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Abstract: The continuously increasing renewable distributed generation (DG) penetration rate sig-
nificantly reduces environmental pollution and power generation cost and satisfies society’s rapid
growth in electricity demand. Nevertheless, high penetration of renewable DGs, such as wind power
and photovoltaics (PV), might deteriorate the system’s efficiency and reliability due to its intermittent
and stochastic natures. Introducing battery energy storage systems (BESSs) to the distribution system
provides a practical method to compensate for the above deficiency since it can deliver and absorb
power when needed. Hence, it is important to determine the optimal allocation of BESS to achieve
maximum assistance in the grid. This study proposes an optimal BESS allocation methodology to
improve reliability and economics in unbalanced distribution systems. The optimal BESS allocation
problem is solved by simultaneously minimizing the cost of energy interruption, expected energy
not supplied, power loss, line loading, voltage deviation, and BESS cost. The proposed technique is
implemented and analyzed on a high renewable DG penetrated unbalanced IEEE-33 bus network
using DIgSILENT PowerFactory software (version 2020 SP2A). An enhanced grey wolf optimization
(EGWO) algorithm is developed to optimize BESS location and size according to the selected objective
function. The simulation results show that the proposed optimal BESS optimization technique signifi-
cantly improves the economics and reliability in unbalanced distribution systems and the EGWO
outperforms the gray wolf optimization (GWO) and particle swarm optimization (PSO) algorithms.

Keywords: optimal allocation of BESS; reliability enhancement; DIgSILENT PowerFactory; line
loading; voltage deviation; power loss minimization

1. Introduction

Due to the growing electricity consumption, expensive fossil fuels, and concerns about
global warming, tons of renewable distributed generations (DGs), such as photovoltaic
(PV) and wind generation, have been installed into the power network. Because renewable
DGs usually emit negligible greenhouse gas and have lower electricity production costs
than conventional power plants [1,2].

The main objective of the power system is to provide uninterrupted electricity to the
consumer at a relatively lower cost. Therefore, economics and reliability are two funda-
mental characteristics of the power grid [3]. Many countries have integrated renewable
DGs into their power grid to achieve this goal. The most recent research conducted by
the international energy agency (IEA) forecasts that renewable electricity will increase
60% from the year 2020 to 2026, which is about 95% power capacity growth for the whole
world [4]. The global power demand is continuously increasing because of the rapid rising
in economic, population, and technological developments. Therefore, a reliable power
supply is critical since social development mainly relies on electric power [5].
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Reliability evaluation is considered as an essential basis for planning, operation, and
designing of distribution networks. Almost 80% of power outages at the load level can be
attributed to failures in distribution systems [6]. These power outages cause significant
financial loss to the consumer, such as a reduction in production and sales, shortened
lifespan of electrical equipment, and damage to raw materials because their various electri-
cal equipment is sensitive to the change in power supply [7]. For reducing the financial
loss caused by power outages, great importance is attached to system reliability enhance-
ment in power sectors to minimize the duration and frequency of power unavailability
for customers.

The conventional distribution system is radial, it only has a central power plant. When
a failure or short circuit occurs in any grid branch, the fault must be eliminated to restore
the power to that branch. This characteristic leads to a relatively low-reliability level for
radial distribution systems because if faults happen in the main feeder, the system will stop
supplying power to all downstream laterals [6]. Integrating renewable DGs into the load
points is a key solution to overcome the above drawback since they can supply power to
the consumer when faults occur in the grid.

Moreover, the utilization of renewable DGs, such as PV and wind generation, is a
promising alternative for mitigating global warming and meeting the rapidly growing
power demand of the world because of their inexhaustible and environment-friendly
nature [8,9]. When introducing renewable DGs to the grid, they might introduce severe
issues to the grid operation, for example the output power of this type of DG is highly
random, which will magnify the volatility level of the power system. These issues will
significantly deteriorate the system frequency and voltage, leading to worse economics and
reliability of the grid [10]. Integrating BESS into the power system provides an effective
solution to mitigate the negative impact of renewable DGs due to their fast power storing
and delivering capability leading to a stabler grid frequency and voltage [1,11].

However, BESS has not been broadly applied to the grid mainly due to its high
installation cost [12-18]. For example, in Western Australia’s South-West Interconnected
System (SWIS), the installation expense is generally higher than the profit the customer
can receive during the BESS’s lifespan [19]. Moreover, it does not guarantee system
frequency and voltage improvement if the site and rating of BESS are randomly identified,
deteriorating the system reliability and increasing the power loss and installation cost.
Optimally allocating the BESS provides an effective solution to solve the above drawbacks,
such as diminishing the time of overcharge can extend the lifespan of BESS [1,13,20,21].
Researchers have proposed several methodologies [16-18,20-37] to optimally place and
size BESS to enhance the system’s reliability and economics.

Ref. [34] proposes a simultaneous perturbation stochastic approximation method to
optimally place and size BESS in an IEEE unbalanced 34 bus distribution system for system
expenditure, including BESS cost and energy from the upstream system. Unfortunately,
the model in [34] fails to consider system reliability in the total expenditure function.
Ref. [22] improves the distribution system reliability by optimally placing the BESS on
the grid through a two-stage model. Ref. [23] proposes a particle swarm optimization
(PSO) algorithm that optimally allocates BESS into the distribution network for reliability
enhancement. This study did not analyze system performance, such as voltage profile, line
loading, and network losses. An optimal planning methodology is proposed in [38] for the
coordinated allocation of DG and BESS in an active distribution network that significantly
reduces the total investment and reliability cost of power utilities. In [24], an immune-
genetic algorithm is proposed to enhance network reliability in the wind DGs penetrated
IEEE balanced 33 bus radial distribution network. Nevertheless, the effectiveness of
the proposed reliability enhancement technique on unbalanced power systems was not
analyzed. The revenue of the power utilities is maximized in [21] by minimizing the
power loss and installation expense of BESS and improving the voltage profile and lifespan
of BESS. The same problem is also addressed in [25] through an equal-cost energy ratio
method. Again in [18], the same objectives are accomplished through the coordinated
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allocation of DG and BESS by employing the non-dominated sorting genetic algorithm-II
(NSGA-II) approach combined with a utopian point method. Ref. [37] achieves optimal
uniform BESS placement and sizing through PSO, subject to power loss, line loading,
and voltage deviation reduction in unbalanced distribution systems, whereas the system
reliability was not considered. In [26], mixed-integer convex programming is hybridized
with PSO technique to minimize the power system cost by reducing power losses and
voltage fluctuation. However, the suitability of the proposed methodology on other types
of BESS except lithium-ion battery was not investigated. In [27], system efficiency are
improved by minimizing the load interruption, total BESS cost, and power loss using
a hybrid algorithm that combines PSO and genetic algorithm (GA). However, Ref. [27]
only takes wind DG into account. Other renewable DGs can also be considered. In [20],
minimization of annual cost and voltage fluctuation are accomplished in IEEE balanced
123 bus distribution system using a simulated annealing PSO algorithm. However, the
impact of capacity optimization of BESS on power network economics was not investigated.
In [28], the greedy algorithm by MATLAB is employed for optimally placing BESS into an
IEEE 33 bus system to maximize the BESS’s benefit. In [29], an improved immune genetic
algorithm (IIGA) hybridized with the novel optimal affine power flow (OAPF) technique
is used for optimally allocating BESS into a highly renewable DG penetrated distribution
system. In this research, BESS installation cost and voltage fluctuation are minimized to
satisfy the technical and economic requirements of the grid. In [16], optimal BESS allocation
is achieved through a dynamic programming optimization approach to maximize the
penetration rate of renewable DG and total investment cost. Coordinated allocation of
renewable DG and BESS performed and validated through a multi-objective sensitivity
analysis algorithm in [30] to improve the profit of the distribution company by minimizing
the voltage deviation and investment cost of PV and batteries. Unfortunately, the algorithm
applied in [28] lacks accuracy in finding the global optima. In [31], the placement and sizing
of BESS are performed to maximize the economic, technical, and environmental benefits to
the distribution system. The study employs a fuzzy-based extended version of NSGA II to
find the optimal solution to the proposed objective function. Nevertheless, the proposed
methodology is not applicable to large geographically spanned power networks since the
authors assume solar radiation availability is the same on all nodes. In [17], an optimal
BESS allocation methodology in an active distribution network is performed to minimize
BESS installation cost, voltage deviations, line congestion, and power supply cost. Ref. [32]
achieves optimal capacity configuration of BESS to minimize power flow fluctuation and
improve the PV penetration rate to maximize the profit of consumers and power companies.
An optimal planning approach for allocating BESSs in distribution networks is determined
in [33], considering post-fault system reconfiguration. This study uses a stochastic planning
algorithm and general algebraic modeling system software (a high-level system simulator)
to minimize the annual network cost and voltage deviation cost. Ref. [35] mainly focus
on the power system cost minimization, whereas costs of BESS and line loading are not
covered in the objective function. In this study, a hybrid algorithm that combines Clayton
Copula method, a point estimation technique, and PSO are used to optimally allocate BESS
in a multi-correlated wind power distribution network. The methodology proposed in [36]
addresses the optimal BESS sizing for reliability improvement in rural power networks
through a Monte Carlo simulation-based algorithm.

To sum, despite noteworthy contributions in the knowledge domain, there are gaps
that have not been investigated in the previous research, including:

e  Reliability analysis has rarely been conducted in optimal BESS planning, particularly
in unbalanced distribution systems. During the distribution system planning phase,
it is significant to deliver relatively lower cost and minimal interrupted power to the
customer [39].

e  System performance indices, such as voltage deviation, line loading, and network losses,
have not been considered altogether in previous literature except in [14,40]. However,
these parameters are vital in managing the system'’s thermal and voltage stability.



Energies 2023, 16, 7127

4 of 35

e  Almost all proposed models consider a balanced network, which is not practical. In the
real world, system voltage is rarely balanced, mainly due to the unbalanced loading in
the distribution system [41]. For instance, phase imbalance frequently occurs in US
distribution systems, particularly the medium voltage level grid [42]. Severe voltage
unbalance would magnify the system losses and shrink the capacity of the electrical
components in the network [43]. Therefore, it is necessary to improve the reliability
and economics of unbalanced distribution systems.

To solve these research gaps, an optimal BESS allocation methodology is proposed in
this research to improve the system efficiency and reliability in unbalanced distribution net-
works. The enhanced grey wolf optimization (EGWO) is employed for optimization due to
its robust global optima searching capability compared with other algorithms, such as PSO,
grey wolf optimization (GWO), and GA [13,44]. EGWO is a more efficient variant of GWO
that considers the distinct weights for leader wolves according to the leadership hierarchy,
adaptively predicting the probable position of the prey, and mimicking the random walk
behavior of the pack. GWO [45-48] and PSO algorithm [49,50] are utilized to verify the
solutions generated from the EGWO. Furthermore, the Python programming language is
employed to control the system model constructed in DIgSILENT PowerFactory software.

The remainder of this paper is structured in seven sections. The reliability indices used
in this research are specified in Section 2. Section 3 describes the problem, which contains
the proposed objective function and relevant constraints. The optimization methodology
for solving the objective function is mentioned in Section 4. Section 5 introduces the
testing system and the required indices for verifying the efficacy of the proposed approach.
The effectiveness of the proposed model is verified through six case studies in Section 6.
Finally, the conclusions are summarized in Section 7.

2. Reliability Assessment in the Distribution System

With the continuously increasing power demand, utilities need to conduct perfor-
mance analysis to withstand the line congestion caused by growing demand and supply
uninterrupted power to the consumer at a relatively lower cost. Power system reliability,
which describes grids’ ability to satisfy load demand at any time [51], is one of the key
performance indicators. Currently, around 80% of power outages of the whole power
system occur in distribution networks, which are directly connected to many consumers [7].
These power outages cause a significant financial loss to the consumer because their various
electrical equipment is sensitive to the change in power supply. Therefore, it is essential
to enhance the system’s reliability by minimizing the duration and frequency of power
unavailability for customers. Integrating BESS into the grid is one of the effective ways
to improve system reliability. Because their fast power storing and delivering capability
can mitigate the negative impact brought by renewable DGs. The performance metrics
for assessing the effect of optimal BESS allocation on system reliability can be analyzed by
expected energy not supplied (EENS) and expected interruption cost (EIC) [7,10]. These
indices are described as follows:

2.1. Expected Energy Not Supplied

The reliability indices are derived from three basic reliability parameters, which
are annual outage duration (T), average outage time (r), and average failure rate (1), as
presented in (1)—(3), respectively [52].

A=Y A 1)
T =) A )
T YA
TxT oo ®

where A; and 7; are average failure rate and average outage time at load point i, respectively.
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Expected energy not supplied (EENS) provided in (4) represents the expected amount
of energy not delivered to the loads over a period when the power demand is larger than
the available generation capacity [7,10,53]. It is one of the essential indexes for power
companies to evaluate power system reliability. The amount of unmet electricity is usually
measured in MWh over a year.

EENS = ) LT, 4)
i
where L; is the average load at load point i, as presented in (5) [23].

L = -+ ®)

where Efl is the total energy demand of load i in the given period, t is the period of interest,
usually one year.

2.2. Expected Interruption Cost

The expected interruption cost (EIC) provided in (6) indicates the cost of energy not
supplied to the load because of the power outage [6,54]. It is measured in cost over a period
usually defaulted as one year.

EIC = ) LiNeifi-hi (6)
i

where N, ; is the quantity of elements whose fault will cause interruption at load point i, f;
is the cost of interruption/composite customer damaged function.

2.3. Total Outage Cost

The summation of EIC and EENS, which is the total outage cost as presented in (7),
can be applied to assess the reliability worth of the distribution network [6,7,54]. The
cost of EENS can be calculated by multiplying a cost rate ¢. In this research, ¢ is set to 20
USD/kWh [55].

TOC = eEENS+EIC (7)

2.4. Other Reliability Index

System average interruption duration index (SAIDI), a widely used reliability index
as provided in (8) [56], is also considered in this research. This reliability index describes
the level of impact caused by a number of disturbances to the customer at the load points,
which is essential for evaluating the reliability of distribution systems.

Y. T;-N;
L N;

where N; shows the number of customers at load point i.

SAIDI =

®)

3. Problem Formulation
3.1. Objective Function

This paper aims to enhance the system reliability and system performance and min-
imize the investment cost of BESS units by optimally placing and sizing BESS while
satisfying the system constraints. The system performance cost consists of voltage de-
viation cost (VDC), power loss cost (PLC), and line loading cost (LLC), which are the
critical parameters in distribution system planning. The objective function (9) is a cost
function formulated by Equations (10)—(18) [7,13,54]. It comprises the cost of reliability
(TOC), VDC, PLC, LLC, and cost of BESS units (BESSC), which are weighted equally with
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AReL=Ayp = App, = App = Apgss = 1.(Where, Aggr, Ayp, Apr, Arp, and Apgsg are
weighting factors of TOC, VDC, PLC, LLC, and BESSC, respectively.)

F = MIH(ARELTOC+)\VDVDC-FAPLPLC—F/\LLLLC—"-/\BESSBESSC) 9)

where 5 ’ ‘
Vtarget — Vim (Mm sizer M site)

VDC = . : -At-6 10

igl Vtarget P ( )

PLC = \/{PTLoss (Mm,size/ Mm,site) }2 + {QTLoss (Mm,sizel Mm,site)}z'At"sloss (11)

L L P2 + QZ
Prioss (Mm,size/ Mm,site) = Z Pross (m/ 71) = Z R(m/ Tl)- 2 (12)
I=1 l= ‘{me (/ Mm,site)} ‘

L
QTLoss (Mm,size/ Mm,site) = Z QlLoss (m/ n) =
=1 1

gl

2 2
X (m, n): P +Q | a3
1 ) {th (Mm,sizm Mm,site) } ‘

STLoss (Mm,sizez Mm,site) = \/{PTLoss (Mm,size/ Mm,site) }2 + {QTLoss (Mm,sizez Mm,site) }2 (14)
L

LLC = Y %LLjppss-At-drr (15)

1=1

Ll
%LLypess = | -2 |-100 (16)
rated
K
BESSC = E M, sizeCu (17)
i=1

B

TOC = Y  eEENS;+ EIC; (18)

i=1
The following values are considered in this study for analyses (in this study, a 2% annual
increase rate is applied to d),55, dvp, and o1, which are cost rates of power loss, voltage devia-
tion, and line loading, respectively.): d;,5s = 0.287 USD/kWh [14], éyp =0.163 USD/p.u./h [57],
Viarget = 1 p.u., dpp = 0.544 USD/p.u./h [14], Cy = 30,000 USD/MWh/year [58], and
e =20 USD/kWHh [55].

3.2. Objective Function Constraints

The multi-objective function (9) is subjected to the operational limits (19)—(26) and
boundary conditions (27)—(33) for BESS modelling. Equations (19) and (20) indicate that
real and reactive power always remains the same when boarding and leaving bus m.
Equation (21) states the voltage magnitude constraint for bus m. Equations (22) and (23)
denote the limits regarding BESS allocation. Equations (24)—(26) state the boundary limits
for charging and discharging BESS [57].

P Y (Pi) =pem+ Y (Pi) (19)
neN+ deN—

Qi+ L (<) =+ ¥ (i) (20)
neN+ deN—

Vmin < |Vhtm| < Vmax (21)
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0, if the BESS is active

Msite = { 1, otherwise (22)

- _ [ Assign, if My,site = 0
Mm,szze - { 0’ 1f Mmrsite — 1 (23)

Pmin < pBESS < Prax (24)
P{ < Pppss < Py (25)
Emin < EBESS < Emax (26)

3.3. BESS Modelling

Currently, there are many types of batteries, including sodium-sulfur (NaS), lead-acid,
lithium-ion, and flow batteries. The lithium-ion battery is the most prevalent type of
battery, occupying 90% of the global battery market [59]. Compared with other battery
storage types, the lithium-ion battery has a relatively high specific energy and power, high
charge/discharge efficiency (80-90%) [60], and a low self-discharge rate. Moreover, its
battery pack price has significantly dropped 73% from 2013 to 2018 [61], and the price will
continuously decrease from USD176/kWh in 2018 to USD62/kWh in 2030, as predicted by
Bloomberg New Energy Finance (BNEF) [59]. In the meanwhile, the performance of the
lithium-ion battery has continuously improved. The latest research regarding lithium-ion
batteries focused on replacing its anode material graphite with graphite/silicon (oxide)
composites to improve the power density, making it a longer-term battery [62]. In the
distribution system, lithium-ion batteries are mainly used to facilitate the penetration
of renewable DGs. For example, Hornsdale Power Reserve installed the world’s largest
lithium-ion battery in the mid-north region of South Australia in 2017 to stabilize the
intermittent power output of the Hornsdale Wind Farm [63]. Synergy also plans to build
Western Australia’s biggest lithium-ion battery by the end of 2022, which is about 100
MW /200 MWh at Kwinana Power Station, to deal with the rapid growing rooftop solar
panels’ installation [4]. Given the above considerations, a lithium-ion battery is chosen as
the BESS type in this paper. The Equations (27)—(33) are used in this study to develop BESS
model which is generic and can be applied to other BESS types also.

02 < SKpes <09 (27)
t (Et - Msize, max)
Pe = maxq Pyin, W (28)
C
E, — Mre mi
P = min{Pmax, (E, A“t”'ml”)”d} (29)
Eryqg = min{ (Et - Atpgﬂc)/ Msize, mux} (30)
P{ < Pppss < Py (31)
Pt
Et+1 = max E: — At?TZ ’ Msize, min (32)

P{ < Phres < Pj (33)
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The state of charge of BESS (SII{BESS) is subjected to constraints (27). (S%ESS) =1 repre-
sents that the BESS is fully charged. And BESS is discharged up to 20% if (Sks) = 0.2.
Equations (28) and (29) generate the charging and discharging rate for BESS, respectively [64].
Constraint (30) calculates the amount of energy stored in the BESS in charging mode,
and constraint (31) restricts the charging power of BESS. Correspondingly, the energy
released from the BESS is calculated by (32) in discharging mode, and (33) sets the limits
for discharging power of BESS.

4. Optimization Algorithm
4.1. EGWO Approach

This paper adopts the EGWO algorithm proposed in [65] to handle the BESS allocation
problem to minimize the performance cost and enhance the distribution system'’s reliability.
The EGWO is an upgraded version of the popular meta-heuristic optimization algorithm,
GWO. The GWO emulates the social structure and hunting strategies of grey wolf packs to
find the global optimum of the problem [66]. In the mathematical framework of the GWO
algorithm, each grey wolf symbolizes a potential solution. The wolf with the best fitness
value is designated as the o wolf, while the second and third best are 3 and 6 wolves,
respectively. All other wolves in the population are treated as w wolves, which adjust their
position by following the guidance of the top three wolves. After each adjustment, the pack
recalculates its fitness. The three best-performing wolves are automatically promoted to
the roles of «, 3, and & wolves. This iterative process ensures a gradual approach towards
the optimal solution, eventually identifying the & wolf as the best solution.

To improve the convergence speed and quality of the solution generated by the
traditional GWO technique, the EGWO presents a more efficient variant by considering
the distinct weights for leader wolves according to the leadership hierarchy, adaptively
predicting the probable position of the prey, and mimicking the random walk behavior of
the pack, which are delineated by (35), (34), and (38), respectively [65]. The flowchart of the
EGWO algorithm is illustrated in Figure 1.

In EGWO, the position of the prey is dynamically determined through a weight-based
Equation (34).

x]p(t) = Sp-xh (1) + 5/3'3(;3(1') + (57-x]7(t) +&(t) (34)

where, j and t correspondingly represent the current dimension and iteration of the problem.
du,0p,and &, satisfying conditions (35) and (36), are weighting factors of &, 8, and ¢ wolves,
respectively. ¢(f) represents a simulated stochastic error, conforming to the Gaussian
distribution with a mean value of 0 and standard deviation o(t). The characteristic of o (t)
is defined by (37).

125a>5ﬁ>(5720 (35)
dutdp+6y =1 (36)
o(t) >o(t+1) (37)

Under the guidance of &, 8, and J wolves, the position of each wolf 7 is navigated directly
towards the predicted location of the prey, as expressed by the subsequent Equation (38).

A(t+1) = xh(t) — @-|xh (1) — xl(1) (38)

where @ represents a random number selected from the interval [-2, 2].
When the wolf position determined by Equation (38) goes beyond the predefined boundaries,
it will be rectified by executing a random move towards the boundary, according to (39).

x{(t+1) _ {xf(t) +7‘<ubf —xf(t)%, if x{(t—i—l) > ubl

‘ o , , 39
xf(t)+7-(lb7—x§(t) Jif xl(t+1) <1V %
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where, ub/ and Ib/ respectively denote the upper and lower boundaries for jth dimension.
7 is a random number in the range [0, 1].

Start

A 4
[ Initialize the population of the grey ]
A

wolf pack, as well as A, and Q with m
equal to 2.

save the top three wolves a, B, and y with the
best fitness.

C | Iteration t=0 |

A 4
Estimate the position of the prey
through equatlon (34).

[ Update the position of all grey

[ Calculate the fitness of all grey wolfs, and ]

E wolves by equation (38).

—

|

If the new position
exceed the lower and
upper boundaries?

Yes

Adjust the position by a random walk
G (_towards the boundary_as per equation (39).

Calculate the fitness
H| ofall grey wolves.

[ Update the position of the ]

three leading wolves (Xa, Xs,
and Xy) .

Iteration t=t+1

Figure 1. Flowchart of EGWO algorithm.

4.2. Proposed Methodology

Figure 2 illustrates the proposed BESS allocation strategy using the EGWO approach.
After inputting the essential data into all grid components, EGWO parameters are initial-
ized. The parameters and variables utilized in the optimization process are tabulated in
Table 1. Scaling factor for time variant load and DGs were adopted from Ref. [57] and
applied to loads and DGs in the test system. Voltage dependency is created for scaling
feeder loads. Next, the optimal BESS placing and sizing problem is created to minimize the
total cost, including TOC, VDC, PLC, LLC, and BESSC. There are two categories for BESS
sizing: (1) using uniform BESS size; (2) using non-uniform BESS size.
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Start

Input system parameter, e.g., VR4TED RL(i, /), XL (i, /), P, Q, P™F,
a | QTF, SWIND GPV-MAX GPV-OP anq GBESS-MAX

\4

b Set the EGWO parameters and constraints,
e.g.D,NF,H,,,,,1b1,1b2,ubl,and ub2

c | Randomly create M,, 5., and M,, ;.. (but within limits),
and allocate BESSs into the grid model accordingly
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Figure 2. Proposed BESS allocation methodology with EGWO algorithm.
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Table 1. EGWO parameters and variables.

Type

Parameters/Variables Description/Settings

Input parameters

Output parameters

Decision variables

EGWO parameters

EGWO bounds

vRated R(m,n),X(m,n),P,Q,PTF,QTF, . e
gWind GPV-Max gPV-OP o' 7'aBESS Max Critical for the distribution system model

TOC, VDC, PLC, LLC, and BESSC Critical for the objective function
Determine the sizes of BESSs in MVA with a unity

M size power factor.
M site Determine the locations of BESSs in the grid.
©,Y Settings: ¢ € [-2,2],v € [0,1]

Settings: D = 2,NF = population size = 80,
D, NF, Himax Hmax = maximum iteration = 1000
For My, gite : Ib1,and ubl Settings: 1b1 = 0.1 MVA and ubl = 2 MVA
For My, size : 1b2, and ub2 Settings: 1Ib2 =0 and ub2 =1

The position of BESS is determined by the decision variable My, sjte, Where My, gite = 0
states that a BESS at bus m is active and My, site = 1 represents that the BESS at bus m is
inactive. The sizes of BESSs, My, size, distributed in the grid are generated randomly within
the limit of 0.1 MVA to 2 MVA. The determination of BESS sizes is subject to the lower
boundary (Ib1l) and upper boundary (ub1) of My, site, lower boundary (Ib2) and upper
boundary (ub2) of My, size, string size of BESS, bus size, transformer size, and inverter
specifications. In the end, the optimized results of My, 5ize and My, site are generated
through the EGWO process under the objective function constraints to supply desired
MW to improve the system reliability and power quality and minimize system losses, line
loading, and investment for BESS units.

5. Testing Network and System Performance Indices

This section introduces the testing system for verifying the efficacy of the proposed
methodology, assignment of factors for scaling the feeder and forming voltage dependence of
loads, and the required indices for evaluating system performance and reliability improvement.

5.1. Test System

The proposed methodology is tested in a modified IEEE 33 bus system with high
renewable penetration, as shown in Figure 3. DIgSILENT PowerFactory software is em-
ployed for building the system model. In the test system, three 400 kVA solar DGs are
connected at Bus05, Bus21, and Bus31; four 500 kVA solar DGs are allocated to Bus08, Bus12,
Bus28, and Bus33; and two 1 MW wind DGs are installed on Bus18 and Bus24. The wind
and solar DGs and loads are modelled using built-in templates in PowerFactory. For the
balanced 33-bus system, the network data for feeders and loads are listed in Appendix A
Table Al. The unbalanced 33-bus system is originated from the above balanced system [67]
by randomly distributing the load among three phases and maintaining the total load for
each bus unchanged. The feeder and modified load data for the unbalanced system are
presented in Appendix A Tables Al and A2, respectively [68]. The base MVA and the
substation voltage are 10 MVA and 12.66 kV, respectively. The voltage violation limits
are assumed as £6% [69]. All lines” outage rates and time are set as 0.035 fail /year and
18 h [22], respectively. The cost rate for energy not supplied is 20 USD/kWh [54,55]. The
power flow equations used in this research are detailed in [70] and are addressed with the
unbalanced three-phase Newton—-Raphson approach.
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Figure 3. Proposed 33-bus distribution system model.

5.2. Feeder Scaling and Voltage Dependency

The test system load follows the IEEE-RTS model, and the feeder loads are scaled
through the procedures mentioned in [14]. The total real and reactive power is calculated
by employing a scale (YCALE) and the load voltage dependency as shown in (40) and (41),
respectively [14].

v €qp V; €ap Vi €ep
P:YSCALE.PO[QP_(VIQ?F> +bp.(w§glF> +(1—uP—bP)-<V£g‘F> } (40)

e,p €aQ bQ
Q = WSCALE.q {aQ- (;;I;g}) 1 bQ- ( ‘Z’gg> + (1 —aQ - bQ)- ( ;?;?1:) } (41)

where, the load coefficients are set as aP = aQ = 04, bP = bQ = 0.3, and cP = cQ = 0.3, and
the exponents are e;p = e;0 = 0, epp = €0 = 1,and ecp = .9 = 2, and cP = cQ = 0.3 [14].

5.3. Indices for Evaluating System Performance Improvement
5.3.1. Indices for Voltage Deviation and Profile Improvement

Vinax and Vi, for mth bus are calculated by applying the 6% voltage violation limits.
The voltage deviation index is formulated as a percentage (%VDI), as shown in (42) [14].

B, (|VRATED _y, |
/OVDI - Z <‘/RATED 100 (42)
m=1
The voltage profile of mth bus (V P, ), overall voltage profile (V P), and voltage profile
improvement index are expressed as (43)-(45), respectively [14], where Y8 _ 1 8, = 1.
VP = VpuMpmOm (43)
B
VP = Y VP, (44)
m=1
VPyith—
VPI] = - LHh-ESS (45)
VPpo—Ess

5.3.2. Line Loading Index

The line loading index (LLI) denotes the grid’s total line loading or demand level.
The percentage line loading index (%LLI) and percentage line loading of /th line for the base
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scenario without BESS allocation and the scenario with BESS allocation are demarcated
by (46), (47), and (16), respectively [14].

%LLTwith—gss 109 — Li=1%LLkss

%LLI = 100 (46)
/OLLTnofESS Z;\A: 1 O/OLLI,BASE
o SLipasE
JoLL; pASE = (SL[ CATED -100 47)

5.3.3. Power Loss Reduction Indices

The real (PLsRI®), reactive (PLsRI?), and total line loss (PLsRIT) of the grid are
formulated by (48)—(50), respectively [14].

M
P
PLsRI® — ZJ\Z/I:1 I,Ls—ESS (48)
P
1= 1PL1s—BASE

M
Y= 1 Q1rs—Ess

PLsRIC = (49)
M 1 Quis—BASE
I \/(PZ,LS—ESS)Z + (QpLs—Ess)”
PLsRIT = (50)
M 2 2
Li—1 \/(Pl,Ls—BASE) + (Q1Ls-BaSE)
5.3.4. Reliability Indices
The total outage cost reduction index (TOCRI) is calculated by (51).
B
_1TOC,;, with—
TOCR] — Yim—1 m,with—ESS (51)

qu =1 TOCm,na—ESS
where i is the load point number.

6. Results and Analysis

This section explores the benefit of optimal BESS allocation in reliability enhancement,
cost of BESS minimization, voltage deviation, power loss, and line loading reduction in the
distribution system. The simulation study is implemented in the DIgSILENT PowerFactory
software version 2020 on a computer with Windows 10 64-bit, Intel(R) Xeon(R) 3.5 GHz
processor, and 16 GB RAM. System performance is investigated and analyzed in six case
studies, as shown below:

Case 1: no BESS allocation in the balanced 33-bus system.

Case 2a: uniform BESS allocation in the balanced 33-bus system with Ayp = App, =
ALL = Aess = ArRpL = 1 (All metrics are with the same weight of 1).

Case 2b: uniform BESS allocation in the balanced 33-bus system with Ayp = App, =
AL = Apess = 1and Aggr, = 10 (All metrics are with the same weight of 1 except
)\REL which is 10).

Case 3a: non-uniform BESS allocation in the balanced 33-bus system with Ayp =
ApL = AL = Aess = ArgL = L.

Case 3b: non-uniform BESS allocation in the balanced 33-bus system with Ayp =
ApL = AL = Apess = land Aggr = 10.

Case 4: no BESS allocation in the unbalanced 33-bus system.

Case 5a: uniform BESS allocation in the unbalanced 33-bus system with Ayp = Ap, =
ALL = Agess = AreL = 1.

Case 5b: uniform BESS allocation in the unbalanced 33-bus system with Ayp = Ap, =
ALL = }\BESS = land ?\REL = 10.
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Case 6a: non-uniform BESS allocation in the unbalanced 33-bus system with Ayp =
ApL = AL = Aess = AreL = 1.

Case 6b: non-uniform BESS allocation in the unbalanced 33-bus system with Ayp =
ApL = AL = Apess = land Aggr = 10.

To investigate and analyze the system performance in balanced and unbalanced
distribution systems, Cases 1-3 are categorized as investigation category I (optimal BESS
allocation in the balanced distribution system); Cases 4-6 are categorized as investigation
category II (optimal BESS allocation in the unbalanced distribution system). To analyze
the difference between uniform size BESS and non-uniform size BESS allocation, each
investigation category has one case with uniform size BESS and one case with non-uniform
BESS. Moreover, the weighting factor of system reliability, Argr, is changed from 1 (Case 2a,
3a, 5a, and 6a) to 10 (Case 2b, 3b, 5b, and 6b), aiming for better optimization results.

As mentioned earlier, EGWO was used to identify BESS’s optimum location and
size. The output of EGWO on BESS size and location is used for the optimization analysis
conducted in this section. Moreover, the solutions generated from EGWO are compared
with both GWO and PSO approaches to verify its efficacy.

6.1. Case 1 and 4—Case without BESS Allocation in the Balanced and Unbalanced
Distribution System

For base Cases 1 and 4, the results of performance indices, including %VDI, %LLI,
STLoss, and TOC (as per Equations (14), (18), (42) and (46)) listed in Table 2 represent the
parameters desired to be optimized. The smaller the parameter results, the better the
system performance. Although all these parameters are within the system constraints, there
is space for further improvement.

Table 2. System results for various cases.

Case
Studies

Apparent Power per BESS (MVA)
and Their Sites

Objective
Function Value
(USD/Year)

STLoss TOC Total BESS

VDL(%)  LLL(%®)  (\yA)  (USD/Year) Size (MWh)

Case 1:

Case 2a:

Case 2b:

Case 3a:

Case 3b:

Case 4:

Case 5a:

No BESS

100.813 256.192 0.214 407,860 - 959,529.845

BESS03, BESS06, BESS07, BESS08,

BESS10, BESS11, BESS24, BESS27,
BESS28, BESS30, BESS31, BESS32,

59.637 218.294 0.156 327,352 1.53 777,590.108

BESS33, MVA for each BESS = 0.118

BESS03, BESS06, BESS07, BESS11,

BESS12, BESS13, BESS14, BESS17,

BESS19, BESS22, BESS23, BESS24, 40.834 231.279 0.174 301,029 2.571 832,955.828
BESS32, BESS33, MVA for each

BESS = 0.184

BESS03 = 0.154, BESS06 = 0.140,
BESS07 = 0.212, BESS10 = 0.101,

BESS12 = 0.221, BESS15 = 0.123,
BESS16 = 0.141, BESS20 = 0.102,

63.918 217.094 0.16 343,117 1.662 807,263.689

BESS21 = 0.228, BESS32 = 0.117,
BESS33 = 0.123
BESS03 = 0.113, BESS06 = 0.148,
BESS07 = 0.221, BESS10 = 0.153,
BESS11 = 0.144, BESS18 = 0.445,
BESS21 = 0.1, BESS25 = 0.251, 40.646 232.682 0.177 309,181 2.535 845,109.939
BESS26 = 0.262, BESS27 = 0.105,
BESS28 = 0.149, BESS30 = 0.202,
BESS32 = 0.111, BESS33 = 0.132

No BESS

100.993 309.421 0.220 445,480 - 1,014,773.731

BESS05, BESS06, BESS07, BESS08,
BESS09, BESS18, BESS24, BESS25,
BESS26, BESS29, BESS30, BESS31, 69.589 265.765 0.163 331,112 1.573 801,296.52
BESS32, BESS33, MVA for each
BESS =0.112
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Obijective
Case Apparent Power per BESS (MVA) o o STLoss TOC Total BESS K
Studies and Their Sites VDLCe)  LLICR) 1y (USD/Year) Size (MWh) F‘:%‘;B’/I;{Zfrl;‘e

BESS03, BESS04, BESS06, BESS07,
BESS08, BESS09, BESS14, BESS16,
Case 5b: BESS18, BESS19, BESS20, BESS21, 23.312 291.633 0.194 308,901 2.749 8,941,82.058
BESS30, BESS31, BESS32, BESS33,
MVA for each BESS = 0.172
BESS02 = 0.127, BESS03 = 0.161,
BESS06 = 0.232, BESS08 = 0.131,

Case 6a:

BESS10 = 0.159, BESS11 = 0.140,
BESS17 = 0.158, BESS28 = 0.232,

67.519 266.914 0.176 355,030 1.72 863,067.735

BESS29 = 0.108, BESS32 = 0.115,

BESS33 = 0.157

BESS02 = 0.151, BESS05 = 0.183,
BESS06 = 0.332, BESS08 = 0.241,
BESS10 = 0.237, BESS11 = 0.221,

Case 6b:

BESS21 = 0.119, BESS22 = 0.1,
BESS25 = 0.138, BESS26 = 0.126,

27.321 291.213 0.209 319,687 2.881 945,827.482

BESS27 = 0.117, BESS29 = 0.142,
BESS30 = 0.159, BESS31 = 0.218,
BESS32 = 0.162, BESS33 = 0.233

6.2. Case 2 and 5—Uniform BESS Allocation in the Balanced (Case 2) and Unbalanced (Case 5)
Distribution System

Optimal BESS allocation results through both uniform and non-uniform sizing ap-
proaches are displayed in Table 2. As mentioned earlier, the My, sjte and My, size Was
identified through the EGWO approach and shown in Table 2 by the BESS number and
BESS MVA, respectively. For example, BESS24 = 0.118 represents a BESS of 0.118 MVA
installed at bus 24. Thirteen 0.118 MVA BESSs and fourteen 0.184 MVA BESSs are allocated
for Case 2a and Case 2b, respectively. It can be seen that all performance indices (% VDI,
%LLI, ST10ss, and TOC) in both Case 2a and Case 2b are decreased compared with Case 1.
Although Case 2b, which provides more importance to TOC than other indices, achieves
better system reliability (TOC)and voltage profile (%VDI) compared with Case 2a. How-
ever, it requires a larger total BESS size in Case 2b (2.571 MWh) than in Case 2a (1.53 MWh),
which leads to a higher line loading (%LLI), power loss (St0ss), and a more significant
distribution system investment cost. Therefore, Case 2a is the desired optimal solution
for uniform size BESS allocation in the balanced distribution system considering system
performance and investment cost. Similar results can also be found in uniform size BESS
allocation in the unbalanced system (Case 5), that all performance indices (% VDI, %LLI,
ST1oss, and TOC) in Case 5a and Case 5b are lower than in Case 4. And Case 5a is more
cost-effective compared with Case 5b.

6.3. Case 3 and 6—Non-Uniform BESS Allocation in the Balanced (Case 3) and Unbalanced
Distribution System (Case 6)

The impact of non-uniform size BESS allocation in the balanced system is analyzed,
and the outcomes are presented in Table 2. In this case, M, siz is assigned non-uniformly
into the grid. Case 3b has a larger weighting factor of Crg, for achieving a better optimiza-
tion outcome. It is apparent that all performance indices (% VDI, %LLI, St14ss, and TOC) in
both Case 3a and Case 3b are decreased compared with Case 1. In contrast to Case 2a, %LLI
in Case 3a is further minimized. But the required total BESS size is larger than Case 2a,
which would cause an increase in distribution system investment cost. After giving more
significance to TOC of Case 3b, TOC and %VDI are further reduced compared with Case
3a, while the total BESS size is improved. Similar results can also be found in non-uniform
size BESS allocation in the unbalanced system (Case 6) that TOC and %VDI in Case 6b are
decreased compared with Case 6a, while the total BESS size is further increased.
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6.4. Results Analysis and Comparison
6.4.1. Voltage Profile

The bus voltage for individual bus numbers is displayed in Figures 4 and 5. Regarding
investigation category I (Figure 4), bus voltages for almost all buses have been improved in
both Cases 2 and 3 compared with Case 1. Case 2b achieves the best voltage profile among
all cases. In this case, most bus voltages are near the rated voltage of 1 p.u. However,
the voltage deviation at buses 10-18 and 20-22 is higher compared with Case 3b. Overall,
Cases 2 and 3 achieve a better voltage profile than Case 1, where the voltage profile of
Case 2a (%VDI = 59.637) is better than Case 3a (% VDI = 63.918). Similar to investigation
category I (Figure 4), voltage profiles for all cases with BESS allocation in investigation
category II (Figure 5) are significantly improved compared with Case 4. Case 5b provides
the best voltage profile for most buses except buses 5, 6, 26, and 27, which are slightly
worse than Case 6b. On the whole, cases with more significance to TOC (Case 2b, 3b, 5b,
and 6b) provide a better voltage profile than cases with the same weighting factor (Case 2a,
3a, 5a, and 6a), as presented in Table 2.
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Number of buses

Figure 4. Voltage profile for investigation category L

6.4.2. System Reliability Cost

The system reliability in both investigation categories is measured to evaluate the
effects of integrating BESS for reliability improvement, as displayed in Figures 6 and 7.
Both investigation categories have similar patterns, where TOC, EIC, cost of EENS, and
SAIDI have the highest value for their base case. In addition, these reliability parameters
are further reduced in cases with Aggr = 10 (Cases 2b, 3b, 5b, and 6b) compared with
the cases with Aggr = 1 (Cases 2a, 3a, 5a, and 6a) since more importance is given
to the system’s reliability. TOC, EIC, and cost of EENS for all cases are illustrated in
Figure 6, where the lowest costs are observed at Case 2b (EIC = 151,056 USD/year, cost of
EENS =149,834 USD/year, TOC = 301,029 USD/year) and Case 5b (EIC = 155,509 USD/year,
cost of EENS = 153,540 USD/year, TOC = 308,901 USD/year) for investigation categories I
and II, respectively.
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Similar characteristics can also be noticed in the outcome of SAIDI, as exhibited in
Figure 7. The results suggest that Case 3b (SAIDI = 1.353 h/customer X year) and Case 6b
(SAIDI = 1.287 h/customer X year) improve the system reliability better than other options
in investigation categories I and II while demanding more BESS installation.

Overall, it can be established that renewable DGs penetrated distribution systems
without BESS allocation will magnify the frequency and duration of the power outage
experienced by the consumers. In contrast, increasing the BESS capacity of optimal BESS
planning in the distribution system can significantly increase the system’s reliability and
lower the TOC for consumers. This result substantiates the finding proposed in [7] that
introducing BESS to renewable DG penetrated distribution systems can improve system
reliability, such as reduced TOC, EIC, and cost of EENS, and SAIDIL.

6.4.3. Line Loading and Line Losses

The performance comparison regarding line loading is depicted in Figures 8 and 9.
All line loadings are within the constraint of 0 to 80%. According to Figure 8, L1 has
the maximum loading among all cases (36.614% for the base case and around 29% for
Cases 2 and 3). L2 has a load of 24.606% for the base case and around 20% for the other
cases. Most of the remaining lines are lightly loaded (below 15%) except L20, L21, and L22.
From the perspective of line loading variation, all line loadings vary closely for Cases 2 and
3. Overall, Case 3a (%LLI = 217.094) exhibits the best line loading compared with other
cases. Similar line loading characteristics can also be observed in Figure 9 (investigation
category II). Case 5 and Case 6 have reduced line loading for almost all lines compared
with Case 4. Cases with the same weighting factor (Case 5a and 6a) achieve lighter line
loading than cases with more significance to TOC (Case 5b and Case 6b). Because cases
with larger weight to TOC require bigger BESS capacity to compensate electricity shortage
during the power outage, this might lead to more energy conversions and transmissions,
causing heavier line loading and larger line losses. It is apparent that all system feeds in
instigation categories I and II have adequate spare capacity to handle the worst scenario
during an outage.
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Figure 8. Line loading for investigation category I.
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Figure 9. Line loading for investigation category II.

Figures 10 and 11 compare the total line losses for various cases. As referred to in
Figure 10, L21 exhibits the highest line loss of around 0.032 MVA for Cases 2a and 3a and
around 0.036 MVA for Cases 2b and 3b. Case 3b provides the worst line loss performance,
especially at L10-L14, while a slightly higher line loss is noticed at L2, L26, and L32 for
Case 2b. As illustrated in Figure 11, again, L21 exhibits the highest line loss of around 0.033
MVA for all cases with BESS allocation except for Case 6b, which has a slightly higher loss
of about 0.037 MVA. Case 6b exhibits the largest total line loss, especially at L24-L26, while
a slightly higher line loss is noticed at L10-L14 for Case 5b. On the whole, the total line loss
in both investigation categories I and II has almost the same characteristics compared with
each other. For investigation category I, the total line losses are slightly lower in Cases with
the same weighting factor (Case 2a and 3a) than in cases with more significance to TOC
(Case 2b and Case 3b). Similarly, Case 5a provides the minimum total line losses (0.163
MVA) for investigation category II, as illustrated in Figure 11.
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Figure 10. Total line loss for investigation category I.
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Figure 11. Total line loss for investigation category II.

6.4.4. Comparison of Optimization Results with Uniform Size and Non-Uniform Size BESS

To evaluate the difference between uniform and non-uniform BESS allocation tech-
niques in terms of their impact on system performance and economic efficiency, a com-
parison between cases with uniform size BESS and cases with non-uniform size BESS is
conducted for both categories I and II, as shown in Table 3. The comparison results show
that most ratios are greater than 1, indicating that uniform BESS allocation is generally
superior to non-uniform BESS allocation in terms of system performance and economic
efficiency improvement in balanced and unbalanced systems.

Table 3. Comparison between cases with uniform size BESS and cases with non-uniform size BESS.

Cases . . . . Total BESS Objective Function
Comparison VDI Ratio LLI Ratio STLoss Ratio TOC Ratio Size Ratio Value Ratio
Case 3a:2a 1.072 0.995 1.026 1.048 1.086 1.038
Case 3b:2b 0.995 1.006 1.017 1.027 0.986 1.015
Case 6a:ba 0.970 1.004 1.080 1.072 1.093 1.077
Case 6b:5b 1.172 0.999 1.077 1.035 1.048 1.058

6.4.5. Comparison of Optimization Results with EGWO, GWO, and PSO Algorithms

In this research, the widely used GWO approach [45-48] and PSO algorithm [49,50,71-75]
are applied to evaluate the performance of the proposed EGWO approach for Case 2a,
Case 3a, Case 5a, and Case 6a. The detailed formulation of the PSO technique is depicted
in Appendix B. As recommended in [49,50,76], the inertia constant («), the cognitive (b;)
and social coefficient (bp) of PSO are set to 0.6, 1.8, and 1.8, respectively. Other parameters
utilized during the PSO process are maximum iteration = 1000 and population size = 50,
which are the same as the EGWO approach. The same GWO technique in [66] is also applied
to validate the effectiveness of EGWO. The same settings (¢, v, D, NF, Hmax) are utilized
for both EGWO and GWO techniques, as shown in Table 1. Due to the stochastic nature of
heuristic algorithms such as EGWO, GWO, and PSO approaches, all techniques are run 30
times to validate the optimality of the generated outcomes. Table 4 compares the best, worst,
and mean results generated by EGWO, GWO, and PSO techniques. Moreover, the standard
deviations (cFCWO, gCWO and ¢P50) of obtained solutions are also assessed. The greater
o denotes a larger variation in the outcomes of 30 optimization runs. Table 4 shows that
the minimum objective function values are obtained from the EGWO technique, which
are 776,708.934 USD/year and 801,762.079 USD/year for investigation categories I and 1I,
respectively. In the meanwhile, the results of cFG"WO are smaller than ¢¢"© and ¢"C in
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both investigation categories. Therefore, the EGWO technique is superior compared with
GWO and PSO in attaining the required optimal outcomes for both investigation categories
according to the statistical analysis of Table 4.

Table 4. Statistical analysis of EGWO and PSO algorithm for 30 runs.

Optimization Apparent Power per BESS VDI LLI STLoss TOC Total BESS Objective Function
Statistics (MVA) and Their Sites (%) (%) (MVA) (USD/Year) Size (MWh) Value (USD/Year)

Investigation category I: uniform size BESS allocation
BESS03, BESS06, BESS07, BESS08,
BESS10, BESS11, BESS24, BESS27,
EGWO best BESS28, BESS30, BESS31, BESS32,  59.637 218294  0.156 327,352 1.530 776,708.934
BESS33, MVA for each
BESS =0.118
BESS03, BESS06, BESS07, BESS08,
BESS10, BESS11, BESS24, BESS27,
EGWO worst ~ BESS28, BESS30, BESS31, BESS32,  60.288  221.805  0.160 326,672 1.562 787,222.024
BESS33, MVA for each
BESS =0.120
BESS03, BESS06, BESS07, BESS08,
BESS10, BESS11, BESS24, BESS27,

EGWO mean BESS28, BESS30, BESS31, BESS32,  59.716 219.686 0.158 327,158 1.539 781,880.637
BESS33, MVA for each
BESS =0.118
SEGWO 2254.229

BESS03, BESS06, BESS07, BESS08,
BESS10, BESS11, BESS24, BESS27,
GWO best BESS28, BESS30, BESS31, BESS32,  59.717  219.135 0.156 328,066 1.534 777,584.154
BESS33, MVA for each
BESS =0.118
BESS03, BESS06, BESS07, BESS08,
BESS10, BESS11, BESS24, BESS27,
GWO worst BESS28, BESS30, BESS31, BESS32,  60.531  222.375 0.161 327,283 1.563 790,407.7772
BESS33, MVA for each
BESS =0.120
BESS03, BESS06, BESS07, BESS08,
BESS10, BESS11, BESS24, BESS27,

GWO mean BESS28, BESS30, BESS31, BESS32, 60.279 220.224 0.159 327,626 1.547 785,136.4344
BESS33, MVA for each
BESS =0.119
FGWO 3168.572

BESS03, BESS06, BESS07, BESS08,
BESS10, BESS11, BESS24, BESS27,
PSO best BESS28, BESS30, BESS31, BESS32,  59.827  220.335 0.157 329,390 1.541 781,691.030
BESS33, MVA for each
BESS =0.119
BESS03, BESS06, BESS07, BESS08,
BESS10, BESS11, BESS24, BESS27,
PSO worst BESS28, BESS30, BESS31, BESS32,  60.748  222.586 0.163 329,537 1.565 797,763.171
BESS33, MVA for each
BESS =0.120
BESS03, BESS06, BESS07, BESS08,
BESS10, BESS11, BESS24, BESS27,

PSO mean BESS28, BESS30, BESS31, BESS32, 61.427 220.659 0.160 329,366 1.557 789,727.676
BESS33, MVA for each
BESS =0.120
oPso 3801.475

Investigation category I: non-uniform size BESS allocation

BESS03 = 0.154, BESS06 = 0.140,

BESS07 = 0.212, BESS10 = 0.101,

BESS12 = 0.221, BESS15 = 0.123,

BESS16 = 0.141, BESS20 = 0.102,

BESS21 = 0.228, BESS32 = 0.117,
BESS33 = 0.123

EGWO best 63.918  217.094 0.160 343,117 1.662 806,494.357
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Table 4. Cont.

Optimization
Statistics

Apparent Power per BESS
(MVA) and Their Sites

VDI
(%)

LLI
(%)

STLoss
(MVA)

TOC
(USD/Year)

Total BESS
Size (MWh)

Objective Function
Value (USD/Year)

EGWO worst

EGWO mean

gEGWO

GWO best

GWO worst

GWO mean

GWO

PSO best

PSO worst

PSO mean

PSO

EGWO best

EGWO worst

BESS03 = 0.170, BESS06 = 0.144,
BESS07 = 0.201, BESS10 = 0.111,
BESS12 = 0.227, BESS15 = 0.132,
BESS16 = 0.144, BESS20 = 0.117,
BESS21 = 0.202, BESS32 = 0.122,
BESS33 = 0.124
BESS03 = 0.165, BESS06 = 0.147,
BESS07 = 0.207, BESS10 = 0.106,
BESS12 = 0.217, BESS15 = 0.133,
BESS16 = 0.143, BESS20 = 0.109,
BESS21 = 0.214, BESS32 = 0.108,
BESS33 =0.113

BESS03 = 0.179, BESS06 = 0.14,
BESS07 = 0.173, BESS10 = 0.105,
BESS12 = 0.222, BESS15 = 0.126,
BESS16 = 0.131, BESS20 = 0.109,
BESS21 = 0.222, BESS32 = 0.134,
BESS33 = 0.122
BESS03 = 0.164, BESS06 = 0.143,
BESS07 = 0.209, BESS10 = 0.127,
BESS12 = 0.243, BESS15 = 0.112,
BESS16 = 0.142, BESS20 = 0.108,
BESS21 = 0.224, BESS32 = 0.129,
BESS33 =0.128
BESS03 = 0.173, BESS06 = 0.135,
BESS07 = 0.221, BESS10 = 0.12,
BESS12 = 0.22, BESS15 = 0.134,
BESS16 = 0.136, BESS20 = 0.103,
BESS21 = 0.228, BESS32 = 0.114,
BESS33 = 0.106

BESS03 = 0.160, BESS06 = 0.138,
BESS07 = 0.223, BESS10 = 0.109,
BESS12 = 0.225, BESS15 = 0.127,
BESS16 = 0.136, BESS20 = 0.1,
BESS21 = 0.213, BESS32 = 0.1,
BESS33 = 0.134
BESS03 = 0.166, BESS06 = 0.144,
BESS07 = 0.219, BESS10 = 0.149,
BESS12 = 0.256, BESS15 = 0.112,
BESS16 = 0.151, BESS20 = 0.102,
BESS21 = 0.237, BESS32 = 0.108,
BESS33 = 0.122
BESS03 = 0.158, BESS06 = 0.138,
BESS07 = 0.223, BESS10 = 0.130,
BESS12 = 0.225, BESS15 = 0.127,
BESS16 = 0.156, BESS20 = 0.1,
BESS21 = 0.233, BESS32 = 0.1,
BESS33 =0.127

64.534

64.441

64.204

65.062

65.166

64.666

66.225

66.179

218.904

217.825

217.155

219.344

218.193

217.269

219.982

218.974

0.164

0.164

0.16

0.165

0.164

0.160

0.168

0.165

342,514

343,248

343,325

342,104

342,756

343,460

341,361

342,384

Investigation category II: uniform size BESS allocation

BESS05, BESS06, BESS07, BESS08,
BESS09, BESS18, BESS24, BESS25,
BESS26, BESS29, BESS30, BESS31,
BESS32, BESS33, MVA for each
BESS =0.112
BESS05, BESS06, BESS07, BESS08,
BESS09, BESS18, BESS24, BESS25,
BESS26, BESS29, BESS30, BESS31,
BESS32, BESS33, MVA for each
BESS =0.115

69.589

70.355

265.765

270.044

0.163

0.170

331,112

330,417

1.694

1.664

1.664

1.727

1.69

1.665

1.769

1.719

1.573

1.607

817,002.887

816,784.140

2803.794

806,769.3473

820,125.514

817,100.0288

3472.036

806,946.377

828,231.884

820,163.831

4903.673

801,762.079

819,900.770
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Table 4. Cont.

Optimization
Statistics

Apparent Power per BESS
(MVA) and Their Sites

VDI
(%)

LLI
(%)

STLoss
(MVA)

TOC
(USD/Year)

Total BESS
Size (MWh)

Objective Function
Value (USD/Year)

EGWO mean

gEGWO

GWO best

GWO worst

GWO mean

GWO

PSO best

PSO worst

PSO mean

PSO

EGWO best

EGWO worst

EGWO mean

U.EGWO

GWO best

BESS05, BESS06, BESS07, BESS08,
BESS09, BESS18, BESS24, BESS25,
BESS26, BESS29, BESS30, BESS31,
BESS32, BESS33, MVA for each
BESS =0.114

BESS05, BESS06, BESS07, BESS08,
BESS09, BESS18, BESS24, BESS25,
BESS26, BESS29, BESS30, BESS31,
BESS32, BESS33, MVA for each
BESS =0.113
BESS05, BESS06, BESS07, BESS08,
BESS09, BESS18, BESS24, BESS25,
BESS26, BESS29, BESS30, BESS31,
BESS32, BESS33, MVA for each
BESS =0.117
BESS05, BESS06, BESS07, BESS08,
BESS09, BESS18, BESS24, BESS25,
BESS26, BESS29, BESS30, BESS31,
BESS32, BESS33, MVA for each
BESS =0.114

BESS05, BESS06, BESS07, BESS08,
BESS09, BESS18, BESS24, BESS25,
BESS26, BESS29, BESS30, BESS31,
BESS32, BESS33, MVA for each
BESS =0.113
BESS05, BESS06, BESS07, BESS08,
BESS09, BESS18, BESS24, BESS25,
BESS26, BESS29, BESS30, BESS31,
BESS32, BESS33, MVA for each
BESS =0.119
BESS05, BESS06, BESS07, BESS08,
BESS09, BESS18, BESS24, BESS25,
BESS26, BESS29, BESS30, BESS31,
BESS32, BESS33, MVA for each
BESS =0.115

Investigation category II: non-uniform size BESS allocation

BESS02 = 0.127, BESS03 = 0.161,
BESS06 = 0.232, BESS08 = 0.131,
BESS10 = 0.159, BESS11 = 0.140,
BESS17 = 0.158, BESS28 = 0.232,
BESS29 = 0.108, BESS32 = 0.115,
BESS33 = 0.157
BESS02 = 0.151, BESS03 = 0.154,
BESS06 = 0.212, BESS08 = 0.132,
BESS10 = 0.157, BESS11 = 0.152,
BESS17 = 0.155, BESS28 = 0.248,
BESS29 = 0.109, BESS32 = 0.111,
BESS33 = 0.162
BESS02 = 0.142, BESS03 = 0.159,
BESS06 = 0.231, BESS08 = 0.133,
BESS10 = 0.159, BESS11 = 0.156,
BESS17 = 0.155, BESS28 = 0.230,
BESS29 = 0.1, BESS32 = 0.1,
BESS33 = 0.158

BESS02 = 0.184, BESS03 = 0.189,

BESS06 = 0.211, BESS08 = 0.144,

BESS10 = 0.161, BESS11 = 0.126,

BESS17 = 0.159, BESS28 = 0.245,

BESS29 = 0.115, BESS32 = 0.115,
BESS33 =0.1

69.680

69.803

70.61

70.193

69.965

71.035

70.917

67.519

68.167

68.072

67.932

267.466

266.211

269.904

267.448

267.053

269.777

267.427

266.914

269.130

267.795

266.971

0.168

0.164

0.171

0.169

0.165

0.173

0.171

0.176

0.183

0.182

0.175

330,649

333,676

332,230

332,870

336,410

336,545

336,383

355,030

354,391

355,172

356,921

1.594

1.581

1.631

1.602

1.588

1.660

1.611

1.720

1.743

1.721

1.749

814,582.039

3681.945

807,104.5086

824,944.8592

819,563.6258

4782.519

812,605.067

835,158.116

828,384.203

5216.346

862,798.837

880,563.532

878,105.437

4087.372

863,054.3303
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Table 4. Cont.

Optimization
Statistics

Apparent Power per BESS
(MVA) and Their Sites

VDI
(%)

LLI
(%)

STLoss
(MVA)

TOC
(USD/Year)

Total BESS
Size (MWh)

Objective Function
Value (USD/Year)

GWO worst

GWO mean

GWO

PSO best

PSO worst

PSO mean

PSO

BESS02 = 0.15, BESS03 = 0.149,
BESS06 = 0.198, BESS08 = 0.151,
BESS10 = 0.145, BESS11 = 0.145,

BESS17 = 0.168, BESS28 = 0.26,
BESS29 = 0.108, BESS32 = 0.107,

BESS33 = 0.201
BESS02 = 0.135, BESS03 = 0.164,

BESS06 = 0.223, BESS08 = 0.15,
BESS10 = 0.149, BESS11 = 0.146,
BESS17 = 0.149, BESS28 = 0.24,
BESS29 = 0.099, BESS32 = 0.109,

BESS33 =0.184

BESS02 = 0.153, BESS03 = 0.179,
BESS06 = 0.231, BESS08 = 0.153,
BESS10 = 0.168, BESS11 = 0.131,
BESS17 = 0.164, BESS28 = 0.242,
BESS29 = 0.1, BESS32 = 0.1,
BESS33 = 0.102
BESS02 = 0.162, BESS03 = 0.165,
BESS06 = 0.202, BESS08 = 0.164,
BESS10 = 0.151, BESS11 = 0.148,
BESS17 = 0.177, BESS28 = 0.259,
BESS29 = 0.114, BESS32 = 0.101,
BESS33 = 0.192
BESS02 = 0.156, BESS03 = 0.182,
BESS06 = 0.230, BESS08 = 0.157,
BESS10 = 0.151, BESS11 = 0.144,
BESS17 = 0.160, BESS28 = 0.238,
BESS29 = 0.107, BESS32 = 0.1,
BESS33 = 0.203

68.859

68.212

68.153

69.795

70.143

269.61

268.275

267.013

270.351

269.096

0.185

0.183

0.175

0.187

0.182

355,641

355,560

357,870

357,798

356,188

1.784

1.752

1.723

1.837

1.829

888,104.5267

881,962.4297

5653.736

863,228.487

896,928.444

882,453.006

7252.429

Figures 12 and 13 present the convergence characteristics of EGWO, GWO, and PSO

techniques for investigation categories I and II, respectively. Table 5 illustrates the conver-
gence and computation time of EGWO, GWO, and PSO techniques in all cases. Table 5
and Figures 12 and 13 suggest that EGWO, GWO, and PSO approaches take more iteration
and computation time to converge in the unbalanced system (investigation category II)
than the balanced system (investigation category I). For example, the EGWO approach for
uniform BESS allocation converges after 239 iterations (581 s) and 256 iterations (611 s) in
balanced and unbalanced systems, respectively. Accordingly, the GWO approach takes
262 iterations (642 s) and 285 iterations (681 s) to reach convergence in balanced and un-
balanced systems, respectively. On the other hand, the PSO approach takes 293 iterations
(716 s) and 311 iterations (742 s) to reach convergence in balanced and unbalanced sys-
tems, respectively. Moreover, uniform BESS allocation converges faster than non-uniform
BESS allocation. Moreover, in all cases, the EGWO approach requires fewer iterations and
computation time to reach convergency than GWO and PSO algorithms.



Energies 2023, 16, 7127 25 of 35
2,100,000
e EGWO (uniform BESS)
2,000,000 .
s PSO (uniform BESS)
1,900,000 Minimization started s EGWO (non-uniform BESS)
1,800,000 PSO (non-uniform BESS)
=1,700,000 s GWO (uniform BESS)
3
?1,500,000 e GWO (n0N-uniform BESS)
£1,500,000
K
£1,400,000
¥
£1,300,000.
k)
)
©1,200,000
1,100,000, Minimum reached
1,000,000
900,000
800,000
700,000
100 200 300 400 500 600 700 800 900 1000
Number of iteratioins
Figure 12. Convergence of EGWO, GWO, and PSO approaches for investigation category I.
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Figure 13. Convergence of EGWO, GWO, and PSO approaches for investigation category II.
Table 5. Convergence and computation time of EGWO, GWO, and PSO approaches.

o e EGW Wi P
Investigation BESS EGWO GWO . GWO GWO . PSO SO .
Category Allocation Convergence Computation Convergence Computation Convergence Computation

Time (s) Time (s) Time (s)
Uniform BESs  Mfter 239 581 262 642 After 293 716
I iterations iterations
Non-uniform After 340 After 428
BESS iterations 774 357 799 iterations 945
Uniform BESS 2 fter 256 611 285 681 After 311 742
I iterations iterations
Non-uniform After 346 After 440
BESS iterations 810 367 821 iterations 983

6.5. Reliability and BESS Cost

Improvement of reliability performance for both investigation categories compared
with their base case is tabulated in Table 6. The results indicate the integration of BESS
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caused a significant impact on system reliability. The improvement of reliability parameters
for all cases in balanced and unbalanced systems are calculated based on their base cases,
as shown in Table 6. It is noticeable that all reliability parameters significantly improved
compared with their base cases. Cases with larger weighting factor (Case 2b, 3b, 5b, and
6b) of the system reliability have greater improvement, usually above 25%, of cases with
the same weighting factor (Case 2a, 3a, 5a, and 6a).

Table 6. Reliability improvement for both investigation categories compared with their base case.

Improved Cost Improved Cost Saving of Improved Cost Reduced
Saving of EIC (%) Cost of EENS (%) Saving of TOC (%) SAIDI (%)

Case 1 - - - -

Case 2a 20.010 19.536 19.739 14.522
Case 2b 26.314 25.997 26.193 23.781
Case 3a 15.694 15.923 15.874 11.806
Case 3b 23.981 24.240 24.194 29.138
Case 4 - - - -

Case 5a 25.742 25.577 25.673 24.770
Case 5b 30.577 30.547 30.659 30.245
Case 6a 19.838 20.480 20.304 20.634
Case 6b 28.252 27.933 28.238 34.185

Figure 14 compares reliability performance and total BESS capacity. It is noticeable
that all the reliability parameters have a larger improvement in the unbalanced system
compared with the balanced system while demanding more BESS installation. In terms of
TOC improvement, which is the main focus regarding system reliability in this research,
Case 2a is relatively cost efficient than other cases in investigation category I, representing
the optimal choice for BESS allocation in balanced distribution systems. Similarly, Case 5a
represents the optimal choice for BESS allocation in unbalanced distribution systems.

i Improved cost saving of EIC mm Improved cost saving of cost of EENS

Improved cost saving of TOC mm Reduced SAIDI 3.500

—Total BESS capacity

2.500
2000
15004
1.000
I 0.500
0.000

Case 2a

3.000

Total BESS capacity, MWh

Case 2b Case 3a Case 3b Case 5a Case 5b Case 6a Case 6b

Case studies
Figure 14. Reliability performance and BESS capacity comparison for all cases.

6.6. Overall Performance and BESS Cost Comparison

The performance parameters for balanced and unbalanced systems are calculated and
tabulated in Tables 7 and 8, respectively. Usually, VPII greater than one denotes a good volt-
age profile. The bigger the VPII value, the better the voltage profile. For example, VPII =2.35
for Case 2b indicates that Case 2b achieves the best voltage profile in balanced distribution
systems for all cases. Contrary to VPII, the higher value of PLsRI”, PLsRI®, PLsRI, LLI,
and TOCRI represent the worse real power loss, reactive power loss, total line loss, line
loading, and system reliability, respectively. For instance, PLsRI = 0.748 and TOCRI = 0.841
in Case 3a are larger than the results in Case 2a, representing that line loss and system
reliability in Case 3a are worse than in Case 2a. VPII and LLI have the smaller value in Case
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Case 2a

3a compared with Case 2a, indicating Case 3a has a worse voltage profile and better line
loading than Case 2a. According to Tables 7 and 8, VPII, PLsRI”, PLsRI?, PLsRI", and LLI
in investigation category II are generally higher than in investigation category I, which
indicates that the voltage profile has a larger improvement in the unbalanced system com-
pared with the balanced system. However, the improvement in real power loss, reactive
power loss, total line loss, and line loading in the unbalanced system is smaller than in the
balanced system due to the increased deployment of BESS. Because unbalanced distribution
networks are more complex and require more energy storage systems to meet the system’s
needs. This might lead to more energy conversions and transmissions, resulting in less
reduction in real power loss, reactive power loss, total line loss, and line loading compared
with the balanced systems. In practice, if a greater improvement in these performance
parameters is needed, the corresponding weighting factor in Equation (9) can be increased
during optimization. Additionally, TOCRI in investigation category Il is usually smaller
than in investigation category I, representing that reliability has a larger improvement in
the unbalanced system compared with the balanced system.

Table 7. Performance improvement of all cases in investigation category I.

Case Studies VPII PLsRI? PLsRI? PLsRIT LLI TOCRI
Case 1 - - - - - -

Case 2a 1.609 0.716 0.748 0.729 0.852 0.803
Case 2b 2.350 0.796 0.838 0.813 0.903 0.738
Case 3a 1.501 0.729 0.775 0.748 0.847 0.841
Case 3b 2.361 0.806 0.855 0.827 0.908 0.758

Table 8. Performance improvement of all cases in investigation category II.

Case Studies VPII PLsRI® PLsRIQ PLsRIT LLI TOCRI
Case 4 - - - - - -

Case 5a 1.385 0.740 0.742 0.741 0.859 0.743
Case 5b 4.135 0.875 0.917 0.882 0.943 0.693
Case 6a 1.428 0.790 0.842 0.800 0.863 0.797
Case 6b 3.528 0.938 0.997 0.950 0.941 0.718

Figure 15 compares overall system performance and total BESS capacity. It is noticeable
that Case 2a is relatively cost efficient than other cases in investigation category I, represent-
ing the optimal choice for BESS allocation in balanced distribution systems. Similarly, Case
5a represents the optimal choice for BESS allocation in unbalanced distribution systems.

- VPl = PLSRIT L = TOCRI —e—Total BESS capacity

3.500

3.000

2.500

2,000

1.500

Total BESS chacity, MWh

1.000

Case 2b Case 3a Case 3b Case 5a Case Sb Case 6a Case 6b

Case studies

Figure 15. Performance and BESS capacity comparison for all cases.
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7. Conclusions

This paper proposes an effective methodology using the EGWO algorithm to optimally
allocate BESS into distribution networks to enhance system reliability, improve power
quality, and reduce power losses, line loading, and investment cost for BESS. The efficacy
of the proposed methodology has been demonstrated in an IEEE 33 bus distribution
network. The system performance improvement is evaluated through relevant performance
indices. The solutions generated from the EGWO approach are verified by the GWO and
PSO approach. Utilities may use the results of this study as a benchmark to improve
the reliability and efficiency of distribution systems. The conclusions according to the
simulation outcomes of the proposed BESS allocation method are summarized below:

e A considerable reduction in TOC (19.739% and 25.673% reduction in balanced and
unbalanced systems, respectively) of the wind and solar DGs penetrated distribution
system is achieved with the application of BESSs, thereby improving system reliability.

e  Both BESS allocation methodologies with uniform and non-uniform BESS sizes can be
used to improve the system performance and economic efficiency in both balanced
and unbalanced distribution systems. Nevertheless, BESS allocation with non-uniform
BESS size is more regulatable in terms of system performance and economic effi-
ciency improvement.

e  The unbalanced distribution systems demand more BESS installation compared with the
balanced system, leading to a larger improvement in system reliability and voltage profile;
however, it also aggravates the line loading and power loss in the unbalanced system.

e  Asignificant reduction in required iteration (18.892% on average compared with PSO,
7.905% on average compared with GWO) and computation time (18.202% on average
compared with PSO, 7.637% on average compared with GWO) to reach convergency
in all cases is achieved by the proposed EGWO technique. Furthermore, EGWO,
GWO, and PSO approaches take more iteration (4.439% on average for EGWO, 5.79%
on average for GWO, 4.474% on average for PSO) and computation time (4.907%
on average for EGWO, 4.414% in average for GWO, 3.826% in average for PSO) to
converge in the unbalanced system than the balanced system. Moreover, uniform
BESS allocation converges faster than non-uniform BESS allocation.

Regarding future work, optimal BESS operation incorporating smart charging and
discharging techniques can be investigated for further improving the system performance.
The BESS model can also take memory effect and self-discharge into account. Furthermore,
new optimal BESS allocation strategies can be proposed by jointly planning with other so-
lutions and devices, such as electric vehicle charging stations, renewable DGs, synchronous
condensers, or DFACTS, for achieving better system performance and economic efficiency.
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Appendix A. Feeder and Load Data for the Balanced and Unbalanced IEEE33-Bus

Test System

Table Al. Feeder and load data for the balanced IEEE 33-bus test system [67].

Load at Receiving Bus

Line Sending Receiving Resistance Reactance ;
Number Bus Bus Q) Q) Real Reactive
Power (kW) Power (kVAr)
1 1 2 0.0922 0.0417 100 60
2 2 3 0.493 0.2511 90 40
3 3 4 0.366 0.1864 120 80
4 5 6 0.819 0.707 60 20
5 7 8 1.7114 1.2351 200 100
6 8 9 1.03 0.74 60 20
7 9 10 1.04 0.74 60 20
8 10 11 0.1966 0.065 45 30
9 11 12 0.3744 0.1238 60 35
10 12 13 14.68 1.155 60 35
11 13 14 0.5416 0.7129 120 80
12 14 15 0.591 0.526 60 10
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Table Al. Cont.

Line

Sending Receiving Resistance Reactance

Load at Receiving Bus

Number Bus Bus Q) Q) Real Reactive
Power (kW) Power (kVAr)
13 15 16 0.7463 0.545 60 20
14 16 17 1.289 1.721 60 20
15 17 18 0.732 0.574 90 40
16 2 19 0.164 0.1565 90 40
17 19 20 1.5042 1.3154 90 40
18 20 21 0.4095 0.4784 90 40
19 21 22 0.7089 0.9373 90 40
20 3 23 0.4512 0.3083 90 50
21 23 24 0.898 0.7091 420 200
22 24 25 0.896 0.7011 420 200
23 6 26 0.203 0.1034 60 25
24 26 27 0.2842 0.1447 60 25
25 27 28 1.059 0.9337 60 20
26 28 29 0.8042 0.7006 120 70
27 29 30 0.5075 0.2585 200 600
28 30 31 0.9744 0.963 150 70
29 31 32 0.3105 0.3619 210 100
30 32 33 0.341 0.5302 60 40
31* 12 22 0 2 90 40
32* 25 29 0 0.5 120 70
* Tie Lines, Substation Voltage =12.66 kV.
Table A2. Unbalanced load data for the IEEE 33-bus test system [68].
Bus# Phase A Phase B Phase C
P Load Q Load P Load Q Load P Load Q Load
(kW) (kVAr) (kW) (kVAr) (kW) (kVAr)
1 0 0 0 0 0 0
2 45.38364 27.20091 46.97678 28.15615 7.651557 4.586019
3 40.39426 17.96903 41.40079 18.41674 8.280372 3.683133
4 49.86655 33.22193 24.70916 16.46191 45.47072 30.29369
5 20.16107 10.0808 13.36378 6.68189 26.41769 13.20885
6 26.5972 8.889419 28.53333 9.536398 4.813076 1.608633
7 44.63782 22.31891 92.25998 46.12999 63.12615 31.56307
8 59.19779 29.59916 58.84519 29.42233 81.98097 40.99049
9 15.41424 5.151792 27.3318 9.135175 17.19704 5.747483
10 24.80639 8.291057 18.93923 6.329818 16.19692 5.413576
11 18.15976 12.08478 21.68315 14.42961 5.194532 3.457145
12 13.46956 7.851367 14.87785 8.671978 31.59566 18.41674
13 22.79707 13.28792 26.14736 15.24114 10.99865 6.411024
14 54.15552 36.07964 35.9386 23.94304 29.95177 19.95485
15 12.29795 2.038706 11.59487 1.922239 36.05026 5.976143
16 17.19276 5.746415 26.55286 8.87446 16.19692 5.413576
17 14.27842 4.772473 25.79636 8.621759 19.8683 6.640218
18 34.66922 15.42225 15.7973 7.027551 39.60784 17.6191
19 38.60558 17.173 42.71238 19.00014 8.756925 3.895766
20 29.79417 13.25372 40.05341 17.8173 20.22732 8.997872
21 18.95633 8.432634 37.82504 16.82627 33.29352 14.81053
22 42.80748 19.04234 40.01441 17.80021 7.252471 3.226348
23 22.80081 12.65803 21.40855 11.88497 45.86553 25.46245
24 143.0973 68.16254 125.6069 59.83088 151.2179 72.03053
25 137.0501 65.28186 209.1078 99.60541 73.76417 35.13669
26 22.06835 9.205162 28.87098 12.04257 9.003749 3.755792
27 19.7903 8.254728 18.74103 7.817175 21.41175 8.931091
28 25.42879 8.498881 24.85768 8.308153 9.656605 3.227416
29 37.73101 22.01385 22.12872 12.91073 60.18723 35.11585
30 39.19273 117.5782 86.54295 259.6283 74.28828 222.8654
31 57.7863 26.97919 26.62017 12.4283 65.61202 30.63294
32 73.98108 35.2398 85.37026 40.66513 50.60969 24.10705
33 12.19644 8.152686 14.31956 9.571659 33.42708 22.34456
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Appendix B. PSO Technique

The flowchart of the PSO approach is depicted in Figure Al. The PSO is a bio-inspired
metaheuristic technique proposed by Everhart and Kennedy in 1995 [77]. This algorithm
simulated the movement of an insect swarm or bird flock to find the global optimum of the
problem. The whole population follows the individual who knows the optimum position,
such as a food source [78]. Furthermore, individuals also move based on their instinct.
Each individual is considered a particle. The position of particle i, x;, represents a possible
solution of the problem that has the fitness f(x;).

Start

A [ Initialize the parameters (a,by,b,, 1y, and 13) ]

Generate initial population of PSO algorithm and
set random position and velocity to all particles

C | Iteration H=0

D [ Solve the objective function of all particles ]47

A4
E [ Update AP particle if the new position of A??5* is better than previous one ]

A 4
F [ Update G2¢5¢ particle if the new position of G2 is better than previous one ]

v
G [ Update velocity and position for all particles (equation (53)and (54)) ]

\4
H l Iteration H=H+1 |
v

no
Are stopping CW_

yes

A 4

Output G2°*

Figure A1. Flowchart of PSO approach.

In each iteration of PSO, as shown in (A1), A?e“ and Gf’“t must be updated. Particle-
best, Af"”St, represents the best fitness point that particle i has searched. Global-best, Gf’“t,
represents the best fitness point that the whole population has visited up to iteration H:

Grst(H) = argmaxAbgsrf<A?m(H)) (A1)

Three factors that determine the particle’s movement are the particle’s inertia, particle
best, and global best. Firstly, the inertia of the particles maintains them on the present
trajectory. Secondly, particles also move towards the particle best, A?“t. Thirdly, particles
are also attracted by the global best, Gf"’St. The mathematical expression of particle i’s
velocity v; and position x; are illustrated in (A2) and (A3), respectively [78].
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0i(H+1) = ao;(H) + byry (H + 1) [ A (H) = x(H) | + bora (H + 1) [GI*! (H) — x(H) | (A2)

xi(H+1) = x;(H)+x(H+1) (A3)

where V; represents the velocity of ith particle. « is the inertia constant, which is usually
less than 1. r{ and r, are random numbers selected from interval [0, 1]. v;(H) and x;(H)
are the velocity and position of ith particle at Hth iteration, respectively in which H is the
iteration number. Cognitive coefficient, by, represents the particle’s own instinct about the
optimum. Social coefficient, b, integrates the behavior of the whole population. The value
of the above PSO parameters utilized in this research is presented in Table A3.

Table A3. PSO parameters and variables.

Type Parameters/Variables Description/Settings

Rated TF ~TF
Input parameters ;/Win d 'SI}DS,TMI;ZJ );lgi,n_’gl))’ I;,r% EBEéSQ— Max  Critical for the distribution system model
Output parameters TOC, VDC, PLC, LLC, and BESSC Critical for the objective function

Determine the sizes of BESSs in MVA with a unity

Decision variables Minsize power factor.
M site Determine the locations of BESSs in the grid.
Settings: « = inertia constant = 0.6,
b; = cognitive coefficient = by = social coefficient = 1.8,
PSO parameters «,b1,b2,SS, Jirail, Hmax SS = swarmsize = 100,
Jirait = trail limit to improve a food source = 60,
Hpax = maximum iteration = 1000
For My site : 1b1,and ubl Settings: 1b1 = 0.1 MVA and ubl =2 MVA
PSO bounds For MEZZ :1b2, and ub2 Settings: Ib2=0and ub2 =1
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