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CONVERGENCE ANALYSIS OF LEAPFROG FOR GEODESICS\ast 

ERCHUAN ZHANG\dagger \ddagger AND LYLE NOAKES\ddagger 

Abstract. Geodesics are of fundamental interest in mathematics, physics, computer science, and
many other subjects. The so-called leapfrog algorithm was proposed in [L. Noakes, J. Aust. Math.
Soc., 65 (1998), pp. 37--50] (but not named there as such) to find geodesics joining two given points
x0 and x1 on a path-connected complete Riemannian manifold. The basic idea is to choose some
junctions between x0 and x1 that can be joined by geodesics locally and then adjust these junctions.
It was proved that the sequence of piecewise geodesics \{ \gamma k\} k\geq 1 generated by this algorithm converges
to a geodesic joining x0 and x1. The present paper investigates leapfrog's convergence rate \tau i,n of
ith junction depending on the manifold M . A relationship is found with the maximal root \lambda n of a
polynomial of degree n - 3, where n (n> 3) is the number of geodesic segments. That is, the minimal
\tau i,n is upper bounded by \lambda n(1+ c+), where c+ is a sufficiently small positive constant depending on
the curvature of the manifold M . Moreover, we show that \lambda n increases as n increases. These results
are illustrated by implementing leapfrog on two Riemannian manifolds: the unit 2-sphere and the
manifold of all 2\times 2 symmetric positive definite matrices.

Key words. leapfrog, geodesics, convergence analysis, polynomial
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DOI. 10.1137/22M1515173

1. Introduction. Let x0, x1 be given points in a smooth m-dimensional path-
connected complete Riemannian manifold M . By the Hopf--Rinow theorem, x0 and
x1 can always be joined by a (minimal) geodesic in M . Geodesics are of fundamental
interest in mathematics and many other areas. In mathematics, geodesics are fun-
damental in studies of the geometry of a manifold, such as the Rauch comparison
theorem [2] and Toponogov's triangle comparison theorem [7]. Geodesics are also
essential in applications such as geodesic regression (generalized from linear regres-
sion) and principal geodesic analysis (generalized from principal component analysis),
which are widely used in data analysis and computer science [6, 23, 5, 4].

When the geometric structure of the manifold M is very well understood, some-
times all geodesics can be given in closed form. Usually, however, it is necessary to
determine geodesics as solutions to a 2-point boundary value problem for the 2m-
dimensional nonlinear system of geodesic equations. Initial value problems for such
systems are routinely solved by numerical methods, but boundary value problems
require a lot more work.

1.1. Leapfrog. The leapfrog algorithm [15] for finding a geodesic joining x0, x1 \in 
M proceeds as follows. Suppose that a piecewise geodesic \gamma : [0,1]\rightarrow M from x0 to x1

has n geodesic segments, with any three successive junctions yi - 1, yi, yi+1 contained
in some geodesically convex subset of M . Then \gamma is determined by an (n  - 1)-
tuple (y1, y2, . . . , yn - 1) of junctions, and we set y0 := x0 and yn := x1. Then, for
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Fig. 1. An illustration of leapfrog for 3 junctions: choose 3 initial junctions y11, y12 , and y13;
then y11 is moved to the midpoint y21 of the minimal geodesic joining x0 and y12, y

1
2 is moved to the

midpoint y22 of the minimal geodesic joining y21 and y13, and y13 is moved to the midpoint y23 of the
minimal geodesic joining y22 and x1. This process continues unless some stop criterion is satisfied.

i = 1,2, . . . , n  - 1, yi is adjusted by moving yi onto the midpoint of the minimal
geodesic joining yi - 1 and yi+1, as in Figure 1.

This generates a sequence of piecewise geodesic curves \Omega = \{ \gamma k : [0,1]\rightarrow N,k\geq 1\} .
Denoting the ith junction of \gamma k by yki , with yk0 = x0 and ykn = x1, y

k
i is the midpoint

of the minimal geodesic joining yki - 1 and yk - 1
i+1 . As proved in [15] the limits y\infty i :=

limk\rightarrow \infty yki almost always exist, and these allow us to construct a geodesic \gamma \infty from
x0 to x1. The number n of geodesic segments is determined by the effectiveness
of methods to find geodesics joining yki - 1 and yk - 1

i+1 . Usually this is done by single
shooting, which works well if a good initial guess can be made for the initial velocity
of the geodesic. For instance, when n is moderately large, consecutive junctions need
not be too far apart. Then good linear estimates can be made using coordinate charts.

Regarding the endpoint geodesic problem, Bryner in [1] proposed two numerical
schemes, the shooting method and path-straightening, to compute endpoint geodesics
on Stiefel manifolds by considering them as submanifolds of the Euclidean space.
From the perspective of matrix-algebra, Zimmermann in [26] derived a method for
evaluating the Riemannian logarithm map on the Stiefel manifold with respect to the
canonical metric. Later, Zimmermann and H\"uper in [27] provided a unified method
to deal with the geodesic endpoint problem on the Stiefel manifold with respect to a
family of metrics. In [22], Sutti and Vandereycken discussed the convergence of the
leapfrog algorithm as a nonlinear Gauss--Seidel method on the Stiefel manifold.

Recently the present authors proposed an alternative algorithm to find geodesics
joining two given points [18]. Like leapfrog, this method also exploits single shooting
to find geodesics joining junctions. The key difference is in the way that junctions are
adjusted, and there does not seem to be much difference in performance of the two
methods (if anything, leapfrog is preferable). Leapfrog has also been adapted to find
optimal trajectories in optimal control problems [8, 9].

Apart from the applications mentioned above, leapfrog is also used for finding
extremals of Lagrangian actions [19] in physics, where the Lagrange mechanic sys-
tems may include double pendulum, obstacle avoidance, and navigation problems,
to name a few. In data science, for the problem of fitting multidimensional reduced
data, leapfrog can work as an iterative scheme that selects the missing knots by
minimizing a nonlinear multivariate function [10, 11]. In computer vision, a 2D ver-
sion of leapfrog is proposed to recover an unknown surface from 3 noisy camera im-
ages [17] and applied to photometric stereo reconstruction [16]. In engineering, the
leapfrog method is shown to produce optimal paths of a mobile robot by solving some

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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CONVERGENCE ANALYSIS OF LEAPFROG 2263

nonlinear equations [13, 14]. In finance, many real-world problems are too compli-
cated to lead to analytical solutions; computational algorithms including leapfrog are
essential tools for dynamic optimizations in modeling economic growth [3].

In [15] it is shown that the sequence of piecewise geodesics \{ \gamma k\} k\geq 1 generated
by leapfrog almost always converges to a geodesic joining x0 and x1 (there is always
a subsequence that converges to a geodesic). However, there has been no study of
convergence rates

\tau i,n := lim
k\rightarrow \infty 

d(yk+1
i , y\infty i )

d(yki , y
\infty 
i )

,

where d : M \times M \rightarrow \BbbR is the Riemannian distance. In practice, the \tau i,n seem to
increase dramatically with n (it is a mistake to choose n unnecessarily large). In
Theorem 2.4, we present an upper bound for the convergence rate of the L\infty norm
of the vector of errors at all junctions, which may imply an upper bound for \tau i,n but
not very tight.

To state our main result, we introduce, for variable s,

pn(s) :=
1

\mu +  - \mu  - 

\bigl[ 
16
\bigl( 
\mu n - 2
+  - \mu n - 2

 - 
\bigr) 
 - 8

\bigl( 
\mu n - 3
+  - \mu n - 3

 - 
\bigr) 
+
\bigl( 
\mu n - 4
+  - \mu n - 4

 - 
\bigr) \bigr] 

,

where \mu \pm = s\pm 
\surd 
s2 - s
2 . It will turn out that pn(s) is a polynomial in s with real roots

when n \geq 4 (see Lemma 3.4). The central result of the present paper is given as
follows.

Theorem 3.1. Suppose every three consecutive junctions in the leapfrog algorithm
are sufficiently close, the sectional curvature of the manifold M is bounded, and \lambda n is
the largest root of the polynomial pn(s). Then, there exists a sufficient small positive
constant c+ \in [0,1) such that

\tau  - n := min
2\leq i\leq n - 1

\tau i,n \leq \lambda n(1 + c+).

Moreover, c+ = 0 if M has nonpositive sectional curvature.

The paper is organized as follows. In section 2, we present some local analy-
sis on the junctions, i.e., the relationship between d(yk+1

i , y\infty i ), d(yk+1
i - 1 , y

\infty 
i - 1), and

d(yki+1, y
\infty 
i+1). Then we study convergence rates of leapfrog for n= 3,4,5, preparatory

to the remaining cases where n \geq 6 in section 3. In section 3 we present some prop-
erties of the polynomial pn(s) including the recurrence relationship and real roots of
pn(s). The proof of Theorem 3.1 is given in section 4. In section 5, we illustrate our
results by using leapfrog to find geodesics joining given points in the unit 2-sphere
and in the manifold of all 2\times 2 symmetric positive definite matrices. A conclusion is
given in section 6.

2. Convergence rates for few junctions. In this section, we investigate con-
vergence rates of leapfrog when the number n  - 1 of junctions is 2,3,4. As a key
building block, we firstly study the relationship between d(yk+1

i , y\infty i ), d(yk+1
i - 1 , y

\infty 
i - 1),

and d(yki+1, y
\infty 
i+1).

Working in normal coordinates about x0 (which we always do from now on),
Theorem 5.1 in [15] says that a subsequence of \{ \gamma k : [0,1] \rightarrow M\} k\geq 1 converges to
the geodesic \gamma \infty (t) = tx1. Assuming that the subsequence is the whole sequence (as
shown in [15] for most circumstances), the junctions yki on \gamma k converge to y\infty i = i

nx1

on \gamma \infty . So by starting with k sufficiently large, we may suppose that, for some small
\delta > 0,

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/2

8/
23

 to
 1

39
.2

30
.2

53
.1

4 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



2264 ERCHUAN ZHANG AND LYLE NOAKES

eki := d(yki , y
\infty 
i ) =\scrO (\delta ),(2.1)

where d :M \times M \rightarrow \BbbR is the Riemannian distance function. Evidently ek0 = ekn = 0.
From now on, we suppose every three consecutive junctions in the leapfrog algo-

rithm are sufficiently close for the convenience of constructing our convergence theory.
Note that the two given endpoints are not close in general.

2.1. Local analysis. For the purpose of analyzing the local relationship between
ek+1
i , ek+1

i - 1 , and eki+1, we need to estimate the geodesic distance eki up to certain order
of \delta . The following useful lemma is taken from [12] (see Lemma 4.3.3 there).

Lemma 2.1. Let M be a complete Riemannian manifold with a Riemannian met-
ric \langle \cdot , \cdot \rangle , (\scrU , (xi)) any normal coordinate chart centered at s\in M . If two points p and
q are sufficiently close to s, then the square of the geodesic distance d2(p, q) can be
written as

d2(p, q) = \| p - q\| 2  - 1

3
\langle R(q, p)p, q\rangle +\scrO 

\bigl( 
\| p - q\| 4

\bigr) 
,

where \| \cdot \| is the standard Euclidean norm, \langle R(q, p)p, q\rangle := \langle R( - \rightarrow sq, - \rightarrow sp) - \rightarrow sp, - \rightarrow sq\rangle ,  - \rightarrow sp and  - \rightarrow sq
are tangent vectors in normal coordinates, and R is the Riemannian curvature tensor
on M .

Note that the term \langle R(q, p)p, q\rangle can be rewritten in terms of sectional curvature,
i.e.,

\langle R(q, p)p, q\rangle =K(p, q) \cdot 
\bigl( 
\| p\| 2\| q\| 2  - \langle p, q\rangle 2

\bigr) 
,

where K(p, q) is the sectional curvature and the Riemannian norm/metric is the same
as the Euclidean one since normal coordinates are chosen at s.

Lemma 2.2. Let M be a complete Riemannian manifold, \bigtriangleup xyz a geodesic triangle
in M (a triangle each of whose sides is a minimal geodesic), and p and q the midpoints
of the geodesics xy and xz, respectively. Suppose \bigtriangleup xyz is sufficiently small and
d(p, q) = \scrO (\delta ) = d(y, z); then there exist two sufficiently small positive constants c - 
and c+ such that

1

2

\sqrt{} 
1 - c - d(y, z)\leq d(p, q)\leq 1

2

\sqrt{} 
1 + c+d(y, z).(2.2)

Moreover, c+ = 0 (c - = 0) if M has nonpositive (nonnegative) sectional curvature.

To increase the readability of this paper, we put the proof of Lemma 2.2 in
Appendix A.

Lemma 2.3. For sufficiently large k, i = 1,2, . . . , n  - 1, the geodesic distances
ek+1
i , ek+1

i - 1 , and eki+1 satisfy the following relationship:

ek+1
i \leq 1

2

\sqrt{} 
1 + c+

\bigl( 
ek+1
i - 1 + eki+1

\bigr) 
,(2.3)

where c+ \in [0,1) is some constant. Further, c+ = 0 if M has nonpositive sectional
curvature.

Refer to Appendix B for the proof of Lemma 2.3. For simplicity, we denote
\kappa := 1

2

\surd 
1 + c+ and \kappa := 1

2

\surd 
1 - c - from now on.

If we view the errors (ek2 , e
k
3 , . . . , e

k
n - 1) as a vector v

k in \BbbR n - 2, then the convergence
rate of the L\infty norm of vk is upper bounded.

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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CONVERGENCE ANALYSIS OF LEAPFROG 2265

Theorem 2.4. Let \tau \infty be the convergence rate of the L\infty norm of the error vector
vk := (ek2 , e

k
3 , . . . , e

k
n - 1); we have

\tau \infty = lim
k\rightarrow \infty 

\| vk+1\| \infty 
\| vk\| \infty 

\leq \kappa (1 - \kappa n - 2)

1 - \kappa 
.(2.4)

Refer to Appendix C for the proof of Theorem 2.4. In what follows, we will con-
sider the convergence rate of \{ \gamma k\} for small number of junctions by taking advantage
of Lemmas 2.2 and 2.3.

2.2. Analysis for \bfitn = 3. We start with the simplest case where n = 3, i.e.,
initial junctions (y11 , y

1
2) are given.

Theorem 2.5. The convergence rates of yk1 , y
k
2 to y\infty 1 , y\infty 2 are upper bounded by

1
4 (1 + c+) and lower bounded by 1

4 (1  - c - ). Moreover, c+ = 0 (c - = 0) if M has
nonpositive (nonnegative) sectional curvature.

Proof. By Lemma 2.2, we have

\kappa ek2 \leq ek+1
1 \leq \kappa ek2 ,(2.5)

\kappa ek+1
1 \leq ek+1

2 \leq \kappa ek+1
1 .(2.6)

Substituting (2.5) into (2.6) results in

\kappa 2ek2 \leq ek+1
2 \leq \kappa 2ek2 .

Substituting (2.6) into (2.5) results in

\kappa 2ek1 \leq ek+1
1 \leq \kappa 2ek1 .

Therefore, the convergence rate of yki is given by

\tau i,3 = lim
k\rightarrow \infty 

ek+1
i

eki
\in 
\bigl[ 
\kappa 2, \kappa 2

\bigr] 
,(2.7)

where i= 1,2.

Note that if there exists a k0 such that eki = 0 for k > k0, there is no sense in

discussing the limitation limk\rightarrow \infty 
ek+1
i

eki
.

2.3. Analysis for \bfitn = 4. Suppose 3 junctions (y11 , y
1
2 , y

1
3) are given.

Theorem 2.6. For n= 4, we have the following estimation:

\tau 2,4 \leq 
1

2
(1 + c+), \tau  - 4 \leq 1

2
(1 + c+).

Moreover, c+ = 0 if M has nonpositive sectional curvature.

Proof. By Lemma 2.3, we have

ek+1
1 \leq \kappa ek2 ,(2.8)

ek+1
2 \leq \kappa 

\bigl( 
ek+1
1 + ek3

\bigr) 
,(2.9)

ek+1
3 \leq \kappa ek+1

2 .(2.10)

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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2266 ERCHUAN ZHANG AND LYLE NOAKES

Substituting (2.8) and (2.10) into (2.9) yields

ek+1
2 \leq 2\kappa 2ek2 ,(2.11)

which implies \tau 2,4 \leq 2\kappa 2. Then \tau  - 4 \leq 2\kappa 2 follows directly. Alternatively, we can
consider the linear combination 2\kappa \times (2.8) +2\times (2.9) + (2.10)/\kappa , i.e.,

ek+1
2 +

ek+1
3

\kappa 
\leq 2\kappa 2

\biggl( 
ek2 +

ek3
\kappa 

\biggr) 
,(2.12)

which indicates

\tau  - 4 \leq lim
k\rightarrow \infty 

ek+1
2 +

ek+1
3

\kappa 

ek2 +
ek3
\kappa 

\leq 2\kappa 2.(2.13)

In general, the convergence rates \tau 1,n and \tau 2,n are close, so are \tau n - 2,n and \tau n - 1,n.
This is because

\kappa ek2
\kappa ek - 1

2

\leq ek+1
1

ek1
\leq \kappa ek2

\kappa ek - 1
2

=\Rightarrow c\tau 2,n \leq \tau 1,n \leq \=c\tau 2,n,

\kappa ek+1
n - 2

\kappa ekn - 2

\leq 
ek+1
n - 1

ekn - 1

\leq 
\kappa ek+1

n - 2

\kappa ek2
=\Rightarrow c\tau n - 2,n \leq \tau n - 1,n \leq \=c\tau n - 2,n,

where c= \kappa 
\kappa =

\sqrt{} 
1 - c - 
1+c+

and \=c= \kappa 
\kappa =

\sqrt{} 
1+c+
1 - c - 

are close to 1.

2.4. Analysis for \bfitn = 5. Suppose 4 junctions (y11 , y
1
2 , y

1
3 , y

1
4) are given.

Theorem 2.7. For n= 5, we have the following estimation:

\tau  - 5 \leq 3 +
\surd 
5

8
(1 + c+).

Moreover, c+ = 0 if M has nonpositive sectional curvature.

Proof. By Lemma 2.3, we have

ek+1
1 \leq \kappa ek2 ,(2.14)

ek+1
2 \leq \kappa 

\bigl( 
ek+1
1 + ek3

\bigr) 
,(2.15)

ek+1
3 \leq \kappa 

\bigl( 
ek+1
2 + ek4

\bigr) 
,(2.16)

ek+1
4 \leq \kappa ek+1

3 .(2.17)

Considering the linear combination \kappa (1 + \kappa a2)\times (2.14) +(1 + \kappa a2)\times (2.15) +a2\times 
(2.16) +a3\times (2.17) (a2, a3 > 0), one has

ek+1
2 + (a2  - \kappa a3)e

k+1
3 + a3e

k+1
4 \leq \kappa 2 (1 + \kappa a2)e

k
2 + \kappa (1 + \kappa a2)e

k
3 + \kappa a2e

k
4 .

We let \Biggl\{ 
\kappa 2 (1 + \kappa a2) (a2  - \kappa a3) = \kappa (1 + \kappa a2) ,

\kappa 2 (1 + \kappa a2)a3 = \kappa a2,

=\Rightarrow 

\Biggl\{ 
a2 =

1\pm 
\surd 
5

2\kappa ,

a3 =
 - 1\pm 

\surd 
5

2\kappa 2 .

© 2023 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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CONVERGENCE ANALYSIS OF LEAPFROG 2267

Therefore, choosing positive a2 and a3, we find

ek+1
2 +

ek+1
3

\kappa 
+

\surd 
5 - 1

2\kappa 2
ek+1
4 \leq 3 +

\surd 
5

2
\kappa 2

\Biggl( 
ek2 +

ek3
\kappa 

+

\surd 
5 - 1

2\kappa 2
ek4

\Biggr) 
,

which means

\tau  - 5 \leq lim
k\rightarrow \infty 

ek+1
2 +

ek+1
3

\kappa +
\surd 
5 - 1
2\kappa 2 ek+1

4

ek2 +
ek3
\kappa +

\surd 
5 - 1
2\kappa 2 ek4

\leq 3 +
\surd 
5

2
\kappa 2.(2.18)

From the above three cases, we observe that if we can get a recurrence relationship
involving linear combinations of ek+1

i and those of eki , it is possible to estimate the
upper bound of the convergence rate of leapfrog. In other words, we analyze the
convergence rate of some sort of norm of the error vector (ek2 , e

k
3 , . . . , e

k
n - 1). Note

that Theorem 2.4 evaluates the convergence rate of the L\infty norm of the error vector,
where the upper bound may not be very tight. With this motivation in mind and
following the strategy used in the cases with few junctions, we will discuss how to
determine the coefficients of the linear combination in the general case in the following
section.

3. Convergence rates for remaining cases. We now consider the remaining
cases, where n\geq 6.

Theorem 3.1. Suppose every three consecutive junctions in the leapfrog algorithm
are sufficiently close, and the sectional curvature of the manifold M is bounded. For
i= 1, . . . , n - 1, let \tau i,n be the convergence rate of yki to y\infty i , i.e.,

\tau i,n = lim
k\rightarrow \infty 

ek+1
i

eki
= lim

k\rightarrow \infty 

d(yk+1
i , y\infty i )

d(yki , y
\infty 
i )

.

Suppose \lambda n is the largest root of the following polynomial:

pn(s) =
1

\mu +  - \mu  - 

\bigl[ 
16
\bigl( 
\mu n - 2
+  - \mu n - 2

 - 
\bigr) 
 - 8

\bigl( 
\mu n - 3
+  - \mu n - 3

 - 
\bigr) 
+
\bigl( 
\mu n - 4
+  - \mu n - 4

 - 
\bigr) \bigr] 

,(3.1)

where \mu \pm = s\pm 
\surd 
s2 - s
2 . Then, there exists a sufficiently small positive constant c+ \in 

[0,1) such that

\tau  - n := min
2\leq i\leq n - 1

\tau i,n \leq \lambda n(1 + c+).

Moreover, c+ = 0 if M has nonpositive sectional curvature.

The proof of Theorem 3.1 is delayed until section 4. Here we discuss some prop-
erties of the polynomial pn(s).

Remark 3.2. Theorem 3.1 can be verified for n= 3,4,5 by the following calcula-
tions:

p3(s) = 16 - 4

s
= 0 =\Rightarrow s=

1

4
,

p4(s) = 16s - 8 = 0 =\Rightarrow s=
1

2
,

p5(s) = 16s2  - 12s+ 1= 0 =\Rightarrow s=
3\pm 

\surd 
5

8
,

which is consistent with Theorems 2.5, 2.6, 2.7.
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2268 ERCHUAN ZHANG AND LYLE NOAKES

Remark 3.3. By the formula

\mu n
+  - \mu n

 - = (\mu +  - \mu  - )
\bigl( 
\mu n - 1
+ + \mu n - 2

+ \mu  - + \cdot \cdot \cdot + \mu +\mu 
n - 2
 - + \mu n - 1

 - 
\bigr) 
,

(3.1) can be rewritten as

pn(s) = 16

n - 3\sum 
i=0

\mu n - 3 - i
+ \mu i

 -  - 8

n - 4\sum 
i=0

\mu n - 4 - i
+ \mu i

 - +

n - 5\sum 
i=0

\mu n - 5 - i
+ \mu i

 - .(3.2)

It seems not so straightforward that we can view pn(s) (n\geq 4) as a polynomial.
Readers may doubt whether all roots of pn(s) are real and located in [0,1). The
following lemma makes an effort to answer these questions and study its broader
properties.

Lemma 3.4.
(1) For n\geq 5, pn(s) satisfies the following recurrence relationship:

pn(s) = spn - 1(s) - 
1

4
spn - 2(s),(3.3)

which means pn(s) is a polynomial with real coefficients.
(2) pn(s) (n\geq 4) is a polynomial of degree n - 3 and the coefficient of sn - 3 (known

as the leading coefficient) is 16. The smallest power of s in pn(s) is \lfloor n
2 \rfloor  - 2

and its coefficient is k( - 1
4 )

k - 3 if n= 2k, ( - 1
4 )

k - 2 if n= 2k+ 1. That is,

pn(s) =

\left\{             
16s2k - 3 +

2k - 4\sum 
j=k - 1

anj s
j + k

\biggl( 
 - 1

4

\biggr) k - 3

sk - 2, n= 2k,

16s2k - 2 +

2k - 3\sum 
j=k - 1

anj s
j +

\biggl( 
 - 1

4

\biggr) k - 2

sk - 2, n= 2k+ 1,

(3.4)

where anj 's are some real numbers.
(3) 0 is a root of pn(s) (n \geq 6) with multiplicity \lfloor n

2 \rfloor  - 2; i.e., there exists a
polynomial qn(s) of degree \lceil n

2 \rceil  - 1 such that

pn(s) = s\lfloor 
n
2 \rfloor  - 2qn(s),(3.5)

where 0 \not = qn(0) = (\lfloor n
2 \rfloor )

1+( - 1)n

2 ( - 1
4 )

\lceil n
2 \rceil  - 3.

(4) For n\geq 6, qn(s) satisfies the following recurrence relationship:

qn(s) = s
1 - ( - 1)n

2 qn - 1  - 
1

4
qn - 2(s).(3.6)

(5) qn(s) (n\geq 6) has \lceil n
2 \rceil  - 1 distinct real roots.

(6) For n\geq 3, all roots of the polynomial pn(s) are real and located in [0,1), which
means the largest root of pn(s) belongs to (0,1).

Proof. (1) By (3.2), we have

pn(s) = \mu +pn - 1(s) + 16\mu n - 3
 -  - 8\mu n - 4

 - + \mu n - 5
 - 

= \mu  - pn - 1(s) + 16\mu n - 3
+  - 8\mu n - 4

+ + \mu n - 5
+ ,

which implies

pn(s) =
1

2
spn - 1(s) + 8(\mu n - 3

+ + \mu n - 3
 - ) - 4(\mu n - 4

+ + \mu n - 4
 - ) +

1

2
(\mu n - 5

+ + \mu n - 5
 - ).(3.7)
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Again, by (3.2),

pn(s) =
1

4
spn - 2(s) + 16(\mu n - 3

+ + \mu n - 3
 - ) - 8(\mu n - 4

+ + \mu n - 4
 - ) + \mu n - 5

+ + \mu n - 5
 - .(3.8)

Therefore, 2\times (3.7)--(3.8) gives the recurrence relationship (3.3).
(2) By Remark 3.2, (3.4) holds for n = 4 and n = 5. Suppose (3.4) is true for

n= 4,5, . . . ,m. Now we consider the case where n=m+ 1.
(i) If m= 2k, then

pm+1(s) = spm(s) - 1

4
spm - 1(s)

= s

\Biggl( 
16s2k - 3 + \cdot \cdot \cdot + k

\biggl( 
 - 1

4

\biggr) k - 3

sk - 2

\Biggr) 

 - 1

4
s

\Biggl( 
16s2k - 4 + \cdot \cdot \cdot +

\biggl( 
 - 1

4

\biggr) k - 3

sk - 3

\Biggr) 

= 16s2k - 2 + \cdot \cdot \cdot +
\biggl( 
 - 1

4

\biggr) k - 2

sk - 2.

(ii) If m= 2k+ 1, then

pm+1(s) = spm(s) - 1

4
spm - 1(s)

= s

\Biggl( 
16s2k - 2 + \cdot \cdot \cdot +

\biggl( 
 - 1

4

\biggr) k - 2

sk - 2

\Biggr) 

 - 1

4
s

\Biggl( 
16s2k - 3 + \cdot \cdot \cdot + k

\biggl( 
 - 1

4

\biggr) k - 3

sk - 2

\Biggr) 

= 16s2k - 1 + \cdot \cdot \cdot + (k+ 1)

\biggl( 
 - 1

4

\biggr) k - 2

sk - 1,

which completes this proof by induction.
(3) (3.5) follows from (3.4) directly.
(4) By (3.3) and (3.5),

q2k(s) = q2k - 1(s) - 
1

4
q2k - 2(s),

q2k+1(s) = sq2k(s) - 
1

4
q2k - 1(s),

which implies (3.6).
(5) We put the lengthy proof in Appendix D.
(6) It is sufficient to prove that when n\geq 6, pn(s) \not = 0 for s\geq 1 or s < 0.
(i) If s= 1, then

pn(s) = 16(n - 4)
1

2n - 3
 - 8(n - 3)

1

2n - 4
+ (n - 4)

1

2n - 5
=

n

2n - 5
> 0.

(ii) If s > 1, then \mu + >\mu  - > 0 and \mu + > 1
2 . Thus, we have

16(\mu n - 2
+  - \mu n - 2

 - )

8(\mu n - 2
+  - \mu n - 2

 - )
= 2\mu +

1 - (\mu  - 
\mu +

)n - 2

1 - (\mu  - 
\mu +

)n - 3
> 2\mu + > 1,

which means pn(s)> 0.
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2270 ERCHUAN ZHANG AND LYLE NOAKES

(iii) If s < 0, then 0<\mu + < - \mu  - , which implies

\mu k
+  - \mu k

 - =

\Biggl\{ 
\mu k
+  - ( - \mu  - )

k < 0, k is even,

\mu k
+ + ( - \mu  - )

k > 0, k is odd.

Therefore, we find

pn(s) =
1

\mu +  - \mu  - 

\bigl[ 
16(\mu n - 2

+  - \mu n - 2
 - ) - 8(\mu n - 3

+  - \mu n - 3
 - ) + (\mu n - 4

+  - \mu n - 4
 - )

\bigr] 
=

\Biggl\{ 
< 0, n is even,

> 0, n is odd,

which completes this proof.

Figure 2 shows the polynomial pn(s) and its largest root for 6 \leq n \leq 10, from
which we can observe that the larger the n value, the larger the largest root of pn(s).

Theorem 3.5. Let \lambda n, \lambda n - 1 be the largest roots of pn(s) and pn - 1(s), respectively;
then

\lambda n >\lambda n - 1.(3.9)

Proof. We prove this theorem by induction on n. By Remark 3.2, we know
\lambda 5 >\lambda 4 >\lambda 3 > 0.

Suppose \lambda n > \lambda n - 1 holds for n = k; now we need to prove \lambda k+1 > \lambda k. Suppose
\lambda k+1 \leq \lambda k. By (3.3),

pk+1(\lambda k) = \lambda kpk(\lambda k) - 
1

4
\lambda kpk - 1(\lambda k) = - 1

4
\lambda kpk - 1(\lambda k)< 0,

where we have used the relation pk - 1(\lambda k) > pk - 1(\lambda k - 1) = 0. Note that pn(s) is
increasing on [\lambda n,+\infty ). Therefore, we get

pk+1(\lambda k)< 0 = pk+1(\lambda k+1) =\Rightarrow \lambda k <\lambda k+1,(3.10)

which contradicts our assumption.

Remark 3.6. For s \in (0,1), the polynomial pn(s) tends to the null polynomial
pn(s)\equiv 0 as n\rightarrow \infty , whose largest root disappears.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s

-1

-0.5

0

0.5

1

1.5

2

2.5

3

p
n
(s

)

n=6
n=7
n=8
n=9
n=10

6 6.5 7 7.5 8 8.5 9 9.5 10

n

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

6
n

Fig. 2. The polynomial pn(s) (left) and its largest root (right) for n= 6, . . . ,10.
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CONVERGENCE ANALYSIS OF LEAPFROG 2271

4. Proof of Theorem 3.1. The main purpose of this section is to prove
Theorem 3.1, and we focus on \tau  - n \leq \lambda n(1 + c+).

By Lemma 2.3, we have

ek+1
1 \leq \kappa ek2 ,(4.1)

ek+1
2 \leq \kappa 

\bigl( 
ek+1
1 + ek3

\bigr) 
,(4.2)

ek+1
3 \leq \kappa 

\bigl( 
ek+1
2 + ek4

\bigr) 
,(4.3)

\cdot \cdot \cdot 
ek+1
n - 1 \leq \kappa ek+1

n - 2.(4.4)

Similar to the proof of Theorem 2.7, we consider the linear combinations \kappa (1 + \kappa a2)\times 
(4.1) + (1 + \kappa a2)\times (4.2) + a2\times (4.3) + \cdot \cdot \cdot + an - 2\times (4.4) (ai > 0, i= 2, . . . , n - 2),

ek+1
2 + (a2  - \kappa a3)e

k+1
3 + (a3  - \kappa a4)e

k+1
4 + \cdot \cdot \cdot + (an - 3  - \kappa an - 2)e

k+1
n - 2 + an - 2e

k+1
n - 1

\leq \kappa 2 (1 + \kappa a2)e
k
2 + \kappa (1 + \kappa a2)e

k
3 + \kappa a2e

k
4 + \cdot \cdot \cdot + \kappa an - 4e

k
n - 2 + \kappa an - 3e

k
n - 1.

We let \left\{               

\kappa 2 (1 + \kappa a2) (a2  - \kappa a3) = \kappa (1 + \kappa a2) ,

\kappa 2 (1 + \kappa a2) (a3  - \kappa a4) = \kappa a2,

\cdot \cdot \cdot 
\kappa 2 (1 + \kappa a2) (an - 3  - \kappa an - 2) = \kappa an - 4,

\kappa 2 (1 + \kappa a2)an - 2 = \kappa an - 3.

(4.5)

Define a1 = \kappa 2 (1 + \kappa a2); then (4.5) can be rewritten as

Aa= c,(4.6)

where

A=

\left[         

1  - \kappa 3

1  - \kappa 
 - \kappa a1  - \kappa a1

. . .
. . .

. . .

 - \kappa a1  - \kappa a1
 - \kappa a1

\right]         
,a=

\left[         

a1
a2
a3
...

an - 3

an - 2

\right]         
,c=

\left[         

\kappa 2

\kappa  - 1

0
...
0
0

\right]         
,

which means

a1 = \kappa 2(A - 1)11 + \kappa  - 1(A - 1)12,(4.7)

where (A - 1)ij is the (i, j)th element of the matrixA - 1. Note that a1 = \kappa 2 (1 + \kappa a2)>
\kappa 2; thus, A - 1 in (4.7) is meaningful.

Recall the following formula [24, equation (4.13)]: The inverse of a nonsingular
tridiagonal matrix T,

T =

\left[        

d1 b1
c1 d2 b2

c2
. . .

. . .

. . .
. . . bm - 1

cm - 1 dm

\right]        ,
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2272 ERCHUAN ZHANG AND LYLE NOAKES

is given by

(T - 1)ij =

\left\{     
( - 1)i+jbi \cdot \cdot \cdot bj - 1\theta i - 1\phi j+1/\theta m if i < j,

\theta i - 1\phi j+1/\theta m if i= j,

( - 1)i+jcj \cdot \cdot \cdot ci - 1\theta j - 1\phi i+1/\theta m if i > j,

where the \theta i satisfy the recurrence relation

\theta i = di\theta i - 1  - bi - 1ci - 1\theta i - 2, i= 2,3, . . . ,m,

with initial conditions \theta 0 = 1, \theta 1 = d1, and the \phi i satisfy

\phi i = di\phi i+1  - bici\phi i+2, i=m - 1,m - 2, . . . ,1,

with initial conditions \phi m+1 = 1 and \phi m = dm.
In our case,

bi =

\left\{     
 - \kappa 3, i= 1,

 - \kappa , i= 2,

 - \kappa a1, 3\leq i\leq n - 3,

ci =

\Biggl\{ 
0, i= 1,

 - \kappa , 2\leq i\leq n - 3,
di =

\Biggl\{ 
1, i= 1,2,

a1, 3\leq i\leq n - 2.

Then, straightforward calculations give \theta 2 = \theta 1 = 1, \theta 3 = a1 - \kappa 2, and for 4\leq i\leq n - 2,

\theta i = a1\theta i - 1  - \kappa 2a1\theta i - 2.(4.8)

Rewrite (4.8) as follows:

\theta i  - \zeta +\theta i - 1 = \zeta  - (\theta i - 1  - \zeta +\theta i - 2) = \zeta i - 3
 - (\theta 3  - \zeta +\theta 2),

\theta i  - \zeta  - \theta i - 1 = \zeta +(\theta i - 1  - \zeta  - \theta i - 2) = \zeta i - 3
+ (\theta 3  - \zeta  - \theta 2),

where \zeta + =
a1+

\surd 
a2
1 - 4\kappa 2a1

2 and \zeta  - =
a1 - 

\surd 
a2
1 - 4\kappa 2a1

2 , which implies

\theta i = \zeta i - 2
+

\theta 3  - \zeta  - \theta 2
\zeta +  - \zeta  - 

 - \zeta i - 2
 - 

\theta 3  - \zeta +\theta 2
\zeta +  - \zeta  - 

.(4.9)

Similarly, we can calculate that \phi n - 2 = a1 and for i= n - 3, . . . ,3,

\phi i = a1\phi i+1  - \kappa 2a1\phi i+2,(4.10)

which means

\phi 3 = \zeta n - 4
+

\phi n - 2  - \zeta  - \phi n - 1

\zeta +  - \zeta  - 
 - \zeta n - 4

 - 
\phi n - 2  - \zeta +\phi n - 1

\zeta +  - \zeta  - 
,

\phi 4 = \zeta n - 5
+

\phi n - 2  - \zeta  - \phi n - 1

\zeta +  - \zeta  - 
 - \zeta n - 5

 - 
\phi n - 2  - \zeta +\phi n - 1

\zeta +  - \zeta  - 
,

and \phi 2 = \phi 3  - \kappa 2\phi 4.

Then, we have (A - 1)11 =
\phi 2

\theta n - 2
and (A - 1)12 =

\kappa 3\phi 3

\theta n - 2
; (4.7) is equivalent to

a1 =
2\kappa 2\phi 3  - \kappa 4\phi 4

\theta n - 2
,(4.11)
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CONVERGENCE ANALYSIS OF LEAPFROG 2273

which can be further simplified as

1

\zeta +  - \zeta  - 

\bigl[ \bigl( 
\zeta n - 2
+  - \zeta n - 2

 - 
\bigr) 
 - 2\kappa 2

\bigl( 
\zeta n - 3
+  - \zeta n - 3

 - 
\bigr) 
+ \kappa 4

\bigl( 
\zeta n - 4
+  - \zeta n - 4

 - 
\bigr) \bigr] 

= 0.(4.12)

Let \mu \pm := s\pm 
\surd 
s2 - s
2 ; define a polynomial pn(s) as follows:

pn(s) :=
1

\mu +  - \mu  - 

\bigl[ 
16(\mu n - 2

+  - \mu n - 2
 - ) - 8(\mu n - 3

+  - \mu n - 3
 - ) + (\mu n - 4

+  - \mu n - 4
 - )

\bigr] 
.

Then, a1 is a solution of (4.12) if and only if a1

1+c+
is a root of pn(s). Straightforward

calculations can further give

ai =

\left\{   \kappa  - 3a1  - \kappa  - 1, i= 2,

\kappa i - 3 \cdot \zeta n - 1 - i
+  - \zeta n - 1 - i

 - 

(a1 - \kappa 2)(\zeta n - 4
+  - \zeta n - 4

 - )
, 3\leq i\leq n - 2.

(4.13)

If a1 is the largest root of (4.12), then \lambda n := a1

1+c+
is the largest root of pn(s). By

Theorem 3.5 and \lambda 4 =
1
2 > 1

4 , we can guarantee that ai > 0 for i= 2, . . . , n - 2 if \lambda n is
the largest root of pn(s). Then

ek+1
2 + (a2  - \kappa a3)e

k+1
3 + \cdot \cdot \cdot + (an - 3  - \kappa an - 2)e

k+1
n - 2 + an - 2e

k+1
n - 1

\leq a1
\bigl( 
ek2 + (a2  - \kappa a3)e

k
3 + \cdot \cdot \cdot + (an - 3  - \kappa an - 2)e

k
n - 2 + an - 2e

k
n - 1

\bigr) 
,

which means

\tau  - n \leq lim
k\rightarrow \infty 

ek+1
2 + (a2  - \kappa a3)e

k+1
3 + \cdot \cdot \cdot + (an - 3  - \kappa an - 2)e

k+1
n - 2 + an - 2e

k+1
n - 1

ek2 + (a2  - \kappa a3)ek3 + \cdot \cdot \cdot + (an - 3  - \kappa an - 2)ekn - 2 + an - 2ekn - 1

\leq a1 = \lambda n(1 + c+).

Therefore, we complete this proof.

5. Numerical experiments. In this section, we verify our convergence analyses
by implementing the leapfrog algorithm on two Riemannian manifolds: (1) the unit 2-
sphere \BbbS 2 and (2) the manifold of all 2\times 2 symmetric positive definite matrices SPD(2).
With respect to the standard Euclidean metric, \BbbS 2 is a surface of constant positive
(+1) sectional curvature. With respect to the affine-invariant metric [21], SPD(2) is a
Hadamard manifold, i.e., a manifold with nonpositive sectional curvature. Since the
geodesics on these two manifolds can be given in closed form, we can directly compute
the following quantity and compare with our theoretical results,

rki :=
d(yk+1

i , y\infty i )

d(yki , y
\infty 
i )

=
ek+1
i

eki
,(5.1)

where 1\leq i\leq n - 1 and k\geq 1.

5.1. Unit 2-sphere. Let \BbbS 2 := \{ (z1, z2, z3)| z21 + z22 + z23 = 1\} be the unit 2-
sphere endowed with the standard Euclidean metric. Then the geodesic joining two
nonconjugate points x and y on \BbbS 2 is given by

\gamma x,y(t) =
sin((1 - t)d(x, y))

sin(d(x, y))
x+

sin(td(x, y))

sin(d(x, y))
y,(5.2)

where d(x, y) = arccos(\langle x, y\rangle ) is the geodesic distance between x and y.
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2274 ERCHUAN ZHANG AND LYLE NOAKES

In the experiment, we set x0 = (0,0,1) and x1 = ( 12 ,
\surd 
3
2 ,0). We choose equally

distributed points on the line segment joining x0 and x1 and then project them onto
the sphere as the initial junctions for the leapfrog algorithm. Figure 3 shows the
comparison results for n = 5 and n = 7. We can observe that \tau i,n = \tau  - n = \lambda n.
Moreover, leapfrog gets slower if more junctions are used.

Now we change the initial junctions as follows: initial junctions are chosen as
points that equally divide the spherical coordinates, i.e., let (cos\alpha sin\beta , sin\alpha sin\beta ,
cos\beta ) be the parameterization of a unit 2-sphere; then the initial junctions are equally
distributed in the sense of dividing the parameter space (\alpha ,\beta ) equally. From Figure 4,
we find there is a (small) gap between the convergence ratio and the maximal root
of pn(s). For n = 5, \tau i,5  - \lambda 5 = 0.7235  - 0.6545 = 0.0690; for n = 7, \tau i,7  - \lambda 7 =
0.8537  - 0.8117 = 0.0420. Therefore, \tau i,n = \tau  - n \leq \lambda n(1 + c+) for some c+, which is
consistent with Theorem 3.1. By comparing Figures 3 and 4, we can observe that
different choice of initial junctions will result in different convergence rates.

5.2. Manifold of symmetric positive definite matrices. Let

SPD(2) :=

\biggl\{ \biggl[ 
a c
c b

\biggr] 
| a> 0, ab - c2 > 0

\biggr\} 
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Fig. 3. Comparison of convergence ratio rki of the leapfrog algorithm on S2 for n= 5 (left) and
n= 7 (right).
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Fig. 4. Comparison of convergence ratio rki of the leapfrog algorithm on S2 for n= 5 (left) and
n= 7 (right).
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Fig. 5. Comparison of convergence ratio rki of the leapfrog algorithm on SPD(2) for n = 5
(left) and n= 7 (right).

be the manifold of all 2\times 2 symmetric positive definite matrices, which is equipped
with the following affine-invariant metric:

\langle u, v\rangle x := \langle x - 1/2  \star u,x - 1/2  \star v\rangle I2 ,(5.3)

where u, v \in TxSPD(2), x\in SPD(2), x - 1/2  \star u= x - 1/2ux - 1/2, \langle \cdot , \cdot \rangle I2 is the Frobenius
inner product. Then the geodesic joining two points x and y on SPD(2) is given by

\gamma x,y(t) = x exp(t log(x - 1y)),(5.4)

where exp(\cdot ), log(\cdot ) are the matrix exponential and logarithm, respectively. The
geodesic distance between x and y is given by

d(x, y) =
\sqrt{} 
tr((log(x - 1y))2),(5.5)

where tr(\cdot ) is the trace of a matrix. The differential geometry of SPD and its appli-
cations can be found in [21, 20, 25].

In the experiment, we set x0 as the 2\times 2 identity matrix I2 and x1 = [ 4 2
2 3 ]. The

initial junctions are chosen as yi = x0 +
i
n (x1  - x0) with i = 1,2, . . . , n - 1. Figure 5

shows the comparison results for n = 5 and n = 7, from which we can observe that
\tau +n = \tau  - n = \lambda n.

6. Conclusions. Geodesics are of fundamental interest in theoretical studies and
applications. Noakes [15] proposed the so-called leapfrog algorithm to find geodesics
joining two given points on a complete path-connected Riemannian manifold and
proved the sequence of piecewise geodesics \{ \gamma k\} generated by this algorithm con-
verges to the desired geodesic. However, the convergence rate is not known in the
literature, to the authors' best knowledge. In the present paper, we firstly analyze
the relationship between ek+1

i - 1 , e
k+1
i , and eki+1 by taking advantage of the estimation

of the geodesic distance. Then, by considering the relationship between a linear com-
bination of ek+1

i and that of eki , we find that the fastest convergent rate of junctions
is upper bounded by \lambda n(1+ c+), where \lambda n is the largest root of the polynomial pn(s)
(see (3.1)) and c+ \in [0,1) is some small constant. Further, \lambda n increases as n increases,
which somehow implies leapfrog is slower if more junctions are used. Finally, we verify
our theoretical analyses on the unit 2-sphere \BbbS 2 and the manifold SPD(2) of 2 \times 2
symmetric positive definite matrices.
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2276 ERCHUAN ZHANG AND LYLE NOAKES

Note that our whole analyses heavily depend on Lemmas 2.2 and 2.3, which as-
sumes that junctions are reasonably nearby. However, it is hard to give the closeness
measure of junctions in practice. Beside, if we can present better estimations for the
constant c+, it is possible to refine the results in this paper, which could be our future
work. Other future research directions may include considering convergence rate of
the leapfrog algorithm for control problems and other optimization problems.

Appendix A. Proof of Lemma 2.2. Choosing normal coordinates at x, we
get p= 1

2y and q= 1
2z. By Lemma 2.1, we have

d2(p, q) - 1

4
d2(y, z) =

1

16
\langle R(z, y)y, z\rangle +\scrO (\delta 4),

which indicates

d2(p, q)

d2(y, z)
 - 1

4
=

1

16

\langle R(z, y)y, z\rangle 
d2(y, z)

+\scrO (\delta 2)

=
1

16
\| y\| 2

\biggl\langle 
R

\biggl( 
z  - y

\| z  - y\| 
,

y

\| y\| 

\biggr) 
y

\| y\| 
,

z  - y

\| z  - y\| 

\biggr\rangle 
+\scrO (\delta 2)

=
1

16
\| y\| 2K(z  - y, y)

\Biggl( 
1 - 

\biggl\langle 
z  - y

\| z  - y\| 
,

y

\| y\| 

\biggr\rangle 2
\Biggr) 
+\scrO (\delta 2)

\leq 1

16
\| y\| 2K(z  - y, y) +\scrO (\delta 2),

where K is the bounded sectional curvature. Since \| y\| is sufficiently small, there
exist sufficiently small constants c - , c+ \in [0,1) such that

 - 1

4
c - \leq d2(p, q)

d2(y, z)
 - 1

4
\leq 1

4
c+,

which proves (2.2).
Now we prove the case where M has nonpositive sectional curvature (the other

one is similar). By Toponogov's theorem [7], we have

d2(z, p)\leq 1

2
d2(z,x) +

1

2
d2(z, y) - 1

4
d2(x, y),

d2(y, q)\leq 1

2
d2(y, z) +

1

2
d2(y,x) - 1

4
d2(x, z),

d2(p, q)\leq 1

2
d2(p,x) +

1

2
d2(p, z) - 1

4
d2(x, z),

d2(q, p)\leq 1

2
d2(q,x) +

1

2
d2(q, y) - 1

4
d2(x, y),

from which we eliminate d2(z, p) and d2(y, q); then

2d2(p, q)\leq 1

2
d2(p,x) +

1

2
d2(q,x) +

1

2
d2(y, z) - 1

8
d2(x, y) - 1

8
d2(x, z)

=
1

2
d2(y, z),
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Fig. 6. An illustration of three consecutive junctions.

where we have used d(p,x) = 1
2d(x, y) and d(q,x) = 1

2d(x, z). Therefore, we get the
inequality d(p, q)\leq 1

2d(y, z).

Appendix B. Proof of Lemma 2.3. When i= 1 or n - 1, this lemma follows
from Lemma 2.2 directly. Now we consider 1< i < n - 1. Let zki be the midpoint of
the geodesic joining yk+1

i - 1 and y\infty i+1 (see Figure 6); then by the triangle inequality of
the distance function,

ek+1
i \leq d

\bigl( 
yk+1
i , zki

\bigr) 
+ d

\bigl( 
zki , y

\infty 
i

\bigr) 
\leq 1

2

\sqrt{} 
1 + c+

\bigl( 
ek+1
i - 1 + eki+1

\bigr) 
,(B.1)

where we have used Lemma 2.2 twice in the last inequality.

Appendix C. Proof of Theorem 2.4. By Lemma 2.3, we have

\left\{                   

ek+1
1 \leq \kappa ek2 ,

ek+1
2 \leq \kappa 

\bigl( 
ek+1
1 + ek3

\bigr) 
,

ek+1
3 \leq \kappa 

\bigl( 
ek+1
2 + ek4

\bigr) 
,

\cdot \cdot \cdot 
ek+1
n - 2 \leq \kappa 

\bigl( 
ek+1
n - 3 + ekn - 1

\bigr) 
,

ek+1
n - 1 \leq \kappa ek+1

n - 2,

=\Rightarrow 

\left\{         
ek+1
2 \leq \kappa 2ek2 + \kappa ek3 ,

ek+1
3 \leq \kappa 3ek2 + \kappa 2ek3 + \kappa ek4 ,

\cdot \cdot \cdot 
ek+1
n - 2 \leq \kappa n - 2ek2 + \kappa n - 3ek3 \cdot \cdot \cdot + \kappa 2ekn - 2 + \kappa ekn - 1.

Then we get

max
2\leq i\leq n - 1

ek+1
i \leq (\kappa n - 2 + \kappa n - 3 + \cdot \cdot \cdot + \kappa 2 + \kappa ) max

2\leq i\leq n - 1
eki =

\kappa (1 - \kappa n - 2)

1 - \kappa 
max

2\leq i\leq n - 1
eki ,

which indicates the limitation of \| vk+1\| \infty 
\| vk\| \infty 

is upper bounded by \kappa (1 - \kappa n - 2)
1 - \kappa .

Appendix D. Roots of the polynomial \bfitq \bfitn (\bfits ). The main purpose of this
section is to prove that the polynomial qn(s) has \lceil n

2 \rceil  - 1 distinct real roots.
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2278 ERCHUAN ZHANG AND LYLE NOAKES

Lemma D.1. The polynomial qn(s) is given as follows:

q2k(s) = \alpha k - 2
+ q4(s) + (q6(s) - \alpha +q4(s))

\alpha k - 2
+  - \alpha k - 2

 - 
\alpha +  - \alpha  - 

= \alpha k - 2
 - q4(s) + (q6(s) - \alpha  - q4(s))

\alpha k - 2
+  - \alpha k - 2

 - 
\alpha +  - \alpha  - 

,

q2k+1(s) = \alpha k - 2
+ q5(s) + (q7(s) - \alpha +q5(s))

\alpha k - 2
+  - \alpha k - 2

 - 
\alpha +  - \alpha  - 

= \alpha k - 2
 - q5(s) + (q7(s) - \alpha  - q5(s))

\alpha k - 2
+  - \alpha k - 2

 - 
\alpha +  - \alpha  - 

,

(D.1)

where \alpha \pm = \mu \pm  - 1
4 , k\geq 2.

Proof. We only prove the first expression, and the others are similar. By the
recurrence relationship (3.6), we have

q2k =

\biggl( 
s - 1

2

\biggr) 
q2k - 2  - 

1

16
q2k - 4,

which implies

q2k  - \alpha +q2k - 2 = \alpha  - (q2k - 2  - \alpha +q2k - 4) = \alpha k - 3
 - (q6  - \alpha +q4).

By induction, we get

q2k = \alpha k - 2
+ q4 + (q6  - \alpha +q4)

\bigl( 
\alpha k - 3
 - + \cdot \cdot \cdot + \alpha i

+\alpha 
k - 3 - i
 - + \cdot \cdot \cdot + \alpha k - 3

+

\bigr) 
= \alpha k - 2

+ q4 + (q6  - \alpha +q4)
\alpha k - 2
+  - \alpha k - 2

 - 
\alpha +  - \alpha  - 

.

Lemma D.2. For k\geq 2,

q2k(1 - s) = ( - 1)k - 1q2k(s),

q2k+1(1 - s) = ( - 1)k - 2q2k+1(s) +
1

2
( - 1)k - 1q2k(s),

which means all roots of q2k are symmetric with respect to s= 1
2 and all roots of q2k

are not symmetric with respect to s= 1
2 .

Proof. Straightforward calculations show that

q4(1 - s) =  - 16s+ 8= - q4(s),

q5(1 - s) = 16s2  - 20s+ 5= q5(s) - 
1

2
q4(s),

q6(1 - s) = 16s2  - 16s+ 3= q6(s),

q7(1 - s) =  - 16s3 + 28s2  - 14s+
7

4
= - q7(s) +

1

2
q6(s).
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Then, by Lemma D.1,

q2k(1 - s) = ( - 1)k - 2\alpha k - 2
 - ( - q4(s)) + (q6(s) - \alpha  - q4(s))

( - 1)k - 2(\alpha k - 2
+  - \alpha k - 2

 - )

 - (\alpha +  - \alpha  - )

= ( - 1)k - 1q2k(s),

q2k+1(1 - s) = ( - 1)k - 2\alpha k - 2
 - 

\biggl( 
q5(s) - 

1

2
q4(s)

\biggr) 
+

\biggl( 
 - q7(s) +

1

2
q6(s) + \alpha  - 

\biggl( 
q5(s) - 

1

2
q4(s)

\biggr) \biggr) 
( - 1)k - 2(\alpha k - 2

+  - \alpha k - 2
 - )

 - (\alpha +  - \alpha  - )

= ( - 1)k - 2q2k+1(s) +
1

2
( - 1)k - 1q2k(s).

Note that any qn and qn+1 or qn and qn+2 do not share same roots; otherwise, all
polynomials share same roots by the recurrence relationship (3.6), which contradicts
with the fact that q4 and q5 do not share same roots.

Lemma D.3. Suppose qn has \lceil n
2 \rceil  - 1 distinct real roots on (0,1) when n\leq n0 for

some integer n0. Let

0< \delta 1 < \cdot \cdot \cdot < \delta k < 1,

0< \theta 1 < \cdot \cdot \cdot < \theta k < 1,

0< \eta 1 < \cdot \cdot \cdot < \eta k - 1 < 1

be roots of q2k+2, q2k+1, and q2k, respectively. Then, these roots satisfy

0< \theta 1 < \eta 1 < \cdot \cdot \cdot < \theta i < \eta i < \theta i+1 < \cdot \cdot \cdot < \eta k - 1 < \theta k < 1,

0< \theta 1 < \delta 1 < \cdot \cdot \cdot < \theta i < \delta i < \theta i+1 < \cdot \cdot \cdot < \theta k < \delta k < 1.
(D.2)

Proof. By checking roots of q4, q5, and q6, we can easily find

0< \theta 1 =
3 - 

\surd 
5

8
< \eta 1 =

1

2
< \theta 2 =

3+
\surd 
5

8
< 1,

0< \theta 1 =
3 - 

\surd 
5

8
< \delta 1 =

1

4
< \theta 2 =

3+
\surd 
5

8
< \delta 2 =

3

4
< 1.

Suppose (D.2) is true for integers until k. Now we consider the case of k+ 1. Let

0< \delta \ast 1 < \cdot \cdot \cdot < \delta \ast k+1 < 1,

0< \theta \ast 1 < \cdot \cdot \cdot < \theta \ast k+1 < 1

be roots of q2k+4 and q2k+3, respectively.
By the recurrence relationship q2k+3 = sq2k+2  - 1

4q2k+1, we have

\theta k < \delta k < 1 =\Rightarrow q2k+3(\delta k) = - 1

4
q2k+1(\delta k)< 0,

\theta k - 1 < \delta k - 1 < \theta l =\Rightarrow q2k+3(\delta k - 1) = - 1

4
q2k+1(\delta k - 1)> 0.

Then, \delta k belongs to one of the following intervals:

(\theta \ast k, \theta 
\ast 
k+1), (\theta \ast k - 2, \theta 

\ast 
k - 1), (\theta \ast k - 4, \theta 

\ast 
k - 3), . . . .
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2280 ERCHUAN ZHANG AND LYLE NOAKES

Suppose \delta k \in (\theta \ast k - 2u, \theta 
\ast 
k - 2u+1) for some 0\leq u\leq \lfloor k

2 \rfloor ; then \delta k - 1 belongs to one of the
following intervals:

(\theta \ast k - 2u - 1, \theta 
\ast 
k - 2u), (\theta \ast k - 2u - 3, \theta 

\ast 
k - 2u - 2), (\theta \ast k - 2u - 5, \theta 

\ast 
k - 2u - 4), . . . .

By repeating this argument and the number of distinct real roots, we have \theta \ast k - 1 <
\delta k - 1 < \theta \ast k < \delta k < \theta \ast k+1. By induction, we can verify

0< \theta \ast 1 < \delta 1 < \cdot \cdot \cdot < \theta \ast i < \delta i < \theta \ast i+1 < \cdot \cdot \cdot < \delta k < \theta \ast k+1 < 1.

Similarly, by q2k+4 = q2k+3  - 1
4q2k+2, we have

\delta k < \theta \ast k+1 < 1 =\Rightarrow q2k+4(\theta 
\ast 
k+1) = - 1

4
q2k+2(\theta 

\ast 
k+1)< 0,

\delta k - 1 < \theta \ast k < \delta k =\Rightarrow q2k+4(\theta 
\ast 
k) = - 1

4
q2k+2(\theta 

\ast 
k)> 0.

Then, \theta \ast k+1 belongs to one of the following intervals:

(\delta \ast k, \delta 
\ast 
k+1), (\delta \ast k - 2, \delta 

\ast 
k - 1), (\delta \ast k - 4, \delta 

\ast 
k - 3), . . . .

Suppose \theta \ast k+1 \in (\delta \ast k - 2u, \delta 
\ast 
k - 2u+1) for some 0\leq u\leq \lfloor k

2 \rfloor ; then \theta \ast k belongs to one of the
following intervals:

(\delta \ast k - 2u - 1, \delta 
\ast 
k - 2u), (\delta \ast k - 2u - 3, \delta 

\ast 
k - 2u - 2), (\delta \ast k - 2u - 5, \delta 

\ast 
k - 2u - 4), . . . .

By repeating this argument and the number of distinct real roots, we have \delta \ast k - 1 <
\theta \ast k < \delta \ast k < \theta \ast k+1 < \delta \ast k+1. By induction, we can verify

0< \theta \ast 1 < \delta \ast 1 < \cdot \cdot \cdot < \theta \ast i < \delta \ast i < \theta \ast i+1 < \cdot \cdot \cdot < \theta \ast k+1 < \delta \ast k+1 < 1.

Lemma D.4. For n\geq 9, 4\leq i\leq n - 5, qn satisfies

qn =
1

16

\Biggl( \Bigl( 
s

1 - ( - 1)n

2

\Bigr) 1 - ( - 1)i

2

qi+1qn - i  - 
1

4

\Bigl( 
s

1 - ( - 1)n

2

\Bigr) 1+( - 1)i

2

qiqn - 1 - i

\Biggr) 
.

Proof. By induction on the recurrence relationship (3.6), we have

qn = s
1 - ( - 1)n

2 qn - 1  - 
1

4
qn - 2,

qn - 1 = s
1 - ( - 1)n - 1

2 qn - 2  - 
1

4
qn - 3,

\cdot \cdot \cdot 

qn - i = s
1 - ( - 1)n - i

2 qn - 1 - i  - 
1

4
qn - 2 - i.

Multiplying the first equation by c0 = 1, the second equation by c1 = s
1 - ( - 1)n

2 , and

the (i+1)th equation by ci, where ci = s
1 - ( - 1)n+1 - i

2 ci - 1  - 1
4ci - 2, and summing them

together gives

qn =

\biggl( 
s

1 - ( - 1)n - i

2 ci  - 
1

4
ci - 1

\biggr) 
qn - 1 - i  - 

1

4
ciqn - 2 - i = ciqn - i  - 

1

4
ci - 1qn - 1 - i.

By induction, we get ci =
1
16 (s

1 - ( - 1)n

2 )
1 - ( - 1)i

2 qi+1, which completes this proof.
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Theorem D.5. The polynomial qn (n\geq 4) has \lceil n
2 \rceil  - 1 distinct real roots on (0,1).

Proof. By straightforward calculations, we can verify this claim is true for n =
4,5,6,7. Suppose it holds until n - 1; now we intend to verify the case of n.

(1) If n is odd, i.e., n= 2m+ 1 for some m, then Lemma D.4 implies

qn =
1

16

\biggl( 
s

1 - ( - 1)m

2 q2m+1  - 
1

4
s

1+( - 1)m

2 q2m

\biggr) 
.

(i) If m is odd, i.e., m= 2k+ 1 for some k, then

qn =
1

16

\biggl( 
sq22k+2  - 

1

4
q22k+1

\biggr) 
.

By assumption, both q2k+2 and q2k+1 have k distinct real roots on (0,1). Let

0< \delta 1 < \cdot \cdot \cdot < \delta k < 1,

0< \theta 1 < \cdot \cdot \cdot < \theta k < 1

be roots of q2k+2 and q2k+1, respectively; then Lemma D.3 implies

0< \theta 1 < \delta 1 < \cdot \cdot \cdot < \theta i < \delta i < \theta i+1 < \cdot \cdot \cdot < \theta k < \delta k < 1.

Since

qn(0)< 0, qn(\theta 1) =
1

16
\theta 1q

2
2k+2(\theta 1)> 0, qn(\delta 1) = - 1

64
q22k+1(\delta 1)< 0, . . . ,

qn(\theta i) =
1

16
\theta iq

2
2k+2(\theta i)> 0, qn(\delta i) = - 1

64
q22k+1(\delta i)< 0, . . . , qn(1)> 0.

By the mean value theorem, qn has 2k+1=m= \lceil n
2 \rceil  - 1 distinct real roots on (0,1).

(ii) If m is even, i.e., m= 2k for some k, then

qn =
1

16

\biggl( 
q22k+1  - 

1

4
sq22k

\biggr) 
.

By assumption, q2k+1 and q2k have k and k - 1 distinct real roots on (0,1), respectively.
Let

0< \theta 1 < \cdot \cdot \cdot < \theta k < 1,

0< \eta 1 < \cdot \cdot \cdot < \eta k - 1 < 1

be roots of q2k+1 and q2k, respectively; then Lemma D.3 implies

0< \theta 1 < \eta 1 < \cdot \cdot \cdot < \theta i < \eta i < \theta i+1 < \cdot \cdot \cdot < \eta k - 1 < \theta k < 1.

Since

qn(0)> 0, qn(\theta 1) = - 1

64
\theta 1q

2
2k(\theta 1)< 0, qn(\eta 1) =

1

16
q22k+1(\eta 1)> 0, . . . ,

qn(\theta i) = - 1

64
\theta iq

2
2k(\theta i)< 0, qn(\eta i) =

1

16
q22k+1(\eta i)> 0, . . . , qn(1)> 0.

By the mean value theorem, qn has 2k=m= \lceil n
2 \rceil  - 1 distinct real roots on (0,1).

(2) If n is even, i.e., n= 2m for some m, then Lemma D.4 implies

qn =
1

16
qm

\biggl( 
qm+1  - 

1

4
qm - 1

\biggr) 
.
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(i) If m is odd, i.e., m = 2k + 1 for some k, then by assumption and Lemma
D.2, qm has k distinct real roots on (0,1), which are not symmetric with respect to
s= 1

2 (note q2k+1(
1
2 ) \not = 0). Since all roots of qn are symmetric with respect to s= 1

2 ,
therefore, qn has 2k distinct real roots on (0,1).

(ii) If m is even, i.e., m= 2k for some k, then

qn =
1

16
q2k (2q2k+1  - sq2k) .

By assumption, q2k+1 and q2k have k and k - 1 distinct real roots on (0,1), respectively.
Let

0< \theta 1 < \cdot \cdot \cdot < \theta k < 1,

0< \eta 1 < \cdot \cdot \cdot < \eta k - 1 < 1

be roots of q2k+1 and q2k, respectively; then Lemma D.3 implies

0< \theta 1 < \eta 1 < \cdot \cdot \cdot < \theta i < \eta i < \theta i+1 < \cdot \cdot \cdot < \eta k - 1 < \theta k < 1.

Define Q := 2q2k+1  - sq2k. We have

Q(0) = 2q2k+1(0) = 2

\biggl( 
 - 1

4

\biggr) k - 2

, Q(\theta 1) = - \theta 1q2k(\theta 1), Q(\eta 1) = 2q2k+1(\eta 1), . . . ,

Q(\theta i) = - \theta iq2k(\theta i), Q(\eta i) = 2q2k+1(\eta i), . . . ,

Q(1) = 2q2k+1(1) - q2k(1) = 2( - 1)k - 2q2k+1(0) = 25 - 2k > 0.

If k is odd, then

Q(0)< 0,Q(\theta 1)< 0,Q(\eta 1)> 0,Q(\theta 2)> 0,Q(\eta 2)< 0,Q(\theta 3)< 0,Q(\eta 3)> 0, . . . .

If k is even, then

Q(0)> 0,Q(\theta 1)> 0,Q(\eta 1)< 0,Q(\theta 2)< 0,Q(\eta 2)> 0,Q(\theta 3)> 0,Q(\eta 3)< 0, . . . .

By the mean value theorem, Q has k - 1 distinct real roots on (0,1). Note that Q and
q2k do not share the same roots. Therefore, qn has k+k - 1 = 2k - 1 =m - 1 = \lceil n

2 \rceil  - 1
distinct real roots on (0,1).
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