.
Finally, observe that degT (i) = degT1(i) for every i ∈ V (T1)\{i0}, and Ci
(the number of degree one neighbors of i) also coincides in T and T1 except
for i = i1, so, an inequality of the form Rij , Si, Mi or Qik corresponding
to a vertex i ∈ V (T1)\V1(T1)−{i1} belongs to PT if and only if it belongs
to PT1 , and therefore y verifies the corresponding ones.
As the variable bounds are valid inequalities, by the previous observations
we just have to analyze the validity of the inequalities of the form Ri1j ,
Si1 , Mi1 or Qi1k:

(a) If i1 ∈ A in T then Ri1i0 is valid for y and Ri1j ∈ PT1 (and then is
valid for y) because i1 ∈ A in T1. The same occurs if i1 ∈ B in T .
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(b) If i1 ∈ C in T we have to analyze two cases.

• If i0 /∈ A, then i1 ∈ B in T1. The inequalities of i1 in PT are Si1
and Ri1j both are verified by y because i0 belongs to the support
of Si1 (then it holds for y) and, furthermore, Ri1j ∈ PT1 .

• If i0 ∈ A, then i1 ∈ C in T1. The inequalities in PT are Si1 ∈ PT1
and the other inequality is Ri1i0 which is trivially valid for y.

(c) If i1 ∈ D in T then i1 ∈ C in T1. The inequalities in PT are Mi1 , Qi1i0
and Qiij for j 6= i0 neighbor of i1. Notice that Si1 = Qi1i0 ∈ PT1 ,
then Si1 + xi0 + xi1 = Mi1 is valid if xi0 = 1, and then is valid for
y, furthermore i0 belongs to the support of Qiij for j 6= i0, and then
they are valid for y.

We have seen that π1(x) is an extreme point of PT1 and the same argument
applies for j = 2, . . . , k. So, we have proved that all the coordinates of πj(x)
are integral for j = 1, . . . , n, then the same is valid for x, and now the proof is
complete.

5. Conclusions and future work

We have progressed in the study of the polyhedral counterpart of the calcu-
lation of the 2-domination and the P3-hull number of a graph. Our goal now
is to investigate potential relationships between the facet-defining inequalities
of Pk(G) and those of Pk+1(G). Although getting a complete description of
Phull(G) is difficult even for trees, we hope that the knowledge of the polytope
P2dom(G) and an eventual relationship between the polytopes Pk(G) may allow
us to advance the knowledge of the polytope Phull(G).
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