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A B S T R A C T   

In recent years, there has been a surge in the popularity of free-floating e-bike sharing. However, the shared 
mobility sector is fiercely competitive demanding, efficient operations and high-quality service to cater to user 
expectations. 

We propose several data-driven methods that apply demand pattern analysis. We suggest the use of a new 
spatial unit (i.e., overlapping circles) to enhance the cost-efficiency and user-friendliness of e-bike sharing. 
Moreover, temporal clustering is employed to develop operational strategies that counter the imbalance in 
supply and demand in recurrent clusters. 

To evaluate the impact of these strategies, we introduce a framework and apply it in a case study of an e-bike 
sharing project in The Hague, The Netherlands. We identify 5 hourly clusters which enable reallocation strategies 
to alleviate the imbalance among spatial units in these clusters. 

The results demonstrate that the derived operational strategies improve the service significantly, with almost 
1.5 times increased ridership, an approximately 20% decrease in vehicle idle time, and a decent monthly net 
retention rate of around 60%.   

1. Introduction 

Shared mobility has become a major trend since 2010, aiming to 
improve the sustainability of the transport sector and alleviate traffic 
congestion (European Commission, 2011). However, the shared 
mobility market is highly competitive, requiring providers to achieve 
efficient operations and high service quality (Beirigo, Negenborn, 
Alonso-Mora, & Schulte, 2022). Among various shared mobility options, 
shared bikes have gained widespread popularity due to their active 
mode of transport with the associated health benefits (Barbour, Zhang, 
& Mannering, 2019; DeMaio, 2009). With the introduction of electrifi-
cation in the mobility sector, e-bikes, which offer higher travel speeds 
and reduce physical efforts, have been gradually incorporated into 
bike-sharing schemes (Fishman & Cherry, 2016). 

Bike-sharing projects can be classified into two operational types, 
viz., station-based and free-floating schemes (see e.g. Ma, Ji, et al. 
(2020)). The station-based scheme relies on pre-defined stations for 
users to pick up and return bikes, while the free-floating offers 

flexibility, allowing users to drop bikes at various locations within 
designated operational zones (B. Beirigo, Schulte, & Negenborn, 2018). 
The latter eliminates the constraints associated with station availability 
in station-based systems, contributing to the growing popularity of 
free-floating bike sharing in recent years during the past years (Chen, 
van Lierop, & Ettema, 2020; Fishman, 2016). 

Regardless of the operational type, understanding user travel 
behaviour is crucial for matching supply and demand in bike-sharing 
systems (Hua, 2020; A. Li, Zhao, Huang, Gao, & Axhausen, 2020). 
Extensive research has been conducted on different aspects of 
bike-sharing systems, including determinants of bike-sharing demand, 
the interaction with public transport (Montes, Geržinic, Veeneman, van 
Oort, & Hoogendoorn, 2023; van Marsbergen, Ton, Nijënstein, Annema, 
& van Oort, 2022; van Mil, Leferink, Annema, & van Oort, 2021), de-
mand pattern analyses, prediction of demand in different time scopes, 
and optimization of reallocation of shared bikes (Albuquerque, Sales 
Dias, & Bacao, 2021; Eren & Uz, 2020; Fishman, 2016; Fishman, 
Washington, & Haworth, 2013; Galatoulas, Genikomsakis, & Ioakimidis, 
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2020; Ma, Yuan, Van Oort, & Hoogendoorn, 2020). These studies can be 
categorized into three phases: 1) identifying determinants of shared bike 
usage; 2) analysing datasets, identifying demand patterns and predicting 
future demand; 3) devising optimal strategies to reallocate bikes. 

However, most of the research has focused on station-based bike- 
sharing systems and limited attention has been paid to free-floating e- 
bike sharing. Substantial differences exist between station-based shared 
bikes and free-floating shared bikes, as well as between regular bikes 
and e-bikes (Chen et al., 2020; Galatoulas et al., 2020; Gu, Kim, & 
Currie, 2019). Free-floating bike-sharing systems offer users a higher 
degree of freedom by eliminating the need to rent and return bikes at 
designated stations. However, this flexibility increases the complexity of 
modelling, as demand cannot be attributed to specific station units as in 
station-based systems. Therefore, spatial analytical units, such as virtual 
stations or traffic area zones, need to be defined for free-floating bike--
sharing to model trip generation and attractions (S. Liu, Hou, Liu, 
Khadka, & Liu, 2018). Additionally, e-bikes have distinct trip charac-
teristics, such as travel distance, which vary from regular bikes due to 
reduced physical effort and the presence of batteries, which exert an 
influence on people’s travel decisions (Galatoulas et al., 2020). 

Moreover, the existing studies on bike-sharing operations lack ex-
periments and evaluations of different operational strategies in real-life 
contexts. Current approaches often rely on dedicated but complicated 
mathematical models to determine the optimal strategies with either 
static or dynamic demand input. However, these methods can be quite 
time-consuming and unrealistic for small and medium-sized shared 
mobility operators, considering the limited resources and uncertainties 
of operational actions (Alvarez-Valdes et al., 2016, p.; Angelopoulos, 
Gavalas, Konstantopoulos, Kypriadis, & Pantziou, 2018; Chemla, Meu-
nier, & Wolfler Calvo, 2013; Dell’Amico, Hadjicostantinou, Iori, & 
Novellani, 2014; Gavalas, 2016; Raviv, Tzur, & Forma, 2013). 

Based on the existing literature, there are 3 scientific gaps: 1) a 
spatial analytical unit which is friendly for both the operators and the 
users, especially its efficiency for operators; 2) studies targeting free- 
floating e-bike sharing projects; 3) a well-rounded evaluation 
approach of the real-life effects of the proposed operational strategies. 

Considering both the scientific gaps and the needs of operators, the 
objective of this work is to develop a data-driven approach to derive 
beneficial operational strategies. Those should then be deployed to 
improve the service of e-bike sharing by conducting a data analysis, a 
demand pattern analysis and a follow-up examination of the proposed 
strategies in reality. 

To this end, we 1) introduce an innovative spatial analytical unit, 
with the overlapping circles, and prove that the reallocation strategies 
derived based on this unit, are more cost-effective, requiring only one 
relocation operation per period; 2) we add insights to the field of e-bike 
sharing, taking a different angle than the current studies; 3) we develop 
a framework to evaluate the operational strategies and experiments in 
real-life settings, considering both operators and users. Results indicate 
that the proposed cost-effective operational services contribute to a 
positive effect of increasing ridership by roughly 1.5 times. 

The remainder of this paper is structured as follows: Section 2 de-
scribes the methodology, which is then applied to a case study presented 
in Section 3. The results and corresponding discussion are provided in 
Section 4, along with a comparison to parallel work. Finally, Section 5 
presents the conclusions, including the main findings, contributions, 
limitations, and recommendations for future research. 

Through this study, we introduce an innovative spatial analytical 
unit to investigate the demand pattern of e-bike sharing services and 
propose cost-effective operational services contributing to a positive 
effect of increasing roughly 1.5 times ridership. 

2. Methodology 

In this work, we propose a four-step approach, as depicted in Fig. 1 to 
address the research objective. Firstly, the literature review is conducted 

to determine the contributing factors to the bike-sharing demand. The 
preliminary data analysis is sequentially done. These results are input to 
the demand pattern analysis, which investigates the pattern of bike- 
sharing services in depth. The operational strategies are derived based 
on these insights accordingly. Finally, the strategies are implemented in 
a real-life setting and evaluated systematically. 

2.1. Data analysis 

The data analysis is the prerequisite of the demand pattern analysis. 
This phase involves three steps, which are data description, correlation 
analyses between determinants and the demand, and land use pattern 
analysis. 

2.1.1. Data description 
The data description phase encompasses the acquisition of available 

data, data cleaning, and data processing/aggregation. The primary 
dataset used in this research consists of ride records, as exemplified in 
Table 1. Each record contains ride start/end time, ride start/end loca-
tion, trip duration, and trip distance with a unique ride ID, and rider ID. 
Additionally, data pertaining to six other groups are included. These 
data are obtained from open-source databases, such as Google Maps for 
spatial and infrastructure factors, by points of interest, meteorological 
institutions for weather-related data and the government for socio-
demographic factors; trip characteristics and temporal data can be 
retrieved from ride records and safety factors are usually omitted in the 
most studies due to their reliance on deliberative interviews. Following 
data obtainment, a data cleaning is employed to eliminate incomplete or 
faulty data records and align the data with the research scope. Moreover, 
the statistical characteristics of those data are described. 

2.1.2. Correlation analysis 
Following the data description, linear correlations are conducted 

between the determinants and the demand (i.e., the ridership). Only 
linear correlations are examined in this study to test the hypothesis of 
whether the determinants found in the literature indeed impact the 
demand considering the research scope. The methods used in this study 
are Pearson’s coefficient and multiple linear regression. They are chosen 

Fig. 1. The four-step framework of this study.  

Table 1 
Ride record sample.  

Ride id Rider id Start time End time 

2356 3556 16:00:02 July 24, 
2023 

16:26:24 July 24, 
2023 

Start location End location Trip duration Trip distance 
52.0579935, 

4.2638107 
52.055401, 
4.268105 

00:26:22 7.839 km  
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because of their simplicity and the power of revealing the correlations. 
Pearson’s coefficient is computed for each variable, and it indicates 

the normalized covariance between two variables as shown in Equation 
(1). 

rxQ =

∑n
i=1(xi − x)(Qi − Q)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(Qi − Q)

2
√ Equation 1  

Where n is the sample size; xi and Qi are the individual sample points, 
indexed with i; x = 1

n
∑n

i=1xi (the sample mean) and analogously for Q; in 
this paper, Q always indicates the ridership, aggregated in different time 
intervals on different spatial units and x represents different influential 
factors, including weather, number of POIs, and the availability of 
public transport. 

Multiple linear regression is used when there is more than one var-
iable under a determinant group to see what the essential factor under 
the determinant group is. 

2.1.3. Land use pattern analysis 
In addition to data description and correlation analysis, a land use 

pattern analysis is conducted to gain insights into the functional 
composition of different locations based on the distribution of POIs. This 
analysis is performed using two selected spatial analytical units: 
neighbourhood and 400 m overlapping circles. 

First, the distributions of POIs are visualized to reveal the general 
pattern of different facilities. Then, the function p (i,c) is defined in 
Equation (2), representing the POI distribution. If p exceeds 0.5 then the 
unit would be defined with the corresponding function. Only workplaces 
and recreations (including sustenance and entertainment amenities) are 
considered in this study due to their most relevancy to traffic demand. 

p(i, c)=
|ic|

∑n
i=1|ic|

,∀i∈ I, c ∈ C Equation 2  

where p(i,c) presents the proportion of a specific facility in a given 
location; ic is the type i amenities belonging to unit c, and the denomi-
nator is the total amount of all facilities in this unit, regardless of their 
types, where the notation |x| represents the absolute value of x, which is 
constantly used in this study; I is the set containing all the types of POIs 
and C is the set consisting of all spatial analytical units. 

The outputs would be considered in the following demand pattern 
analysis, to understand the prediction of flow. 

2.2. Demand pattern analysis 

The demand pattern analysis serves as the focal point of this 
research. First, a descriptive analysis of crucial trip characteristics is 
conducted. Second, the demand pattern is performed, incorporating 
temporal clustering methods. The insights from demand pattern analysis 
support the development of reallocation strategies as they help mitigate 
the imbalance between the supply and the demand in different units. 
Third, supply efficiency is examined by the distribution of vehicle idle 
time per unit. Similarly, the average trip time and distance are explored 
on the unit level. These analyses, in conjunction with the supply effi-
ciency assessment, provide valuable insights into the operational effi-
ciency and popularity of different spatial units. This information 
facilitates prioritizing operational strategies and making necessary ad-
justments to the service area.  

A. Spatiotemporal aggregation 

After the general demand pattern analysis, the spatial analytical 
units are determined, specifically the neighbourhood and 400 m over-
lapping circles. Data are aggregated and analysed on these two distinct 
levels. 

The temporal clustering is then conducted, based on similarities and 

dissimilarities in demand of different periods. The purpose of temporal 
clustering is to investigate if the demand pattern of different periods 
emerges and the insights are studied in the next step, aiding the devel-
opment of operational strategies (T. L. K. Liu, Krishnakumari, & Cats, 
2019). 

The complete procedures are as follows: firstly, ride records are 
aggregated in the spatial units determined in the last step and then OD 
(origin-destination) matrix is computed accordingly; it is followed by 
the temporal clustering based on OD matrices, gathering different pe-
riods with similar features together. They are used to capture essential 
demand peculiarity. 

OD matrix presents the flow between different locations with in-
sights on how trips are attracted and generated at zonal levels. 

First of all, the ride records are aggregated with the predefined 
spatial units as the origin and destinations, and the flow q(x, y, t, z) then 
corresponds to a specific origin x, a destination y, a ride date z, and a ride 
hour, presented by the ride start hour, t. 

Secondly, hourly clustering and daily clustering are considered in 
this work, and therefore two series of OD matrices are constructed: 
hourly OD matrices and daily OD matrices. 

For hourly OD matrices, the flow q is aggregated in the increment of 
1-h intervals from 0:00 to 24:00, and it is respective to each day. 
Therefore, there are 24 D*k*k OD matrices in total where D specifies the 
number of days and k is the number of zones, where each cell corre-
sponds to the flow between the given OD pair during a specific hour for a 
given date z, as indicated in Equation (3). 

Qt(co, cd, t)=
∑

x∈co

∑

y∈cd

∑

z
q(x, y, t, z) Equation 3  

Qτ(co, cd, z)=
∑

x∈co

∑

y∈cd

∑

t
q(x, y, t, z) Equation 4 

Similarly, daily OD matrices are on a daily basis, generating totally D 
24*k*k OD matrices where each cell corresponds to the flow increment 
of a 1-h interval between a given OD pair (co, cd) for a given date z; co 
and cd represents the origin and destination on the zonal level while x 
and y is the exact geolocation of the origin and destination of the ride 
records, shown in Equation 4. 

Thirdly, temporal clustering is employed with the aggregated OD 
matrices as the feature vectors. Each data point is composed of a cor-
responding OD matrix. Agglomerative hierarchical clustering is applied 
because of its loose prerequisite of the number of clusters, and its 
dendrogram to assist in the determination of the optimal number of 
clusters (Rokach & Maimon, 2005). 

In this research, Euclidean distance is used to compute the dissimi-
larity metric and the ward method is applied to combining the clusters 
by the variance of clusters which is found to be the most suitable method 
for quantitative variables (Calinski & Harabasz, 1974). 

Agglomerative hierarchical clustering, as a bottom-up algorithm, 
starts with the cluster number equal to the number of data points with 
zero merging cost since each data point is an individual cluster, and the 
successive converging process continues until only one cluster is left. 
The number of clusters can then be decided based on the dendrogram 
considering the interpretability. 

Hourly clustering and daily clustering are applied in this study based 
on the OD matrices aggregated at hourly and daily levels as described 
before. 

2.3. Supply efficiency analysis 

The supply efficiency analysis is performed by examining the vehicle 
idle time per spatial unit. Vehicle idle time is the time when the vehicle 
is in place while no ride is taken in the vehicle, indicating how long the 
vehicle is idle between two rides (Cats, Krishnakumari, Arbez, Chiabaut, 
& van Lint, 2020). 

Commonly, the vehicle idle time only refers to the time interval 
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between two rides while sometimes there are fewer than 2 ride records. 
The assignment of the location corresponding to the idle time is tricky. 

Thereby, the vehicle idle time is adapted to tackle this problem. 
To keep consistency and include all possible idle time records, 

vehicle idle time is separated into two types: one corresponding to the 
origins of rides as VITv(co, τ); the analogous for the destinations as 
VITv(cd, τ) as Equation (5) and Equation (6). 

VITv(co, τ)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t,
⃒
⃒Rτ

v

⃒
⃒ = 0

tsv
r − tsτ ,

⃒
⃒Rτ

v

⃒
⃒ = 1

{
tsv

r − tsτ , if r is the f irst ride in Rτ
v

tsv
r+1 − tev

r , ∀r ∈ Rτ
v

,
⃒
⃒Rτ

v

⃒
⃒ > 1

Equation 5  

VITv(cd, τ)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t,
⃒
⃒Rτ

v

⃒
⃒ = 0

teτ − tev
r ,
⃒
⃒Rτ

v

⃒
⃒ = 1

{
tsv

r+1 − tev
r ,∀r ∈ Rτ

v

teτ − tev
r , if r is the last ride in Rτ

v
,
⃒
⃒Rτ

v

⃒
⃒ > 1

Equation 6 

∀v ∈ V where V is the set of all available vehicles during period τ and 
t is the total time duration of the period τ. 

ts indicates the starting time, for both the ride and the period; te is the 
ending time for either the ride, r, or the period. ts τ is the starting time for 
period τ and te τ is the ending time for period τ; 

co is the original unit, and cd is the destination unit; tsr+1
v is the 

starting time of the (r+1)th ride of vehicle v and ter
v is the ending time of 

the rth ride of vehicle v; Rv
τ is the set including all rides for vehicle v, 

during time period τ; 
If there is only 1 ride record belonging to this vehicle during the 

given period, the vehicle idle time is separated into two sub-vehicle idle 
times, corresponding to the original unit and the destination unit 
separately. 

For example, if vehicle v only has 1 ride record during time period τ, 
with the attributes ride start time tsv, the original location cv

o, ride end 
time tev and destination (drop location) cv

d. The first idle time before 
picking up from the starting point of this period would be assigned as the 
vehicle idle time for the original unit, while the second idle time from 
terminating the ride at the destination to the ending timestamp of this 
period is assigned the vehicle time for the destination unit. Analogously, 
for more than 1 ride record, the same procedures are applied for the first 
and the last rides: assigning the time between the starting time of this 
period, tsτ and the starting time of the first ride, tsv

r ; Assigning the time 
between the end time of the last ride, tev

r and the end time of this period, 
teτ. 

The time interval t is determined by the usage of the shared service. 
For example, if there is 1 ride per vehicle per day on average, the time 
interval could be set up as 1 day, preserving the maximal vehicle idle 
time of 24 h. Additionally, the frequency of reallocation also exerts an 
effect on the determination of the time interval, since the main aim of 
this indicator is to assist the reallocation, avoiding low usage in general. 
Thereby, this time interval should also be compatible with the frequency 
of reallocation. 

Unit-based vehicle idle time is calculated based on the formulas. To 
reallocation geographically, this vehicle idle time per spatial unit per 
period is computed as Equation (7) and Equation (8). 

AVITco (Tt)=

∑

i∈ITt
co

VITv(co, τ)∀v ∈ V, τ ∈ Tt

⃒
⃒ITt

co

⃒
⃒

,∀co ∈C,Tt ∈ T Equation 7  

AVITcd (Tt)=

∑

i∈ITt
cd

VITv(cd, τ)∀v ∈ V, τ ∈ Tt

⃒
⃒
⃒ITt

cd

⃒
⃒
⃒

, ∀cd ∈C,Tt ∈ T Equation 8 

i indicates each vehicle idle time record, and ITt
co 

is the set of all 
vehicle idle time belonging to the unit co and during the period Tt and 
analogously for ITt

cd
; C is the set of all spatial units; Tt is the period, pre-

senting the different operation stages across the whole period, for the 
ride records dataset and T is the period of the whole dataset; The de-

nominator, 
⃒
⃒ITt

co

⃒
⃒ and 

⃒
⃒
⃒ITt

cd

⃒
⃒
⃒, is the number of all vehicles idle time 

belonging to unit co/cd during the time period Tt. 
Based on the magnitude of AVITco(Tt) and AVITcd(Tt) in different 

units, a heatmap would be visualized, describing which unit(s) vehicles 
encounter shorter vehicle idle time and thereby those locations are 
appealing to reallocate bikes. 

2.4. Average trip time/distance analyses 

Similarly, average travel distance and duration are computed on the 
spatial unit level. These two metrics are origin-oriented since the 
destination is less relevant from the operator’s perspective. The calcu-
lations are conducted as Equation (9) and Equation (10). 

ATDc(T)=

∑

i∈RT
c

travel distancei

⃒
⃒RT

c

⃒
⃒

,∀c ∈ C Equation 9  

ATTc(T)=

∑

i∈RT
c

travel timei

⃒
⃒RT

c

⃒
⃒

,∀c ∈ C Equation 10  

where ATDc(T) indicates the average travel distance corresponding to a 
unit c and a given period T; Rc

T is the set including all the ride records 
originating at unit c during the period T and |Rc

T| indicates the size of the 
set; Average travel time is computed analogously with the travel time as 
the object instead of travel distance. 

2.5. Development of the operational strategies 

In this study, two primary types of operational strategies are iden-
tified: reallocation strategies and adjustment in the service area. 

General demand patterns and temporal clusters provide insights into 
the departures, arrivals and total flow of each spatial unit, as well as how 
the e-bike sharing traffic flows between different OD pairs. These ana-
lyses serve the purpose of informing the development of reallocation 
strategies, which aim to mitigate the imbalance between the supply and 
the demand. 

Furthermore, the assessment of supply efficiency and average trip 
distance/duration analyses is performed at the spatial unit level, indi-
cating the popularity and operational efficiency geographically. Based 
on these findings, recommendations in the operational areas can be 
formulated. 

2.6. Operation 

During the operational stage, the strategies derived from the previ-
ous phase are implemented in the real-life context and systematically 
examined. 

To evaluate these strategies, two sets of KPIs are introduced. The first 
group focuses on the operational aspect, while the second category 
evaluates user satisfaction from a business perspective. The first group 
includes metrics such as daily ridership, ridership ratio and average 
vehicle idle time per vehicle; the second is presented by net retention 
ratio and average user expenditure.  

➢ Daily ridership 

This is represented by the total ridership every single day. The sum is 
based on the ride start time. For example, if a ride starts at 23.:59 on 10/ 
09/21 and ends at 00:15 on 11/09/21, it would be assigned to the rides 
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belonging to 10/09/21. 

Qτ =
∑

x

∑

y

∑

t
q(x, y, t, τ),∀τ ∈ T Equation 11  

where t is the ride start time. It sums of all the rides in the given day τ, if 
the origin and destinations are within the operation zones.  

➢ Ridership ratio 

This indicates the general ridership ratio per day. The supply of this 
day is defined as the total available fleet size in the whole operational 
zone. 

rτ =
Qτ

supplyτ
Equation 12    

➢ Average vehicle idle time 

The vehicle idle time is computed in the same way. However, in this 
phase, the average vehicle-based vehicle idle time is applied instead of 
the unit-based ones, using the same set of vehicle idle time records, in a 
different aggregation way, though. The object of this metric corresponds 
to each vehicle, and the average idle is computed based on all corre-
sponding vehicle idle time records. Afterwards, the average vehicle idle 
time is computed by taking the average of all average idle time corre-
sponding to the available fleet during this period. The origin-based and 
the destination-based indicators apply in a similar way. 

AVITco
v (Tt)=

∑

i∈Ico
v

VITv
i (co, τ)∀co ∈ C, τ ∈ Tt

⃒
⃒Ico

v

⃒
⃒

,∀v∈VTt ,Tt ∈ T

Equation 13  

AVITcd
v (Tt)=

∑

i∈Icd
v

VITv
i (cd, τ)∀cd ∈ C, τ ∈ Tt

⃒
⃒Icd

v

⃒
⃒

,∀v∈VTt ,Tt ∈ T

Equation 14  

where Ico
v is the set of origin-based vehicle idle records belonging to the 

vehicle v, and analogously applies for Id
v . 

AVITVco (Tt) and AVITVcd (Tt) are the average of the average origin- 
based/destination-based vehicle idle time per vehicle during the 
period Tt , the denominator is the fleet size belonging to this period 
within the operation zone. 

AVITVco (Tt)=

∑

v∈Vτ
AVITco

v (Tt)

⃒
⃒VTt

⃒
⃒

,∀Tt ∈ T Equation 15  

AVITVcd (Tt)=

∑

v∈Vτ
AVITcd

v (Tt)

⃒
⃒VTt

⃒
⃒

, ∀Tt ∈ T Equation 16    

➢ Net retention rate 

Net revenue retention is a metric demonstrating the variations 
within the existing revenue base. It is used to describe to what extent the 
revenue of the existing customers grows or churns monthly (Guide to 
Net Dollar Retention (NDR) - Definition, Calculation, Tips, 2021). It 
indicates how much customers spend and their expenditure changes on 
the service over time and is a way to understand customers’ satisfaction: 
if they are satisfied with the service, they would keep a subscription and 
continue spending money on it. 

NRR=
Starting MRR + Expansion MRR − Contraction MRR − Churn MRR

Starting MRR
Equation 17  

where MRR is the monthly recurring revenue and NRR is computed 
based on it.  

➢ Average user expenditure 

Complimentary to the net retention rate, average user expenditure is 
also computed. Three indicators belong to this group, total user average 
expenditure, new user average expenditure and retained user average 
expenditure. 

average user expenditurem =
total expenditurem

|usersm|
, ∀m ∈ I Equation 18  

where M is the set of all months and m refers to a specific month. 
This class of indicators provides insights into how much users of 

different groups spend on the service monthly. 

3. Case study 

The case study is conducted based on an e-bike sharing project in The 
Hague. The project was launched in mid-June 2021 and the research 
focuses on a 4-month duration following the project’s launch. The data 
from the first three months are utilized to develop operational strategies 
while the entire period is considered for evaluating the effects of these 
strategies. The e-bike sharing project operates with a fleet size of a few 
hundred e-bikes, with dynamic adjustments made to the fleet size based 
on operational conditions in the subsequent days. 

The Hague, the third-largest city in The Netherlands, serves as the 
context for this case study. It has a population of approximately 550,000 
inhabitants as of 2021, consists of 8 administrative districts and 44 
neighbourhoods, referred to as Wijken in Dutch (The Hague, 2021; The 
Hague in Numbers, 2021; Wijken en buurten in Den Haag, 2021). In this 
research, the neighbourhood units and the overlapping circles are 
treated as the spatial analytical units, as the visualization in Fig. 2. 

Neighbourhoods are a convenient unit for research purposes, but 
their substantial heterogeneities can pose challenges to operational ef-
ficiency. Also, for the users, the operations on the neighbourhood level 
are still too coarse and thereby cannot capture their needs in specific 
locations. To address this limitation, an innovative unit, overlapping 
circles, is introduced. The radius of overlapping circles is set to 400 m: 
on one hand, 400 m approximately correspond to 5-min walking based 
on the Dutch average walking speed of 4.5 km/h (Waterstaat, 2019). 5- 
minute is widely used as the threshold of catchment areas and therefore 
this concept is also applied here (‘Basics’, 2011; Sarker et al., 2019); on 

Fig. 2. Map of functions on the neighbourhood level.  
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the other hand, a sensitivity analysis was conducted to ensure the 
robustness of 400 m in terms of revealing demand patterns in hourly 
clustering. 

The main function of neighbourhoods is illustrated in Fig. 4. It is 
evident that recreational areas are predominantly concentrated in the 
central and southwestern part of The Hague, particularly in Centrum 
and along the beach area. For workplace function, it plots relatively 
sparsely. There are quite some office-oriented areas along the beach and 
in the north-central areas. 

Turning to the descriptive statistics of the demand for the first 1.5 
months this timeframe is chosen as it represents the only available data 
during that specific research phase. To account for the unstable ridership 
caused by the effects of the project’s launch, the ridership is normalized. 
The highest ridership is 1 and the rest is the ratio between the ridership 
and the highest value. It is observed for the first 3 days, the ridership was 
exceptionally high because the service was free of charge during this 
period. Afterwards, the ridership continually declined, with several 
fluctuations though. The ID verification, aiming to avoid misbehaved 
rides, was installed on the 19th day after launch. It has exerted a 
negative effect on ridership with a decline to circa 0.15 per day. This also 
arises from the bad weather condition. Followingly, reallocation stra-
tegies obtained from the data-driven methods have been implemented, 
which would be discussed in detail in the later sections, and they 
contribute to the rebounce of ridership to 0.3 per day approximately, as 
presented in Fig. 3. 

For ridership in terms of the day of the week, there is no obvious 
difference between the ridership per day, indicating that the ride day 
does not insert a noticeable effect on ridership. Additionally, the de-
mand does not either present the typical morning peak pattern, seen in 
Fig. 4, contrary to the previous work (S. Li et al., 2021; Miranda-Moreno 
& Nosal, 2011; Tin Tin, Woodward, Robinson, & Ameratunga, 2012; 
Xing, Wang, & Lu, 2020). One reason is that people are still unfamiliar 
with this service which prevents them from using it during the morning 
peak, to avoid being late for work. Similar to the literature, there is an 
evening peak between 16:00 to 19:59, which reaches its climate at 
around 17:00 to 17:59. It implies the service attracts people after their 
work, consistent with the assumption under the fact of no morning peak 
in this case study. 

The histogram of ride distance shown in Fig. 5, illustrates that the 
majority of trips are shorter than 10 km and the peak is between 0 and 2 
km. The inspection of trip duration indicates that most rides are shorter 
than 50 min and the peak is between 0 and 10 min. The average travel 
duration is 18.2 min and the median is 11.5 min, next to the peak range. 

4. Results and discussion 

This section presents the results of the application of the methods 
described in Section 2. First, the general determinants for e-bike sharing 
services are introduced with the specification of the determinants in this 
case study. Second, the results from the demand pattern are presented, 
followed by a summary of the derived operational strategies. Last, the 
operational strategies are appraised using the proposed methods. 

4.1. Determinants for the demand for e-bike sharing services and 
correlation analysis 

Based on the literature review, there are 6 types of influential factors 
for e-bike sharing service, viz., spatial and infrastructure factors, 
weather-related factors, mobility and trip characteristics, temporal 
factors, sociodemographic factors and safety factors (Daddio, 2012; 
Fishman, Washington, & Haworth, 2012, 2013; Hampshire, 2012; Ji, 
Cherry, Han, & Jordan, 2014). However, only the first four groups are 
applied in this study due to the availability of data. 

Correlation analyses are then conducted to see whether these general 
determinants do exert effects as expected in this case study. Most of 
these determinants are proven to have a Pearson’s coefficient higher 
than 0.3 with the demand. Unexpectedly, the precipitation level and 
temperature are found to correlate with the demand at a low level, 
− 0.03 and 0.16 respectively, stemming from their subtle variations of 
them under the time scope of this research. Another study also presents a 
similar result where precipitation is found to be insignificant to affect 
the demand level (He et al., 2019). 

In harmony with the previous studies, the number of POIs has pos-
itive effects on the ridership level (Faghih-Imani, Hampshire, Marla, & 
Eluru, 2017); the humidity, proved from both Pearson’s coefficient and 
the multiple linear regression model, however, impacts the demand 
negatively (El-Assi & Mahmoud, 2015). 

4.2. Demand pattern analysis and temporal clustering 

There are two demand pattern analyses, with the dataset of two 
periods. First, general demand pattern analysis is conducted on the 
neighbourhood level, using the rides of the first month; then, temporal 
clustering is done on both the neighbourhood and circles level, using the 
dataset of the first 1.5 months. 

As seen in Fig. 6, it is found that Centrum is always the hottest spot in 
terms of departures and arrivals and the central areas are favoured 
compared to other areas. Besides, the beach area catches attention, 
standing out as the heat spots. In addition to that, the arrivals outweigh 
departures in most neighbourhoods, despite two central ones. 

Hence, it is recommended to rebalance the bikes from the beach 
areas to Centrum and the south of Centrum. Another operational Fig. 3. Ridership overview.  

Fig. 4. Temporal distribution of the demand by ride start hour of a day.  

Fig. 5. Distribution of the distance.  
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strategy is to place bikes in batches when rebalancing the bikes, making 
the bikes more noticeable. 

Afterwards, temporal clustering is conducted to see if different pe-
riods share similar demand patterns. Both spatial units are used in this 
analysis Only the clustering on the overlapping circles is present, as 
Fig. 7. 

As observed from Fig. 8, the peak hours and transition hours 
distinguish themselves to be separate clusters, and the rest hours emerge 
together, given 5 clusters. Thereby, there are 5 hourly clusters with their 
characteristics, shown in Fig. 9 as follows.  

i. The first peak hour (16:00–16:59): for this period, the rides 
gather in Centrum and the beachside area. Besides these two 
areas, the rides are relatively sparse in the outer units at a low 
magnitude. The most prevailing spots are in the centre which 
belongs to Centrum and are recreational-oriented areas, located 
in the centre of Fig. 9.1. It is noteworthy that the other units of 
attention are generally recreational-oriented zones despite the 
units located to the east of the centrum with office functions. 
Taking the function into account, these four office-oriented units 
present a departure-dominant flow in the first peak hour. As for 
the central area, the arrival/departure pattern is rather hetero-
geneous and varies per unit.  

ii. The second peak hour (17:00–17:59): this period demonstrates a 
similar pattern as the first peak hour. The central areas are still 
the hottest. However, the most attractive unit shifts to the unit 

near the train station and this unit also reveal a slight departure 
tendency. The alike phenomenon appears in another unit close to 
the central railway station, with a higher departure ratio. It 
suggests that travellers prefer to pick up the bikes near the train 
station during this period, which is conceivable to serve the last 
mile of their trips, compensating for the train trips. The central 
units are generally balanced between departures and arrivals, 
with slightly more departures. Additionally, the beach units, in 
general, attract more trips than the last hour, mainly as the des-
tinations rather than trip origins, while the residential areas are 
less appealing.  

iii. The first transition hour (18:00–18:59): Office-oriented units 
present a predilection for more departures while the recreational 
ones tend to attract arrivals instead. In this period, the central 
area is quite balanced, with a marginal dominance of arrivals, 
especially for the north-western zones.  

iv. The second transition hour (19:00–19:59): The unit near the train 
station is still the most popular in this period, with almost equal 
departures and arrivals, echoing the deduction that these trips 
serve the first/last mile supplementary train trips. Rides are 
relatively distributed to other units while the central areas are 
still prevalent all the time. In this period, the central units are 
generally dominated by more departures while the arrivals are 
towards the outer units.  

1. The off-peak (20:00–15:59): invariably, the central areas are still 
quite essential, followed by units next to the south and east of the 
Centrum district. Besides, the outer residential units are either 
balanced with similar departure and arrival ratios, or prone to 
more arrivals in this period. 

Fig. 6. Heatmaps of normalized departures (left) and the difference between arrivals and departures per neighbourhood (right).  

Fig. 7. Map of functions on the circle level.  

Fig. 8. Dendrogram of hourly clustering on the circle level.  
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Correspondingly, the rebalance suggestions are constructed in 
Table 2. The repositioning strategies on the neighbourhood levels are 
also derived in the same way while the details are omitted in this paper. 
The comparisons between these two sets of strategies would be pre-
sented in the evaluation section. 

4.3. Supply efficiency analysis and average trip duration/distance 
analysis 

This series of analyses provide an overview of the usage over 
different spatial units. 

It is found from the supply efficiency analysis that the outer units 
usually experience a longer vehicle idle time, especially those located in 
the southwest, as seen in Fig. 10. 

Average travel distance and duration indicate that the southwest part 
witnesses a lack of use as presented in Fig. 11, aligned with the obser-
vations in the supply efficiency analysis. Moreover, the units located 
between the outskirts and central areas, which are usually those office- 
oriented or residential units, witness a longer trip duration as well as trip 
distance. 

Thereby, it is suggested to adjust the service area, leaving out the 
southeast part as well as placing those bikes in the hotspots of this ser-
vice. By doing so, efforts of battery swaps can also be significantly 
alleviated. 

4.4. Evaluation of the operational strategies 

There are in total 5 operational strategies with various time scopes. 3 
out of 5 are reposition strategies, consecutive in the timeline of two 
months from July to September, in which the first set is based on the 
general demand pattern on the neighbourhood level, and the second and 
the third are developed from temporal clustering on the neighbourhood 
and overlapping circle levels. The details of temporal clustering are 
omitted in this study while the derived strategies are still being assessed, 
compared with their counterparts on the overlapping circles. 

The exact action of temporal-based reallocations is dependent on the 
execution time of the action, which is usually between 10:00 to 16:00 
during the daytime. It is noted that only one relocation operation is 
needed per period, requiring only a few efforts by the operator. 

The KPIs from the operational sides are presented in Table 3. It is 
obvious that the period of the implementation of ID verification per-
forms the worst out of all the periods. During the periods of rebalancing, 
all KPIs are improved to different degrees. Among the three rebalancing 
periods, the repositioning strategies based on hourly clustering have 
stronger positive effects no matter on ridership or the mitigation of 
vehicle idle time. Besides, the reallocation on the circle level has the 
foremost advantages in the improvement of the service level. 

Though the ridership ratio seems too low, under 1 ride per vehicle 
per day, it is acceptable compared to the other schemes with similar 
supply levels around the world. For instance, Alacant, Boulder, 
Clermont-Ferrand and Perpignan (marked as yellow dots in Fig. 12), 
have a similar supply level. The first two schemes present alike ridership 
ratios and the latter two have a lower ridership ratio at around 0.4 and 
0.2 respectively (Médard de Chardon, Caruso, & Thomas, 2017). 
Considering Mobike in Delft, which offered a much higher supply, only 
saw the ridership ratio at around 1.5 in 2018 (Ma, Yuan, et al., 2020). All 

Fig. 9. Heatmaps of flow (proportional to the maximal flow) and arrival ratio 
for 5 hourly clusters. 

Table 2 
Rebalance suggestions based on temporal clustering in circles.   

period From To 

1st peak 16:00–16:59 Centrum Station 
2nd peak 17:00–17:59 Centrum South of Centrum 
1st transition 18:00–18:59 South of Centrum South 
2nd transition 19:00–19:59   
Off-peak 20:00–15:59 beach Pier of beach  
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these cases show the relevance of the results and the efficacy of opera-
tional strategies in this work. 

From the users’ perspective, the figures related to the monthly net 
retention rate are illustrated in Table 4. The third month from Mid- 
August to Mid-September has the highest NRR at 86.87%. However, 
NRRs of all three months are below 100%. Taking the average user 
expenditure into account, it is easily observed that retained users always 
have higher average expenditure than new users, as seen in Table 5. 

Fig. 10. Heatmaps of origin-based (left) and destination-based (right) vehicle idle time.  

Fig. 11. Heatmaps of average trip time (right) and distance (left).  

Table 3 
Summary of the operational KPIs.  

periods date average 
ridership 
ratio 

average vehicle idle time 
per vehicle (h) 

origin- 
based 

destination- 
based 

free rides Day 1–3 2.11 8.81 17.82 
adopting period Day 

4–18 
0.98 47.28 32.14 

ID verification Day 
19–28 

0.31 59.51 52.66 

first-round rebalance Day 
29–43 

0.53 51.84 43.25 

second-round rebalance 
on the neighbourhood 
level 

Day 
44–50 

0.59 57.3 41.08 

second-round rebalance 
on the circle level 

Day 
51–82 

0.67 47.3 33.07 

without specific strategy Day 
83–97 

0.64 50.16 41.08 

reduction in the 
operational area 

Day 
98–122 

0.52 50.9 43.63 

overview  0.66 40.77 33.05  

Fig. 12. Ridership ratio overview.  
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Based on the results, it is found that the reallocation according to the 
hourly clustering demand pattern on the circle level has the most ad-
vantages, contributing to the highest ridership and the lowest vehicle 
idle time on the operator’s side. 

From the users’ side, the time interval of KPIs is exactly 1 month, 
different from the KPIs in the operators’ aspect. Thereby, it is hard to 
compare these two sets of KPIs. The time scope of the three reallocation 
strategies partially overlapped with the second month while the third 
month also accounts for more than half days of the execution period of 
the third reallocation strategy. The third month performs the best 
considering both NRR and average user expenditure. 

Nevertheless, NRRs of all three months are below 100%. It indicates 
that customer loyalty is not fully established. It is common for a new 
service. Additionally, this level is quite acceptable compared with the 
other bike-sharing providers in which the retention rate is also below 
100%, ranging from 20% to 70%, even the famous project, such as Lime, 
claims a national retention rate of 60% (Shaheen, Martin, Chan, Cohen, 
& Pogodzinski, 2014; SmartCitiesWorld, 2017). 

The operational strategies are proven to be beneficial for improving 
the service, observed by an increase in NRRs and average user expen-
diture, with substantial fluctuations though. 

The fourth month experiences a decline in NRR, while the average 
expenditure of new users and all users do not witness a considerable 
decrease, even with the shrinkage in the operational areas. 

The last strategy, reduction in the operational area, has a lower 
positive effect while it decreases the efforts of battery swaps and real-
location to a large degree, not reflected in the KPIs used in this evalu-
ation, though. 

It is found that rebalancing has better effects although it requires 
more effort in operation. However, a reduction in the service area, the 
other way, relieves the efforts of operation without harm to the service 
level. Thereby, they are complementary to each other and executed at 
the same periods. 

5. Conclusion 

This work addresses several scientific gaps in free-floating e-bike 
sharing research by introducing an innovative spatial analytical unit, the 
overlapping circles, and demonstrating that the reallocation strategies 
derived based on this unit, are more cost-effective because only one 
relocation operation per period is needed. Moreover, this work adds new 
insights to the scarcely investigated, proposes a framework to evaluate 
the operational strategies in a real-life context, while considering the 

perspectives of both operators and users. 
We introduce data-driven methods such as demand pattern analysis 

to design new operational strategies. In addition to that, we conduct a 
descriptive analysis, revealing a single peak period of the e-bike sharing 
service in The Hague, contrary to the widely observed two peaks in other 
studies. Building on this initial analysis, we perform general demand 
pattern analyses as well as temporal clustering analyses of the demand 
pattern via agglomerative hierarchical clustering. The central units are 
found to be the most popular places, in both general and clustering 
analyses. Furthermore, 5 periods emerged from the hourly clustering, 
which is the first peak hour, the second peak hour, the first transition 
hour, the second transition hour, and the off-peak period. We observe 
that from the second peak hour, people moved towards the recreational- 
oriented zones from the office-oriented ones and the station unit became 
prevalent with the most rides from the 2nd peak hour until the end of the 
transition hours. Furthermore, the popularity of the station unit implies 
that people have used this service as a supplement to their train trips for 
the first and the last mile. Additionally, the analysis indicates a lack of 
use in the outskirts in the southwest of The Hague, based on the supply 
efficiency and average travel distance/duration analyses. Based on these 
findings, three sets of rebalancing strategies and the reduction in the 
service area were proposed. 

Subsequently, these strategies were implemented in a real-life 
context and their effects are examined using two categories of KPIs 
that assesses the perspectives of operators and users. All strategies 
demonstrate improvements in service levels. Among these, the third set 
of repositions based on hourly clustering on the circle level showed to 
improve the service to the largest degree, out of all strategies, with a 
ridership ratio of 0.67 and a decrease in the origin-based and 
destination-based vehicle idle time at around 12 and 19 h, compared to 
the ID verification period. Besides, the adjustment in the operational 
zone has a moderate beneficial impact on the service, but it decreases 
the operational efforts to a substantial extent. After applying the stra-
tegies, the level of ridership ratio is quite decent compared with the 
other schemes with a similar supply level around the world. Moreover, it 
is also found that users became more satisfied with the service after the 
implementation of the suggested strategies, indicated by an increased 
net retention rate ranging from 52.10% to 86.87% and a grown average 
user expenditure of around 9 to 15 euros per user. Therefore, we advise 
to implement multiple operational strategies in combination to com-
plement each other. 

However, there are still some limitations. The explicit supply data is 
unavailable thereby the supply level was inferred from the ride records. 
The evaluation method does not distinguish the effects from the oper-
ational strategies and other factors, such as the promoting campaigns or 
the effects of holiday seasons. Therefore, some future work repeats the 
research with better input data, including the precise supply data, and 
incorporate the relationship of public transport into analyses, on the 
overlapping circle units. Future work should furthermore investigate 
predictions of short-term e-bike sharing demand, adapt the evaluation 
method of the operational strategies which isolates the effects stemming 
from the strategies, by providing better reference cases for the predictive 
models. 
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Table 4 
Summary of NRR.  

Period NRR 

Mid-June to Mid-July  
Mid-July to Mid-August 15.78% 
Mid-August to Mid-September 86.87% 
Mid-September to Mid-October 52.10%  

Table 5 
Summary of average user expenditure.  

Period New user 
average spent 
(€) 

Retained user 
average spent (€) 

total user 
average spent 
(€) 

Mid-June to Mid- 
July    

Mid-July to Mid- 
August 

7.83 15.78 9.24 

Mid-August to Mid- 
September 

12.80 20.87 15.30 

Mid-September to 
Mid-October 

9.91 19.24 14.45  

Z. Zhang et al.                                                                                                                                                                                                                                   



Research in Transportation Economics 101 (2023) 101340

11

During this research, the main author has done an internship at a 
company operating e-bike sharing in Europe, who provides the main 
data input. 

Data availability 

The data that has been used is confidential. 

Acknowledge 

This research uses data provided by an anonymous shared-mobility 
operator. The authors would like to thank Jam and Mickey Mouse NL 
for their help with data acquisition. 

References 

Albuquerque, V., Sales Dias, M., & Bacao, F. (2021). Machine learning approaches to 
bike-sharing systems: A systematic literature review. ISPRS International Journal of 
Geo-Information, 10(2), 62. https://doi.org/10.3390/ijgi10020062 

Alvarez-Valdes, R., Belenguer, J. M., Benavent, E., Bermudez, J. D., Muñoz, F., 
Vercher, E., et al. (2016). Optimizing the level of service quality of a bike-sharing 
system. Omega, 62, 163–175. https://doi.org/10.1016/j.omega.2015.09.007 

Angelopoulos, A., Gavalas, D., Konstantopoulos, C., Kypriadis, D., & Pantziou, G. (2018). 
Incentivized vehicle relocation in vehicle sharing systems. Transportation Research 
Part C: Emerging Technologies, 97, 175–193. https://doi.org/10.1016/j. 
trc.2018.10.016 

Barbour, N., Zhang, Y., & Mannering, F. (2019). A statistical analysis of bike sharing 
usage and its potential as an auto-trip substitute. Journal of Transport & Health, 12, 
253–262. https://doi.org/10.1016/j.jth.2019.02.004 

Beirigo, B. A., Negenborn, R. R., Alonso-Mora, J., & Schulte, F. (2022). A business class 
for autonomous mobility-on-demand: Modeling service quality contracts in dynamic 
ridesharing systems. Transportation Research Part C: Emerging Technologies, 136, 
Article 103520. https://doi.org/10.1016/j.trc.2021.103520 

Beirigo, B., Schulte, F., & Negenborn, R. (2018). Dual-mode vehicle routing in mixed 
autonomous and non-autonomous zone networks. 2018 21st international Conference on 
intelligent transportation systems (ITSC), 1325–1330. https://doi.org/10.1109/ 
ITSC.2018.8569344 

Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. 
Communications in Statistics - Theory and Methods, 3(1), 1–27. https://doi.org/ 
10.1080/03610927408827101 

Cats, O., Krishnakumari, P., Arbez, N., Chiabaut, N., & van Lint, H. (2020). Empirical 
evaluation of the efficiency and effectiveness of a ride-sourcing service. In 99th 
transportation research board annual meeting, Washington DC. 

Chemla, D., Meunier, F., & Wolfler Calvo, R. (2013). Bike sharing systems: Solving the 
static rebalancing problem. Discrete Optimization, 10(2), 120–146. https://doi.org/ 
10.1016/j.disopt.2012.11.005 

Chen, Z., van Lierop, D., & Ettema, D. (2020). Dockless bike-sharing systems: What are 
the implications? Transport Reviews, 40(3), 333–353. https://doi.org/10.1080/ 
01441647.2019.1710306 

Daddio, D. (2012). Maximizing bicycle sharing: An empirical analysis of capital bikeshare 
usage (Vol. 45). 

Dell’Amico, M., Hadjicostantinou, E., Iori, M., & Novellani, S. (2014). The bike sharing 
rebalancing problem: Mathematical formulations and benchmark instances. Omega, 
45, 7–19. https://doi.org/10.1016/j.omega.2013.12.001 

DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. 
Journal of Public Transportation, 12(4), 41–56. https://doi.org/10.5038/2375- 
0901.12.4.3 

El-Assi, W., & Mahmoud, M. S. (2015). Effects of built environment and weather on bike 
sharing demand: A station level analysis of commercial bike sharing in toronto (Vol. 39). 

Eren, E., & Uz, V. E. (2020). A review on bike-sharing: The factors affecting bike-sharing 
demand. Sustainable Cities and Society, 54, Article 101882. https://doi.org/10.1016/ 
j.scs.2019.101882 

European Commission. (2011). European commission. Transport White Paper (p. 31) 
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52011DC0144 
&from=EN. 

Faghih-Imani, A., Hampshire, R., Marla, L., & Eluru, N. (2017). An empirical analysis of 
bike sharing usage and rebalancing: Evidence from Barcelona and Seville. 
Transportation Research Part A: Policy and Practice, 97, 177–191. https://doi.org/ 
10.1016/j.tra.2016.12.007 

Fishman, E. (2016). Bikeshare: A review of recent literature. Transport Reviews, 36(1), 
92–113. https://doi.org/10.1080/01441647.2015.1033036 

Fishman, E., & Cherry, C. (2016). E-Bikes in the mainstream: Reviewing a decade of 
research. Transport Reviews, 36(1), 72–91. https://doi.org/10.1080/ 
01441647.2015.1069907 

Fishman, E., Washington, S., & Haworth, N. (2012). Understanding the fear of bicycle riding 
in Australia (Vol. 23, p. 9). 

Fishman, E., Washington, S., & Haworth, N. (2013). Bike share: A synthesis of the 
literature. Transport Reviews, 33(2), 148–165. https://doi.org/10.1080/ 
01441647.2013.775612 

Galatoulas, N.-F., Genikomsakis, K. N., & Ioakimidis, C. S. (2020). Spatio-temporal trends 
of E-bike sharing system deployment: A review in Europe, north America and asia. 
Sustainability, 12(11), 4611. https://doi.org/10.3390/su12114611 

Gavalas, D. (2016). Chapter 13—design and management of vehicle-sharing systems: A 
survey of algorithmic approaches (Vol. 29). 

Guide to Net Dollar Retention (NDR)—Definition, Calculation, Tips. (2021). 
UserGuiding. https://userguiding.com/blog/net-dollar-retention-ndr/. 

Gu, T., Kim, I., & Currie, G. (2019). To be or not to be dockless: Empirical analysis of 
dockless bikeshare development in China. Transportation Research Part A: Policy and 
Practice, 119, 122–147. https://doi.org/10.1016/j.tra.2018.11.007 

The Hague in numbers. https://www.denhaag.nl/en/municipality-of-the-hague/the-ha 
gue-in-numbers.htm, (2021). 

Hampshire, R. C. (2012). An analysis of bike sharing usage: Explaining trip generation 2 and 
attraction from observed demand (Vol. 17). 

Hua, M. (2020). Forecasting usage and bike distribution of dockless bike-sharing using journey 
data. https://doi.org/10.1049/iet-its.2020.0305 

Ji, S., Cherry, C. R., Han, L. D., & Jordan, D. A. (2014). Electric bike sharing: Simulation 
of user demand and system availability. Journal of Cleaner Production, 85, 250–257. 
https://doi.org/10.1016/j.jclepro.2013.09.024 

Liu, S., Hou, J., Liu, Y., Khadka, A., & Liu, Z. (2018). OD demand forecasting for the 
large-scale dockless sharing bike system: A deep learning approach. CICTP, 2018, 
1683–1692. https://doi.org/10.1061/9780784481523.167 

Liu, T. L. K., Krishnakumari, P., & Cats, O. (2019). Exploring demand patterns of a ride- 
sourcing service using spatial and temporal clustering. In 2019 6th international 
conference on models and technologies for intelligent transportation systems (MT-ITS) 
(pp. 1–9). https://doi.org/10.1109/MTITS.2019.8883312 

Li, A., Zhao, P., Huang, Y., Gao, K., & Axhausen, K. W. (2020). An empirical analysis of 
dockless bike-sharing utilization and its explanatory factors: Case study from 
Shanghai, China. Journal of Transport Geography, 88, Article 102828. https://doi. 
org/10.1016/j.jtrangeo.2020.102828 

Li, S., Zhuang, C., Tan, Z., Gao, F., Lai, Z., & Wu, Z. (2021). Inferring the trip purposes 
and uncovering spatio-temporal activity patterns from dockless shared bike dataset 
in Shenzhen, China. Journal of Transport Geography, 91, Article 102974. https://doi. 
org/10.1016/j.jtrangeo.2021.102974 

Ma, X., Ji, Y., Yuan, Y., Van Oort, N., Jin, Y., & Hoogendoorn, S. (2020). A comparison in 
travel patterns and determinants of user demand between docked and dockless bike- 
sharing systems using multi-sourced data. Transportation Research Part A: Policy and 
Practice, 139, 148–173. https://doi.org/10.1016/j.tra.2020.06.022 
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