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and transparent (Hoyles et al., 2002; Williams & Wake, 
2007). In general, mathematical application skills beyond 
pure mathematical knowledge have been recognised to be 
increasingly important (FitzSimons, 2002).

To prepare for these new practices, integrated STEM 
curricula with a broader range of mathematical skills are 
needed. In this study, we focus on Techno-mathematical 
Literacies (TmL), which are defined as a combination of 
mathematical, workplace and ICT knowledge, and commu-
nicative skills. Examples of TmL are the ability to interpret 
abstract data and having a sense of number and a sense of 
error (Hoyles et al., 2010).

However, how to stimulate and assess the development of 
TmL in higher STEM education curricula is yet unknown. 
We, therefore, started a project to foster students’ TmL in 
higher STEM education and integrating mathematics and 
science. Starting with an interview study in a range of STEM 

1  Techno-mathematical literacies in higher 
STEM education

The professional practices in which science, technol-
ogy, engineering, and mathematics (STEM) are used have 
changed over the last few decades because of tremen-
dous changes in available knowledge and digital technol-
ogy (Duderstadt, 2010; Kent & Noss, 2001). Nowadays, 
most calculations are performed by computers, and math-
ematics behind the interfaces are therefore less visible 
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Abstract
Techno-mathematical Literacies (TmL), which are defined as a combination of mathematical, workplace and ICT knowl-
edge, and communicative skills, are acknowledged as important learning goals in STEM education. Still, much remains 
unknown about ways to address them in teaching and to assess their development. To investigate this, we designed and 
implemented an innovative course in applied mathematics with a focus on Techno-mathematical Literacies for 1st-year 
engineering students, and we set out to measure the learning effect of the course. Because measuring TmL is an uncharted 
terrain, we designed tests that could serve as pre- or posttests. To prevent a test learning effect, we aimed to design two 
different but equally difficult tests A and B. These were assigned randomly to 68 chemistry students, as a pretest, with 
the other one serving as posttest after the course. A significant development in TmL was found in the B-pre group, but 
not in the A-pre group. Therefore, as a follow-up analysis we investigated whether the two tests were equally difficult 
and searched for possible explanations. We found that test B was indeed perceived as more difficult than test A, but also 
that students who were assigned B (pre) were previously higher achieving than A (pre), and a sound mastery level of 
basic skills that ground the higher-order TmL seemed necessary. Furthermore, as TmL are very heterogenous by nature, 
some of them are easier learned and measured than others. Based on the results, we propose ways of testing TmL, which 
should be validated in future research.
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practices, we identified seven commonly used TmL catego-
ries. With these TmL as central learning goals, we designed 
an innovative course in applied mathematics for 1st-year 
STEM students with the approach of Design-based Imple-
mentation Research (Fishman et al., 2013). This course was 
intended as a first step in developing TmL as long-term 
educational goal of advancing mathematical skills in higher 
education, with the workplace as end-goal. The new course, 
which included group work on applied cases as a core ele-
ment, was implemented in the curriculum of all majors of 
the School of Life Sciences and Environmental Technology 
of Avans University of Applied Sciences and taught by 11 
lecturers to thousands of students since 2016 and is still part 
of the curriculum to this day.

In this paper, we zoom in on the last and the most chal-
lenging part of our project, the assessment of TmL. When 
new learning goals are formulated, it is crucial that these 
goals can be assessed. Although STEM education aims for 
interdisciplinary knowledge and skills (Maass et al., 2019), 
assessment of these heterogeneous skills is scarcely found 
in the literature. Testing in STEM education is still pre-
dominantly discipline-based and assessment tools should be 
developed for these new objectives (Gao et al., 2020), con-
sidering the need for feasibility in assessment at large insti-
tutions. Therefore, we evaluated the learning effect of the 
designed course, by means of a pre- and posttest to measure 
students’ development in TmL. We did not find any previous 
reported attempts to measure the development of TmL, so 
we had to design such a test ourselves. The initial research 
question that guided this study was: What is the learning 
effect of a course in applied mathematics on students’ devel-
opment of Techno-mathematical Literacies?

Although the project has been successful in various 
respects (identifying TmL, course design, professional 
development, and sustainability of implementation), in 
this last study of our project, we encountered unexpected 
results. We think these results are worth sharing with others 
who conduct educational design research, as O’Neill (2012) 
states: “Principally, it is argued that design researchers must 
report the failure of designs much more frequently and in 
a more informative way, and that a critical audience for 
informative reports of design failure is indispensable to the 
progress of educational design research” (p. 119). To further 
investigate our results, we therefore formulated a follow-up 
question, which reads, what are possible explanations for 
the contrasting results?

2  Design-based implementation research 
project

Design-based Implementation Research (DBIR) can provide 
guidelines for the implementation of design research. This 
approach aims to develop theoretical insight and at the same 
time provide practical solutions to complex educational 
problems. It has emerged to bridge the gap between theory 
and practice (Bakker, 2018; Van den Akker et al., 2006). It 
includes iterative, flexible cycles of designing, monitoring, 
evaluating, and adjusting an intervention, mostly conducted 
in a team (McKenney & Reeves, 2012). As the implemen-
tation of a design is often the most challenging part, and 
as an expansion of DBR, DBIR has been developed (Fish-
man & Penuel, 2018). DBIR provides guidelines to support 
for usability and sustainability of educational interventions. 
It transcends barriers between the educational disciplines 
to provide systemic change (Fishman et al., 2013). In our 
design project, we followed these guidelines to support 
the implementation of the innovative course in applied 
mathematics.

2.1  Context of project

The origin of this design project stems in educational chal-
lenges. In higher education, STEM subjects are predomi-
nantly separated in disciplinary courses, and to move to 
integrated STEM education, however, there is an increased 
need for interdisciplinarity or transdisciplinarity (Vasquez et 
al., 2013). Mathematics courses in higher education are the 
most “odd ones out”. In the Netherlands, they are still taught 
in a merely abstract manner with little context and almost no 
connection to other STEM subjects. This was also the case 
in many schools of Avans University of Applied Sciences in 
the Netherlands. In the School of Life Sciences and Envi-
ronmental Technology, where the first author worked as a 
lecturer, many students were low performing and not very 
motivated to engage in mathematics. Moreover, most stu-
dents did not recognise mathematics in their other science 
courses, and often asked “why do we have to learn this”.

Although curriculum changes are not easy in large uni-
versities, with support of management, we were given the 
opportunity to design and implement a new course applied 
mathematics for 1st-year STEM-students with four col-
leagues, with the aim of integrating mathematics and sci-
ence. To develop TmL at a professional level, this course 
was intended to function as the first step in a learning trajec-
tory. The start in this project was to identify the TmL used 
by STEM professionals by means of an interview-study.
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2.2  Identifying TmL in STEM practices

The rapid changes in the world due to globalisation, digi-
talisation and automatisation have caused knowledge to 
expand at high speed over the last decades. Computers 
and technology-driven machines have taken over calcula-
tions from handwork. Because input has to be monitored 
with great scrutiny and output has to be interpreted sensibly, 
there is an increased need to be able to understand quan-
titative data (Gravemeijer, 2013; Levy & Murnane, 2007). 
Although mathematics plays a central role in engineering, 
engineers often perceive themselves as using only simple 
mathematics (Kent & Noss, 2002). Handling and interpret-
ing abstract information have always been a task for highly 
trained employees, but because of technology, an increasing 
number of people engages in these challenges (Kent et al., 
2000). Furthermore, because work tasks are nowadays far 
more complex than they have been in the past, division of 
labour is practiced, and computations are often outsourced 
to computers and to expert mathematicians and statisticians. 
In non-routine tasks, the use of ICT can add a certain math-
ematical invisibility behind the screen or the print-out, and 
this can be perceived as a black box (Hoyles et al., 2013; 
Van der Wal et al., 2017). Professionals learn technology 
mostly by use, and mathematical literacy, analogous to lan-
guage literacy, is necessary (Kent & Noss, 2001).

The mathematical literacy needed in professional con-
texts differs significantly from what is typically taught in 
formal mathematics education in STEM (Bakker et al., 
2006). While the latter addresses merely conventional skills, 
facts, and procedures, learning in the 21st century should 
integrate knowledge in a problem-oriented interactive cur-
riculum (Fadel et al., 2007). Garfunkel (2011) emphasises 

the importance of mathematics learned in the context of sci-
ence as well, and states that a different set of mathemati-
cal skills are necessary, which he identifies as mathematical 
modelling and quantitative literacy.

As for mathematical skills that go beyond mathematical 
knowledge, several definitions have been introduced, and 
because of the technology-driven nature of engineering, we 
chose to focus on Techno-mathematical Literacies (TmL) in 
our study. TmL are complex skills that are context specific 
and based on data and go far beyond numeracy and calcu-
lations (Bakker et al., 2006). Even for professional scien-
tists, for example, graphs that originate in other technical 
domains are often misinterpreted (Roth, 2003).

In the first study of the design project, we conducted an 
interview study to find out which TmL professionals use in 
STEM. In the Netherlands, graduates of both engineering 
and life sciences majors in universities of applied sciences 
are called ‘engineers’. As shown in Table 1, our interview 
study with 14 engineers from a range of STEM domains 
led to the identification of seven TmL categories, that these 
engineers often use in combination (Van der Wal et al., 
2017). We will now elaborate on these seven TmL catego-
ries with examples from the interview study.

2.2.1  Data literacy

Data Literacy is the ability to analyse and interpret textual, 
numerical, and graphical data to correctly draw conclusions 
and taking appropriate action. For example, in our interview 
with a technical writer for manuals for digital chips machine 
production, their ability to produce insightful graphics was 
mentioned to be very important.

2.2.2  Technical software skills

This TmL was the most frequently observed category in 
our study and concerns the ability to use technical software, 
both general (e.g., Excel™) and domain-specific technical 
company software. The key skill in this TmL is not (only) 
to be able to know ‘the buttons’ of the software, where the 
computer is experienced as a black box, but often to know 
what calculations are performed behind the interface, and 
therefore, the computer being experienced as a white or 
grey box. Because we found Excel™ to be the most ubiq-
uitous used software, we decided to implement this tool in 
our new course.

Table 1  Seven TmL categories that engineers teported to use in their 
work (from Van der Wal et al., 2017)

TmL category Description
1 Data literacy The ability to analyse and interpret techni-

cal data and graphical representations, draw 
conclusions, and take action accordingly

2 Technical soft-
ware skills

The ability to use professional software, 
e.g., Excel™, as a calculation tool

3 Technical 
communication 
skills

The ability to communicate technical 
information with colleagues, customers, 
supervisors, and other parties

4 Sense of error The ability to check and verify data and 
detect errors

5 Sense of number The ability to handle and interpret numbers 
sensibly

6 Technical 
creativity

The ability to produce creative solutions 
to puzzles and problems (by using, e.g., 
cleverness or experience)

7 Technical draw-
ing skills

The ability to understand and produce 
technical drawings (by using, e.g., spatial 
insight)

Table 2  The weekly class hours schedule
1st hour Introduction/questions with lecturer
2nd hour Collaborative work without lecturer
3rd hour Collaborative work without lecturer
4th hour Feedback hour with lecturer
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2.2.8  Combination of TmL categories

As mentioned before, TmL categories are often combined, 
as tasks of engineers are often complex. A sales engineer 
who sells stabilisation fins for yachts, combines sense of 
number with sense of error, when checking numerical data 
of yachts. But using his Excel™ calculation tool with end-
less formulas, he integrates TmL categories data literacy, 
technical software skills, and technical communication 
skills, when thinking on, and discussing with colleagues 
about the offers of the competition. The technical writer of 
chip machine manuals needs both data literacy and sense 
of error when checking received input. The permit advisor 
also needs sense of number (how much is this variable) and 
data literacy (how does that variable work) in interpreting 
the technical drawings.

2.3  Course design

With the identified TmL as central learning goals, a new 
course for 1st year STEM-students named Applied Mathe-
matics was designed. The course was collaboratively devel-
oped by an interdisciplinary design team of four lecturers 
consisting of a mathematician (the first author), a chemi-
cal engineer, an electrical engineer, and a built environ-
ment engineer. These lecturers provided technical contexts 
and their professional experiences. Cases were created on 
several topics in the domains of life sciences, electrical 
engineering, and built environment (e.g., electrical feed of 
Hall-sensor, linearisation of temperature measurements of 
a thermistor, temperature balance in a house). In every sec-
tion of the cases, specific TmL are addressed. The premises 
of the course were determined based on the input of litera-
ture and the interviews with the engineers from the previous 
study (Van der Wal et al., 2017). As the engineers stressed 
the importance of application, and TmL need context by 
nature, we decided to build a problem-based and technol-
ogy-enriched course of applied mathematics.

2.3.1  Inquiry-based learning

With the aim of using TmL as a central learning goal in an 
applied mathematics course, we formulated new learning 
goals which also asked for new pedagogy. We decided to 
use the approach of inquiry-based learning (IBL). Inquiry is 
playing an increasing role in science education, as it mimics 
the patterns of science practices. It stimulates students to 
acquire and apply science concepts (Linn et al., 1996). IBL 
is defined as a student-centred approach to stimulate criti-
cal thinking, problem-solving and developing an investigat-
ing mindset (Anderson, 2002; Chu et al., 2017). Teaching 

2.2.3  Technical communication skills

This TmL includes the ability to communicate with vari-
ous parties, e.g., with colleagues and other departments, but 
also with management, customers, and employees. Many 
engineers mention this skill to be very important. A license 
advisor in environmental engineering uses simple and plain 
language to support mutual understanding. A sales engineer 
who designs climate ceilings stresses the importance of 
asking carefully chosen additional questions to customers. 
Division of labour and collaboration necessitate interacting 
and communicating more than ever.

2.2.4  Sense of error

The TmL category sense of error concerns the ability to 
detect errors in all kinds of data, which is a very crucial 
skill, as small errors can have large effects. The license advi-
sor, for example, reads their received reports with scrutiny, 
and has to detect conspicuous details.

2.2.5  Sense of number

The ability to handle numbers (but also symbols and for-
mulas) is essential for engineers in all STEM domains. This 
TmL has an obvious overlap with the previous TmL sense 
of error, but also often combines with technical software 
skills. A technical writer with a background in electrical 
engineering mentioned the importance of handling units and 
knowing the difference between milli and micro.

2.2.6  Technical creativity

The sixth TmL encompasses a combination of cleverness, 
experience and puzzle-solving abilities, especially for 
professionals who design. A mechanical engineer of large 
cooling systems mentions a lot of puzzling, boggling, and 
calculating in their work. Although it is not mathematically 
difficult, there are a lot of variables involved, and it is just a 
lot of puzzling with formulas.

2.2.7  Technical drawing skills

The seventh and last TmL that we encountered in our inter-
view study is technical drawing skills, which entails the 
ability to understand and interpret technical drawings, and 
for some, also producing them as well. For this ability, spa-
tial insight is a critical component, as a permit advisor in 
the domain of environmental engineering states to need to 
interpret technical drawings, to understand how things look 
from the top, side, and front.
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Technology, we eventually chose to use cases specifically 
for the realms of chemistry and biology, with specific ele-
ments of other courses in the curriculum to stimulate recog-
nition of mathematics in sciences and vice versa. The cases 
were developed to foster the use of six TmL categories. The 
course contained seven weekly classes, in which every case 
was worked on for a fortnight. A total of three cases was 
designed, with the seventh, and last class, dedicated to ques-
tions. The first case addressed the topic of pH in solutions 
and weak acids. In the second case, students worked on bac-
terial growth and the third case consisted of derivatives and 
antiderivatives, mainly focusing on qualitative understand-
ing. An extended description of the course can be found in 
Van der Wal et al. (2019).

2.4  Professional development and implementation

After the design of the course itself, we moved on to scale 
up and implement the new course in all majors of the School 
of Life Sciences and Environmental Technology. Because 
of the new learning goals and pedagogy, this required pro-
fessional development for the lecturers involved. With the 
help of one member of the design team and an external pro-
cess coach, a PD trajectory was developed and conducted, 
and trained 11 lecturers in the first year to teach the new 
course. Thousands of students have followed the course in 
the years following until the present day. The reader can find 
an extended description of all successes and challenges of 
this implementation process and PD track for lecturers in 
Van der Wal et al. 2021.

As a last step of the project, we evaluated student learn-
ing in the new course by means of a pre- and posttest. This 
part is the subject of the rest of this paper.

3  Method

This study involves two phases, a phase 1 in which two tests 
A and B were developed, validated, and administered with 
the course as treatment to answer the first research ques-
tion. In phase 2, we zoom in on the mixed results, to find 
explanations for them and address the follow-up research 
question through evaluating the tests. To elaborate on the 
two phases, we carried out a series of research activities 
(RA). An overview of these activities is shown in Table 3. 
Activities 1–11 refer to the first phase, addressing the initial 
research question of the learning effects. Activities 12–16 
concern the follow-up research question in the study’s sec-
ond phase. These research activities are explained in more 
detail in the next subsections.

according to this approach involves process-focused ques-
tions, while students are engaged and learn actively.

2.3.2  Course structure

With the goal of developing TmL over four years of higher 
education, our aim in the first-year course was to start this 
process with using applications for developing TmL, but 
also laying a strong base of mathematical knowledge and 
skills. The pragmatic approach we settled on as a design 
team was to design two parallel but aligned learning tracks: 
an abstract track with basic mathematics and an applied 
track with context-rich cases. For the abstract, theoretical 
track, the software of ALEKS™1 was used, on which stu-
dents could work individually, outside class, and at their 
own level and pace. For the applied track with TmL as goal, 
we chose to use Excel™ for the technological part, because 
in our interview-study, we found this tool to be the most 
used software, and students need Excel™ in many other 
courses. Students worked collaboratively in groups of 2 or 
3 on guided cases during classes. The topics were aligned; 
for example, linear and quadratic functions were addressed 
in the first two weeks of the course in both tracks. Because 
the TmL category of technical drawing skills is not used in 
the technical domains of chemistry and biology, this TmL 
category was not a learning goal in these cases.

The class schedule consisted of 4 h of classes each week, 
see Table 2. The first hour was dedicated to introduction of 
the cases and some instruction. Subsequently, the students 
worked on the cases for two hours, without the lecturer 
being present. The fourth hour was dedicated to feedback. 
Students presented their work to the whole class, or the lec-
turer visited each group separately. The lecturer adopted 
the philosophy of IBL to discuss the solutions of the stu-
dents to the case-problems. In focusing on the approach of 
problems, rather than solutions, the lecturer tried to foster 
inquiry-based thinking and help students obtaining knowl-
edge for themselves. Classroom or group discussions can 
stimulate understanding and competence for complex skills 
(Nathan & Kim, 2009), such as TmL. Formative assessment 
was performed in the weekly feedback hours, and the course 
was concluded with a summative computer-test with TmL 
items in the context of the cases. Finishing the ALEKS track 
was also a summative requirement to pass the course.

Because the new course was to be implemented in the cur-
riculum of the School of Life Sciences and Environmental 

1   Assessment and LEarning in Knowledge Spaces is a Web-based, 
artificially intelligent assessment and learning system. ALEKS uses 
adaptive questioning to quickly and accurately determine exactly what 
a student knows and doesn’t know in a course. ALEKS then instructs 
the student on the topics (s)he is most ready to learn. As a student 
works through a course, ALEKS periodically reassesses the student to 
ensure that topics learned are also retained.
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author) and students of Electrical Engineering at Fontys 
University of Applied Sciences was formed to align more 
closely to the lifeworld of students and assure feasibility. 
They were asked to get acquainted with relevant literature 
and create test items for extracurricular study credits. The 
lecturer-researcher also trained the students with the con-
cept of TmL with extensive use of examples, and how to 
apply TmL in test items. They developed these items using 
as many TmL categories as possible, and to implement these 
in non-related, non-chemical contexts to avoid treatment-
inherency, because with TmL, we aim for transfer beyond 
the exact tasks used in the course (Cheung & Slavin, 2016). 
For example, one test item involved an ant that can carry a 
multiple of its own body weight. The TmL category sense of 
number, which includes numbers, symbols, and formulas, is 
the TmL which most resembles the “standard” way of math-
ematics test items, and although we intended not to measure 
this TmL too often, we see that it is required in many items, 
as can be seen in Table 4.

Subsequently, in RA2, the pool of potential test items was 
discussed with two TmL experts, with the aim to validate 
whether the items indeed measured TmL (concept validity). 
After further adjustments based on their feedback (RA3), 
a voice-recorded “thinking aloud” session with a 4th-year 
Chemistry student of Avans University of Applied Sciences 
was conducted (RA4). Some possible language confusions 
were detected, and it appeared that for a half-hour test, we 
needed to decrease the number of test items. In RA5, the 
test items were divided in two sets, A (Appendix 5) and B 
(Appendix 6), by the lecturer-researcher with approximately 
the same distribution of topics and TmL categories. Subse-
quently, a grading scheme for both tests was designed by 
the lecturer-researcher. Points per test item were based on 
the number of steps a student had to take to come to a solu-
tion. Test A yielded a total of 33 points and test B 28 points, 
both normalised to percentages (0−100). We estimated that 
13 items for test A versus 12 items for test B would take 
approximately the same amount of time for students.

3.2  Participants and procedure

The tests were administered to all 1st-year Chemistry stu-
dents (N = 68, 38 female and 30 male, aged 17–24) between 
April and June of 2019, during the third cycle of the imple-
mentation (RA6). The 68 students were randomly divided 
over two groups with two lecturers, and therefore, for the 
pretest, one group was assigned to test A, and the other 
group to test B. To prevent the previous mentioned test 
learning effect, we assigned the 62 students that were pres-
ent during the posttest to the other test.

The pretest was conducted at the start of the first class 
of the course in applied mathematics. All students signed a 

3.1  Design and validation of TmL tests

To measure the learning effect of the new course in applied 
mathematics, we developed in research activity one (RA1) 
two tests that both could serve as pre- or posttest of Techno-
mathematical Literacies. As the course was part of the regu-
lar curriculum, a control group was not possible; moreover 
because of the new learning goals comparison with results 
from previous years would not make sense. Because testing 
of TmL has not been done before, there was no material avail-
able to build on, so we had to design such a test ourselves. 
A co-design team consisting of the lecturer-researcher (first 

Table 3  Overview of research activities
Research 
activity

Description Gain 
insight 
into

1 Test design Designing test items in co-design 
with students

feasibility

2 Validation Discussing test items with TmL 
experts

concept 
validity

3 Redesign Adjusting test items and assigning 
to two tests A and B

content 
validity

4 Validation “Thinking-aloud” session with 
4th -year chemistry student

construct 
valid-
ity and 
feasibility

5 Redesign Adjusting test items regarding 
language, errors, and number of 
items

content 
validity

6 Administer-
ing pre- and 
posttests

Conducting pretest with 68 and 
posttest with 62 students in 
30 min

valid-
ity and 
feasibility

7 Grading Grading tests by the researcher test scores
8 Data analysis Checking for internal consistency 

of the items with measures of 
classical test theory.

criterion 
validity

9 Performing t tests to compare pre- 
and posttest results

content 
validity

10 Performing one-way ANCOVA to 
check influence of lecturers.

construct 
validity

11 Compare P values to investigate 
development for different TmL 
categories

content 
validity

12 Follow up 
analysis

Performing t test to compare 
marks from course chemical 
calculation with assignment test A 
or B as pretest

construct 
validity

13 Performing t tests to compare test 
A and B

construct 
validity

14 Performing t tests to compare 
scores on posttest with marks for 
summative test.

construct 
validity

15 Redesign 
proposal

Mixing items within tests to 
spread missing values

16 Mixing matching items between 
test A and B and detect dis-
criminating items to standardise 
difficulty
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did all the grading to ensure consistent application of the 
grading procedure (RA7). To be able to judge whether items 
were too difficult or whether there were too many items 
(feasibility criterion), we distinguished the assignment of a 
code of zero points or a code 999. The code 999 was used 
for missing data; when nothing was filled in, when a ques-
tion mark or an “I don’t know” was filled in, or when the 
question was rewritten but no answer was given. A score 
of zero points was used when something was tried, but the 
answer was wrong. Zero points were also assigned when 
something was tried wrongly but crossed out; this was not 
considered as missing data.

3.4  Data collection

The scores on the items of the two tests were the main 
data collected for this study in phase (1) However, after 
the unexpected contrasting results of the tests to measure 
the development of TmL from pre- to posttest, and further 
research was necessary, extra data was collected for phase 
(2) First, we wanted to test whether the random assignment 
of test A and test B among the students led to groups with 
about the same average level in mathematics. Therefore, for 
RA12, we collected the marks of the students of a course on 
chemical calculation, that the students followed earlier that 
academic year and compared these marks, normalised to 
percentages (0−100) with the students’ assignment to test A 
or B as pretest. Secondly, for RA14, we collected the marks 
of the summative digital test, also normalised to percentages 
(0−100) and compared these marks with the scores on the 
tests A and B as posttest, to find out whether test A and B 
have the same level of difficulty.

4  Results

In Sect.  4.1− 4.5, we present the results regarding phase 
1, answering the initial research question on the learning 
effect concerning TmL from pre- to posttest, as described 
in research activities 8−11. Section 4.6 − 4.8 contain the 
results on the follow-up research question on explanations 
for the test results, corresponding to research activities 
12−14 (phase 2).

4.1  Internal consistency

Validity is not a singular concept, but in essence boils down 
to measuring what one intends to measure (Borsboom et al., 
2004; Hoogland et al., 2016). The Standards of Educational 
and Psychological Testing define validity as “the degree to 
which evidence and theory support the interpretation of test 
scores for proposed uses of tests” (AERA et al., 2014, p. 11). 

consent form and were given exactly 30 min to perform the 
test. Because the seventh and last class was not obligatory 
and functioned as a question session, we decided to conduct 
the posttest during the sixth week. As participating in this 
test relied on the goodwill of the students, we had to keep 
the tests short and schedule it at the beginning of the sixth 
class rather than at the end, so the students would not be 
tired already. The mathematical content of the sixth class, 
therefore, was not covered yet, and this could have influ-
enced scores on the posttest, which we discuss further in the 
results section.

Although the course was computer-based, as students 
used Excel to work on the cases, the tests were conducted 
with pen, paper, and calculator, due to practical constraints. 
The test had to be administered during class-time, in a nor-
mal classroom without computers. This decision was based 
on the premiss that, although Tml connect mathematics and 
technology, they are not skills of handling ‘the buttons’ of 
complex software. They have a base in mathematics and are 
broader than technology or ICT. Moreover, problem solving 
computationally is not just a digital skill, but rather a mental 
skill. TmL can, therefore, to some degree also be learned 
and tested “unplugged”, as is practised in the development 
of computational thinking (Caeli et al., 2020; Kallia et al., 
2021; Rodriguez, 2017). We included “Excel” test-items to 
test TmL technical software skills.

The students were asked to fill in how much time of the 
half-hour was left when they had finished, to gain insight 
into how much time students need for doing the two tests 
(feasibility). The mark that students received for the course 
in applied mathematics was unrelated to the pre- and post-
test scores. To pass the course, they had to master 90% of 
the assigned topics in the learning track of ALEKS™ as a 
prerequisite to receive a mark for their summative digital 
test, two weeks after the posttest. With TmL questions in 
the contexts of the cases, the students worked on during the 
course, summative test items were more familiar to them 
than the pre- and posttest. As a measure of item difficulty, 
we use the P value, the average correct score of all stu-
dents (not to be confused with p value to estimate statistical 
significance).

3.3  Scoring

After conducting both pre- and posttests, the tests were 
divided and scored by the lecturer-researcher and the other 
teaching-lecturer. Because the test was paper based, all 
information about the students and which test they were 
assigned to was visible for the lecturers. Based on the grad-
ing scheme, both lecturers graded the tests with frequent 
peer consultation. After intensive discussion of the grading 
procedure with the other lecturer, the lecturer-researcher 
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d = 0.16. Scores on test A (pre) (M = 62.69, SD = 17.61) and 
test B (post) (M = 58.63, SD = 20.14) showed a decrease in 
results, but not significant, t(31) = 1.003, p = .324, 95%CI[-
4.202, 12.327]. However, scores on test B (pre) (M = 53.62, 
SD = 17.87), and test A (post) (M = 64.48, SD = 17.74) did 
improve significantly, t(28) = -3.047, p = .005, 95%CI[-
18.165, -3.559], d = 0.61. Wilcoxon signed rank tests 
showed similar results. Concluding, we see an overall small, 
not significant, development in learning TmL, because the 
results of B (pre) − A (post) are contrasting with A (pre) − 
B (post). These results indicate that test B was most likely 
more difficult than test A.

As mentioned before, the posttest was scheduled in the 
sixth week before all the mathematical content was pro-
vided to the students. The topic of anti-derivatives was not 
covered yet, and this topic was addressed in item 3 of both 
tests. We therefore excluded this item and performed the 
three paired t tests again, but this did not show a different 
result. Because of this result, we decided to include this item 
in further analysis.

4.4  Lecturers compared

Because the course was taught by two lecturers to three 
classes and to check whether a difference in score pre- to 
posttest could be due to lecturers’ influence, a one-way 
ANCOVA was conducted in RA10 to determine a difference 
between lecturer 0 (M = 65.12, SD = 20.59) and lecturer 1 
(M = 60.32, SD = 23.09) on the scores of the students on the 
posttest controlling for the pretest. This difference was not 
statistically significant (F(1,58) = 0.604, p = .440).

4.5  Different TmL compared

As to see how P values differ when we match them with 
their corresponding TmL categories 1−6, we grouped the 
items in RA11 for both tests A and B as shown in Tables 4 
and 5. This distribution shows that test items often include 
multiple TmL categories. The largest progress, however, is 
found in the two TmL technical software skills and sense 
of error in test B, which can be explained by the exten-
sive and explicit presence of these TmL categories in the 
course. The TmL category sense of error is the only TmL 
that increased in both tests. TmL category technical com-
munication skills was only addressed in item 3b in test A 
and in item 3a in test B, part of items that deal with theory 
students had not received yet. We see that some TmL cat-
egories, such as sense of error and software skills are quite 
concrete, demarcated, and probably more easily learned and 
measured, whilst others, for example data literacy and tech-
nical creativity are broader concepts and more difficult to be 
learned and measured.

Gardner (1995) emphasises the fact that in a rating scale, 
when scores are summed up, it is important that all items 
reflect the same construct and according to Taber (2018), a 
high value of alpha is not always a good thing, for it cannot 
ensure that an instrument or scale is unidimensional and a 
high alpha may even indicate a use of an inefficient level of 
redundant items. Therefore, interpretation of this value is 
not unambiguous.

In our context, we focused on the feasibility for students 
to do the test in time as well as concept and construct valid-
ity with the proposed use as pre- and posttest to be able to 
measure development in the TmL developed by engineering 
students. Although we did not consider TmL to be a homog-
enous construct and although we were aware of the discus-
sion among experts about internal consistency, we studied 
the internal consistencies of the tests to learn about the het-
erogeneity of the skills we purported to measure.

Although, we conjectured low alphas because of the het-
erogenous nature of TmL, we see in Appendix 1, relative 
normal alphas for test A, but lower values for test B.

4.2  P values

In RA8, the P values, which are the normalised average 
scores per test-item, were calculated, as for test A used 
as pretest, Appendix 2 shows an average P value of 0.63, 
which means students did well on this test. In test A (post), 
which was assigned to the other half of the student popula-
tion, we see an average P value of 0.65. As for test B (post), 
with an average P value of 0.59, we have fewer high outliers 
than in test A (post). This suggests that test B was more dif-
ficult than test A. Concluding, we see a small increasing P 
value, and therefore a small learning effect from pre to post 
in both tests.

In RA8 we also calculated the percentages of missing 
values. Although we shortened the tests after the aloud ses-
sion with the test student, the percentage of items that were 
reviewed as missing value increased towards the end of the 
tests – see Appendix 3 – which suggests that the tests were 
too long to finish in time for many students. Test B shows 
more missing values in general, which could indicate that 
this test was more difficult for the students. Furthermore, 
item 4b in test A and item 1b and 2 in test B, show high 
values, which are probably more difficult items.

4.3  Pre- and posttest compared

In comparing the results on the pre- and posttest in RA9, we 
performed three paired t tests. The t test on the total scores 
for pretest (M = 58.38, SD = 18.17) and posttest (M = 61.41, 
SD = 19.11) did show improvement, but not a significant 
increase, t(60) = -1.059, p = .294, 95%CI[-8.760, 2.694], 
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4.6  Marks on course in chemical calculation 
compared with test A or B as pretest

In comparing the marks of the students on the course in 
chemical calculation with being assigned to test A or B 
as pretest (RA12), we found, in an unpaired t test, a dif-
ference between test A (M = 71.94, SD = 14.83) and test 
B (M = 78.35, SD = 13.82), although marginally not sig-
nificant, t(63) = -1.779, p = .077, 95%CI[-6.414, 3.565]. 
It seems that students who performed test B as a pretest 
achieved higher on the course chemical calculation than the 
students who were assigned to test A as pretest. This could 
be an explanation as to why the B (pre) − A (post) students 
showed TmL development, and group A (pre) − B (post) 
did not. The decrease of 0.21 in test B, versus an increase of 
0.09 in test A, as seen in Table 5, could be attributed to the 
fact that test B (post) was assigned to the lower achieving 
students. This might also explain why we see a develop-
ment in four TmL categories in test A and in only two in 
test B. Because test B (pre) students were higher achievers, 
and the difference between the scores in test A (post) and 
in test B (pre) is significant, we can also assume that these 
students have learned more in this course. For higher-order 
skills, such as TmL, the learning effect often depends on the 
academic level.

4.7  Tests A and B compared

In RA13 we compared test A and B with independent t 
tests to investigate whether they indeed differ in difficulty, 
as was suspected by the results on the development from 
pre- to posttest, as shown in Sect. 4.3. In comparing test A 
(pre) (M = 62.46, SD = 17.46) with test B (pre) (M = 53.97, 
SD = 18.05), we see that students on test A scored higher, 
although marginally statistical not significant, t(66) = 1.971, 
p = .053, 95%CI[8.487, 4.306]. We found the same in 
the posttest; although scores on test A (post) (M = 64.48, 
SD = 17.74) are higher than on test B (post) (M = 58.63, 
SD = 20.14), it is not a significant difference, t(59) = 1.200, 
p = .235, 95%CI[-3.910, 15.626]. Three Mann-Whitney 
tests confirm these results. Boxplots of the scores on both 
pretests and posttests are presented in Table 4. Altogether, 
there is reason to suspect that test B is more difficult than 
test A.

4.8  Posttests scores and summative digital test 
marks compared

To investigate whether test B was indeed more difficult 
than test A, the marks of the students’ summative test 
are compared with the scores on the posttest in RA14. A 
paired t test, comparing the test A (post) results (M = 64.48, 
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as the progress is not large, and the picture is somewhat dis-
torted by differences between the two test that were used 
and the slight initial differences between the two test condi-
tion groups.

The tests A and B were randomly assigned to the 68 
participating students. For the posttest, the two tests were 
reversely assigned to the 62 present students as to prevent 
a test learning effect. In analysis we compared pre- and 
posttest scores and found a mixed result; the scores of the 
students from test B (pre) to test A (post) increased signifi-
cantly, but the scores of students from test A (pre) to test B 
(post) did not. Furthermore, using an one-way ANCOVA, 
we found no evidence for a difference in lecturers.

We did, however, report a progression on scores in cer-
tain TmL categories. TmL sense of error showed a large 
increase in scores between pre and post in both pairs of 
tests. For TmL software skills we see a large improvement 
from test A to test B. These TmL categories are rather con-
crete and demarcated, and we think they are easier to learn 
and measure than a TmL category such as technical creativ-
ity or data literacy, which are more complex and probably 
need more time to develop.

From these results, we suspected that test B was more 
difficult than test A. Therefore, we investigated the follow-
up question of what possible explanations there might be 
for the contrasting results. To answer this question, we 
first investigated if the two groups of students were indeed 
equivalent. To this end, the scores of a previous course in 
chemical calculation that students followed earlier that year 
were compared with the assignment to test A or B as pretest. 
We found that students who were assigned to test B as pre-
test were higher achieving than the students with test A as 
pretest, although marginally statistically insignificant. This 
could be an explanation as to why the higher achieving stu-
dents showed more development from pre- to posttest, but 
also indicated that test B could be more difficult than test A.

Subsequently, we compared test A (pre) to test B (pre) and 
test A (post) to test B (post). Although an unpaired t test did 
not show a significant difference between test A and B, and 
the lecturers could not recognise a difference in difficulty, 
we decided to compare posttest scores with the summative 
test marks of the course, and with these paired t tests, it was 

SD = 18.39) with the summative test marks (M = 71.48, 
SD = 16.81), showed not to be significant, t(26) = -1.723, 
p = .097, 95%CI[-15.352, 1.352]. The paired t test, compar-
ing test B (post) results (M = 58.63, SD = 20.14) with the 
summative test marks (M = 75.56, SD = 12.78), did show 
to be significant, t(31) = -4.200, p < .001, 95%CI[-25.163, 
-8.172], d = 1.00, which indicates that test B is indeed more 
difficult than test A.

As content experts, it is not clear to us why test B is per-
ceived as more difficult. Especially item 7b of both tests, 
in which a growing factor is asked, seems equally dif-
ficult. However, item 7b of test A (Appendix 5) showed 
an increase in P value of 0.12, but test B (Appendix 6) a 
decrease of 0.14. Therefore, we presented both items to a 
non-participating colleague in the School of Life Sciences 
and Environmental Technology to judge these two items. 
He stated that he could not see any difference in difficulty 
in both items. Moreover, he conjectured that the item in 
test A could be perceived as more difficult because of the 
use of more formal mathematical language. An explanation 
for this could be, again, the fact that the higher achieving 
students were assigned to test A as posttest. It is also often 
the case that last items of a difficult test score rather poorly 
because students get tired, lack time, or give up.

5  Conclusion and discussion

In this paper, we first described our design project, which 
included an interview study to identify used TmL in a vari-
ety of science and engineering domains. With these TmL as 
learning goals, we designed and implemented an innovative 
course in applied mathematics in which abstract mathemat-
ics is combined with science contexts of other courses in the 
curriculum. As a last step, we tried to evaluate the course 
with the research question of what the learning effect is of a 
course in applied mathematics on students’ development of 
Techno-mathematical Literacies.

Unfortunately, we can only provide a mixed answer to 
this question. On the one hand, we do see progress from pre- 
to posttest scores, which suggests a positive learning effect 
on TmL skills. On the other hand, the answer is preliminary, 

Table 5  P values and differences of TmL categories in test A and B
A B

TmL pre post difference pre post difference
1 Data literacy .72 .71 − .02 .55 .52 − .03
2 Technical Software skills .57 .56 − .01 .33 .57 .24
3 Technical communication skills .61 .70 .09 .80 .58 − .21
4 Sense of error .54 .61 .06 .38 .62 .24
5 Sense of number .55 .62 .07 .57 .54 − .03
6 Technical creativity .58 .66 .09 .59 .55 − .04
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education, via higher education, to STEM workplace, we 
need to focus on a curriculum as a whole, in which an intro-
ductory course of applied mathematics is, of course, just one 
step. To aim for broad scale interdisciplinarity or transdisci-
plinarity, a larger curriculum change is necessary than this 
local opportunity of five people and one course. The role 
of mathematics in advancing integrated STEM education 
is, therefore, a topic for further research. However, as the 
new course is still a thriving part of the curriculum, the goal 
of DBIR as sustainable beyond the end of a project is met. 
Many students engage and perform well in the course, and 
we have not heard the question “why do we have to learn 
this” anymore.
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