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Structure-Aware Image Translation-Based Long Future
Prediction for Enhancement of Ground Robotic Vehicle
Teleoperation

Md Moniruzzaman,* Alexander Rassau, Douglas Chai,
and Syed Mohammed Shamsul Islam

1. Introduction

Predicting and reasoning about future events is the core of the
decision-making process and the essence of intelligence.[1]

Anticipating, predicting, and synthesizing an image frame or
frames from either a single input or a sequence of images is

referred to as future frame or future video
prediction. Future frame prediction frame-
works have been presented as representa-
tion learning.[2,3] The future frame or
video prediction is conditioned upon previ-
ously learnt feature representations from a
set of previous frames, unlike conventional
video generation problems which are pre-
dominantly unconditional.[4] In future
frame prediction problems, the target
image frame works as a label. Therefore,
future video prediction needs to be dealt
with through a supervised learning
approach. The label information need not
to be provided as an additional channel,
and no external supervision is needed, as
it is already available in the input frame
sequence. Therefore, in practical terms,
conventional frame prediction is a self-
supervised task. The current approaches
try to fill the gap between supervised and
unsupervised learning techniques.
Although future frame or video prediction

is a relatively new research domain, a significant amount of work
has been done to attempt to predict future frames. The aim of
this article is not to provide a detailed literature review on future
video prediction techniques. There are a number of recent survey
works that have been published for that purpose such as.[4–6]

Instead of categorizing all of the video prediction techniques into
different classes, they can more easily be represented under the
set of distinct paths as illustrated in Figure 1.

Future frame prediction is critical for a number of application
areas including video understanding,[7] video interpolation,[8]

video captioning,[9] anticipating pedestrians’ intentions,[10] action
recognition,[11] driverless car technology,[12] predicting events
and activities,[13,14] and anomaly detection[15] among others.
However, the first indication of the possible use of future frame
prediction for robotic teleoperation enhancement was suggested
in.[16] In our later work[17] we demonstrated that the notion of
future frame prediction and future video generation can directly
enhance control over ground robot teleoperation. This article pro-
vides further support for this notion and improvement of the
state-of-the-art techniques to generate future frames.

The primary challenge with long-distance robotic teleopera-
tion is the impact of latency in the communication channel.
For a robotic teleoperation system that uses 2D camera-based
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Predicting future frames through image-to-image translation and using these
synthetically generated frames for high-speed ground vehicle teleoperation is a
new concept to address latency and enhance operational performance. In the
immediate previous work, the image quality of the predicted frames was low and
a lot of scene detail was lost. To preserve the structural details of objects and
improve overall image quality in the predicted frames, several novel ideas are
proposed herein. A filter has been designed to remove noise from dense optical
flow components resulting from frame rate inconsistencies. The Pix2Pix base
network has been modified and a structure-aware SSIM-based perpetual loss
function has been implemented. A new dataset of 20 000 training input images
and 2000 test input images with a 500 ms delay between the target and input
frames has been created. Without any additional video transformation steps, the
proposed improved model achieved PSNR of 23.1; SSIM of 0.65; and MS-SSIM of
0.80, a substantial improvement over our previous work. A Fleiss’ kappa score of
>0.40 (0.48 for the modified network and 0.46 for the perpetual loss function)
proves the reliability of the model.
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visual feedback for situational awareness, whether the delay is in
the video feed transfer channel, in the control signal transmis-
sion channel, or, as is generally the case, distributed across both,
the impact of latency to a teleoperator is the same.[16]

Teleoperators can notice latency even if it is as low as 20ms.
MacKenzie and Ware[18] reported that for latencies of only
225ms, operator action time increased by 64% and the error rate
increased by more than double. Some studies (such as

Figure 1. Set of future frame prediction techniques.
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refs. [19,20]) claim a teleoperator’s ability to track and manipulate
objects that can be severely compromised by latency if it reaches
300–320ms.[21] While driving at high speeds up to 90 km h�1,
vehicle control has been shown to degrade significantly once
latencies exceed 170ms.[22] Almost all of the ground vehicle
robotic teleoperation tasks reported in the literature are for
slow-moving (<10 km h�1) unmanned ground vehicles
(UGVs). To more accurately judge impacts on UGV teleoperation
in a wider range of use cases, in our previous work we experi-
mented with higher speed (10–25 km h�1)-simulated UGVs
and found that at these ground speeds, task completion time
increased up to 200% with a latency of 900ms. Once latency
reached 1200ms, we found that overcorrection-related oscilla-
tions made teleoperation effectively impossible even at these rel-
atively modest speeds, demonstrating a need for effective latency
compensation methods.

Attempting to predict future state and navigation path,[23] field
of view change,[24] and possible collision avoidance[25] has been
used by the robotic research community to aid the operators
affected by latency. However, these first-order predictive
technologies are not capable of overcoming the challenges of
long-distance and high-latency ground robotic vehicle teleopera-
tion at reasonable ground speeds. Therefore, in our previous
work,[17] we hypothesized that instead of discrete first-order state
prediction, a continuous prediction and generation of long future
video from delayed past frames could provide the operators with
a constant flow of information about the remote environment
that closely mimics the present frames captured by the robot-
mounted camera sensor provided the state of the vehicle and
operator control signals are incorporated in the prediction. As
a proof of concept, we demonstrated the generation of future
frames from frames delayed by 500ms and achieved promising
results. Conventional long future frame prediction techniques
use multiple past frames to generate multiple future frames.
For a live teleoperation control loop, this technique would require
a buffer state where the required number of past frames is held
and then fed into the deep neural network for prediction. This
would add further delay to the communication loop, compound-
ing the problem instead of enhancing teleoperation. Therefore,
our approach is to use image-to-image translation to continu-
ously predict single frames deep into the future based on single
past frames. To improve the ability of the network to predict the
matching predicted frames, we also incorporate optical flow
information to a conditional generative adversarial network
(cGAN). This optical flow information provides an indication
of the vehicle state and any changes in this state based on opera-
tor control inputs. This previous work provided a positive indi-
cation that the proposed image-to-image translation-based long
future frame prediction approach has merit as a possible solution
to the challenges of high-latency long-distance teleoperation.
However, the final predicted video missed a lot of structural
details of the remote scene that would be important for teleop-
erating a UGV at reasonable ground speeds.

This article further develops this future frame prediction
approach and improves the image quality of the predicted frames
by maintaining better scene structural integrity and reducing loss
without affecting the performance and prediction speed com-
pared to the base cGAN network. The primary enhancement
methods were the application of a filter to reduce input data

noise, changing the loss function to a structural-aware perpetual
loss function and finally modifying the base cGAN network to
preserve more structural information to the decoder end of
the network. We have created a new dataset for the research
described in this article using the simulator described in
refs.[16,17]. A number of training and frame generation sessions
have been performed. For image quality measurement and
comparison, we have used well-recognized image comparison
metrics including the peak signal-to-noise ratio (PSNR), the
structural similarity index measure (SSIM), and the multiscale
structural similarity index measure (MS-SSIM). To compare
the reliability of the different combinations of the losses and
the network architectures, we have calculated the Fleiss’ kappa,
P values, standard deviations, skewness, and kurtosis. Our
enhanced techniques significantly improve the predicted future
video quality and are fast enough to be implemented in a real-
time teleoperation control system. Themain contributions of this
article are as follows. 1) Development of a filter to remove frame
rate disparity-induced noise and generation of a new noise-free
virtual ground vehicle teleoperation dataset using the simulator
from ref. [16]. 2) Formulation of a unique SSIM-based perpetual
loss function for the generator training that provides significant
benefits in maintaining the structural integrity of the predicted
future frames. 3) Modification of the base Pix2Pix cGAN network
architecture to preserve the supporting optical flow information
and prevent it from suffering loss during the down-sampling and
up-sampling operations of the generator and offering
better structural integrity preservation to the prediction task.
4) In-depth evaluation and discussion of the outcomes of our pro-
posed system and their implications for future teleoperation
enhancement research.

The rest of the article is structured as follows: Section 2 offers
background about the current state-of-the-art image-to-image
translation techniques and their prospects for use in future
frame prediction-based teleoperation enhancement. Section 3
discusses the research methodology with detailed information
about the data collection and filtering with our custom filter,
the new perpetual loss function, the modified cGAN network,
and the evaluation methods of the new techniques. Section 4
presents the results and findings of the experiments and
Section 5 discusses these findings. Section 6 concludes the article
and provides recommendations for future research directions.

2. Background

Future video prediction techniques can be utilized to generate a
continuously predicted future video feed from the incoming
delayed frames sent by the remote robot/vehicle camera.
However, achieving high-quality synthetic video feeds will
require extended research in the domain. One of our previous
works[6] lists some of the recent and promising future video pre-
diction approaches that can be used as a baseline for creating
future technologies for robotic teleoperation enhancement.

State-of-the-art and contemporary future image frame predic-
tion models require multiple input frames (past frames) to pre-
dict one or more future frames. For these required multiple past
frames, these techniques require a buffering time, and thus, the
future frames need to be predicted even further into the future to
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offset this additional latency, greatly increasing the challenge.
Further, these models are not suitable for a system where a
constant influx of past frames is expected, and a continuous
stream of predicted future frames is required. A high-latency,
but real-time ground vehicle teleoperation system provides a
delayed but constant influx of frames that could be low in quality
and the frame rates may vary over time. We assume that the bulk
of the information required to generate a future frame within a
reasonable time horizon is present in the past frames. Therefore,
we hypothesize that if a series or influx of past frames can be
translated to image frames that are close enough to the original
ground truth (present time frames), this would solve the issues
caused by latency in the communication loop. For a visual feed-
based human in the loop ground vehicle teleportation scenario,
which is similar to the simulator and experimental setup
designed by us, the aim is to design a future frame prediction
model that can translate a delayed frame to a new one that is
reasonably close to the present frame or ground truth.
Therefore, in contrast to conventional future frames prediction
problem, for latency reduction and teleoperation enhancement,
we believe the problem is better handled as of an image-to-image
translation problem.

2.1. Image-To-image Translation Networks

The application of GANs for image-to-image translation has had
some admirable success. Unconditional GANs use techniques
such as L2 regression to force translate the input to match a tar-
get image. Some of the examples of unconditional GANs for
image-to-image translations are: for future state prediction,[26]

style transfer,[27] inpainting,[28] super-resolution,[29] and SAR
image translation[30] among others. However, GANs in a condi-
tional setting are more suited to the problem domain of data or
image translation[31] because a conditional GAN can condition an
input image to generate a corresponding target image. There are
several attempts that have used conditional GANs to predict

images from a provided map,[32] generate images from sparse
annotations,[33,34] predict future frames,[35] generate synthetic
product photographs,[36] and perform simple but versatile
image-to-image translation.[31]

For integrating conventional GAN-based future video predic-
tion networks to a real-time ground vehicle teleoperation system,
an intermediate buffer image frame loader is required, where the
required set of frames will arrive and be held before being passed
to the neural network for future frame prediction. This interme-
diate buffer stage will add more latency to the system. Moreover,
when multiple future frames are being generated by a network,
the image quality of the frames in a single batch varies signifi-
cantly and degrades for later frames on a single batch. This cre-
ates an uneven image quality event in the predicted video stream.
To avoid these issues the neural network should be able to trans-
late a single incoming image frame to a single future frame deep
into the future with an acceptable level of image quality (in terms
of both pixel and structural similarity) in a first-in-first-out (FIFO)
fashion. This network also needs to be fast enough so that a rela-
tively smooth video output can be produced and provided to the
teleoperators. This video stream will be the primary source of
situational awareness for the operators. In real-life situations,
remote robotic environments are mostly dynamic and have vary-
ing scene conditions, so the chosen network needs to be robust
enough to translate varying scene conditions with a higher
degree of uncertainty.

Considering the constraints and limitations of the conven-
tional future frame prediction networks, an image-to-image
translation network is more suited to fulfill the requirements
of a visual feed-based telerobotic system and compensate
for the latency in the control loop. However, finding a
suitable image-to-image network requires careful consideration.
Figure 2 provides a taxonomy of the state-of-the-art
image-to-image translation networks. All of the contemporary
image-to-image translation networks can be segregated as either
supervised or unsupervised image translation networks.[37]

Figure 2. Taxonomy of image-to-image translation techniques (adapted from ref. [37]).
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The CycleGAN[38,39] (cyclic consistency-based), DosGAN[40] (disen-
tangler representation-based), and UNIT[41] (autoencoder-based)
are unsupervised image translation networks. Unsupervised
image translation networks are suited for unpaired translation
between two or more domains and show a high level of uncer-
tainty and thus are not suitable for the use case described in this
article where input (delayed) and ground truth (real-time) image
pairs are accessible for supervised learning.

The supervised image-to-image translation networks are cate-
gorized into directional and bidirectional image translation net-
works.[37] BicycleGAN[42] and CEGAN[43] are the bidirectional
networks. These networks produce diverse outputs by multi-
modal cross-domain translation. For our high-latency teleopera-
tion enhancement use case, we need a single future frame as an
output, dictated and constrained by a real-time ground truth tar-
get image. Therefore, we are left with only the directional super-
vised translation networks. Currently there are three directional
image-to-image translation networks: StarGAN,[44] Pix2Pix,[31]

and Pix2PixHD.[45] The StarGAN[44] network was designed to
mimic facial expressions such as happy, angry, and fearful on
CelebA data. This network performs multidomain image trans-
lation. Unlike the remote environment of teleoperated ground
vehicles, the CelebA dataset does not have the kinds of dynamic
scene changes and the StarGan is not robust enough to handle
the uncertainty of objects and their movements in consecutive
image frames. Further, the multidomain image output does
not match our requirements. The Pix2PixHD[45] network is
designed to generate HD images (2048� 1024) from semantic
label maps, which is also not in line with our use case due to
the bandwidth constraints of remote teleoperation. Therefore,
the only network that is potentially suitable for experimentation
with as a starting point to translate dynamic delayed images into
future frames is the Pix2Pix cGAN.

Considering the factors discussed above, we have
experimented with the Pix2Pix[31] as a base network for our
future frames prediction task in ref. [17]. We have customized
the network to accept the angle and magnitude components
of dense optical flow as additional channels with the optical flow
represented in the form of Red, Green, and Blue (RGB) channels.
If a single image is fed to this network, it is capable of learning to
translate the input to an output that is conditioned to a prede-
fined target image. The base network is a cGAN that has a
U-Net generator and a feed-forward discriminator. A down-
sampler (encoder) and an up-sampler (decoder) with skip con-
nections make up the U-Net architecture of the generator.
The encoder and decoder structure creates a large bottleneck.
However, the use of skip connections helps to reduce low-level
information loss during the down-sampling and up-sampling
operations. If the total number of layers is n for the generator,
the skip connections are between layer i and layer n� i.

The network is fast enough to translate and generate future
frames such that a video stream can be produced in real time
from the output frames.

The discriminator of the base network is a feed-forward
patchGAN. This discriminator penalizes the generator output
at the scale of patches in the image by classifying whether the
generated image patches are real or fake. To provide an output
the discriminator operates conventionally across the entire pre-
dicted image. As the patch sizes are small and have fewer param-
eters due to the reduced size, the discriminator runs fast. The
discriminator and the generator of the base network have been
adapted from ref. [46]. For both the generator and discriminator
the layer formation is convolution-batch normalization-ReLu.
Figure A1 and A2 in the Appendix section provide a schematic
diagram of the generator and the discriminator respectively. We
also have made changes to the generator architecture; these
architecture changes are discussed in Section 3.2.2.

3. Methodology

Our previous work[17] has provided initial proof of concept for
our idea that the cGAN-generated synthetic predicted frames
have the potential to compensate for latency in the ground vehi-
cle teleoperation loop. However, UGVs operating at reasonable
ground speeds need better video feeds than were achieved in this
initial work for effective and smooth teleoperation. This article
intends to improve the quality of the predicted video feed with
better preservation of the structural integrity of objects in the
scene based on changes to the network architecture and a
new perpetual loss function. The research presented in this arti-
cle can be divided into four stages: a new dataset creation, imple-
mentation of the revised perpetual loss function, modification to
the network architecture, and evaluation of the new techniques.
All of these stages are described in detail in the section below.
Figure 3 provides an illustration of all of the stages of the
research using a flow diagram.

3.1. Dataset Creation

3.1.1. Why We Needed a New Dataset?

In our previous work described in ref. [17], we have created three
different datasets (Forza_GTþUEþ Std_D, Forza_GTþUEþ
VT_DL, and Forza_GTþUEþ Forza_DL) and tested different
aspects of the proposed future video prediction-based teleopera-
tion enhancement techniques. Therefore, a valid question is why
a new dataset is needed for this current research where we intend
to improve the image quality of the predicted frames. All of the
above-mentioned datasets created for ref. [17] were recorded

Figure 3. Flow diagram of the proposed methodology.
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using the Open Broadcaster Software (OBS) with a frame rate of
30 frames per second (fps). However, the frame rates of the indi-
vidual feeds (the ground truth and the delayed feed) are different
than that used for OBS and also different from each other due to
performance limitations in the Simulink implementation. In the
teleoperation simulator, the delayed frame rate varies within a
range of 16–20. Additionally, due to variations in computational
overhead, the frame rate of the UE cosimulation also varies from
14 to 18 fps. In a real-life video feed-based teleoperation session,
frame rate variations and disparity could also be expected and
would be considered normal for high latency and low-bandwidth
communication channels. This does, however, create a signifi-
cant issue for neural network-based future frame prediction
methods. When the synchronized recorded video of these differ-
ent frame rate feeds is converted into individual frames, the tran-
sition between sequential frames is not consistent for the ground
truth relative to the delayed frames. The relative changes for the
ground truth frames are smoother and more uniform due to the
ground truth frame rate being 60 fps, double the OBS recording
frame rate. However, for the delayed frames, the changes are
irregular, which introduces noise when extracting the optical
flow from consecutive frames for the cGAN training task.
Figure 4a shows that the frame rate disparity creates irregular
changes from one frame to the next, and thus the extracted dense
optical flow exhibits significant noise. Reducing the frame rate of
the OBS recording to 10 fps ensures that the recorded video con-
tains fewer transition states of the delayed video frames, result-
ing in less noise in the frames converted from the recorded video
and, subsequently, in the extracted optical flow components. It
should be noted that simply extracting every third frame from

the previous data would not solve the noise issue since noisy
frames and the resulting optical flow components are already pres-
ent in the dataset due to the frame rate disparities during capture.
In Section 3.1.3, we have presented a filtering technique that can
eliminate this type of noise in the data. However, when we applied
this technique to the existing data, we found that it significantly
shrank the dataset size and created an irregular scene-shifting
effect in the cleaned dataset. As a result, a network trained on such
a dataset would produce irregular future frames, thereby impact-
ing the quality of the predictions. To overcome these problems, a
new dataset was needed where the amount of noise can be sub-
stantially reduced, and the transitions between the frames were
kept regular for both the delayed and ground truth feeds. To
achieve this we have reduced the frame rate of the video data
recording for our new dataset as well as applying the developed
filter to eliminate any frames containing excessive noise.

3.1.2. Video Data Collection

In our initial attempt of using future video prediction to compen-
sate for latency in ground vehicle teleoperation, reported in
ref. [17], we have experimented with conventional three-channel
RGB image frames and optical flow incorporated via five-channel
image data that included optical flow from delayed frames, trans-
formed frames (transformed to offer a predicted point of view
dictated by the live operator control input), real-time frames,
and unreal engine-generated synthetic optical flow directly
reflecting the operator control inputs in real time. Therefore,
for this research, our primary goal is not to find a better source
of optical flow, but rather to improve the predicted video quality

Figure 4. a) The noise in the angle and magnitude due to the frame rate issue in the teleoperated delayed frames. b) A pair of consecutive frames with
proper magnitude and angle component after dense optical flow extraction. Our filter (Algorithm 3.1.2) keeps the frames like (b) and removes the frames
like (a) to provide a noise-free input stream to the future prediction model.
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for a system that does not require an additional video transfor-
mation unit to support the future prediction; however, it still per-
forms better with improved image quality. If this improvement
can be achieved, then the neural network-based future prediction
model can be integrated into any long-distance and high-latency
systems without needing to rely upon additional and computa-
tionally bulky supportive systems.

For the data collected for the research described in this article,
we have used the same teleoperation simulator described in
ref. [17]. However, instead of three different settings, we have
only used one where the ground truth is the Forza game screen,
and the delayed feed is the nontransformed delayed feed where
the raw delay of 500ms is added to the original feed. No data was
recorded from the transformed video feed. A detailed description
of the simulator and the human teleoperator involved data col-
lection process is described in ref. [17]. Similar to the previously
collected data, we have used the OBS software for the synchro-
nized video data recording process. We have capped the data
recording frequency at 10 fps. A number of video recordings
have been collected and converted into individual frames.

3.1.3. Filter Design and Pre-Processing

Once the video recording and frame extractions are done, the
individual frames are cropped into corresponding segments
(the ground truth frames and the delayed frames). These sepa-
rated frames are then resized to 256� 256 pixels to reduce the
computation time during the neural network training. For this
dataset, we have created 20 000 images as the ground truth,
which are the segments from the 4 K Forza real-time gaming
screen, and the corresponding 20 000 delayed image frames.
These delayed frames (500ms delayed) have a low frame rate
and low pixel quality to mimic real teleoperation through low-
bandwidth and high-latency communication channels. These
20 000 image sets are used as the training set, where the ground
truth images have been used as the target and the delayed frames
have been used as the input to the neural network. The test set
consists of 2000 images of the ground truth and the delayed ver-
sions. We have named this latest data as “ Forza_GTþ Std_DL.”

Moniruzzaman et al.[17] provide good evidence that instead of
only using the three-channel RGB input, adding optical flow
components (angle and magnitude) as two additional channels
to the input offers much better future prediction. Therefore, sim-
ilar to ref. [17], we have extracted optical flow for the delayed
frames of both the training and testing tests. We have extracted
the dense or per-pixel optical flow from two consecutive frames
through the Gunner–Farneback[47] method. However, due to the
difference in the frame rates among the ground truth and
delayed feed, while extracting the optical flow, the synchronized
recorded segments generate noise similar to the examples shown
in Figure 4a. To eliminate this noise from the dataset, we have
used a MS-SSIM comparison-based filter. Algorithm 3.1.2 pro-
vides the steps and the details of the filter. As the OBS recording
frame rate and the delayed frame rate are not the same, there are
instances where the OBS records two consecutive frames in a
stage where a previous frame (frame n) has not transitioned
to the next frame (frame nþ 1). Therefore, the next frame is
almost identical to the previous frame. While extracting the angle

and magnitude components of the per-pixel dense optical flow,
the optical flow extractor algorithm thus generates noise. Our fil-
ter (Algorithm 1) compares the previous and next frames and if
the similarity is more than a threshold (α ¼ 0.95), the filter
removes the previous frames from the delayed, ground truth,
the angle, and the magnitude components set. This leaves a
set of frames that has a sequence of image frames that have a
sufficient per pixel information gap so that the optical flow gen-
erator can generate meaningful dense optical flow. This filter
works on a sequential influx of frames, which makes it capable
of being used in a live system. The reduction of frames from the
feed also reduces the computational burden in the later training
and prediction stages. For our use case, this filter was able to
reduce more than 95% of the noisy angle and magnitude com-
ponents. By changing the threshold (α) value, this filter can also
be used to eliminate intermediate frames to reduce the compu-
tational burden further without sacrificing the image quality of
the predicted future frames.

3.2. Structure-Aware Training

3.2.1. Perpetual Loss Integration

In conditional GAN training, the loss function penalizes and
adjusts the learning of the network for a possible output that
is different than the target. In the GAN, the loss is calculated
for both the discriminator and the generator. For our network,
the discriminator loss consists of the real_loss and the genera-
ted_loss. The sigmoid cross entropy of the target image and

Algorithm 1. Algorithm to Filter the Forza GTþ Std DL Data Set to Avoid
Frame Rate Disparity Related Noise Issue.

Require: Filtered dataset= f (Ground truth frame, Delayed frame, Optical flow
components)

1:

Ensure: Ground truth= Real-time frames from Forza game screen;

Ensure: Delayed frames=Delayed frames by the simulator;

Ensure: Optical flow components=Magnitude and angle components of the dense
optical flow extracted from the delayed frames;

2: while the delayed frames are passed through the filter do

3: Previousf rame = rgb2gray (read the frame n);

4: Nextf rame = rgb2gray (read the frame nþ 1);

5: Similarity=MS-SSIM (Previousframe, Nextframe);

6: α= 0.95;

7: if then Similarity ≥ α

8: Remove nth ground truth frame;

9: Remove nth delayed frame;

10: Remove nth Angle component;

11: Remove nth magnitude component;

12: end

13: Filtered dataset= Sort & rename (Filtered ground truth, Filtered delayed
frame, Filtered Optical flow);

14: Result: Dataset that filters out more than 95% irregular frame rate issue
induced irregular changes in frame and noise in optical flow components
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an array of ones provide the real_loss. The generated_loss comes
from the sigmoid cross entropy of the generator output
(predicted synthetic image) and an array of zeros. The discrimi-
nator loss of the network can be represented as

discriminator loss ¼ real lossþ generated loss (1)

During training, the discriminator ignores the generator loss
and classifies the generator predicted synthetic images based on
the discriminator loss. For predicting and generating synthetic
future frames, the generator loss plays a more significant role
and modifications to the generator loss function can have a direct
impact on the quality of the synthetic image. For our previous
article,[17] the generator loss function was

generator loss ¼ gan lossþ ðλ� L1Þ (2)

where the gan_loss is the sigmoid cross entropy of the gener-
ated synthetic image and an array of ones. The value of the λ
was kept at 100. The L1 loss is the mean absolute error (MAE)
between the target image and the generator output. This loss
function does not account for the structural integrity of the
predicted future frames. To improve the image quality and
create better structural similarity we have introduced an
SSIM-based perpetual loss function. This loss function can
be expressed as

generator loss perpetual ¼ gan lossþ ðλ� 1� SSIMð ÞÞ (3)

Here, SSIM is the structural similarity index of the target and
the predicted images. We have also experimented with a combi-
nation of MAE and perpetual loss. This combined loss function
can be expressed as

generator loss mixed ¼ gan lossþ ðλ� ðð1� βÞ � L1

þ β � ð1� SSIMÞÞÞ
(4)

where β is an adjustable weight parameter. For our experiment,
we kept the value to 0.50.

3.2.2. Network Architecture Modification

In our previous work[17] on future frame prediction, we have used
the Pix2Pix[31] architecture as the base network and customized it
to accept our five-channel data input. The generator of this
network is a U-net[48] with skip connections (Figure A2).
This generator consists of an encoder (down-sampler) and a
decoder (up-sampler). For the n layers in the network, the skip
connection joins the i and n� i layers to reduce low-level infor-
mation loss between the encoder and the decoder. Along with
the three-channel delayed RGB frames, our future frames
prediction also incorporates the angle and magnitude optical
flow components. This additional optical flow information is
intended to afford better prediction by providing the network
with information on temporal changes in the scene; however,
due to the nature of the encoder and decoder-based neural net-
work architecture, this additional single-channel information
can easily get lost in down-sampling and up-sampling opera-
tions. Therefore, to preserve the structural integrity of the angle
and magnitude information, and thus maintain better

structural integrity between the ground truth and the predicted
synthetic future frame, we have modified the architecture to
incorporate these two additional pieces of information without
any distortion immediately prior to the prediction layer of the
network. Figure 5a shows the old architecture and (b) shows the
updated architecture. We have added two new Conv2D layers
(Sequential D8 and Sequential D9) after the sequence of
decoder layer Sequential D7 (Upsampler layer 7) (Figure 5b).
Before passing the output of block D8 to D9, we have separated
the angle and magnitude components from the input and
bypassed them with a skip connection to the concatenation layer
C8 (Figure 5b), so that the optical flow information, which pro-
vides a representation of the control input from the operator,
does not get lost through the bottleneck of the encoder and
decoder and can have more influence on the prediction of
the future frame. The complete architecture of the modified
generator has been provided in Figure A3.

The discriminator of the complete network is a patchGAN that
works as a classifier to distinguish between the predicted
synthetic frames and the target. It penalizes the predicted output
at the scale of patches. The sizes of the patches are small,
meaning that the discriminator network has to deal with a small
number of parameters and thus runs faster. The layer formations
of the blocks of the discriminator are convolution-batch
Normalization-ReLu. Figure A2 provides a schematic diagram
of the discriminator used.

3.2.3. Training Specifications

To maintain fairness in the comparison of the recent work with
our previous works, we have kept the training specifications sim-
ilar. We have used two desktop computers for all the training
sessions for our dataset: a 48 GB NVIDIA RTX A6000 GPU
machine and a 24 GB NVIDIA GeForce TITAN RTX GPU
machine. The training data have 20 000 (20 K) delayed input
RGB images, 20 K dense optical flow components, and 20 K tar-
get ground truth images. We have set the training buffer size to
20 k so that for every step of training, the whole dataset gets shuf-
fled. The batch size has been kept at 1. For every training session,
we have trained the network for 2 000 000 steps or 100 epochs.
Checkpoints are saved for every 20 000 training steps. For opti-
mizing the training, we have used the Adam optimizer.[49] To
find a suitable combination of the network and the loss function
for better structural integrity preservation for the predicted
future frames, we have experimented with an L1 loss function
(2), an SSIM-based perpetual loss function (Equation (3)), and
a combination of both (Equation (4)) through a total of seven
training sessions.

In a GAN, during training, the generator works to enhance its
samples by minimizing the discrepancy between the fake sam-
ples it creates and the real samples in the dataset. Meanwhile, the
discriminator tries to maximize the difference between the real
and fake samples by learning to correctly classify them. This
leads to a scenario where the discriminator loss decreases as
it becomes more proficient at distinguishing real and fake
samples, while the generator loss increases as it endeavors to
generate better samples that can deceive the discriminator.
The ultimate objective of GAN training is to reach a point where
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the generator produces samples that are indistinguishable from
real samples, and the discriminator is unable to differentiate
between real and fake samples. When this is achieved, the
GAN is considered to have converged, and the loss values for
both the generator and discriminator have stabilized. In
Figure A4 we have presented the generator and discriminator
loss graphs for three of our models: 1) modified network with

perpetual and L1 losses, 2) modified network with perpetual loss
function only, and 3) modified network with L1 loss function
only. For all three of these training sessions we can see that
the discriminator loss values steadily decrease and the generator
loss values increase, with both values stabilizing toward the end
of training, indicating that successful training outcomes were
achieved.

Figure 5. a) The generator U-Net architecture used in ref. [17] for predicted future frames generation. b) The generator network used in this article after
modification to preserve structural details while generating future frames.
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Figure 6. Comparisons of the delayed, predicted, and ground truth frames for different trained models: a) the model presented in ref. [17] trained with
Forza_GTþUEþ Std_DL data, b) our modified network with SSIM perpetualþ L1 loss (50% weightage each), c) modified network with SSIM perpetual
loss function, and d) modified network with L1 loss function.
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3.3. Evaluation Methods

3.3.1. Image Analysis

We have compared and evaluated the predicted frames using the
same three evaluation metrics used previously in ref. [17] so that
a fair comparison can be done and the improvement can be eval-
uated. For the per-pixel comparison, we have used the PSNR[50]

technique. For the per-pixel comparison, the PSNR is calculated
using the following equation.

PSNR ¼ 20� log MAXð Þð Þ � 10� log MSEð Þð Þ (5)

Here, MAX is the maximum value of the pixels of a frame and
MSE is the mean squared error. If an image is closer to the
ground truth than another, the PSNR value would be higher.
We have compared the PSNR values of the predicted synthetic
future frames with the ground truth target frames. These results
are reported and discussed in Section 4 and 5.

To check the structural integrity of the objects in a scene and
the similarity between the predicted synthetic future frames and
the ground truth, we have used the SSIM and MS-SSIM metrics.
If two image frames f 1 and f 2 have the same size of X�X , the
estimation of the SSIM can be done using Equation (6).[51]

SSIMð f 1, f 2Þ ¼
ð2μf 1μf 2 þ c1Þð2σf 1 f 2 þ c2Þ

ðμ2f 1 þ μ2f 2 þ c1Þðσ2f 1 þ σ2f 2 þ c2Þ
(6)

Here, μf 1 is the average of f 1, μf 2 is the average of f 2, σ
2
f 1
is the

variance of f 1, σ
2
f 2
is the variance of f 2, σf 1f 2 is the covariance of

f 1 and f 2, and c1–c2 are the variables to stabilize the division.
These variance and covariance elements of Equation (6) account
for the objects’ structural integrity and change between two
images.

In addition to PSNR and SSIM, we also evaluated the perfor-
mance of the Multi-Scale SSIM (MS-SSIM) method. According
to several studies,[51–54] MS-SSIM is a more robust method than
SSIM and has been shown to perform better for both images and
video data. The MS-SSIM algorithm utilizes the SSIM technique,
but it operates over multiple scales using a series of subsampling
stages. During the MS-SSIM process, the images are first down-
sampled by a factor of 2 and then passed through a low-pass fil-
ter. The estimation of the MS-SSIM is defined as 7.[55]

MS � SSIMðx, yÞ ¼
Yn

i¼1

lðx, iÞðy, iÞ
" #

γ

⋅
Yn

i¼1

cðx, iÞðy, iÞβ ⋅ sðx, yÞ

(7)

The MS-SSIM algorithm computes the similarity between a
reference image and a distorted image by considering multiple
scales of the images. In this process, the reference and distorted
images are denoted as x and y, respectively, and n is the number
of scales used. At each scale i, the luminance of the images is
represented by lðx, iÞ and lðy, iÞ, and the contrast is represented
by cðx, iÞ and cðy, iÞ. The structural similarity index at the lowest
scale is denoted as sðx, yÞ. The luminance and contrast terms are
controlled by the parameters γ and β, respectively.

3.3.2. Statistical Analysis

Our test dataset contains 2000 input images and the correspond-
ing optical flow components, and the image comparison-based
evaluation offers the image quality analysis based on the mean
values of the PSNR, SSIM, and MS-SSIM metrics. For a better
understanding of the quality of the individual predicted frames,
the overall data distribution of the predicted frames, the presence
of outliers, the reliability of a specific combination of the loss
function and network architecture, the robustness of specific
techniques, and to obtain the inter-rater agreements of the
evaluation metrics, we have performed statistical analysis of
the PSNR, SSIM, and MS-SSIM values of the individual pre-
dicted image frames. We have calculated themean, median, stan-
dard deviation, skewness, and Kurtosis for the entire test datasets
for all the combinations of datasets, network architectures, and
loss functions. For inter-rater agreement and reliability of all the
combinations, we have calculated Fleiss’s kappa and p values.

4. Results

This article aims to significantly improve the image quality and
structural integrity of objects in a scene for predicted syntheti-
cally generated future frames for a teleoperation video feed.
To keep the results easily comparable to the result provided in
ref. [17], we have carried out image comparison-based analyses
using the three metrics (PSNR, SSIM, MS-SSIM). For reliability
comparison, of the different combinations of the architecture
and used loss function, we have also performed statistical analy-
sis of the image comparison analysis. Both of these results are
presented in this section.

4.1. Image Comparison-Based Results

The image comparison (relative to the ground truth)-based
results are presented in Table 1. The first three rows of the table
provide the results presented in ref. [17] for the delayed frames
(that did not go through any video transformation)-based future
prediction. From Table 1 we can see that the base Pix2Pix net-
work with L1 generator loss function and three-channel RGB
input achieved 16.27, 0.40, and 0.47 for PSNR, SSIM, and
MS-SSIM evaluation metrics consecutively. For the delayed
and unreal engine optical flow, the value sets increased to
16.42-0.40-0.48, and 16.41-0.38-0.48. These values indicated that
the image-to-image translation techniques have the potential to
generate future frames that can be used to mitigate the latency in
a long-distance teleoperation scenario. However, the predicted
image quality is low and misses a lot of structural details of
objects in the scene.

For effective teleoperation enhancement, we need to signifi-
cantly improve the image quality and maintain the structural
integrity of the objects when predicting and generating synthetic
future frames. To move closer to this goal, we have implemented
a filter for reducing noise in the input data, changed the archi-
tecture of the network, and implemented a modified perpetual
loss function in the training. Table 1 presents the PSNR,
SSIM, and MS-SSIM values for the different combinations of
the loss function and the network. When the input data is filtered
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with our custom filter, the predicted image quality significantly
improves. For the filtered delayed optical flow-based five-channel
input data, the PSNR-SSIM-MS_SSIM values increased to
20.8-0.51-0.70. For the Unreal engine developed optical flow,
the values are 20.9-0.53-0.73. This shows that for both types of
additional optical flow information, the filter has reduced the
noise from the input incoming data and contributed to improv-
ing the image quality.

When the SSIM-based perpetual loss function was used
for training in place of the Ll MAE loss function, the PSNR-
SSIM-MS_SSIM values increased further to 22.7-0.65-0.80.
With our modified network architecture, we found similar
improvements and the values are 22.9-0.64-0.78. While applying
both the modified network and the perpetual loss function,
the image quality was further improved and increased to
23.10.65-0.80. Our modified network with a loss function that
has 50% weight on the absolute error and 50% on perpetual loss
also performed very well and the metrics are 22.9-0.64-0.80.

4.2. Statistical Representation of the Image Analysis

Table 2 and 3 present a statistical analysis of our research design
and evaluate the performance of different combinations of the
loss function and model architecture. This statistical analysis val-
idates the result shown in Table 1. The statistical analyses were
performed on the PSNR, SSIM, and MS-SSIM values of all the
test-set output frames. In Table 2 we can see the mean values for
all the combinations are almost the same as those of the median
values. This indicates that with reference to the image quality for
all of our improvements to the future prediction technique
described in ref. [17], the predicted frames generated by our dif-
ferent models follow a normal and almost symmetrical distribu-
tion. We can see that the standard deviations for all evaluation
metrics and combinations are very low. For PSNR evaluation,
the standard deviations are 1.22–1.48; and for the SSIM and
MS-SSIM the standard deviations are only 0.04–0.05.
The Skewness values are very low as well. For the PSNR
evaluation, the skewness ranges from �0.86 to �0.24; for SSIM
evaluation the skewness ranges from �0.32 to 0.002; and for the
MS-SSIM, the range is �1.17 to �0.88. Kurtosis has been

calculated to check the presence of outliers in the data distribu-
tion. The Kurtosis for the PSNR evaluation ranges from 0.24 to
1.24; for SSIM evaluation, it ranges from �0.27 to 0.18; and for
MS-SSIM from 1.14 to 1.99.

As previously discussed, for image quality and structural integ-
rity measurement, we have used three evaluation parameters:
PSNR, SSIM, and MS-SSIM. The agreement rates between these
three evaluation metrics provide an idea about the usability and
reliability of a specific trained model. We have calculated the
Fleiss’ kappa to measure the inter-rater agreements. From
Table 3, the kappa for the five-channel filtered data only, without
changing the loss function or architecture, is 0.32 (for UE optical
flow) and 0.34 (for delayed optical flow). While using the perpetual
loss function without changing the network, the kappa value
increases to 0.46. For the modified network the kappa value is
0.48 and for combining the modified network and the perpetual
loss in the training the kappa is 0.44. It appears that the inclusion
of L1 loss (50% w) with the perpetual loss reduces the kappa a little
(0.37). For the modified network trained with a generator loss func-
tion based on both the L1 and perpetual loss elements, the kappa is
0.43. For all of our trained models the p values are less than 0.05.

5. Discussion

The primary goal of this research is to improve the image quality
of the predicted synthetic future frames by preserving the struc-
tural details of objects in a frame so that they can be used to gen-
erate a good quality visual feed to a human teleoperator. This
research tries to address the limitations identified in our previous
work.[17] To predict future frames that account for the teleoper-
ators’ control inputs, we have used dense optical flow as an addi-
tional channel along with the RGB channels of the delayed input
frames. We have shown that without the optical flow informa-
tion, the predicted frames’ image quality is not adequate enough
to be used for teleoperation enhancement.[17] However, the
frame rate of the delayed visual feed is often not uniform and
low. These irregularities of frame rates create noise in the angle
and magnitude components when generating dense optical flow
from consecutive frames. Our filter, presented in Algorithm
3.1.2, removes the noisy outputs from the optical flow generation

Table 1. Comparison of predicted future frames’ similarities with ground truth (image quality) for the different trained models described in this article.
The comparable models with similar training parameters and dataset described in ref. [17]. The comparison and evaluation were performed using mean
PSNR, SSIM, and MS-SSIM values.

Network Loss function Input data spec. Dataset PSNR SSIM MS-SSIM

Pix2Pix L1 (MAE) RGB (3 Channel) Forza_GTþUEþ Std_DL 16.27 0.40 0.47

Pix2Pix (5C) L1 (MAE) RGB & DL Opt. 16.42 0.40 0.48

Pix2Pix (5C) L1 (MAE) RGB & UE Opt. 16.41 0.38 0.48

Pix2Pix (5C) L1 (MAE) RGB & DL Opt. Forza_GTþ Std_DL 20.8 0.51 0.70

Pix2Pix (5C) L1 (MAE) RGB & UE Opt. 20.9 0.53 0.73

Pix2Pix (5C) Perpetual SSIM RGB & DL Opt. 22.7 0.65 0.80

Modified Net L1 (MAE) RGB & DL Opt. 22.9 0.64 0.78

Modified Net Perpetual SSIM RGB & DL Opt. 23.1 0.65 0.80

Pix2Pix (5C) L1þ SSIM RGB & DL Opt. 23.1 0.66 0.80

Modified Net L1þ SSIM RGB & DL Opt. 22.9 0.64 0.80
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algorithm and provides the future prediction deep network better
input data. This results in a substantial improvement in the
quality of the predicted frames (Table 1).

From Figure 6a it is obvious that with the Pix2Pix conventional
network with the MAE L1 loss function, the generated frames
miss a lot of structural details of the scene including the road
marks and the surrounding environment for a 500ms future
frame prediction task. From an image transformation perspective,

the future is a transformed version of the past. The more infor-
mation that is retained during the encoding and decoding actions
of a U-Net-based future prediction network, the more structural
integrity of the scene would be preserved. Therefore, we have
modified the network we used in ref. [17] (see Figure 5). Along
with feeding the encoder with five-channel input information,
the angle and magnitude components reflecting the structural
changes, as well as the operator control intention information,
have been included toward the end of the decoder. An additional
convolution layer has been added before the output layer so that
the network can utilize this nondeformed information to predict a
more structurally stable future. Further, we have altered the learn-
ing process of the cGAN network as well by changing the loss
function. The L1 loss only accounts for the per-pixel change
and the generator is penalized for the pixel deformation, no struc-
tural change is accounted for. To resolve this issue, we have experi-
mented with the SSIM-based perpetual loss function (Equation (3)
and (4)). The variance and covariance components of this perpet-
ual loss (Equation (6)) account for the structural changes in frames
and penalize the generator accordingly. With a combination of the
modified network and the loss function, we have observed signifi-
cant improvement in the image quality of the predicted frames
(Figure 6c). We have experimented with 50% of the L1% and

Table 2. Statistical analysis of the predicted future frames’ PSNR, SSIM, and MS-SSIM values for all the trained models.

Model specification Mean Median Std. Deviation Skewness Kurtosis

PSNR Evaluator

Filtered data with Dl optical flow 20.80 21.1 1.22 �0.81 0.85

Filtered data with UE optical flow 20.95 21.05 1.30 �0.55 0.66

Perpetual loss (SSIM) 22.72 22.88 1.34 �0.86 1.24

Modified network with L1 loss 22.90 23.0 1.43 �0.52 0.53

Modified network with perpetual loss 23.10 23.26 1.47 �0.77 1.04

Perpetual loss & L1 loss (50% w) 23.10 23.35 1.48 �0.74 0.38

Modified net with Perp. & L1 loss 22.80 22.81 1.45 �0.24 0.24

SSIM Evaluator

Filtered data with Dl optical flow 0.54 0.54 0.040 �0.18 0.14

Filtered data with UE optical flow 0.56 0.56 0.04 .002 �0.27

Perpetual loss (SSIM) 0.65 0.65 0.04 �0.32 �0.08

Modified network with L1 loss 0.61 0.61 0.04 �0.09 �0.22

Modified network with perpetual loss 0.61 0.60 0.05 �0.13 �0.08

Perpetual loss & L1 loss (50% w) 0.65 0.65 0.04 �0.27 0.18

Modified net with Perp. & L1 loss 0.64 0.64 0.04 �0.09 �0.25

MS�SSIM Evaluator

Filtered data with Dl optical flow 0.63 0.64 0.05 �1.06 1.86

Filtered data with UE optical flow 0.65 0.65 0.04 �1.17 1.99

Perpetual loss (SSIM) 0.78 0.79 0.04 �1.17 1.99

Modified network with L1 loss 0.77 0.78 0.05 �0.97 1.47

Modified network with perpetual loss 0.80 0.79 0.047 �1.063 1.77

Perpetual loss & L1 loss (50% w) 0.80 0.80 0.04 �1.16 1.84

Modified net with Perp. & L1 loss 0.80 0.80 0.04 �0.88 1.14

Table 3. Inter-Rater agreement and reliability comparison of trained
models based on Fleiss’ Kappa and P values.

Optical flow presence Kappa p
value

Lower bound
(95% CI)

Upper bound
(95% CI)

Filtered data with Dl optical flow 0.34 <0.05 0.32 0.36

Filtered data with UE optical flow 0.32 <0.05 0.30 0.34

Perpetual loss (SSIM) 0.46 <0.05 0.44 0.47

Modified network with L1 loss 0.48 <0.05 0.46 0.50

Modified network with perpetual loss 0.44 <0.05 0.42 0.46

Perpetual loss & L1 loss (50% w) 0.37 <0.05 0.35 0.39

Modified net with Perp. & L1 loss 0.43 <0.05 0.42 0.45
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50% of the perpetual losses for training and found similar prom-
ising outcomes (Figure 6b).

The statistical analysis presented in Table 2 offers insight into
the validity of the new techniques described in this article. The fact
that the mean and medians are very similar supports the claim
that the new filter, the changed network architecture, and the
use of the perpetual generator loss function have significantly
improved the image quality of the predicted and synthetically gen-
erated future frames. The standard deviations are also very low and
lower than those reported in ref. [17]. This indicates that the image
quality of all the test outputs is clustered around the mean value
and uniform. Therefore, the video quality remains uniform and
does not change drastically frame by frame. The networks and
the loss functions can handle the complexity amid having a high
level of uncertainty in the incoming input feed for a 0.5 s delay.
The skewness values are also very low. More importantly, the pre-
dicted frames’ image quality values’ distribution is slightly nega-
tively skewed, which means that for most of the predicted frames
the image quality is better than the mean values. The kurtosis val-
ues measure the shape of a data distribution relative to the normal
distribution and can be used to indicate the presence of outliers in
the data. The reliability of the kurtosis values depends on the sam-
ple size. In our experiment, the sample size is sufficiently large to
rely on the values. As shown in Table 2, all of our new settings
have kurtosis values of less than 3. For the PSNR and
MS-SSIM evaluators, the kurtosis values are slightly positive
but close to zero, while for the SSIM evaluator, the values are
slightly negative and also close to zero. This indicates that the
PSNR, SSIM, and MS-SSIM values are almost normally distrib-
uted, and there are very few outliers in the data.

Inter-rater agreement represents the reliability of the mea-
sured variables and parameters that are collected during an
experiment. For comparing the images and measuring the qual-
ity we have applied three well-recognized image comparison
matrices or raters. To measure the inter-rater agreement,
Feliss’s kappa is a well-recognized method. The better the value
of kappa for a model (for our use case, network, and loss function
combination), the more reliable the model is. Fleiss kappa value
is considered fair for the range of 0.21–0.40 and moderate for the
range of 0.41–0.60.[56,57] For both our modified network and the
perpetual loss the kappa values are high. Therefore, it can be
claimed that our modifications have produced more reliable
future frames that are supported by all three evaluation metrics.

In addition to the image quality considerations, inference time is
crucial for our use case, where the model needs to be capable of
predicting future frames in real time to provide a continuous video
feed to teleoperators during actual operations. The inference time
of a GANmodel depends on various factors, including the model’s
complexity, input data size, hardware used for inference, and the
model’s specific implementation. We found that our models’ infer-
ence times range from 0.07 to 0.08 s (Table 4) running on an
NVIDIA Geforce Titan RTX system with a 3.5GHz Intel Core
i9 CPU, which is fast enough to generate frames at a speed of
13–14 fps based on our computation facility, data, and training
specifications. This inference speed is particularly encouraging
given our specific use case, where we expect delayed frames at
a rate of 13–15 fps due to the challenging communicationmedium.

6. Conclusion

This article presents a novel technique for the generation of
high-quality structure-aware future frames from a stream of past
frames delayed by �500ms seconds for ground robotic vehicle
teleoperation enhancement. Our previous work[17] proposed the
initial idea that the synthetically generated future frames can be
an effective method to mitigate the latency problem in visual
feed-based ground vehicle teleoperation operated at reasonably
high speeds.[17] This work introduced the idea of using
five-channel input data and U-net-structured cGAN for future
frame prediction. However, the image quality compared to the
ground truth future was relatively low and the predicted frames
were missing significant structural detail of the objects in the
scene. To resolve the frame rate disparity-related issue identified
in that work, we have designed a filter to remove noise from the
dense optical flow components and input data. To preserve the
structural integrity of objects, we have modified the U-Net gen-
erator architecture of the cGAN used. We have also used a per-
petual loss function for training that accounts for the structural
changes of objects in frames. We have found that our modified
network along with the SSIM perpetual loss function-based
model achieves the highest accuracy with image quality metrics
of 23.1-0.65-0.80 (PSNR, SSIM-MS_SSIM). A 50–50 percentage
weight for L1 and the perpetual loss function with the modified
network also achieved similar performance (22.9-0.65-0.80).
Fleiss’ kappa values for these models have also confirmed high
reliability values of 0.44 and 0.43 respectively. The statistical anal-
ysis of the 2000 test frames demonstrates that the use of the filter,
the newly updated architecture, and the inclusion of the
SSIM-based perpetual loss function have generated synthetic
future frames that have higher accuracy and more uniform qual-
ity and fewer outliers in the output image frame distribution
(based on image quality metrics). We are confident that the
improved predicted image frames can be used in a real-time
robotic teleoperation control task in order to significantly reduce
the impact of latency. As the next step for this research, we plan
to implement our trained image-to-image long future prediction
model into a real-world robotic system, in order to assess its
effectiveness and applicability in practical scenarios. We will also
continue to investigate methods to improve the prediction
model, both to enable prediction over longer time scales and
to improve the quality of the generated frames.

Table 4. Inference times for the trained models.

Models Inference time [s]

Filtered data with Dl optical flow 0.07

Filtered data with UE optical flow 0.07

Perpetual loss (SSIM) 0.07

Modified network with L1 loss 0.08

Modified network with perpetual loss 0.08

Perpetual loss & L1 loss (50% w) 0.07

Modified net with Perp. & L1 loss 0.07
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Appendix

Figure A1. Generator architecture from ref. [17].
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Figure A2. Discriminator architecture.
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Figure A3. Modified generator architecture.
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