

A journey from classical to modern cassava breeding: Integrating genomic selection for faster and greater genetic gains

Danilo E. Moreta, Xiaofei Zhang, & Cassava Team Cassava Team Meeting Montería, Colombia | 21st November 2023

Acknowledgements

Together Everyone Achieves More

Bioversity-CIAT Cassava Team

Jonathan Newby + Research sub team + Management sub team (Ximena, Zulma, Oriana)

Breeding sub team

Xiaofei Zhang Sean Fenstemaker Luis Fernando Delgado Lizbeth Pino Sandra Salazar Nelson Morante Jorge Iván Lenis Camilo Vargas Ana María Ensuncho

Genetics sub team

Winnie Gimode Adriana Bohórquez Camilo Sánchez Luz Andrea Gómez Vianey Barrera (former) Janeth Gutiérrez Carmen Bolaños Carlos Ordóñez

Quality lab sub team

Thierry Tran Luis Fernando Londoño María Alejandra Ospina Jorge Luna Jhon Larry Moreno Christian Duarte

Seed systems sub team

Roosevelt Escobar Adriana Núñez Natalia Canacuan Auradela Ríos Carlos Dorado

Crop protection sub team

Wilmer Cuellar Juan Manuel Pardo María Isabel Gómez

Field workers

Outline

PART I: Background & context

- Transition from traditional to modern cassava breeding
 - Overview of the traditional cassava breeding method
 - Recurrent phenotypic selection
 - Genomic selection (GS) as a breeding tool
 - What it is? Why implement? How it works?

PART II: Applications & plans

- Incorporating GS in CIAT cassava breeding pipeline
 - Work plan 2023-24, status, challenges & opportunities,
 - Discuss ideas & plans to optimize cassava GS models
 - A glance at the future: Hybrid cassava breeding

Part I

Transition from traditional to modern cassava breeding

A shorter breeding cycle with genomic selection

Selections based on genomic estimated breeding values (GEBVs)

Improve population

Image credits: G. Acquaah, 2015; N. Morante; & D. E. Moreta

 $GEBV = f(\mathbf{A})$

Release product (cultivar)

Genomic selection: The next (r)evolution in plant breeding

ΔG: Genetic gain per unit time *i*: Intensity of selection *r*: Accuracy of selection
σ_a: Additive genetic variation *t*: Duration of the breeding cycle

Impacts of GS on the breeder's equation parameters

			Direct impact	Indirect impact
	Introducing genomic information	Add genotyping to increase selection accuracy	r	i 1/t
		Reduce phenotyping effort with genotyping	i 1/t	
	Management of genetic diversity	Better choice of parents to optimize crossbreeding or preserve genetic diversity	$r \sigma_a$	

Accelerated cassava breeding: The major benefit of genomic selection

Genomic Selection (GS, aka genomic prediction, genome-wide selection, genome-wide prediction, etc.) is a genomics-assisted breeding tool.

F₁: seedling nursery
F₁C₁: cloned seedling nursery
SRT: single row trial
PYT: preliminary yield trials
AYT: advanced yield trials
SIT: seed increase trial
TPY: training population yield trials
GWP: genome-wide prediction

Figure credits: Cassava Breeding Team (Alliance Bioversity-CIAT)

Figure adapted from Zhao et al., 2015 | Photo credits: S. Salazar

GS as a breeding tool to accelerate cassava genetic gains

Why implementgenomic selection? $GEBV = f(\Xi)$

- Shorten lengthy breeding cycles
- Increase breeding efficiency: greater ΔG per unit time
- Seed shortages
- Discard poor clones earlier
- Reduce manual labor (phenotyping)
- Hard-to-measure traits

What factors affect GS accuracy?

Accuracy = corr(phenotype, prediction)

- Marker density
- Size & composition of training population
- Number of QTLs
- Heritability
- Linkage disequilibrium (LD)

Phenotyping Genotyping Training population **Genomic Selection Model Estimate effect of markers:** $Y = \mu + X_{\text{train}} \alpha + e$ Genotyping Predicted genotypic values: Selected Untested population population $\widehat{\mathbf{Y}} = \mathbf{X}_{\text{Untested}} \widehat{\boldsymbol{\alpha}}$ G X_{Untested}

Figure adapted from Zhao et al., 2015 | Photo credits: S. Salazar

• Model used

Genomic selection models

All models are approximations and hence wrong, but some are useful. ~ George Box

The basic genetic model:
$$\mathbf{P} = \underline{G} + E + (GxE)$$

$$GEBV_{GS} = f(\mathbf{A})$$

Ridge-regression best linear unbiased prediction (RR-BLUP)

<u>Assumption</u>: Infinitesimal model of genetic architecture (all markers have an equal effect) **Step 1:** Estimate marker effects in training population (TP) **Step 2:** Use marker effects & genotypes of selection candidates to predict GEBVs

Genomic best linear unbiased prediction (G-BLUP)

Step 1: Use markers to quantify genomic relationshipsStep 2: Use genetic relatedness to TP of unevaluated to predict GEBVs

Bayesian models

- Better model marker effects of differing sizes (Hayes, 2007)
- Separate variance estimated for each marker (Meuwissen et al., 2001)

Modern plant breeding beyond molecular markers. Integrating and connecting disciplines

GS will not replace traditional breeding & field work, instead it will help optimize the system.

Part II

Incorporating GS in CIAT cassava breeding pipeline

First steps to implementing GS in the cassava breeding pipeline at CIAT

F₁: seedling nursery
F₁C₁: cloned seedling nursery
PYT: preliminary yield trials
AYT: advanced yield trials
SIT: seed increase trial
TPY: training population yield trials
GWP: genome-wide prediction

Figure credits: Cassava Breeding Team (Alliance Bioversity-CIAT

^{*}Semi-arid & sub-humid environments

Training PopulationTesting PopulationGermplasm:Full & half-sibs

Trial names: 2022DVGST (n = ~873) 2021DMF1C (n = ~823) 2021CQF1C (n = ~672) **GS for waxy cassava (COMING SOON!)** n = ~200 clones Ingredion agreement

Locations:3 locs
2 in north coast*: Santo Tomás
MomilAg traits + Pest & disease resistance
0nly quality traits

^{*}Semi-arid & sub-humid environments

Genotyping the training & testing (breeding) populations C1.1 (Cycle 1, Cohort 1) 2020-2021

Phenotype = *Genotype* + *Environment*

Prediction ability C1.1 (Cycle 1, Cohort 1) | 2020-2021

Cross-Validation

How well do we predict individuals without phenotypes?

Accuracy = *corr*(*phenotype*, *prediction*)

My timeline/roadmap to implement & optimize the cassava GS pipeline

Q: quarter of a year (3-month period) **M:** month

Status: Trying to reproduce what others did

VCFtutorial_statsVisualization

 $dEmc^2$

Cali, CO | 17th October 2023

GUIDE/REFERENCE: https://speciationgenomics.github.io/filtering_vcfs/

 $Notes_{dEmc^2}$:

DNA sequencing info

VCF file source: Group1_11.chromosome01.vcf

 $n_{samples}$ = 395

 n_{SNPs} = 588,247 (original/raw)

3.3 Heterozygosity and inbreeding coefficient per individual

1 Examining VCF statistics in R

2 Variant based statistics

2.1 Variant Quality

1.1 Setting up the R environment

2.1.1 Phred quality score Q

2.1.2 Variant mean depth

2.1.3 Variant missingness

3 Individual based statistics

individual

3.1 Mean depth per individual

3.2 Proportion of missing data per

2.1.4 Minor allele frequency (MAF)

Learning by doing! Running demos & generating reports

GP GS demo: rrBLUP

 $dEmc^2$

Cali, CO | 25th October 2023

GUIDE/REFERENCE: GS_GEBVs_Prediction_Tutorial_dEmc2.jpynb

 $Notes_{dEmc^2}$:

Working files

1. Genotypes_{SNPs} = gs_2023.reduced.txt | Should contain training (gsT) + breeding pops (gsB) 2. *Phenotypes*_{BLUPs} = **GS_2023_second_cohort_blups.csv** | Should be only gsT 3. Accessions_{names} = group12_group12_accessions.csv | Use to match genos & phenos

NEED TO TRACE BACK ALL THESE FILES IN VIANEY'S FOLDERS. They :

10x whole genome sequencing

2021: Group 1-8

Group Genom

2 Read datasets

3 Preparing genotype data

1 Set directory & paths

3.1 Random sampling

3.2 Numerical scale

3.3 Imputation

4 Geno-Pheno match

4.1 Kinship

5 Prediction function

6 Run prediction

Operational challenges & opportunities

Unorganized files on server (hard to track and find)

Systematic organization of files on server

Lack of repository for GS scripts and related

IT micromanagement & lack of communication with researchers Feed/update **Cassava2050 GitHub repository** (reproducible research)

Creation of a **server committee**: "Cassava byters" (Sean, Xiaofei, Winnie, Camilo, Danilo)

Ideas to optimize (make it more accurate) the cassava GS models P = G

Phenos & environment

- Plug environmental covariates: weather & soil
- Account for GxE effects

- Combine populations to increase power
- Include secondary traits (easier to predict?) Relative yield Total disease resistance Harvest index, etc.
- High-throughput phenotyping for better model training (ongoing collab. w/ Mike Selvaraj)

DNA markers

- Try different TP sizes & number of markers
- Dual purpose of TP: predictions + association (GWAS)
- Special treatment to some markers Most significant & GWAS hits as fixed effects

Moving up cassava improvement & production to the next level through hybrid breeding

How can GS help achieve this?

Inbreds: Combining ability

Hybrids: Performance

Efficacy of ΔG per unit time and cost

Thanks!