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SPORTS MEDICINE AND BIOMECHANICS

Fatigue does not increase limb asymmetry or induce proximal joint power shift in 
habitual, multi-speed runners
Shayne Vial a,b, Jodie Cochrane Wilkiea,c, Mitchell Turnerb and Anthony J. Blazevicha

aCentre for Human Performance, School of Medical and Health Science, Edith Cowan University, Joondalup, Australia; bCentre for Precision Health, 
School of Medical and Health Science, Edith Cowan University, Joondalup, Australia; cPhysical Activity, Sport and Exercise Research Theme, Faculty of 
Health, Southern Cross University, QLD, Australia

ABSTRACT
During prolonged jogging, joint moment and work tend to decrease in the distal (ankle) joint but 
increase at proximal (hip/knee) joints as performance fatigue manifests, and such adaptations might 
be expected to occur in sprinting. Fatigue is also thought to increase inter-limb asymmetries, which is 
speculated to influence injury risk. However, the effects of fatigue on sprint running gait have been 
incompletely studied, so these hypotheses remain untested. Using statistical parametric mapping, we 
compared 3-D kinematics and ground reaction force production between the dominant (DL) and non- 
dominant (NDL) legs of 13 soccer players during both non-fatigued and fatigued sprint running. Contrary 
to the tested hypotheses, relative between-leg differences were greater in non-fatigued than fatigued 
sprinting. DL generated higher propulsive impulse due to increased ankle work, while NDL exhibited 
greater vertical impulse, potentially due to greater hip flexion prior to downward foot acceleration. Whilst 
few changes were detected in DL once fatigued, NDL shifted towards greater horizontal force production, 
largely resulting from an increase in plantar flexion (distal-joint) moments and power. After fatiguing 
running, inter-limb asymmetry was reduced and no distal-to-proximal shift in joint work was detected. 
These adaptations may attenuate decreases in running speed whilst minimising injury risk.
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Introduction

Running is not only a common pastime but an integral part of 
many games and sports. Consistent with its societal impor
tance, researchers have developed a detailed biomechanical 
picture of human running under varying environmental condi
tions in both non-sports-trained (Carrier et al., 2011; Kikel et al., 
2020; Bramble & Lieberman, 2004) and sports-trained (Bezodis 
et al., 2014, 2015; Hunter et al., 2005; Kawamori et al., 2013; 
Schache et al., 2010) populations. In sports, the greatest dis
tances are often covered whilst walking or running at submax
imal speeds, with sporadic bursts of acceleration and/or 
maximal speed sprinting needed to chase or evade an oppo
nent or when an offensive opportunity arises. Thus, sprinting 
gaits may be needed after already covering considerable dis
tance (Gabbett, 2010; Gabbett & Jenkins, 2011; Harper et al., 
2019; Johnston et al., 2012; Mohr et al., 2004; Varley & Aughey, 
2013). In professional soccer, for example, decreases in total 
distance covered and high-intensity running (i.e., near or at top 
speed) are commonly reported after periods of high-intensity 
running during match play as well as towards the end of 
a match (Mohr et al., 2003), broadly indicating fatigue 
development.

Decrements in the capacity of the muscles to produce suffi
cient force or power during complex tasks such as running, i.e., 
performance fatiguability (Enoka et al., 2016), negatively 

impacts sprinting speed (Hautier et al., 2000; Pinniger et al., 
2000; Sánchez-Sánchez et al., 2018; Small et al., 2009). However, 
little is known about our propensity to alter running biomecha
nics as a result of such fatigue. Fatigue-related gait alterations 
may be expected in response to decreased muscle force or 
power, but such alterations might also be causative of the 
decrements in force and power through changes in the muscle 
lengths adopted and muscle shortening speeds reached when 
the gait pattern is altered (Brown et al., 2014; García-Pinillos 
et al., 2020; Willwacher et al., 2020). For example, performing 
repeated sprint efforts decreased total positive and negative 
work, mainly attributed to hip and knee joint moments in the 
swing phase, alongside increased relative ankle work in the 
latter half of stance (Gonçalves et al., 2021). On the other 
hand, reduced work performed at the ankle has been observed 
with concomitant increased joint work about the knee and hip 
joints (i.e., a disto-proximal shift) during both fatiguing, persis
tent jogging (Candau et al., 1998) and higher-speed runs (e.g., 
~180 s to exhaustion; Willer et al., 2021). Thus, it is unknown if 
joint moments and work may shift proximo-distally, or vice 
versa, during fatigued maximal sprint running.

Additionally, human gait is usually performed relatively sym
metrically between limbs, although small inter-limb differences 
exist (Ciacci et al., 2013; Segers et al., 2007; von Lieres et al., 
2020). Nonetheless, stronger, less fatigable muscles might be 
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expected to be recruited more whilst weaker, fatigued muscles 
might be rested or at least provide less power during fatigued 
sprinting, even when a high running speed is required. Given 
that humans show significant lateral bias, i.e., handedness 
(Fitch & Stephanie, 2013), this might conceivably lead to asym
metries in joint moment and work produced during running 
(Bagesteiro & Sainburg, 2002; Radzak et al., 2017; Willer et al., 
2021). Asymmetries in muscle force production measured in 
strength tests have been associated with increases in injury risk 
(Lord et al., 2018; Stephens et al., 2005), leading to speculation 
that substantive force or power production asymmetries may 
be inherently injurious (Ciacci et al., 2013; Fousekis et al., 2011). 
Whether gait asymmetry is directly causative of injury, or even 
whether substantive asymmetries evolve during sprinting after 
prior bouts of fatiguing running, remains unclear (Haugen et al., 
2018; Kenneally-Dabrowski et al., 2019; Schuermans et al., 
2017). Moreover, limb asymmetry has been assessed using 
various forms of analysis that evaluate kinematic and kinetic 
variables at discrete time-points. For example, the symmetry 
angle which involves measuring the angle between the line of 
symmetry and a reference line, allowing a quantitative assess
ment of the degree of between-limb asymmetry (Zifchock et al., 
2008). Although this, and other approaches are informative, 
they only take a single time point into account to assess 
between-limb asymmetry. Hence, further research is needed 
using more robust statistical analyses, such as statistical para
metric mapping (SPM) (Pataky, 2012), which takes into account 
both the magnitude and shape of a waveform, and may help to 
better understand possible fatigue-induced asymmetries dur
ing running-based activities.

The primary aim of this study, using statistical parametric 
mapping, was to comprehensively explore the joint kinematic 
and kinetic patterns of dominant and non-dominant legs dur
ing both non-fatigued and fatigued maximal sprinting in order 
to describe differences in the response of each leg to fatiguing 
running exercise. Therefore, we tested the following hypoth
eses: i) small-to-negligible joint kinematic and kinetic inter-limb 
asymmetries would be observed before fatiguing exercise, ii) 
dominant and non-dominant limbs would display significant 
joint kinematic and kinetic asymmetries after fatiguing exercise, 
iii) a proximo-distal shift in joint moments, power, and work 
produced would be observed in the dominant and non- 
dominant limbs after fatiguing exercise.

Methods

Population and training history

Thirteen intermediate-level (semi-professional) male 
Association Football (i.e., soccer) players (age: 19.1 ± 2.1 y, 
body mass: 72.5 ± 6.9 kg, height: 175 ± 7.7 cm) volunteered for 
the study – this sample was selected as a convenient represen
tation of the available participants. The athletes regularly per
formed sprint running as well as lower intensity endurance 
running both in competitive (i.e., stressful) games as well as in 
their (less stressful) training but had not received any formal 
running technique instruction. Thus, they present a cohort who 
have a freely chosen running method. They also performed no 

formal strength or other supplementary training that might 
influence running performance or their response to fatiguing 
running exercise. Additional rationale for the choice of study 
cohort (e.g., over participants in track & field or other sports) as 
well as participant data are presented in Supplementary 
Information (Section 12). All subjects were free from injury for 
at least 6 months before testing, wore their normal training 
attire, and wore the same (their own) running shoes during 
testing. This study was approved by Edith Cowan University of 
Human Ethics Committee and was performed in accordance 
with the guidelines of the Declaration of Helsinki. Informed 
consent was obtained from all subjects prior to testing.

Biomechanical measurements

On arrival, height and body mass were recorded for each sub
ject and then a custom-defined set of retroreflective cluster- 
based markers used for the 3D motion analysis were attached 
to identified anatomical landmarks (Table S1). The retroreflec
tive markers were captured during the trials by 13 VICON 
motion analysis cameras (Oxford Metrics Ltd., Oxford, UK) set 
at a frame rate of 250 Hz. Motion data capture was synchro
nised with ground reaction force data, recorded with five seri
ally arranged 600 × 900-mm in-ground triaxial force platforms 
(Kistler Quattro, Type9290AD, Victoria, Australia) at an 

Figure 1. Aerial schematic of the laboratory set up during data collection. Left: 
motion capture cameras were positioned to create a capture volume around the 
in-ground force platforms over which the subjects completed their sprint running 
trials. Right: testing protocol order of procedure.
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analogue-digital conversation rate of 1000 Hz. Motion capture 
cameras were positioned to ensure a suitable capture volume 
around the in-ground force platforms to capture the sprint 
running trials (Figure 1). In order for the anatomical markers 
to be referenced to the tracking markers prior to recording 
sprint running trials, static subject calibration trials were 
obtained with the subject standing in the anatomical position, 
followed by dynamic calibration trials in which subjects moved 
their legs through a range of motion to enable post-collection 
determination of functional joint centres using Visual 3D soft
ware (C-Motion, Germantown, MD, USA).

Protocol

After completing the static and dynamic calibration trials, sub
jects performed a comprehensive standardised warm-up (~15– 
20 min) at their chosen intensity (Table S2). Then, three single- 
leg vertical jumps (SLVJ) were performed on each leg to obtain 
jump height (Figure S2) as a measure to determine the domi
nant and non-dominant limb (the SLVJ requires significant 
force production, skill, and coordination – see Supplementary 
Information). In some studies, researchers have designated the 
preferred kicking leg as dominant, which may not be the stron
ger of the two legs and thus may not accord with our definition. 
After SLVJs, three maximal 50-m sprint running efforts were 
performed from a standing start. The starting point was located 
40-m from the last force platform in the series to enable force 
recordings during the maximal velocity phase (i.e., 35–40 m). 
The end point of the sprint was located 50 m from the start 
point to ensure subjects did not decelerate through the data 
capture zone. The subjects were allowed exactly 60 s of rest 
between trials; the relatively short rest was used to minimise 
the recovery from fatigue in post-running trials but did not 
induce detectable running fatigue in the non-fatigued tests 
(see Results).

After the first set of sprints (pre-fatigue test), subjects com
pleted a soccer-specific fatiguing exercise protocol (Ball – Sport 

Endurance and Sprint Test; BEAST 45, Figure S3) lasting 45 min 
(Williams et al., 2010) that included repeated bouts of sprint 
running, jogging, changes of direction, walking, backward run
ning, and stationary recovery similar to the first half of a soccer 
match. This protocol was chosen as it was familiar to the sub
jects, who could therefore complete it without a notable pacing 
strategy or extensive familiarisation, and because it incorpo
rated all directions of movement that might be performed in 
field-based team sports. After performing the fatiguing exer
cise, subjects jogged to the start line in ~ 80 s. Once at the start 
line, a countdown from 5 to 1 led into the first sprint effort. The 
subjects performed three further maximal sprinting trials (post- 
fatigue test) with 60-s inter-sprint rests (Figure S1).

Data analysis

All trials were digitised using VICON Nexus software (Oxford 
Metrics Ltd., Oxford, UK). Both ground reaction force and 
marker trajectory data were filtered using a fourth-order 
(zero-lag) low-pass Butterworth filter with a 15 Hz cut-off 
frequency; residual analyses were performed to determine 
cut-off frequencies, and this cut-off frequency successfully 
removed artificial fluctuations in joint moments during the 
initial stance phase (Bisseling & Hof, 2006; Mai & Willwacher, 
2019; van den Bogert & de Koning, 1996). Using Visual 3D 
software (C-Motion, Germantown, MD, USA), static calibra
tion data, subject height, and body mass were used to 
create an individually scaled skeletal model that included 
the trunk, pelvis, thigh, shank, and foot segments using 
standard available inertial parameters (segment mass 
(Hanavan, 1964) and moments of inertia (Winter, 2009)) in 
Visual 3D. For both limbs in the sprint running trials, sagit
tal segment angles were calculated relative to the labora
tory reference frame and were normalised to normal 
upright standing position, while conventional Visual 3D 
(C-Motion) calculation methods using Newton-Euler proce
dures were used to compute joint moments and powers as 

Figure 2. In the sprint gait cycle, leg retraction (forward rotation) begins as the foot leaves the ground and continues up until peak hip flexion. Leg protraction 
(backward rotation) commences as the hip extends and continues up until toe-off. For each limb, data were obtained as the hip transitioned from flexion (i.e., late 
retraction) to extension through to toe-off (i.e., protraction phase). Key variables compared between dominant and non-dominant legs in non-fatigued and fatigued 
sprinting. Vertical centre of mass velocity (vCoM), vertical foot velocity (vfoot), anterior-posterior distance of foot relative to CoM at foot-strike (d), braking impulse (b), 
propulsive impulse (p), vertical impulse (z).
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the hip transitioned from flexion to extension through to 
toe-off (see Figure 2). Force platform data was used to 
determine timings of foot-strike and toe-off with 
a threshold value set at 20 N. Impulse data (braking, pro
pulsive, and vertical) were expressed in N s, and then 
normalised to body mass (expressed as m/s) since momen
tum is the product of mass and velocity and the mass of 
the athlete remains constant during each ground contact.

The net joint moments were subsequently multiplied by 
joint angular velocities to obtain joint powers at the hip, 
knee, and ankle joints. To obtain positive and negative 
mechanical work performed by the lower limbs, joint 
power data were individually integrated with respect to 
time using the trapezoidal method (Farris & Sawicki, 2012). 
For each limb, all values of positive work were summed, 
and all negative work values were summed, to give indivi
dual joint totals for positive and negative work, respectively. 
The average positive powers calculated for the hip, knee, 
and ankle joints were summed and this value was described 
as total positive power output (equation 1), where Pþtot , Pþhip, 
Pþknee , Pþankle are total, hip, knee, and ankle joint average 
positive powers. Each joint’s average positive power as 
a percentage of total average positive power was deter
mined (equation 2), where Jpercent is the percentage of an 
individual joint to the total work. The same equations were 
used to obtain total average negative power at each joint. 

and 

Statistical analysis

Descriptive statistics (means and standard deviations) were 
obtained for variables captured in both the non-fatigued 
and fatigued conditions. For discrete variables, repeated- 
measures one-way analysis of variance (ANOVA) were used 
to compare between the dominant and non-dominant legs 
as well as non-fatigued and fatigued trials (p < 0.05). Effect 
sizes were determined using standard mean differences. 
Values of 0.2–0.5, 0.5–0.8, and > 0.8 were considered as 
small, medium, and large, respectively. All statistical ana
lyses for discrete variables were performed using JAMOVI 
(Version 1.6, Sydney, Australia). For statistical testing of one- 
dimensional continua, data were averaged across the three 
trials in non-fatigued and fatigued conditions, respectively. 
Statistical Parametric Mapping (SPM) was used to compared 
joint kinematic and kinetic data during the second half of 
the retraction and protraction phases of the dominant and 
non-dominant legs across both conditions using open- 
source SPM code (SPM1D open-source package, spm1d. 
org) in Python (Pataky, 2012). Joint kinematic and kinetic 
data were normalised, representing 0%-100% of the trial. 
Subsequently, we conducted a two-way ANOVA, which 
yielded a statistical parametric map (SPM{F}) as the output 
(set at p < 0.05). When the SPM{F} exceeded the critical 

threshold, the variable was considered significantly different 
between legs or conditions, and a collection of ≥ 5 conse
cutive points exceeding the threshold was considered sta
tistically meaningful (Colyer et al., 2018).

Results

The key sprint performance variables compared between domi
nant (DL) and non-dominant (NDL) legs in non-fatigued and 
fatigued sprinting are shown in Figure 2. DL was selected as 
the leg that produced the greatest jump height in the single- 
leg vertical jump test, with non-fatigued DL jumps being 22.7 ±  
0.9 cm and NDL jumps being 21.1 ± 1.5 cm (Figure S2). After 
fatiguing exercise, jump height significantly decreased for both 
DL (p < 0.001, ES = 2.26) and NDL (p < 0.001, ES = 1.47) with no 
differences observed between limbs. The average maximum 
horizontal velocity of the CoM during non-fatigued sprinting 
was 8.59 m/s, and decreased 0.33 m/s during fatigued sprinting 
(Table S3).

Dominant (DL) vs. Non-Dominant (NDL) Legs: 
non-fatigued sprinting

Vertical foot velocity (i.e., towards the ground) relative to the 
centre of mass (CoM) was not statistically different between DL 
and NDL; additionally, no statistical differences were observed in 
horizontal foot velocity. The anterior-posterior position of the 
foot relative to the CoM at foot-strike was closer to the CoM in DL 
than NDL (p = 0.027, ES = 0.345; Figure 3). Accordingly, a smaller 
braking impulse (p = 0.028, ES = 0.431) and greater propulsive 
impulse (p = 0.003, ES = 0.651), but smaller vertical impulse (p =  
0.001, ES = 0.702) was produced by DL than NDL (Table 1) with 
similar ground contact times (DL = 0.133, NDL = 0.136).

The peak hip flexion angle relative to the pelvis was greater in 
NDL than DL during the retraction-protraction transition point 
(Table S4). The ankle was the dominant source of lower limb 
positive and negative joint work (J kg−1) for DL, whereas NDL had 
a relatively even distribution across the lower limb joints 
(Figure 4). Both limbs had the same proportion of positive 
(31%) and negative (34%) work performed at the hip joint. 
Proportionally, there was significantly more negative work 
(~14%) performed at the knee joint in NDL than DL, and more 
positive (p < 0.001, ES = 0.554) and negative (p = 0.025, ES =  
0.262) work produced at the ankle in DL. In addition, SPM ana
lyses showed that hip power absorption was greater in NDL than 
DL during the second half of the stance phase (Figure 5); while 
knee extension moment (Nm/kg) increased earlier, and the peak 
occurred sooner between foot-strike early stance. By contrast, DL 
knee extension moment showed a more gradual increase and 
later peak than NDL (Figure 6, p = 0.001) whilst the peak ankle 
plantar flexion moment was greater during the first half of stance 
in DL (Figure 7, p < 0.001) and a higher peak plantarflexor 
moment was produced (Table S5).

Effect of fatigue on DL leg and pelvis kinetics and 
kinematics

There was no change in positive and negative work (Figure 4) 
observed at the hip joint whilst greater power was generated at 
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the knee (Figure 6) around mid-stance after the fatiguing run
ning in DL, which corresponded with a greater braking impulse 
(p = 0.020, ES = 0.471) (Table 1). After the fatiguing running 
exercise, the SPM analyses revealed a greater knee extension 
moment from foot-ground contact through to early stance 
(Figure 6).

Effect of fatigue on NDL leg and pelvis kinetics and 
kinematics

During fatigued sprinting, slightly more positive and negative 
work (not statistically different) at the ankle with similar pro
portional contributions at the hip and knee observed in NDL 

Figure 3. (A) shows peak vertical velocity of the foot (metres per second) relative to the centre of mass velocity between early protraction to foot-strike; (B) anterior- 
posterior (AP) position of the foot at ground contact relative to the horizontal position of the centre of mass (metres) for the non-fatigued dominant leg (NFDL), non- 
fatigued non-dominant leg (NFNDL), fatigued dominant leg (FDL), and fatigued non-dominant leg (FNDL). Vfoot represents the vertical velocity of the foot; d represents the 
anterior-posterior position of the foot relative to CoM at foot-strike. (A)* statistical difference of vertical velocity of the foot relative to CoM velocity, (B)* statistical 
difference of AP foot position relative to horizontal CoM position between legs and conditions, respectively (p < 0.05).

Table 1. Non-fatigued and fatigued braking, propulsive, vertical, and propulsive/braking impulse ratios for dominant and non- 
dominant legs. *statistical difference between dominant and non-dominant legs trials. ^statistical difference between non-fatigued 
and fatigued trials, respectively (p < 0.05).

Dominant leg Non-dominant leg

Mean diff 95% CI (change)Mean ± SD Mean ± SD

Non-fatigued
Braking impulse (m/s) −0.20 ± 0.10*^ −0.21 ± 0.10* −0.02 −0.03, −0.02
Propulsive impulse (m/s) 0.25 ± 0.10* 0.21 ± 0.10*^ 0.04 −0.06, −0.02
Vertical impulse (m/s) 2.30 ± 0.20* 2.50 ± 0.20* −0.20 0.10, 0.30
Propulsive/braking ratio 1.29 ± 0.10*^ 1.04 ± 0.20* −0.25 −0.37, 0.13
Fatigued
Braking impulse (m/s) −0.23 ± 0.10^ −0.23 ± 0.10 0.07 −0.02, 0.04
Propulsive impulse (m/s) 0.24 ± 0.10 0.25 ± 0.02^ −0.01 −0.01, 0.02
Vertical impulse (m/s) 2.40 ± 0.30 2.52 ± 0.20 −0.10 −0.07, 0.28
Propulsive/braking ratio 1.10 ± 0.20^ 1.10 ± 0.20 −0.03 −0.04, 0.10

1254 S. VIAL ET AL.



Figure 4. Percentage of total average positive and negative work contributed by the hip (light grey), knee (dark grey), and ankle (black) joints in dominant (DL) and 
non-dominant (NDL) legs. Significant differences were observed in DL and NDL positive ankle work, negative ankle work, and negative knee work in non-fatigued 
sprinting, but only in negative knee work in fatigued sprinting, despite statistical increase (#) in DL after fatigue. *statistical difference between legs within conditions. 
#statistical change between non-fatigued and fatigued conditions (p < 0.05).

Figure 5. Mean (± standard deviation) joint moments (column 1; N/kg) and powers (column 2; W/kg) at the hip from maximum hip flexion to toe-off for the dominant 
(DL - black) and non-dominant (NDL - red) legs in the non-fatigued (NF - solid) and fatigued (F - dashed) conditions. Vertical dotted line represents foot-strike. 
Significant main effects (p < 0.05) of fatigue (green) and between limb (blue) are highlighted during the corresponding periods.
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(Figure 4). Furthermore, both peak hip flexion angle (3.2°) and 
hip extension moment (0.4 Nm/kg) decreased in NDL (Table 
S5). The knee remained more extended during early protraction 
in the fatigued condition but was similar by the point of foot- 
ground contact. Also, significantly greater power absorption 
and larger plantar flexion moment (Figure 7) was observed 
from foot-ground contact to early stance after the fatiguing 
exercise. This coincided with a reduced vertical foot velocity 
(Figure 3, p = 0.004, ES = 0.542) immediately prior to foot- 
ground contact relative to the CoM yet greater propulsive 
impulse (p = 0.003, ES = 0.648) (Table 1).

Differential effects of fatigue on DL and NDL

SPM analyses revealed a small but not meaningful difference in 
ankle joint kinetics (Figure 7) after the fatiguing running exer
cise (Colyer et al., 2018). A slightly greater ankle plantar flexion 
moment was produced at foot-strike in DL than NDL and with 
shorter ground contact times (p = 0.012, ES = 0.287; see Figure 
S4), yet both legs produced similar braking, propulsive, and 
vertical impulses (Table 1). Less vertical CoM displacement 
(Figure S5) was observed during DL than NDL (p = 0.020, ES =  
0.266) force production phases in the fatigued condition.

See Figures S6-S9 in the Supplementary Information for 
visual representation of the differences observed between 
and within limbs and across conditions.

Discussion

Contrary to the tested hypothesis, inter-limb asymmetry was 
greater during non-fatigued sprint running. In particular, the 
foot was positioned further in front of the CoM in NDL than DL 
at foot-ground contact, which was followed by an earlier rise 
and greater peak knee extension moment, both of which pre
sumably contributed to the greater vertical impulse generation 
observed in NDL. Additionally, the plantarflexors generated 
more torque in DL than NDL, possibly due to greater utilisation 
of energy storage and release mechanisms in structures such as 
the Achilles tendon (Lai et al., 2014). After fatiguing running 
however, a strategy was adopted that maintained (DL) or 
increased (NDL) the proportional positive and negative ankle 
joint work contributions in the face of fatigue, which conse
quently reduced inter-limb asymmetry. That is, after fatiguing 
running, the joint kinematics and kinetics reflected greater 
symmetry between limbs. This may a result of our cohort of 
athletes regularly engaging in both sprint running and lower 

Figure 6. Mean (± standard deviation) joint moments (column 1; N/kg) and powers (column 2; W/kg) at the knee from maximum hip flexion to toe-off for the dominant 
(DL - black) and non-dominant (NDL - red) legs in the non-fatigued (NF - solid) and fatigued (F - dashed) conditions. Vertical dotted line represents foot-strike. 
Significant main effects (p < 0.05) of fatigue (green) and between limb (blue) are highlighted during the corresponding periods.
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intensity endurance running in competitive games and train
ing, potentially leading to acclimation to fatigued running 
exercise.

Significant kinetic and kinematic differences were observed 
between DL and NDL during non-fatigued sprint running. At 
the retraction-protraction transition point, the hip flexion angle 
was greater in NDL than DL along with foot-strike occurring 
further in front of the CoM, resulting in a faster rate of knee 
extensor moment development during initial ground contact. 
In contrast, in DL the ankle absorbed more power and the 
plantar flexion moment both commenced and reached an ear
lier and greater peak during ground contact. Such differences 
in technique between the legs might explain the differences 
observed in ground force production. For example, NDL pro
duced greater braking and vertical impulse, whereas DL pro
duced greater propulsive impulse. In order to reduce braking 
impulse and maximise propulsive impulse during maximal 
speed sprinting, it is crucial to position the foot more under
neath the centre of mass (Hunter et al., 2005; Mann & Sprague, 
1980). Thus, we speculate that DL influenced forward CoM 
velocity more critically, while NDL primarily projected the 
body with vertical velocity, presumably to maintain stride 
length, providing less assistance to forward propulsion 
(Radzak et al., 2017; Segers et al., 2007). During non-fatigued 
sprint running, the knee and ankle joints contributed differ
ently, which led to different vertical, braking, and propulsive 
impulses between limbs. To further understand the association 
between interlimb joint contribution and sprint running per
formance, more research is required.

Muscle force asymmetries have been linked with increases 
in injury risk, raising the possibility that significant asymmetries 
in force production may be intrinsically injurious (Clark, 2001; 

Fousekis et al., 2010; Lord et al., 2018; Wilk et al., 2003). After 
completing the BEAST protocol, jump height (~ −7–9%) and 
maximum sprint running velocity (~ −4%) decreased, indicating 
that the chosen protocol effectively induced match-related 
fatigue, commensurate with the extant literature (Cooper 
et al., 2020; Jiménez-Reyes et al., 2019). Contrary to our tested 
hypothesis, inter-limb asymmetry decreased with fatigue, 
which may indicate that our subjects loaded their limbs more 
evenly as fatigue developed, potentially reducing injury risk 
(Brown et al., 2017, Olivier et al. 2017; Heil et al., 2020). 
Another explanation might be that the greater work produced 
by the non-dominant leg after fatiguing exercise could theore
tically increase its risk of injury, i.e., the reduction in asymmetry 
observed in the present study might reflect a situation in which 
NDL was loaded more after fatiguing exercise and thus may be 
at greater risk. Nonetheless, given the large variation in the 
findings previously reported for inter-limb asymmetry (Bishop 
et al., 2018), particularly after completing fatiguing exercise 
(Heil et al., 2020), it is challenging to contextualise our findings 
with respect to the existing literature. Subsequent investiga
tions should aim for methodological standardisation to evalu
ate the impact of fatigue induced by exercise on inter-limb 
asymmetries. We recommend employing statistical parametric 
mapping for evaluating limb asymmetry instead of relying 
solely on discrete time-point observations of kinematic and 
kinetic variables (Pataky, 2012).

During running at a constant middle-distance pace, fatigue 
is primarily observed in the plantar flexors with a compensatory 
increase in positive work done at the knee, showing that rela
tive joint work shifts to more proximal joints in fatigued endur
ance running (Folland et al., 2017; Willer et al., 2021). However, 
as running speed increases from jogging to sprint running, the 

Figure 7. Mean (± standard deviation) joint moments (column 1; N/kg) and powers (column 2; W/kg) at the ankle from maximum hip flexion to toe-off for the 
dominant (DL – black) and non-dominant (NDL - red) legs in the non-fatigued (NF - solid) and fatigued (F - dashed) conditions. Vertical dotted line represents foot- 
strike. Significant main effects (p < 0.05) of fatigue (green) and between limb (blue) are highlighted during the corresponding periods.
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contribution of tendon elastic strain energy to the positive 
work produced by the soleus and gastrocnemius muscle- 
tendon unit has been shown to increase from 53% to 74% 
and 62% to 75%, respectively (Lai et al., 2014). Greater muscular 
activation and the comparatively isometric behaviour of the 
soleus and gastrocnemius muscle fibres were found to contri
bute to this increase; these two traits have been shown to 
improve tendon stretch and recoil (Lai et al., 2014). As fatigue 
deepens, one strategy might be to rely on tendon stretch and 
recoil to a greater extent, which might explain the greater 
contribution in NDL plantarflexor moment (~12%) and power 
(~9%) observed in the present study. As such, unlike during 
prolonged submaximal running, there is a tendency to main
tain the proportional positive and negative joint work at the 
ankle during sprint running, which we speculate may be due to 
the tendon stretch and recoil capacity at the ankle joint (Lai 
et al., 2014). That is, fatiguing running exercise does not pro
mote a more knee- or hip-dominant strategy during maximal 
sprint running. Given the divergent approaches adopted in our 
study as compared to Lai et al. (2014), Folland et al. (2017), and 
Willer et al. (2021), caution should be exercised when interpret
ing and comparing the results. Nevertheless, according to our 
results, the adaptations observed during submaximal fatigued 
running do not appear to extrapolate to fatigued sprint 
running.

The comparison during non-fatigued sprinting showed signifi
cant differences between DL and NDL, and since comparatively 
little change was observed in DL than NDL after fatiguing running, 
the resulting similarity between limbs in fatigue can be attributed 
largely to a shift in kinematic and kinetic patterns in NDL. Fatigue 
and asymmetry are often (Hiemstra et al., 2001; McLean & 
Samorezov, 2009; Verschueren et al., 2020), but not always 
(Brown et al., 2014; Haugen et al., 2018), cited as important yet 
interrelated risk factors for injury. If this is true, then the greater 
asymmetry observed in non-fatigued sprinting might be explained 
by running speed being prioritised in non-fatigued sprinting but 
injury risk reduction being prioritised during fatigued sprinting. 
This hypothesis is worthy of explicit scrutiny in future studies.

In summary, movement pattern differences between DL and 
NDL indicate that the legs played partly unique roles (DL con
tributed more to forwards running speed) during non-fatigued 
sprint running in a small group of male athletes who commonly 
perform both endurance- and sprint-type running but have not 
been coached in their techniques. However, these differences 
diminished significantly under fatigue, primarily due to changes 
in NDL. This increased similarity in leg function during fatigue 
may help reduce the risk of injury, but it might also come at the 
cost of running speed. Unlike slower running speeds, running at 
faster speeds in a fatigued state does not seem to compromise 
ankle joint work, moment, or power production. It is important 
to note some limitations. The relatively small sample size 
restricts the generalisability of findings to other athlete popula
tions. Additionally, to induce greater changes in lower-limb joint 
mechanics, a more intense stimulus, such as repeated sprints 
with short rest periods, might be necessary. While the fatiguing 
running protocol was conducted on a grassed sports field, sprint 
running testing took place in an indoor laboratory on an athletic 
track (Mondo surface). Although this minimised environmental 
effects, future studies should explore sprint running mechanics 

on various surfaces commonly used in running-based sports, like 
grass and dirt surfaces. Finally, while appropriate statistical 
methods were used, there is still a risk of false positives due to 
multiple comparisons. Hence, the results should be interpreted 
with caution.

Practical considerations

The ability to attain fast running speeds may critically deter
mine success in modern sports competitions. At times, sprint 
running may have to be performed whilst fatigued from pre
vious, longer-distance running, when speeds are reduced, and 
injury risk may be higher. We observed that the dominant leg 
(DL) played a larger role in propelling the athletes forward 
during non-fatigued sprinting. However, the difference 
between the dominant and non-dominant legs (NDL) became 
smaller when the athletes were fatigued, mainly because of 
changes in NDL. Moreover, asymmetry between the legs was 
reduced under fatigued conditions, however, this appears to be 
at the expense of maximum sprinting speed.
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