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Abstract: In this work, the problem of path planning for an autonomous vehicle that moves on a freeway is considered. The
most common approaches that are used to address this problem are based on optimal control methods, which make
assumptions about the model of the environment and the system dynamics. On the contrary, this work proposes the
development of a driving policy based on reinforcement learning. In this way, the proposed driving policy makes minimal or no
assumptions about the environment, since a priori knowledge about the system dynamics is not required. Driving scenarios
where the road is occupied both by autonomous and manual driving vehicles are considered. To the best of the authors’
knowledge, this is one of the first approaches that propose a reinforcement learning driving policy for mixed driving
environments. The derived reinforcement learning policy, firstly, is compared against an optimal policy derived via dynamic
programming, and, secondly, its efficiency is evaluated under realistic scenarios generated by the established SUMO
microscopic traffic flow simulator. Finally, some initial results regarding the effect of autonomous vehicles’ behaviour on the
overall traffic flow are presented.

1 Introduction
In recent years, there has been a growing interest in self-driving
vehicles. Building such autonomous systems has been an active
area of research [1, 2] for its high potential in leading to road
networks that are much more safer and efficient. Although vehicle
automation has already led to great achievements in supporting the
driver in various monotonous and challenging tasks, see, e.g. [3],
rising the level of automation to fully-automated driving is an
extremely challenging problem. This is mainly due to the
complexity of real-world environments, including avoiding
obstacles, and human driving behaviour aspects.

According to Donges [4], autonomous driving tasks can be
roughly classified into three categories; navigation, guidance, and
stabilisation. Navigation tasks are responsible for generating road-
level routes. Tactical-level guidance tasks are responsible for
guiding autonomous vehicles along these routes in complex
environments by generating tactical manoeuvre decisions. Finally,
operational-level stabilisation tasks are responsible for translating
tactical decisions into reference trajectories and then low-level
controls that need to be tracked by the vehicle.

Several methodologies have been proposed for addressing the
problem of generating efficient road-level routes. In [5, 6]
Menelaou et al. propose a navigation algorithm based on a route
reservation mechanism, in order to generate road-level routes, and
at the same time, avoid traffic congestion. In [7] a computationally
efficient algorithm that can scale to very large transportation
networks is presented. Figliozzi [8] focuses on ‘green’ navigation
by proposing a methodology to generate routes that minimise
emissions. The work in [9] surveys exact algorithms for addressing
the routing problem under capacity and travel time constraints.
Finally, a comprehensive review regarding the generation of road-
level routes in transportation networks can be found in [10].
Despite the research interest, navigation examined by the
autonomous driving perspective can be considered as a mature
technology, since already existing commercial and free
applications for road-level route generation.

At the same time, vehicles are man-made products for which
the automotive industry has decades-long experience in vehicle

dynamics modelling, see, e.g. [11, 12]. Therefore, the operational-
level stabilisation tasks, also known as the acting the part of
autonomous driving, are well understood and modelled in control
theory and robotics.

Tactical-level guidance, referred also as driving policy, is
crucial for enabling fully autonomous driving. On the contrary,
however, to navigation and stabilisation, tactical-level guidance
methodologies cannot be considered mature enough, in order to be
applied to autonomous vehicles that move in unrestricted
environments. A driving policy should be able to make decisions in
real-time and in complex environments, in order to plan and update
a vehicle path, which should be safe, collision-free, and user
acceptable [13]. The requirement for real-time operation in highly
complex environments, as well as the safety constraints, makes
current driving policies inadequate for fully autonomous driving.

Based on the discussion so far, this work aims to contribute
towards the development of a robust driving policy for autonomous
vehicles that is capable of making decisions in real time. The
operation environments restricted by considering vehicles that
move on a highway. Highways consist a specific and very
important type of transportation network [14, 15]. Due to their
high-capacity, they can serve millions of people every day, while at
the same time, allow users to travel with higher speed and fewer
accelerations/decelerations compared to urban transportation
networks. The driving policy development problem is formulated
from an autonomous vehicle perspective (ego vehicle), and, thus,
there is no need to make any assumptions regarding the kind of
other vehicles (manual driving or autonomous) that occupy the
road.

Finally, the proposed methodology approaches the problem of
driving policy development by exploiting recent advances in
Reinforcement Learning (RL) combined with the responsibility
sensitive safety model, proposed in [16]. The developed RL-based
driving policy aims to avoid accidents (departures from the road
and crashes with other vehicles), move the vehicle with the desired
speed, minimise accelerations/decelerations, and minimise lane
changes. The latter two criteria are also related to the comfort of
vehicle passengers [17].
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1.1 Related work

The problem of path planning for autonomous vehicles can be seen
as a trajectory generation problem corresponding to the creation of
a quasi-continuous sequence of states that must be tracked by the
vehicle over a specific time horizon. Trajectory generation has
been widely studied in robotics [18]. Considering, however, road
vehicles, path planning is a much more critical task, since
passengers’ safety must be guaranteed.

Under certain assumptions, simplifications, and conservative
estimates, heuristic, hand-designed rules can be used for tactical
decision making [19]. Such methods, however, are often tailored
for specific non-complex environments and do not generalise
robustly [20]. Therefore, they are not able to cope with the
complexity of real-world environments and the diversity of driving
conditions, let alone human driving behaviour aspects. To
overcome the limitations of rule-based methods, approaches based
on the careful design and exploitation of potential field and optimal
control methods have also been proposed.

Potential field methods generate a field, or, in other words, an
objective function the minimisation of which corresponds to the
objectives of an agent. These methods are based on the design of
potential functions for obstacles, road structures, traffic regulation
and the goals to be achieved. Then, the overall objective function is
expressed as the weighted sum of the designed potential functions.
The minimisation is achieved via the generation of a vehicle
trajectory moving towards the descent direction of the overall
objective function [21–23]. However, due to the fact that vehicle
dynamics are not considered during decision making, the generated
trajectory may turn out to be non-feasible to be tracked by the
vehicle [24].

This drawback can be alleviated by formulating the trajectory
generation problem as an optimal control problem, which
inherently takes into consideration system dynamics. Specifically,
optimal control approaches allow for the concurrent consideration
of system dynamics and carefully designed potential fields [25]. In
[17] an optimal control methodology for vehicles’ trajectory
planning in the context of cooperative merging on highways is
presented. The authors of [26, 27] propose two optimal control-
based methodologies for trajectory planning, which incorporate
constraints for obstacles, so as to keep the automated vehicle
robustly far from them. In the same spirit, the authors of [28, 29]
design appropriate potential functions corresponding to the
presence of obstacles, which, in turn, are incorporated in the
objective function to generate a collision-free path. Optimal control
approaches usually map the optimal control problem to a non-
linear programming (NLP) problem that can be solved using
numerical NLP solvers, see, e.g. [28, 30, 31]. Although potential
field and optimal control methods are quite popular due to the
intuitive problem formulation [32], there are still open issues
regarding the decision making process.

First of all, mapping the optimal control problem to an NLP
problem and solving it by employing numerical NLP solvers,
produces a locally optimal solution for which the guarantees of the
globally optimal solution may not hold, and, thus, the safety
guarantees for the generated trajectory may be compromised [33].
For this reason, dynamic programming techniques have also been
proposed for solving the optimal control problem. Although,
dynamic programming techniques produce a globally optimal
solution, due to the curse of dimensionality [34], they are restricted
to small-scale problems. Moreover, another problem faced with
potential field and optimal control approaches is the strong
dependency on a relatively simple environment model, usually
with hand-crafted observation spaces, transition dynamics, and
measurement mechanisms. These assumptions limit the generality
of these methods to complex scenarios since they are not able to
cope with environment uncertainties and measurement errors.
Finally, optimal control methods are not able to generalise, i.e. to
associate a state of the environment with a decision without solving
an optimal control problem. This means that every time a sequence
of decisions needs to be made an optimal control problem needs to
be solved, even if exactly the same problem has been solved in the
past. This requirement significantly increases the computational
cost of these methods.

Due to its recent success, supervised deep learning has also
been considered as an alternative approach for developing driving
policies. In [35] a convolutional neural network is trained in a
supervised manner to output continuous steering actions. In [36] a
recurrent neural network is trained to output a steering angle after a
driving intention has been estimated. In [37, 38] also exploit end-
to-end trainable neural networks that output feasible driving
actions and affordance indicators (such as distance between cars).
The aforementioned approaches are based on end-to-end trainable
neural network architectures that are able to output low-level
controls directly from input images. Therefore, this kind of driving
policy corresponds to the outcome of a supervised learning
algorithm, where deep neural networks were trained to imitate the
behaviour of human drivers. However, such methods, first, result in
black-box driving policies, which are susceptible to the influence
of drifted inputs, and second, are restricted to the limitations of
end-to-end learning [39].

Very recently, RL methods have also been proposed as
challenging alternative approaches towards the development of
driving policies. RL-based approaches alleviate the strong
dependency on hand-crafted simple environment models and
dynamics, and, at the same time, can fully exploit the recent
advances in deep supervised machine learning [40]. Along this line
of research, Isele et al. [41] utilise a deep Q-network to make
decisions for intersection crossing, while Mukadam et al. [42]
exploit a similar architecture to make decisions about lane
changing in freeways. In [43], Paxton et al. propose a hierarchical
RL-based approach for deriving a low-level driving policy capable
of guiding a vehicle from an origin point to a destination point. In
[44] a policy gradient RL approach is used to develop a driving
policy for cooperative double merging scenarios. This approach
combines an RL policy with a non-learnable mechanism to balance
between efficiency and safety. Finally, Liu et al. [45] present some
elements of efficient deep RL (empirically validated) for
decreasing the learning time and increasing the efficiency of RL-
based driving policies.

Despite the fact that only very recently RL was employed for
developing driving policies, experimental results appear very
promising. The main drawback, however, of these approaches
regards safety guarantees. Due to the fact that, the probability of an
accident is very small, learning-based approaches, as shown in
[16], cannot assure collision-free trajectories.

1.2 Proposed work

This work proposes an RL-based approach towards the
development of a driving policy for autonomous road vehicles. The
proposed RL-based method has several advantages over potential
field and optimal control methods. First, RL-based approaches are
model-free. They make the assumption that there is a state-
transition model that describes the system dynamics, which
remains fixed. However, the exact form of this model is not
required to be a priori known (typically such a model is considered
unknown), but it is being inferred during training. Second, a
driving policy based on the RL is able to generalise. After training,
an RL-based policy has inferred a mapping for associating a given
state of the environment with a decision. In contrast to potential
field and optimal control methods, whenever a decision needs to be
made no problem needs to be solved; decision making can be done
by simply evaluating the policy function. Third, since an RL-based
driving policy has been estimated, it can be shared across multiple
autonomous vehicles, which in turn can make decisions through
the policy function evaluations. On the contrary, driving policy
sharing is not possible when potential field and optimal control
methods are used, since each vehicle needs to solve a decision-
making problem for its own sake. Finally, since no learning-based
driving policy can guarantee absolute safety, our work is motivated
by the formal responsibility sensitive safety model, proposed in
[16], in order to derive and utilise ad-hoc rules that guarantee
responsibility-wise safety. That is, the ad-hoc rules guarantee that
the autonomous vehicles will not be responsible for any occurred
accident. To the best of the authors’ knowledge, this work is one of
the first attempts that try to derive an RL driving policy, combined

14 IET Intell. Transp. Syst., 2020, Vol. 14 Iss. 1, pp. 13-24
© The Institution of Engineering and Technology 2019

 17519578, 2020, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-its.2019.0249 by U

niversity O
f M

alta, W
iley O

nline L
ibrary on [22/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



with ad-hoc safety rules, targeting unrestricted highway
environments, which are occupied by both autonomous and manual
driving vehicles.

Furthermore, the proposed RL-based driving policy is
compared against an optimal policy derived using dynamic
programming, in terms of safety metrics, such as the number of
collisions, and efficiency metrics, such as the average time the
autonomous vehicle moves with the desired speed. Although,
dynamic programming techniques, due to the curse of
dimensionality [46], are restricted to small-scale problems, and are
not suitable for real-time applications, they produce globally
optimal solutions to an optimal control problem, i.e. optimal
driving policies. Thus, the comparison of the proposed
methodology against optimal driving policies, first, will result in an
objective evaluation for the RL-based driving policy, and, second,
can provide insights into the driving policy development problem.

The developed RL-based driving policy is also compared
against manual driving using SUMO simulator. Through this
comparison, the generalisation ability and stability of the proposed
RL-based driving policy to ensure reliability is evaluated; any
learning system must generalise well to out-of-sample data, and be
stable, i.e. small perturbations in the input should slightly affect the
output. Specifically, the RL-based driving policy is applied to
randomly generate driving scenarios (previously unseen driving
conditions), with and without drivers’ imperfection and
measurement errors. Drivers’ imperfection and measurement errors
can be seen as disturbances, and can be incorporated into driving
scenarios using appropriate settings in SUMO simulator.

Finally, preliminary results regarding the effect of autonomous
vehicles on the overall traffic flow are provided. The RL-based
driving policy, seen by an autonomous vehicle perspective, is a
selfish policy. That is, each autonomous vehicle that follows the
RL policy tries to achieve its own goals disregarding the rest of the
vehicles. Such behaviour might have a negative effect on the
overall traffic flow.

The rest of the paper is organised as follows: Section 2
describes the problem and the underlying assumptions. Section 3
gives a brief description of the RL framework. Section 3 presents
in detail the development of the RL-based driving policy and in
Section 5, the derivation of ad-hoc rules towards the design of a
collision-free trajectory. Section 6 presents the experimental setup
and the experimental results, and Section 8 concludes this work.

2 Problem description and assumptions
The problem of path planning for an autonomous vehicle that
moves on the freeway, which is also occupied by manual driving
vehicles, is considered. Without loss of generality, it is assumed
that the freeway consists of three lanes. The path planning
algorithm, or in other words, the driving policy, should generate a
collision-free trajectory for the autonomous vehicle to follow.
Moreover, the generated trajectory should permit the autonomous
vehicle to move forward with the desired speed, and, at the same
time, minimise its longitudinal and lateral accelerations/
decelerations. The aforementioned three criteria are the objectives
of the driving policy, and therefore, the goal that the RL algorithm
should achieve.

For the generation of an optimal trajectory using dynamic
programming, the manual driving vehicles are required to move
with a constant speed following the kinematics equations. The
generation of the optimal trajectory, via dynamic programming,
corresponds to the solution of a finite horizon optimal control
problem. The aforementioned requirement assures that the
dynamics of the system will be a priori and fully known, and no
disturbances will be present in the system in order for the dynamic
programming technique to produce the trajectory. However, for
training the RL policy, the aforementioned system dynamics are
not given to the algorithm, and, thus, are considered unknown.

Regarding the SUMO simulator, the manual driving vehicles
move on the freeway using the Krauss car following model [47]. It
is assumed that letting the manual driving vehicles to move using
the Krauss car following model will produce realistic driving
behaviours. Moreover, manual driving vehicles should move

forward with the desired speed. In order to generate realistic and
customary traffic conditions, we assume that at least two categories
of manual driving vehicles should be present at the freeway;
manual driving vehicles that want to move faster than the
autonomous vehicle, and manual driving vehicles that want to
move slower. At this point, it should be stressed that, although the
manual vehicles are moving using the Krauss model, this model is
not given to the RL training algorithm, and, thus, from an RL point
of view it is considered unknown.

During the trajectory generation, this work does not assume any
communication between the autonomous vehicle and other
vehicles. Instead, the information available for the trajectory
generation is obtained solely by sensors, such as cameras, LiDAR
and proximity sensors, installed on the autonomous vehicle. This
work also assumes the availability of a fusion module of the on-
board sensors’ information, with the appropriate redundancy and
cross-checking, to assure the usefulness and accuracy of the
provided information. Using such sensors, the autonomous vehicle
can estimate the position and the velocity of its surrounding
vehicles. Therefore, the state representation of the autonomous
vehicle and its surrounding environment, includes information that
is associated solely with the position and the velocity of the
vehicles present in the sensing area of the autonomous vehicle.

Furthermore, it is assumed that the freeway does not contain
any turns. However, the generated vehicle trajectory essentially
reflects the vehicle longitudinal position, speed, and its travelling
lane. The derived trajectory needs to be tracked by the underlying
vehicle control loops based on high-definition maps. Therefore, for
the trajectory specification, possible curvatures may be aligned to
form an equivalent straight section [28].

Finally, the trajectory of the autonomous vehicle can be fully
described by a sequence of goals that the vehicle should achieve.
Each one of the goals should be achieved within a specific time
interval, and represents vehicle's desires, such as change lane,
brake with a given deceleration, etc. These goals define the
trajectory to be followed by the autonomous vehicle at a higher
level, and cannot be directly used by the vehicle control loops.
Instead, it is assumed that the mechanism which translates these
goals to low-level controls and implements them is given.

Based on the aforementioned problem description and
underlying assumptions, the main objective of this work is to
develop a driving policy. The driving policy will exploit the
information coming from a set of sensors installed on the
autonomous vehicle, in order to set a goal for the vehicle to
achieve, via a high-level action, during a specific time interval. In
other words, the objective is to derive a function that will map the
information about the autonomous vehicle, as well as its
surrounding environment to a specific goal and the corresponding
high-level action for achieving it.

3 RL and prioritised experience replay (PER)
In this work, the development of a driving policy is being tackled
as an RL problem, where the state-action value function Q is
approximated by a double deep Q-network (DDQN) [48] using
PER [49]. Therefore, for the sake of completeness, in this section
the RL framework and the algorithm of PER are briefly presented.

3.1 Reinforcement learning

In the RL framework, an agent interacts with the environment in a
sequence of actions (selected by following a specific policy),
observations, and rewards. In particular, at each time step t, the
agent (in our case the autonomous vehicle) observes the state of the
environment st ∈ S and, based on a specific policy, it selects an
action at ∈ A, where S is the state space and A = {1, …, K} is the
set of available actions. Then, the agent observes the new state of
the environment, st + 1, which is the consequence of applying the
action at at state st, and a scalar reward signal rt, which is a quality
measure of how good is to select action at at state st.

The goal of the agent is to interact with the environment by
selecting actions in a way that maximises the cumulative future
rewards, also known as a future return. Future rewards are
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discounted by a factor 0 ≤ γ < 1 per time step, and the future
return at time t is defined as

Rt = ∑
t′ = t

T
γt′ − trt′, (1)

where parameter T denotes how many time steps ahead t are taken
into consideration for calculating Rt. The non-negative discount
factor 0 ≤ γ < 1 determines the importance of future rewards. In
other words, it weighs future rewards by giving higher weight to
rewards received near rewards received further in the future.

The interaction of the agent with the environment can be
explicitly defined by a policy function π :S → A that maps states
to actions. The maximum expected future reward achievable by
following any policy after observing a state s and selecting an
action a is represented by the optimal action-value function
Q∗(s, a), which is defined as

Q∗(s, a) = max
π

E[Rt st = s, at = a, π] . (2)

The optimal action-value function obeys a very important identity
known as the Bellman equation. That is, if the optimal action-value
function Q∗(st + 1, at + 1) of the state st + 1 at the next time step was
known for all possible actions at + 1, then the policy maximising the
future reward is to select the action maximising the expected value
of r + γQ∗(st + 1, at + 1), and, thus, the following

Q∗(s, a) = Est + 1 rt + γ max
at + 1

Q∗(st + 1, at + 1) st = s, at = a (3)

holds for the optimal action-value function when the state st is
observed and action at is selected. The expectation in relation (3) is
with respect to all possible states at the next time step.

The relation in (3) implies that the problem of estimating the
optimal policy is equivalent to the estimation of Q∗(s, a) for every
pair (s, a) ∈ S × A. Although, Q∗(s, a) can be efficiently estimated
when small scale problems need to be addressed [50], for large
state spaces estimating Q∗(s, a) for every possible (s, a) pair is
practically implausible. For such kinds of problems, the optimal
action-value function is approximated, Q

~∗(s, a; θ) ≃ Q∗(s, a), using
a learning machine, such as linear regression or neural networks
[40], parameterised by θ. Parameters θ are estimated by the
following an iterative procedure for minimising a sequence of loss
functions:

Li(θi) = Es, a[(Q
~(s, a; θi − 1) − Q

~(s, a; θi))2], (4)

where i stands for the iteration index. The (s, a, r, s′) tuples used in
relations (3) and (4) are generated by following an ϵ-greedy policy
that selects at a given state a greedy action with probability 1 − ϵ
and a random action with probability ϵ.

The aforementioned procedure for estimating θ looks like a
regression problem in the supervised learning paradigm. However,
there are two significant differences. First, the learning machine
sets itself and follows the targets Q

~(s, a; θi − 1), which can lead to
instabilities and divergence, and, second, the generated (s, a, r, s′)
tuples are not independently generated; a property that is required
by many learning machines.

To overcome the first problem, two identical learning machines
are used; one for setting the targets and one for following them.
The machine that a set the targets are frozen in time, i.e. its
parameters are fixed for several iterations. After a predefined
number of iterations has passed, the parameters of the machine that
sets the targets are updated by copying the parameters from the
machine that follows the targets. If we denote as θ

^
 the parameters

of the machine that sets the targets, then the loss function Li(θi) in
relation (4) is given by

Li(θi) = Es, a[(Q
~(s, a; θ

^) − Q
~(s, a; θi))2] . (5)

3.2 PER algorithm

To overcome the latter problem, a PER algorithm is employed to
break the correlations between the generated (s, a, r, s′) tuples. The
generated tuples are stored into a memory, and for minimising (4),
a training set D = {(a, s, r, s′) j} j = 1

n  is drawn from the memory
according to a distribution that prefers tuples that do not fit well to
the current estimate of the action-value function.

For estimating the sampling distribution, initially, the difference

d(s, a, r, s′) = Q
~(s, a; θ

^) − Q
~(s, a; θi) (6)

is computed for each tuple in memory and is updated after each
iteration i. Then, the difference is converted to priority

p = (d − ϵ)a, (7)

with ϵ > 0 to ensure that no tuple has zero probability of being
drawn, and 0 ≤ a < 1 (when a = 0 the uniform distribution over
tuples is used). Finally, the priorities are translated into
probabilities. In particular, a tuple k has a probability

Pk = pk

∑ j = 1
N pj

(8)

of being drawn during the experience replay. Variable N in (8)
stands for the cardinality of memory.

4 Driving policy
Having described the RL framework and the PER algorithm, in this
section, the RL-based approach utilised in this work is presented,
along with the state and action representation, and the design of the
scalar reward signal. Finally, the architecture of the employed
neural network, and details about the implementation, as well as
the mechanism for generating (s, a, r, s′) tuples for training the
neural network are described.

4.1 State representation

Autonomous vehicles are equipped with multiple sensors that
enable them to capture heterogeneous and multimodal information
about their surrounding environment. This allows for a wide
variety of state representations. The selection, however, of the
representation significantly affects the ability of an agent to learn.
In this work, a state representation that, on the one hand, can be
constructed using current sensing technologies, and, on the other, it
allows the agent to efficiently learn is utilised.

Specifically, this work considers autonomous vehicles that
move on a freeway with three lanes. It is assumed that the vehicle
can sense the surrounding environment that spans 60 m behind it
and 100 m ahead of it, as well as, its two adjacent lanes. This
means that the autonomous vehicle can estimate the relative
positions and velocities of other vehicles that are present in the
aforementioned area. Note that with current LiDAR and camera
sensing technologies, such an assumption can be considered valid.
A schematic representation of the sensed surrounding environment
of a vehicle is presented in Fig. 1a. 

In order to translate the information that can be sensed by the
autonomous vehicle into a state vector, the sensed area is
discretised into tiles of 1 m length, as shown in Fig. 1b. In order for
this discretisation to be useful, the accuracy of the vehicle sensors
must be in the order of centimetres, something that is feasible with
current sensing technologies [51–53]. The value of the longitudinal
velocity of the autonomous vehicle is assigned to the tiles beneath
it. To tiles occupied by other vehicles the value of their
longitudinal velocity is assigned. The velocity of the other vehicles
is estimated by using their positions in two subsequent time
instances. The value of zero is given to all non-occupied tiles that
belong to the road and, finally, the value minus one to tiles outside
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of the road (the autonomous vehicle can sense an area outside of
the road in case it occupies the left-most or the right-most lane).

Using the representation above, the sensed environment is
transformed into a matrix with 3 rows and 160 columns. Moreover,
this matrix contains information about the absolute velocities of
vehicles, as well as relative positions of other vehicles with respect
to the autonomous vehicle. Finally, the vectorised version of this
matrix, which is a vector with 480 elements, is used to represent
the state of the environment at each specific time step.

The proposed state representation can be easily obtained by
sensors installed on an autonomous vehicle. Despite the fact that
this representation is relatively simple, as can be seen in Section 6,
it contains adequate information for obtaining robust driving
policies. More realistic and informative state representations can be
constructed. For example current pattern and object recognition
methods can be utilised to classify vehicles and, thus, incorporate
into the state representation information regarding the type of
surrounding vehicles and their size. In addition, if we assume that
vehicles are equipped with communication enabling technologies,
then vehicle-to-vehicle communication can be used to enhance the
state representation with information regarding vehicles’
longitudinal and lateral accelerations, while vehicle-to-
infrastructure communication can provide information regarding
the state of the network. Although, more accurate state
representations can be constructed, using a simple state
representation, like the proposed one, permits to gain insights with
respect to the behaviour of the derived policy. Moreover, we
deliberately do not assume any communication between the
vehicles, to make the training of the RL policy much harder, and, at
the same time, be able to evaluate its behaviour under minimal
assumptions. Finally, this work is based on the argument that RL
based techniques can be proved very valuable towards the
developments of driving policies, even in mixed driving scenarios,
and thus, it can be seen as a preliminary proof-of-concept.

4.2 Action representation

Seven available actions are defined; (i) change lane to the left, (ii)
change lane to the right, (iii) accelerate with a constant acceleration
of 1 m/s2 or 2 m/s2, (iv) decelerate with a constant deceleration of
−1 m/s2 or −2 m/s2, and (v) move with the current speed at the
current lane, as shown in Table 1. For the acceleration and
deceleration actions, feasible acceleration and deceleration values
are used to ensure that the autonomous vehicle will be able to
implement them. Moreover, the autonomous vehicle is making
decisions by selecting one action every 1 s, which implies that the

first two actions are also feasible, i.e. a moving car is able to
change lane in a time interval of 1 s.

Using the aforementioned action representation, each action can
be seen as a goal or desire of the autonomous vehicle that should
be achieved during 1 s. Practically, the first six actions represent
goals that are associated with the avoidance of obstacles. The third
to sixth actions represent also goals that are related to the fact that
the autonomous vehicle should move forward with the desired
speed. Finally, the seventh action implies that the vehicle is moving
with the desired speed and there are no obstacles to avoid.

Note that the goal of this work is to develop a driving policy by
approximating through RL the action-values Q(s, a) for every
possible (s, a) ∈ S × A pair. Therefore, adopting an action space
with small cardinality can significantly simplify the problem
leading to faster training. Moreover, the authors of [45] argue that
low-level control tasks can be less effective and/or robust for high-
level driving policies. For these reasons, an action space like the
one presented above is used instead of lower-level commands such
as longitudinal and lateral accelerations.

Finally, by using an action set of goals, the RL-based driving
policy makes high-level decisions for leading the autonomous
vehicle to the desired state. The implementation of these goals can
efficiently take place by exploiting a separate non-learnable
module, such as dynamic programming. This low-level module
will produce state trajectories by translating each specific desire to
lower-level commands, such as longitudinal and lateral
accelerations. These state trajectories may then be used as a
reference by the vehicle throttle and brake controllers, which are
designed on the basis of vehicle dynamics, to produce the actual
vehicle movement on the road. As mentioned in Section 2, the
development of such a module is beyond the scope of this work,
and, thus, it is assumed that is given.

4.3 Reward signal design

The reward signal is a measure of the quality of a selected action at
a specific state, and is the only mean through which a policy can be
evaluated. So, designing appropriate rewards signals is the most
important tool for shaping the driving behaviour of an autonomous
vehicle.

For driving scenarios, the autonomous vehicle should be able to
avoid collisions, move with a specific desired speed, and avoid
unnecessary lane changes and accelerations. Therefore, the reward
signal should reflect all these objectives by employing one penalty
function for collision avoidance, one that penalises deviations from
the desired speed and two penalty functions for unnecessary lane
changes and accelerations/decelerations.

The penalty function for collision avoidance should feature high
values at the gross obstacle space, so that the autonomous vehicle
is repulsed, and potentially unsafe decisions are suppressed; and
low (or virtually vanishing) values outside that space. To this end,
the exponential penalty function

f (δi) = e−(δi − δ0) if le = li
0 otherwise

(9)

is adopted. In (9), δi is the longitudinal distance between the
automated vehicle and the ith obstacle (the ith vehicle in its
surrounding environment), δ0 stands for the minimum safe distance,
and, le and li denote the lanes occupied by the autonomous vehicle
and the ith obstacle, respectively. Note that this function is
activated only when the automated vehicle and an obstacle are in
the same lane. Finally, if the value of (9) becomes greater or equal
to one, then the driving situation is considered very dangerous and
it is treated as a collision.

The vehicle's mission is to advance with a longitudinal speed
close to a desired one. Thus, the quadratic term

h(v) = (v − vd)2 (10)

that penalises the deviation between the vehicle speed and its
desired speed, is incorporated in the reward. In (10), the variable v

Fig. 1  State representation. The autonomous vehicle is represented by the
red rectangle, while the green rectangle represents another vehicle present
on the road
(a) Purple shaded area corresponds to the sensed surrounding environment of the
autonomous vehicle, (b) Discretisation of the sensed environment

 
Table 1 Available actions of the autonomous vehicle
Action #1: change lane to the left
Action #2: change lane to the right
Action #3: constant acceleration of 1 m/s2

Action #4: constant acceleration of 2 m/s2

Action #5: constant deceleration of 1 m/s2

Action #6: constant deceleration of 2 m/s2

Action #7: move on current lane with current speed
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stands for the longitudinal speed of the autonomous vehicle, while
the constant vd represents its desired longitudinal speed.

Two terms are also introduced; one for penalising accelerations/
decelerations, and one for penalising unnecessary lane changes.
For penalising accelerations the term

a(vt, vt − 1) = (vt − vt − 1)2 (11)

is used, while for penalising lane changes the term

g(lt, lt − 1) = I(lt ≠ lt − 1) . (12)

is used. Variables vt and lt correspond to the speed and lane of the
autonomous vehicle at a time step t, while I( ⋅ ) is the indicator
function.

The total reward at time step t is the negative weighted sum of
the aforementioned penalty terms, i.e.

rt = − w1 ∑
i = 1

Ot

f t(δi) − w2ht(vt) − w3 ∑
i = 1

Ot

I( f t(δi) ≥ 1

−w4a(vt, vt − 1) − w5g(lt, lt − 1)
(13)

In (13), the third term penalises collisions and variable Ot
corresponds to the total number of obstacles that can be sensed by
the autonomous vehicle at a time step t. The selection of weights
defines the importance of each penalty function to the overall
reward. In this work, the weights were set, using a trial and error
procedure, as follows: w1 = 1, w2 = 0.5, w3 = 20, w4 = 0.01,
w5 = 0.01. The largest weighting factors are associated with the
terms that penalise collisions and model obstacle avoidance, since
the derived policy should generate collision-free trajectories. The
weighting term associated with the desired speed of the vehicle
defines how aggressive and/or how conservative will be the
derived driving policy. Using a small value for this weight will
result in a conservative policy that will advance the vehicle with
very low speed or, even worse, keep the vehicle immobilised by
setting its speed equal to zero. Finally, the values of the weighting
factors associated with lane change accelerations/decelerations are
small in order to enable the vehicle to make manoeuvres, such as
overtaking other vehicles.

4.4 Neural network architecture

As mentioned before, the goal of this work is to develop a driving
policy by approximating through RL the action-values Q(s, a) for
every possible (s, a) ∈ S × A pair. Towards this direction, a fully
connected feed-forward neural network is utilised, due to its
universal function approximation property [54].

Specifically, the action-values Q(s, a) for each pair
(s, a) ∈ S × A are approximated by using a neural network that
maps a specific state s ∈ S to the action-values Q(s, as, i), where
{as, i}i is a non-empty set that contains all actions that can be
selected by the policy when the agent is at state s. In this work, the
DDQN approach is followed, which utilises two identical neural
networks with two hidden layers, consist of 256 and 128 neurons,
respectively. The first neural network is responsible for setting the
targets, while the second one is responsible for following them.
The synchronisation between the two neural networks is realised
every 1000 epochs. For more information regarding the DDQN
model please refer to [48].

4.5 Training set generation and policy training

For generating (st, at, rt, st + 1) tuples that will be used for training the
DDQN, two different microscopic traffic flow simulators are used.
The first one is a custom made simulator that moves the manual
driving vehicles with constant speed using the kinematics
equations. The second simulator is the established SUMO
[www.sumo.dlr.de/] microscopic traffic flow simulator. By
exploiting traffic flow simulators driving scenarios can be
simulated. For each one of the simulation steps during a simulated

scenario, following the approach described in Section 4, one
(st, at, rt, st + 1) tuple can be generated using information coming
directly from the simulator.

After the collection of a set of (st, at, rt, st + 1) tuples, the training
of the RL policy is starting following the procedures described in
Section 3. It should be mentioned that during policy training (and
testing) we implemented a rule-based action masking [45] for
changing lanes. Our choice is justified by the fact that in some
driving situations, undesirable lane changes can be straightforward
identified, e.g. lane changes that result in immediate collisions. In
such cases undesirable lane changes are filtered out instead of
letting the agent learn to avoid those actions. The benefits of action
masking are twofold. First, it restricts the action space, and, thus, it
speeds up the learning process. Second, selection of inferior actions
caused by the variance in observation will be avoided resulting in a
policy that is less prone to false positives and easier to debug.
Besides the aforementioned action masking, during training, no
other safety mechanisms are applied to the behaviour of the
autonomous vehicle. On the contrary, regarding manual driving
cars, all safety mechanisms are enabled. Therefore, in case of a
collision we are sure that the vehicle that caused the collision is the
autonomous one.

These are the general rules applied during the driving scenarios
generation (for training and testing the RL-based driving policy)
using both of the aforementioned microscopic traffic-flow
simulators. Depending on the specific characteristics of each
experiment, extra rules may be applied. These are described in the
corresponding subsections of Section 6.

4.6 Implementation details

For training the network, we set the discount factor γ = 0.995 [see
relation (1)], we used the memory of 2000 samples capacity, a
mini-batch of 64 samples and the ADAM optimiser with learning
rate 0.003, β1 = 0.9 and β2 = 0.999. The exploration factor εt at
each step is annealed by

ϵk = 0.01 + 0.99e−λk, (14)

where k stands for the index of the latest training step and λ was set
equal to 7.5 ⋅ 10−6. Finally, the training process started with ϵ1 = 1.0
and terminated when ϵk = 0.01.

5 Safety rules
As mentioned before, no learning-based driving policy can
guarantee a collision-free trajectory. There will always be corner
cases (very rare events) that the learning algorithm will not
encounter during its training phase. Therefore, it cannot be assured
that the decisions corresponding to such event will be correct [for a
formal proof of this result see [16] Lemma 2]. Moreover, a vehicle
might be involved in an accident without being responsible for it.
For these reasons the authors of [16] derive ad-hoc rules to
guarantee responsibility-sensitive safety, i.e. to guarantee that an
autonomous vehicle will never cause an accident, even if it will be
involved in one.

The derivation of safety rules in this work is motivated by the
responsibility-sensitive framework. There is, however, the main
difference between the setting in [16] and our setting. The authors
in [16] assume that the road is occupied only by autonomous
vehicles whose behaviour can be programmed. In our case, there is
no such assumption. On the contrary, mixed driving scenarios are
considered, where the road is occupied both by autonomous and
manual driving vehicles. This implies that the behaviour of manual
driving vehicles cannot be affected either programmed. By
restricting attention on vehicles that move on a highway the
aforementioned assumption can be removed. This allows assuming
that extreme events, such as vehicles that stop suddenly, will not
occur.

Restricting attention on highways permits also the
simplification of the responsibility-safety framework by
considering two types of collisions. An autonomous vehicle can
cause an accident, firstly, if it moves faster than its leader and
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violates a minimum time gap, and, secondly, during lane changes.
In the following we derive rules for avoiding these two types of
collisions. Please note that the information that can be used to
derive such rules is only the information available to the
autonomous vehicle, i.e. the positions and the velocities of the
vehicles surrounding it.

In order to avoid the first type of collisions, the minimum safety
time gap ρs that must be maintained between the autonomous
vehicles and its leader needs to be estimated. Obviously, the
minimum safety time gap makes sense only when the autonomous
vehicle is moving faster than its leader. Let us denote as ve, t and as
vl, t the longitudinal speeds of the autonomous vehicle and its leader
vehicle, respectively. Also, let us denote as dmax the maximum
feasible deceleration of the autonomous vehicle. In order to avoid
the first type of collisions after a time interval ρ, the following
inequality should hold:

vl, tρ − ve, tρ + 1
2dmaxρ2 > 0. (15)

Solving for ρ the minimum safety time gap ρs can be obtained by

ρs = inf ρ: ρ > 2(ve, t − vl, t)
dmax

. (16)

Based on relation (16), the autonomous vehicle before performing
an action, different than lane change actions, evaluates the
minimum safety gap with respect to its leader. If the minimum time
gap is violated, the autonomous vehicles decelerate with dmax until
its speed becomes equal to the speed of its leader. Otherwise, it
performs the RL selected action.

Regarding the second type of collisions that can be caused by
lane changes, two different cases should be considered. The
autonomous vehicle should avoid collisions with its leader vehicle
and with its follower vehicle in the newly selected lane. In the first
case, it estimates the minimum safety time gap ρs with respect to its
leader in the newly selected lane. If the minimum time gap is not
violated the RL lane change action is performed. Otherwise, the
autonomous vehicle selects the last action of the action set A [see
Section 4.2], that is, to retain current lane and move with current
speed, and checks for the first type of collisions. In order to avoid
the collisions with its follower vehicle in the newly selected lane,
the autonomous vehicle is not permitted to change lane if the
follower vehicle moves faster. In this case again, the autonomous
vehicle selects the last action of the action set A, and checks for
the first type of collisions. The rule for avoiding collisions between
the autonomous vehicle and its followers is very conservative.
However, since the RL-based driving policy cannot affect the
behaviour of the follower, and at the same time has no access to its
maximum feasible deceleration (in order to relax this rule by

estimating a safety time gap), such a rule is the only way to
guarantee no collisions of the second type.

Although the derived safety rules lead to more conservative
driving policy, as it can be seen in the experimental validation of
the proposed approach, they permit the autonomous vehicle to
advance with its desired speed and at the same time avoid
collisions.

6 Experiments
In this work, three different sets of experiments were conducted. In
the first set of experiments, a simplified microscopic traffic flow
simulator is utilised in order to compare the behaviour of the RL-
based driving policy against an optimal policy derived via dynamic
programming. In the second set of experiments, the established
microscopic traffic simulator SUMO is used. Three different types
of experiments are conducted. First, the behaviour of the
autonomous vehicle is evaluated when it is controlled by the
derived RL-based policy and when it is controlled by SUMO.
Second, the robustness of the derived policy with respect to
measurement errors is evaluated. Finally, in the third set of
experiments, the effect of vehicles that move following the RL-
based policy on traffic flow is investigated. In the following the
details of the experimental setup and the obtained results are
presented.

6.1 RL-based driving policy and dynamic programming

Dynamic programming techniques can produce optimal policies
assuming that no disturbances occur in the system. Due to this fact,
for this set of experiments, a simplified custom made microscopic
traffic simulator was developed and utilised. This simulator moves
the manual driving vehicles with constant longitudinal velocity
using the kinematics equations. Moreover, manual driving vehicles
are not allowed to change lanes. Despite its simplifying setting, this
set of experiments allows the comparison of the RL driving policy
against an optimal policy derived via dynamic programming. At
this point it should be mentioned that for this set of experiments the
ad-hoc safety rules derived in Section 5 are disabled in order to
gain insights regarding the safety aspects of the RL-based driving
policy.

For training the DDQN, driving scenarios of 60 s length were
generated. In these scenarios, one vehicle enters the road every 2 s,
while the tenth vehicle that enters the road is the autonomous one.
All vehicles enter the road at a random lane, and their initial
longitudinal velocity is randomly selected from a uniform
distribution ranging from 12 to 17 m/s. Finally, the desired speed of
the autonomous vehicle is set equal to 21 m/s.

The RL driving policy is compared against an optimal policy
derived via dynamic programming under four different road
density values. For each one of the different densities, 100
scenarios of 60 s length were simulated. In these scenarios, the
simulator moves the manual driving vehicles, while the
autonomous vehicle moves by following the RL policy and by
solving a dynamic programming problem with 60 s horizon (which
utilises the same objective functions and actions as the RL
algorithm). Finally, statistics regarding the number of collisions
and lane changes, and the percentage of time that the autonomous
vehicle moves with its desired speed for both the RL and dynamic
programming policies are extracted. At this point, it has to be
mentioned that dynamic programming is not able to produce the
solution in real time, and it is just used for benchmarking and
comparison purposes. On the contrary the RL policy, at a given
state can select an action very fast since this selection corresponds
to one evaluation of the neural network function at the
corresponding state.

Table 2 summarises the results of this comparison. The four
different densities are determined by the rate at which the vehicles
enter the road, i.e. 1 vehicle enters the road every 8, 4, 2, and 1 s.
The RL policy is able to generate collision-free trajectories when
the density is less than or equal to the density used to train the
network. For larger densities, however, the RL policy produced 2
collisions every 100 scenarios. In terms of efficiency, the optimal

Table 2 Driving behaviour evaluation of the RL and DP
driving policies, in terms of the total number of collisions and
lane changes for 100 scenarios and percentage of time that
the vehicle moves with its desired speed

Collisions Lane changes Desired speed, %
1 veh./8 s
DP policy 0 84 85
RL policy 0 81 73
1 veh./4 s
DP policy 0 127 83
RL policy 0 115 64
1 veh./2 s
DP policy 0 120 87
RL policy 0 108 62
1 veh./1 s
DP policy 0 70 72
RL policy 2 62 56
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dynamic programming policy is able to perform more lane changes
and advance the vehicle faster.

6.2 RL-based driving policy and SUMO policy

In this set of experiments, the behaviour of the autonomous vehicle
when it follows the RL policy and when it is controlled by SUMO
is evaluated. The training of the RL policy took place using
scenarios generated by the SUMO simulator. During the generation
of scenarios, all SUMO safety mechanisms are enabled for the
manual driving vehicles and disabled for the autonomous vehicle.
Furthermore, the manual driving cars are not permitted to
implement cooperative and strategic lane changes. Such a
configuration for the lane changing behaviour, impels the
autonomous vehicle to implement manoeuvres in order to achieve
its objectives. Moreover, in order to simulate realistic scenarios,
two different types of manual driving vehicles are used; vehicles
that want to advance faster than the autonomous vehicle and
vehicles that want to advance slower. Finally, the density was equal
to 600 veh./lane/h. For the evaluation of the trained RL policy,
different driving scenarios, described in the following subsections,
were simulated.

6.2.1 Evaluation of the derived RL driving policy and safety
rules: In this set of experiments, different driving scenarios were
simulated; (i) 100 driving scenarios during which the autonomous
vehicle follows the RL driving policy without the ad-hoc safety
rules derived in Section 5, (ii) 100 driving scenarios during which
the autonomous vehicle follows the RL driving policy with the ad-
hoc safety rules, (iii) 100 driving scenarios during which the
default configuration of SUMO was used to move forward the

autonomous vehicle (cooperative and strategic lane changes are
enabled for the autonomous vehicle), and (iv) 100 scenarios during
which the behaviour of the autonomous vehicle is the same as the
manual driving vehicles, i.e. it does not perform strategic and
cooperative lane changes. The duration of all simulated scenarios
was 60 s. The aforementioned scenarios’ generation framework
was applied to two different driving conditions. In the first one, the
desired speed for the slow manual driving vehicles was set to 18 
m/s, while in the second one to 16 m/s. For both driving conditions,
the desired speed for the fast manual driving vehicles was set to 25 
m/s. Furthermore, in order to investigate how the presence of
uncertainties affects the behaviour of the autonomous vehicle,
simulated scenarios where drivers’ imperfection was introduced by
appropriately setting the σ parameter in SUMO (0 ≤ σ ≤ 1 with
σ = 0 to imply a perfect driver) were also used. Finally, the
behaviour of the autonomous vehicles was evaluated in terms of (i)
collision rate, and (ii) average speed per scenario.

Table 3 summarises the results of this comparison when the ad-
hoc safety rules are disabled. In this way, the safety levels of the
RL-based driving policy can be experimentally quantified. In
Table 3, SUMO default corresponds to the default SUMO
configuration for moving forward the autonomous vehicle, while
SUMO manual to the case where the behaviour of the autonomous
vehicle is the same as the manual driving vehicles. Irrespective of
whether a perfect (σ = 0) or an imperfect (σ = 0.5) driver is
considered for the manual driving vehicles, the RL policy is able to
move forward the autonomous vehicle faster than the SUMO
simulator, especially when slow vehicles are much slower than the
autonomous one. However, it results in a collision rate of 2–4%,
which is its main drawback. No guarantees for collision-free
trajectory is the price paid for deriving a learning-based approach
capable of generalising to unknown driving situations and inferring
driving actions with minimal computational cost.

However, when the ad-hoc safety rules are enabled, the derived
RL driving policy achieves to provide collision-free trajectories.
The average speed of the autonomous vehicle slightly decreases
after the application of ad-hoc rules, but again the derived policy
advances the autonomous vehicle faster than the SUMO policies.
Specifically, when the speed of the slow vehicles is 18 m/s the RL-
based policy with the ad-hoc safety rules advances the autonomous
vehicle 2 and 2.6% faster than the SUMO default policy for
σ = 0.0 and σ = 0.5, respectively. For the case where the speed of
the slow vehicles is 16 m/s, the improvement, in terms of speed, of
the RL-based policy over the SUMO default policy is more
significant. In particular, the RL-based policy advances the
autonomous vehicle 8 and 12% faster than the SUMO default
policy for σ = 0.0 and σ = 0.5, respectively.

The aforementioned results suggest that the RL-based driving
policy is not significantly more efficient than the SUMO default
policy when the average speed of the manual driving vehicles is
close to the desired speed of the autonomous vehicle. However,
when the deviation between the desired speed of the autonomous
vehicle and the average speed of the manual driving vehicles
increases, the RL-based driving policy is able to advance the
autonomous vehicle much faster.

6.2.2 Evaluation of the derived RL driving policy under
measurement errors: In this set of experiments, the robustness of
the RL-based driving policy, with the application of ad-hoc safety
rules, is evaluated with respect to measurement errors regarding the
position of the manual driving vehicles. At each time step,
measurement errors proportional to the distance between the
autonomous vehicle and the manual driving vehicles are
introduced. Two different error magnitudes were used; ±5 and
±10%. The RL policy was evaluated in terms of collisions and
average speed in 100 driving scenarios of 60 s length for each error
magnitude. In these scenarios, the desired speed of the slow
vehicles is 16 m/s. Finally, for these experiments, perfect and
imperfect drivers were also considered.

The results of this evaluation are presented in Table 4. Despite
the introduction of noise, the RL-based driving policy is able to
produce collision-free trajectories, and at the same time, retain a
high speed for the autonomous vehicle. In particular, the

Table 3 Driving behaviour evaluation. SUMO default
corresponds to the default SUMO configuration, while SUMO
manual to the case where the behaviour of the autonomous
vehicle is the same as the manual driving vehicles

Collisions, % Avg. speed
Desired speed for slow vehicles 18 m/s
RL policy with rules (σ = 0.0) 0 20.62
RL policy w/o rules (σ = 0.0) 2 20.71
SUMO default (σ = 0.0) 0 20.22
SUMO manual (σ = 0.0) 0 19.48
RL policy with rules (σ = 0.5) 0 20.08
RL policy w/o rules (σ = 0.5) 3 20.09
SUMO default (σ = 0.5) 0 19.57
SUMO manual (σ = 0.5) 0 19.05
Desired speed for slow vehicles 16 m/s
RL policy with rules (σ = 0.0) 0 19.87
RL policy w/o rules (σ = 0.0) 2 20.04
SUMO default (σ = 0.0) 0 18.41
SUMO manual (σ = 0.0) 0 17.47
RL policy with rules (σ = 0.5) 0 19.81
RL policy w/o rules (σ = 0.5) 4 19.87
SUMO default (σ = 0.5) 0 17.67
SUMO manual (σ = 0.5) 0 17.26

 

Table 4 Driving behaviour evaluation with ad-hoc safety
rules when different magnitudes of measurements errors are
introduced

Collisions, % Avg speed
5% noise
RL policy with rules (σ = 0.0) 0 19.88
RL policy with rules (σ = 0.5) 0 19.84
10% noise
RL policy with rules (σ = 0.0) 0 19.65
RL policy with rules (σ = 0.5) 0 19.59
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introduction of a 5% noise does not seem to affect the average
speed of the vehicle. By increasing the noise to 10% the average
speed of the vehicle slightly decreases compared to the case with
noiseless measurements. Fig. 2 presents the speed trajectories of
the autonomous vehicle when different drivers’ imperfection and
different magnitude of noises are introduced. The solid green line
represents the mean speed of the vehicle overall 100 scenarios,
while the shaded area represents 1 standard deviation of the speeds
below and above their mean value. Irrespective of the introduced
uncertainties, during the first steps of the simulation the
autonomous vehicle increases its speed to reach a speed close to its
desired one, and then, it retains this speed. Moreover, by increasing
the noise, the deviation of the speeds over the 100 scenarios
increases. This, however, is rational behaviour, since increasing the
uncertainty, in terms of noisy measurements, will increase the
variance during the decision making process.

6.2.3 Evaluation of the derived RL driving policy with
unknown vehicle types: In this set of experiments, the robustness
of the derived RL-based driving policy is evaluated when the road
is occupied by types of vehicles that were not present during the
training phase. The RL-based driving policy was trained using
driving scenarios where the road was occupied by passenger
manually driving vehicles that were moving faster and slower than
the autonomous vehicle. In this set of scenarios, the road is
occupied by the previously mentioned passenger vehicles, but also
by truck, buses, and motorcycles. The percentage of these types of
vehicles, as well as their desired speed, is presented in Table 5. 

Under this experimental setting, the robustness of the derived
driving policy can be evaluated when vehicles of different sizes
and different desired speeds occupy the road. Towards this
direction 100 driving scenarios considering perfect drivers and 100
scenarios considering drivers’ imperfections were simulated. All
driving scenarios were 60 s long. Finally, the RL-based driving
policy was evaluated in terms of collisions and average speed with
which the autonomous vehicle moves forward.

Table 6 presents the RL driving policy evaluation results for the
aforementioned set of experiments. By comparing these results
with the results in Table 3, it can be seen that the average speed of
the autonomous vehicle is slightly decreased by 0.13 and 0.14 m/s,
for σ = 0.0 and σ = 0.5, respectively, when types of vehicles not
seen during the training phase are present in the road. This
decrease is mainly due to the randomness during driving scenarios
generation and not due to the presence of trucks, buses and
motorcycles on the road. More importantly, the RL driving policy
is able to produce collision-free trajectories despite the fact that the
road is occupied by types of vehicles not seen during the training
phase. This is justified by two facts. First, the proposed state
representation utilises encodes about the position and the velocity
of manual driving vehicles present on the road. This kind of
information can be obtained and encoded for any vehicle
irrespective of its type. Second, the development and application of
the proposed safety rules compensate for the presence of manually
driving vehicles of different sizes. It should be mentioned,
however, that more realistic and accurate state representations (see
Section 4.1) can also be utilised to explicitly encode vehicles size
information in state representation.

Fig. 2  Speed trajectories for different measurement errors and driver imperfection. The solid green line represents the mean speed of the vehicle overall 100
scenarios, while the shaded area represents 1 standard deviation of the speeds below and above their mean value

 
Table 5 Vehicle types present on the road

Percentage, % Maximum speed, m/s
slow passenger vehicles 40 16
fast passenger vehicles 40 25
trucks 5 14
buses 5 16
motorcycles 10 21
 

Table 6 Driving behaviour evaluation with ad-hoc safety rules when different types of vehicles occupy the road
Collisions, % Avg. speed

RL policy with rules (σ = 0.0) 0 19.74
RL policy with rules (σ = 0.5) 0 19.67
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6.2.4 Evaluation of the derived RL driving policy under rainy
weather conditions:  In this set of experiments, the RL driving
policy is evaluated under rainy weather driving conditions. Rainy
weather shifts the fundamental diagram to the left, which implies,
on the one hand, that the vehicles move slower, and on the other,
that their maximum acceleration/deceleration becomes lower. In
order to simulate rainy weather driving scenarios, the desired speed
of all vehicles, except the autonomous one, was decreased by 10%,
and their maximum acceleration/deceleration by 30%. Moreover,
drivers’ imperfections were also included by setting σ = 0.5.
Finally, different types of vehicles, i.e. slow and fast passenger
vehicles, trucks, buses, and motorcycles, were also present on the
road. 100 driving scenarios of 60 s long were simulated, and the
derived driving policy was evaluated in terms of number of
collisions and average speed with which the autonomous vehicle
moves forward. Table 7 presents the result of this evaluation.

The RL-based driving policy is able to produce collision-free
trajectories and, at the same time, move forward the autonomous
vehicle with speed larger than 19 m/s. The longitudinal velocity of
the autonomous vehicle is slightly lower (0.19 m/s) than the
previous experiments. This, however, is mainly caused by the
decrease in overall traffic flow due to weather conditions.

6.3 Effect of the RL-based driving policy on traffic flow

In this set of experiments, preliminary results on the effect of
autonomous vehicles on the overall traffic flow are presented. Four
different experiments are conducted by varying the percentage of
autonomous vehicles that occupy the road. In the first experiment,
all vehicles are manual driving, i.e. the percentage of autonomous
vehicles is zero. For the rest three experiments, percentages of 5,
10, and 15%, respectively, are used. For each experiment, 100
scenarios of 120 s length were simulated, and for each scenario the
average speed of all vehicles on the road is computed, which is an
indicator of the flow; the higher the average speed, the higher is the
flow. For all experiments and all scenarios, the desired speed of
manual driving vehicles is 16 m/s, and the option for cooperative
and strategic manoeuvres is disabled, while the desired speed for
all the autonomous vehicles is 21 m/s. In this way, the behaviour of
manual driving vehicles can be seen as a moving bottleneck.

The results of these experiments are presented in Table 8. For
each one of the experiments, the average speed is reported. As a
baseline the case where the percentage of autonomous vehicles is
zero is considered, and the relative improvement of the rest of
cases (5, 10, and 15% autonomous vehicles) against this one is also
reported. The average speed for the baseline is 15.32 m/s, a little
bit lower than the desired speed of the manual driving vehicles.
This happens because the manual driving vehicles should satisfy
the safety constraints imposed by SUMO. When the percentage of
autonomous vehicles increases to 5% the average speed of the
vehicles is 15.41 m/s resulting in a very small improvement of
0.6% over the baseline. In this case, the autonomous vehicles move
faster than the manual driving ones. Their percentage, however, is
very small, and, thus, they only slightly improve the average speed
compared to the baseline. Increasing more the percentage of
autonomous vehicles to 10% results in an average speed of 16.11 

m/s and 5.1% improvement compared to the baseline. Increasing,
however, more the percentage of autonomous vehicles to 20%
results in an improvement of 1.3% over the baseline, which is
smaller than the improvement of the previous case. This mainly
happens due to the selfish behaviour of autonomous vehicles.

Autonomous vehicles want to move faster than manual driving
cars, and in order to achieve that they have to perform manoeuvres.
Keeping the density of autonomous vehicles low permits the
performance of manoeuvres, and thus, the faster advancement of
the autonomous vehicles. Increasing, however, the density of
autonomous vehicle above a threshold, makes the performance of
manoeuvres more difficult, since each one autonomous vehicle,
present in a limited space, wants to perform its own manoeuvres in
a selfish way. This results in competitive behaviours among
autonomous vehicles, which has a negative effect on the overall
traffic flow.

These preliminary results show that selfish and competitive
behaviours deteriorate the overall traffic flow. Deriving an RL-
based driving policy trained on scenarios where the manually
driven vehicles occupy a selfish behaviour will not improve the
overall traffic flow. Due to limited space and a large number of
manoeuvres performed by the manually driven vehicles the RL
training algorithm will result in a very conservative policy. In our
view, the only way to improve the overall traffic flow, under mixed
driving scenarios, is to derive cooperative driving policies for
clusters of autonomous vehicles, in order to achieve not vehicle-
centric, but overall traffic flow goals. This could be done by
introducing appropriate penalty terms regarding the overall traffic
flow, such as minimum travel time or average traffic flow, in the
reward function. Deriving, however, cooperative RL-based driving
policies for clusters of autonomous vehicles are outside the scope
of this work.

7 Discussion
The simulation results presented in Section 6 indicate that the
derived RL-based driving policy is more efficient for moving
forward the autonomous vehicle, than the car following model used
by SUMO simulator. At the same time, the derived policy can
produce collision-free trajectories, and it seems to be robust under
measurement errors, different types of vehicles and weather
conditions. Although the current work makes the first steps
towards the exploitation of deep RL techniques for autonomous
vehicles’ path planning, the proposed methodology is not yet ready
for real-world adoption. More complicated scenarios should be
generated and utilised during the training and testing phases, such
as scenarios where the autonomous vehicle is approaching a crash
site ahead, heavy traffics, highway merging, emergency lane
switching, and night driving.

Being able to identify the limitations of the current work
motivates our ongoing and future work, which comprises (i)
training and testing an RL-based driving policy under more
complicated and realistic scenarios, (ii) derive more accurate state
representations by exploiting vehicle-to-vehicle and vehicle-to-
infrastructure communication technologies, and (iii) move from a
selfish driving policy to the derivation of a cooperative driving
policy in order to achieve not vehicle-centric, but overall traffic
flow goals.

8 Conclusions
In this work, the problem of path planning for an autonomous
vehicle that moves on a freeway is considered. For addressing this
problem, RL techniques are employed to derive a driving policy.
The driving policy is implemented using a DDQN. Two different
simulators to train and validate the derived driving policy are used;
a custom made microscopic traffic flow simulator and the
established SUMO microscopic traffic flow simulator.

The custom made microscopic traffic flow simulator is utilised
for comparing the RL-based driving policy against an optimal
policy derived via dynamic programming. The results of this
comparison indicated that, although dynamic programming can
advance the autonomous vehicle faster than the RL-based driving
policy, it cannot produce the trajectory in real time. Moreover,

Table 7 Driving behaviour evaluation with ad-hoc safety
rules rainy weather conditions

Collisions, % Avg. speed
RL policy with rules (σ = 0.5) 0 19.48

 

Table 8 Effect of autonomous vehicles on the overall traffic
flow

Avg. speed,
m/s

Improvement over
0%, %

autonomous vehicles 0% 15.32 0.0
autonomous vehicles 5% 15.41 0.6
autonomous vehicles 10% 16.11 5.1
autonomous vehicles 20% 15.91 1.3
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dynamic programming requires a priori and exact knowledge of the
system dynamics in a disturbance-free environment to produce an
optimal solution. Due to these facts, an RL-based driving policy
that incorporates the ad-hoc safety rules [see Section 5] can be
proved a valuable approach for emerging driving behaviours with
very low-computational cost, minimal or no assumptions about the
environment, and the capability to generalise to driving situations
that are not known a priori.

The SUMO simulator is utilised in order to train and validate
the RL-based driving policy under customary and realistic traffic
scenarios. Since no learning-based approach can guarantee
collision-free trajectories, ad-hoc safety rules are derived
motivated by the responsibility-safety framework presented in [16].
The derived RL-based driving policy is compared against SUMO
policies with and without the introduction of uncertainties. The
results of this comparison indicated that the autonomous vehicle
following the RL-based policy is able to achieve higher scores.

Finally, preliminary results regarding the effect of selfish
autonomous vehicles behaviour on the overall traffic flow are
presented. These results suggest that, although an individual
autonomous vehicle that follows a selfish policy can achieve its
goals, when multiple autonomous vehicles follow a selfish policy,
their impact on the overall traffic flow is negative. Selfish policies
lead to competitive behaviours that deteriorate the overall traffic
flow. This effect is known as the user optimum versus system
optimum trade-off.
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