
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Efficient Container Image Updating
in Low-bandwidth Networks with
Delta Encoding

Matsumoto, Naoki; Kotani, Daisuke; Okabe, Yasuo

Matsumoto, Naoki ...[et al]. Efficient Container Image Updating in Low-bandwidth
Networks with Delta Encoding. 2023 IEEE International Conference on Cloud Engineering
(IC2E) 2023: 1-10

2023

http://hdl.handle.net/2433/286295

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.; This is not the published version. Please cite only the published version. この論文は出版社版
でありません。引用の際には出版社版をご確認ご利用ください。



Efficient Container Image Updating
in Low-bandwidth Networks with Delta Encoding

Naoki Matsumoto
Kyoto University

Kyoto, Japan
mt2.naoki@inet.media.kyoto-u.ac.jp

Daisuke Kotani
Kyoto University

Kyoto, Japan
kotani@media.kyoto-u.ac.jp

Yasuo Okabe
Kyoto University

Kyoto, Japan
okabe@i.kyoto-u.ac.jp

Abstract—Containers are the technology for Linux to isolate
execution environments. By distributing a container image, which
is a collection of files contained in the container, users can use
an execution environment that includes the necessary files and
libraries. However, container images are tens to hundreds of
megabytes in size and require many network resources to be
transferred. Especially in low-bandwidth network environments
like edge computing, frequent image updating can be difficult and
affect other services’ communication. In this paper, we propose a
method to reduce the data size required for image updates using
delta encoding. We use delta encoding to reduce data size and
finish updating quickly, but generating and applying deltas is a
time-consuming operation. Our method proposes DeltaMerging
which enables faster delta generation by merging existing deltas,
and Di3FS which applies deltas lazily. The proposed method
reduces the data size required to update container images from
5 to 40% of that of existing methods. Also, the time required to
generate and apply deltas is greatly reduced with DeltaMerging
and Di3FS. Furthermore, the performance degradation of the
application in the container was almost negligible.

Index Terms—Container, Delta encoding, Edge computing

I. INTRODUCTION

Containers are a technology that provides an execution
environment isolated from the host. The independent root
file system allows the container to run applications without
modifying the host’s root file system. In addition, users can
distribute an environment with necessary libraries and applica-
tions installed in advance. It makes it easy to run applications
in a wide variety of environments. The root file system which
contains applications and libraries is called a container image.
Users can distribute container images through registries that
host container images.

Pull is an operation to download the container image and
extract its root file system. If there is no container image lo-
cally or if the container image is updated, container hosts need
to pull the container image. Container images can sometimes
have a size ranging from tens to hundreds of megabytes, even
if they are optimized. Therefore, pulling new images every
time consumes a lot of network resources. Also, the time
to pull increases as the size of the image increases. It is a
challenge in container use. Serverless computing[1] requires
containers to start fast not to degrade service quality. In edge
and fog computing, where computing and network resources
are severely constrained, pulling an image can take several

minutes[2]. The increase in container image size prevents
containers from various utilization.

To improve the pull, lazy-pulling[3][4][5][6][7][8] has been
proposed. Lazy-pulling starts the container without pulling
the entire container image. In these methods, the minimum
number of files required to start the container is preferentially
downloaded, and containers are launched. However, because
these methods eventually pull the entire container image, the
transferred data size is not reduced. Another method proposes
reducing the transferred data size in container image updating.
Starlight[9] utilizes local images and sends only updated files.
This method transfers the entire updated files. Thus, even
if only a tiny portion of the file is updated, the entire file
must be transferred in this approach. In environments with
limited network bandwidth, such as WANs[10] and cellular
networks[11], it is necessary to reduce the size of transferred
data as much as possible, and there is room to reduce it.

In this paper, we propose a method to reduce the data size
and time required for updating container images with binary
delta encoding. Delta encoding is a technique for reducing the
size of data for updates. Binary delta encoding is a kind of
delta encoding designed for binary files. It extracts a delta from
files or contents. To apply binary delta encoding in container
image updating, we need to consider the characteristics of
container images. In delta encoding, generating and applying
deltas for them take longer than simply compressing and
decompressing them. Container images contain a large number
of files. Thus, using delta encoding in that shape leads to
increase time to pull in clients. Also, in edge computing and
IoT contexts, containers will be deployed on both servers with
rich computing resources and devices with poor computing
resources, such as Raspberry Pi. We consider both environ-
ments and propose DeltaMerging and Di3FS to solve these
problems. DeltaMerging speeds up the generation of client-
tailored deltas by merging already generated deltas. Di3FS
applies the deltas when reading updated files so that clients can
use the updated container image without the time-consuming
decompressing and applying all deltas.

We confirmed proposed method can reduce the size of the
update bundle from 5 to 40% of that of file-based deltas[9]. We
also performed evaluations not only in a server environment
but also in a Linux board environment as IoT devices. The re-
sult shows that the performance degradation of the application

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



TABLE I
COMPARISON BETWEEN APPLICATIONS WITH DELTA ENCODING

Content type Granurarity
of update Protocol When

applying deltas
Web[12][13] a few files a file batch immediately

Firmware[14] or Application[15]
Updating

a bundle
with a few files a bundle batch immediately

File Sync[16][17]
Remote File System[18] many files a file sequential immediately

Container Image
Updating

a bundle
with many files a bundle batch lazily allowed

in the container caused by the proposed method is limited and
acceptable.

II. RELATED WORKS

A. Reduction in Data Size and Time Required for Pull

Several improvements have been proposed to reduce the size
or time required to update container images. The reduction
can be divided into two categories: reduction of the container
image size and reduction by improving the pull itself.

One is to reduce the size of the container image itself.
Some approaches to minimizing the size of the container
image itself have been proposed[19][20][21]. They eliminate
files that are no longer needed in the layer or are duplicated
between layers. Skourtis et al.[19] formulated the problem
of image size reduction based on the trend of files included
in a layer and proposed a method to merge similar layers
between container images. Lu et al.[20] proposed a method to
detect operations that cause image bloat in the layer structure,
such as deleting downloaded files in image builds. However,
Starlight[9] pointed out that improving efficiency in a layer-
based structure is difficult.

The other is an improvement to the pull itself. More pre-
cisely, it improves the operation of downloading and decom-
pressing the tar.gz compressed container image. The approach
is divided into three categories: not pulling container images,
partially and lazily pulling container images, and using a
dedicated system for updating container images.

Slacker[3], Cider[4], Wharf[5], and CernVM-FS[22] mount
container images on shared storage or distributed filesystems.
However, since these methods do not have container images on
the host, they require a stable network connection and shared
storage. Such approaches are not suitable for remote hosts in
terms of availability. P2P-based methods[23][24][25][26][27]
have also been proposed to take advantage of the fact that
each host has its container image. These are not effective
if network resources are limited. Because these approaches
consume many network resources, the network becomes the
bottleneck.

An approach called lazy-pulling exploits a container-specific
characteristic to reduce pulling time. When starting a con-
tainer, downloading and decompressing the container im-
age accounts for 76% of the startup time, while the files
needed to start the container account for 6.4% of the total
image pulling gtime[3]. Lazy-pulling downloads files that
are necessary to start the container preferentially. eStargz[8],

FogDocker[6], and Gotanda et al.’s approach[7] employ lazy-
pulling. These methods record essential files for container
startup during container execution and optimize downloading
with the record. eStargz creates and distributes container
images using stargz[28]. stargz is a gz-compatible compression
format and enables files to be read without decompressing
entirely. It allows lazy-pulling container images to be used as
conventional ones.

Starlight[9] is a method for achieving fast updates and
startups, even in environments with limited network resources,
by transferring only the updated files. This method compares
container images on the local and remote. When a large file is
updated, the entire file must be downloaded even if the change
is small, resulting in an inflated update bundle size. Such
an approach is undesirable in environments where network
bandwidth is limited, such as a WAN[10], or on mobile
networks[11]. To provide more efficient and fast updating, we
must reduce the size of deltas. Also, Starlight generates deltas
on demand according to the container image on the client.
Such a design increases the load on the server side. This is
true of binary delta encoding. In return for the smaller deltas,
it increases the server’s load more, so we need to consider a
way to suppress it regarding when and how to generate deltas.

B. Content Distribution Using Delta Encoding

Table I compares applications with delta encoding and
container image updating. These approaches improved the
process of generating deltas to achieve a better compression
ratio. WebExpress[12] and Banga et al.[13] have proposed
extracting deltas for each URL-tagged content. Delta encoding
is also used in file synchronization, such as rsync[16] and
NetSync[17]. Servers calculate hash values for each chunk
of the file and send them to clients. The client sends the
unmatched chunks in the file to the server as deltas, allowing
files to be synchronized with the minimum data transfer.
LBFS[18] is a file system that uses delta encoding to utilize
the client’s local caches. It enables fast file operations even in
low-bandwidth network environments.

These approaches in the Web and firmware or application
updating handle a few files or a single bundle containing
a few files. Thus the time to generate deltas is short or
not considered. Different from them, container images have
various files, such as executable binaries and compressed files.
In container image updating, servers should generate deltas for
many files fast to reduce updating time. An approach is needed

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



to generate deltas tailored to each client fastly. Additionally,
container image updating has a unique characteristic: there is
no need to apply all deltas when the updated images are used,
and applying deltas lazily is allowed. This characteristic is
useful for faster updating.

In terms of a protocol, file synchronization and remote
file system methods use a sequential transfer protocol that
uses a hash to detect different chunks between the client and
server and transfers the deltas sequentially. The protocol is
designed to work with non-versioned files. However, Chen et
al.[9] have pointed out that such sequential protocol can cause
performance degradation when provisioning container images.
Also, in container image updating, each image is versioned.
We can generate deltas in advance and bundle them into a
single file. Therefore, the protocol in container image updating
should be a batch transfer protocol that transfers all deltas as
a single bundle.

III. PROPOSED METHOD

A. Requirements for Updating Container Images

There are many use cases for delta encoding, such as web
and file synchronization. These applications are unsuitable
for container image updating as described in Section II.
Additionally, the following unique requirements exist when
using binary delta encoding in container image updating.

1) Fast client-tailored delta generation
2) Fast applying deltas to large numbers of files
3) Considering both rich servers and poor IoT devices
The first point stems from the fact that the version of the

old image held by the client varies from client to client.
Servers need to provide deltas considering each client’s old
image version. Generating deltas takes time and it leads to
increase server loads and updating time. In addition, as the
size or number of files increases, the resources to generate
deltas increase. Therefore, there is a need to make delta
generation itself faster. The proposed method reduces the
required time and load to provide deltas by merging deltas
with DeltaMerging. The detail is described in Section III-E.

For the second point, applying the deltas at high speed is
necessary to let the updated image available as quickly as
possible. Typical container images are distributed as com-
pressed files, so they need to be decompressed. From the
third point, in clients with poor storage performance, the
decompression of the downloaded image itself takes much
time[2]. Therefore, the downloaded deltas must be available
without decompression, and applying deltas must be fast. In
the proposed method, this is achieved by two approaches. One
is the delta format which enables files to be read without
decompressing the entire image. The other is Di3FS(DiFF
File System) which applies deltas lazily. Each approach is
described in Section III-C and Section III-F.

B. Overview of the Proposed Method

Fig. 1 shows an overview of our proposed method. Deltas
between two container images are bundled into a single file
called delta bundle. A delta bundle consists of deltas and

2

ServerClient

Container Runtime

Di3FS

Snapshotter
plugin

Container Container

(6)Provide
container image

(4)Work with
runtime

Update bundle
server

(5)Mount delta bundle
with Di3FS

Registry

Delta bundle
store

(1) Download image

(2)Generate
delta bundles

(3)Generate
update bundles
with DeltaMerging

Update bundle

Fig. 1. The overview of the proposed method

/ 
├ usr
└ home
└ ubuntu
├ fileA
└ fileB

/ 
├ usr
└ home
└ ubuntu
├ fileA(modified)
├ fileB
└ fileC(new)

compression

delta

・Manifest
・Config
・Delta bundle
・Metadata
・Structure of directories
・File attributes

・fileA.diff (delta file)
・fileC (new file)

Old image New image Update bundle

Fig. 2. The overview of delta bundle generation

metadata. Its detail is described in Section III-C. A bundle
with a delta bundle and metadata needed to launch containers
is called update bundle. An update bundle is generated based
on one or more delta bundles, and the client performs update
operations with the update bundle.

The proposed method places components on the client and
server sides for transferring update bundles.

The server consists of an update bundle server and a delta
bundle store. The update bundle server generates and delivers
update bundles in response to requests from clients, taking into
account the version of the old images in the clients. The delta
bundle store is a storage that stores delta bundles. According
to the updating bundle generation strategy in Section III-D,
delta bundles are generated in advance and stored in the delta
bundle store. When a client requests an update bundle, a
server generates the update bundle from delta bundles using
DeltaMerging.

The client consists of the snapshotter plugin, which works
with a container runtime and update bundle server, and Di3FS,
which provides the files for containers with update bundles.
Snapshotter plugin presents updated container images as a
snapshot, and a container runtime can use the container images
through Di3FS. Di3FS is a file system that provides new
images based on an update bundle and is designed to provide
updated container images without decompressing the update
bundles. The new image is mounted using Di3FS with the
provided update bundle, and the container can be launched.

Fig. 1 shows that the proposed method sends all deltas
at once. As mentioned in Section II, the sequential transfer
protocol used in file synchronization and remote file systems
is unsuitable for updating container images. The proposed
method uses a batch transfer protocol. The update bundle
server generates an update bundle according to the client’s
old image version side and then transfers the entire of it to
the client side.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



FileA FileB FileDFileC

The body of a delta bundle

{ 
"name":“/”,
“mode”:420,
“uid”:1000,
“gid”:1000,
“type”:DIR,
“childs”:[
{

"name":“FileA",
“type”: FILE̲NEW,
“size”: 63,
"compressedSize":42,
"offset":0
“mode”:420,
“uid”:1000,
“gid”:1000,

},
{

"name":“FileB",
“type”: FILE̲DIFF,
“size”: 140,
"compressedSize“: 70,
"offset":42
“mode”:420,
“uid”:1000,
“gid”:1000,

},
…
],

}

FileA FileB Dirα

/

FileC FileD

Metadata Files in container image

Attributes

Delta and new files

Fig. 3. The structure of a delta bundle

TABLE II
TYPES OF ENTRY IN METADATA

Type Meaning Content
FILE NEW Newly created file Attributes and compressed file

FILE SAME Nothing modified file Attributes
FILE DIFF Something modified file Attributes and delta file

DIR Directory Attributes with its child
SYMLINK Symlink Attributes with real path

C. Delta Bundle Generation

Fig. 2 shows an overview of delta bundle generation from
container images. The proposed method does not use the layer
structure. The layers in the image are combined into a single
layer and images are checked its updated files on a file-by-file
basis.

The files in the old image are compared to those in the
new image. The deltas between files obtained by bsdiff[29]
are called delta file. If the file is newly created, the entire file
is compressed and copied. The newly created file is called new
file. A delta bundle has only files that exist in a new container
image, and the deleted files are ignored. When generating a
delta bundle, the directory structure of the files in the new
image and file attribute information such as the name, size,
permissions, and owner of each file are retained as metadata.
As described in Section III-A, delta bundles must be available
without decompressing them. In the proposed method (Fig. 3),
the following two structures are employed, which are also used
in existing methods[8][9]. First, the delta bundle’s metadata
retains attributes and offsets of the files. Second, the delta
bundle has the metadata at the beginning, and the delta and
new files are concatenated at the end. This design enables delta
bundles to be a single file and access the contained delta and
new files without decompressing the bundle.

The file types included in a delta bundle are listed in
Table II. The metadata consists of these 5 file types and
contains attributes for files provided by the delta bundle.

TABLE III
OPERATIONS FOR Merge DELTA BUNDLES

Lower file Upper file Operation
Not existing
SYMLINK

FILE SAME
Any file types Copy the upper file

Any file types SYMLINK
FILE NEW Copy the upper file

Any file types FILE SAME Copy the lower file
DIR DIR Recusively merge

Not DIR DIR Copy the upper file

FILE NEW FILE DIFF Apply upper diff to lower file
and copy as FILE NEW

FILE DIFF FILE DIFF DeltaMerging

D. Update Bundle Generation by Merging Delta Bundles

The proposed method generates update bundles that match
the client’s old image version by merging multiple delta
bundles. One characteristic of updating using binary delta
encoding is that the delta files require the old files. This
characteristic is problematic for methods that generate the
delta files in advance. Assuming that ∆(Vi,Vj) is the delta
bundle from ImageVi to ImageVj . If the ImageV1 exists
locally in a client and updating to ImageV3

, there are three
options.

The first is that a server transfers the delta bundles both
∆(V1,V2) and ∆(V2,V 3). However, the total size of the delta
bundles can exceed the size of the new container image[30].

The second is to generate a new delta bundle ∆(V1,V3) from
ImageV1

to ImageV3
. If the number of target versions in-

creases, generating delta bundles when requested or generating
all delta bundles in advance is not realistic in terms of the
amount of delta generation.

The third method, which is employed in the proposed
method, generates delta bundles ∆(Vi,Vi+1) in advance and
generates update bundles by merging them. If the delta bundle
between version Vi and version Vj is ∆(Vi,Vj), the update
bundle U(Vi,Vj) is formulated as follows.

∆(Vi,Vj) = MERGE(i, j)

=

{
Merge(MERGE(i, j − 1),∆(Vj−1,Vj)) (j > i+ 2)

Merge(∆(Vi,Vi+1),∆(Vi+1,Vi+2)) (j = i+ 2)

U(Vi,Vj) = Pack(∆(Vi,Vj))

In Merge, delta bundles are merged into a single delta
bundle. The proposed method uses DeltaMerging to perform
fast merging of delta bundles. In Pack, the metadata required
to handle the update at container runtime is assigned to the
delta bundle. The compressed metadata is combined at the
beginning of the delta bundle, and the combined data of
metadata and delta bundle is the update bundle.

Table III shows the operations for Merge delta bundles.
Files in an older delta bundle are called lower files and files in a
newer delta bundle are called upper files. Merge is performed
on upper files. Each upper file is processed according to
Table III and the result files are stored as the merged delta
bundle. To merge FILE DIFF files, DeltaMerging is used. The
detail is described in Section III-E.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09…

0x01, 0x02, 0x05, 0x06, 0x07, 0xAB, 0xBC, 0x09…

Old file

New file

+0 +0 +2 +2 +2 +0

Move 3 bytes

INSERT

0x00, 0x00, 0x02, 0x02, 0x02 0xAB, 0xBC INSERTADD0x05, 0x02, 0x03 offsets

ADD 5 bytes, INSERT 2 bytes, Move +3 bytesDelta file

ADD

A delta block

A subsequence to ADD
A subsequence to 

INSERT

Fig. 4. Format of a delta file in bsdiff

E. Merging Delta Files with DeltaMerging

DeltaMerging is an algorithm designed for bsdiff to merge
delta files into a single delta file like an algorithm[31]
for VCDIFF. By merging existing delta files, DeltaMerging
performs a delta file generation at high speed without re-
generating delta files. Let δFileA

(Vi,Vi+1)
be the delta file for file

FileA contained in the delta bundle ∆(Vi,Vi+1). DeltaMerging
is formulated as follows.

δFileA
(Vi,Vi+2)

= DeltaMerging(δFileA
(Vi,Vi+1)

, δFileA
(Vi+1,Vi+2)

)

DeltaMerging merges two delta files. When three or more delta
files need to merge, DeltaMerging is applied multiple times.

Fig. 4 shows the format of the delta file generated by bsdiff.
In bsdiff, the delta is handled by three operations: adding
(ADD), inserting (INSERT) subsequences to the old file, and
moving the delta applying offset in the file. We refer to this set
of operations as a delta block. The subsequence to be added or
inserted is calculated so that the size of the delta file becomes
as small as possible. In DeltaMerging, when an older delta file
(lowerFile) is merged with a newer delta file (upperFile), the
lowerFile is considered as the source file of the upperFile.
The upperFile is applied to the lowerFile.

When merging, the delta blocks are converted into the
structures shown below, and the entire delta file is treated as
an array of delta blocks.

type DeltaBlock = struct {
oldPos int64
newPos int64
addBytes []byte
insertBytes []byte

}

oldPos is the absolute offset in the old file where the subse-
quence is ADDed, and newPos is the absolute offset where
the result of ADD is written to the new file. addBytes and
insertBytes are the subsequences for ADD and INSERT.

DeltaMerging is performed after converting lowerFile and
upperFile to arrays of DeltaBlock lowerBlocks and up-
perBlocks, respectively. DeltaMerging merges all delta blocks
in upperBlocks with delta blocks in lowerBlocks. Algo-
rithm 1 describes an algorithm to merge an upper block with
lower blocks. Fig. 5 shows the example of DeltaMerging.
Algorithm 1 takes a delta block in upperBlocks as upper. cur
is the current offset for merge starting from 0. FIND BLOCK
gets the delta block lower that satisfies lower.newPos <

Algorithm 1 Merge delta blocks in DeltaMerging
Require: upper: a delta block to be merged
Require: lowerBlocks: an array of delta blocks for lowerFile
Ensure: merged: a merged delta block
1: function MERGEBLOCK(upper, lowerBlocks)
2: merged ← NewArrayOfDeltaBlock() // Array for merged DeltaBlocks
3: cur ← 0 // Current offset for merge
4: mergeBlock ← NewDeltaBlock()
5: // State is one of NotAdded, Added, Inserted and manages the state of merge-

Block.
6: // NotAdded: mergeBlock is not initialized and nothing merged into it.
7: // Added: Something merged as ADD into mergeBlock.
8: // Inserted: Something merged as INSERT into mergeBlock.
9: // Merged subsequence as ADD cannot be inserted into mergeBlock with state

Inserted.
10: // If the state is Inserted, mergeBlock is complete DeltaBlock and appended to

merged.
11: state ← NotAdded
12: while cur is in the upper do
13: lower ← FIND BLOCK(lowerBlocks, upper.oldPos+cur)
14: if state is Added then
15: merged.append(mergeBlock)
16: state ← NotAdded
17: end if
18: while cur is in the upper and the lower do
19: if state is NotAdded then
20: mergeBlock ← NewDeltaBlock()
21: end if
22: if lower is ADD at cur then
23: if upper is ADD at cur then
24: if state is Inserted then
25: merged.append(mergeBlock)
26: mergeBlock ← NewDeltaBlock()
27: end if
28: mergeBlock ← Merge ADD regions as ADD
29: state ← Added
30: else
31: mergeBlock ← Merge ADD and INSERT regions as INSERT
32: state ← Inserted
33: end if
34: else
35: if upper is ADD at cur then
36: mergeBlock ← Merge INSERT and ADD regions as INSERT
37: else
38: mergeBlock← Merge INSERT and INSERT regions as INSERT
39: end if
40: state ← Inserted
41: end if
42: cur ← cur + merged length
43: end while
44: end while
45: if state is not NotAdded then
46: merged.append(mergeBlock)
47: end if
48: return merged
49: end function

ADD INSERT

lowerBlocks

ADD INSERT INSERTADD

INSERTADD

INSERTADD

upper

upper.oldPos + cur

FIND̲BLOCK

upper.oldPos

lower Each lower writes the results of 
ADD or INSERT at upper.oldPos + cur

INSERT ADD INSERT

INSERT
+

ADD

ADD
+

ADD

ADD
+

INSERT

INSERT
+

INSERT

merged

ADD INSERT

Fig. 5. The example of DeltaMerging

upper.oldPos+cur < lower.insertEnd from lowerBlocks.
Then, lower and upper are merged according to the rule
described in Table IV. The merged delta block(mergeBlock)
is stored in an array(merged). After merging all delta blocks

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



TABLE IV
OPERATIONS TO MERGE DELTA BLOCKS

lower upper Operation

ADD ADD Adding each subsequence
and storing it as ADD

ADD INSERT Storing INSERT of upper

INSERT ADD Adding each subsequence
and storing it as INSERT

INSERT INSERT Storing INSERT of upper

VFS FUSE

libfuse

コンテナ
プロセス

Di3FS

Delta bundle

/

etc lib

appconf

コンテナ
プロセス
Container
Process

exe

Metadata
Providing
file structure

Old image
Attribute

Applying delta

File body

Linux kernel

File I/O

Fig. 6. The architecture of Di3FS

Di3FS

1. Showing new files
with metadata in the delta bundle

Information of files

ReadDir, GetAttr

Open

New file
Applying

delta

2. Applying delta when
the file is opened

OK
Read(offset=0, len=4096)

OK(Data=0xab, 0xbc,…)3. Reading data

Old file

Delta file

ls -l

cat new.txt

Fig. 7. Reading file with Di3FS

in upperBlocks, delta blocks in merged are converted into a
merged delta file.

F. Di3FS

Di3FS (Fig. 6) is a file system for making a new image
available with delta bundles by applying deltas lazily. In
binary delta encoding, an operation to apply the deltas is
required. The time required to apply deltas increases as the
number or size of files increases. This tendency is particularly
noticeable in environments with low storage performance.
Di3FS provides the new image by applying the deltas lazily
to reduce the time to apply deltas.

The flow from mounting the file system to reading files with
Di3FS is shown in Fig. 7. Di3FS builds a tree of files and
directories based on the delta bundle’s metadata and outputs
them as a file system. At the mounting, the file system only
needs the attribute information of files and directories and does
not need the file’s content, so there is no need to apply the
deltas. When a file is opened, the handler to apply deltas is
called. The corresponding delta file is read from the delta
bundle and applied, and the applied results are stored in
memory. Later, the handler to read the file is called when
the file is read. Based on the offset and length to read, the
delta-applied data held in memory is read and returned.

Base ID

FileA

Header Size

Compressed

Metadata

FileB.diff

FileC.diff

FileD.diff

FileE

Manifest Size

Manifest Digest

Config Size

Diff Data Size

Manifest

Config

Delta bundle

Update bundle
header

Header Size

Compressed

Delta bundle
header

a. Delta bundle format b. Update bundle format

Fig. 8. Delta and update bundle format

Di3FS does not handle writing data and modifying file
attribute operations. To store modified files, a writable layer
is stacked over Di3FS. This layer stores written files and
file attribute modification. This function is provided by a
snapshotter plugin described in Section IV-B.

IV. IMPLEMENTATION

The implementation uses go-bsdiff[32], a bsdiff library for
golang. The container runtime is containerd[33]. The imple-
mentation is available at https://github.com/naoki9911/d4c.

A. Delta and Update Bundle Format

Fig. 8.a shows delta and update bundle format. The delta
bundle is designed to provide access to the included delta and
new files while eliminating time-consuming image decompres-
sion operations. A delta bundle consists of metadata and file
bodies. Metadata is a tree with directories as nodes and files
and symlinks as leaves, encoded in JSON format. The file body
section combines the deltas generated by bsdiff as delta files.
Newly created files are compressed with zstd and combined
into a delta bundle as new files.

The format of an update bundle is shown in Fig. 8.b. The
update data includes the compressed Manifest, Config, and
a delta bundle used for the update. Manifest is a file that
describes the layers required to distribute a container image.
The proposed method generates a Manifest with a single layer
representing a delta bundle and appends it to the updated
bundle. The Config specifies the environment variables and
commands required to launch the container.

B. Snapshotter Plugin

containerd can handle not only the OCI container image
but also any file system via snapshotter plugins as a snapshot.
A snapshot is a bundle of files used for containers.

To provide snapshots, containerd requires a snapshotter
plugin and appropriate settings. A snapshotter plugin manages
snapshots and file systems which provide files in container im-
ages. The plugin provides only the functions for the snapshot,
so a component to register images as snapshots is required.
This component is implemented as a command line (CLI) tool.
The CLI tool registers and configures snapshots to containerd
with some metadata and notices the snapshotter plugin to

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://github.com/naoki9911/d4c


TABLE V
CONTAINER IMAGES USED FOR EVALUATION

Image Version(Size)
postgres 13.1(109.44MB), 13.2(109.51MB), 13.3(109.62MB)
mysql 8.0.29(125.68MB), 8.0.30(127.69MB), 8.0.31(153.15MB)
redis 7.0.5(40.43MB), 7.0.6(40.44MB), 7.0.7(40.44MB)
nginx 1.23.1(54.14MB), 1.23.2(54.19MB), 1.23.3(54.25MB)
apache 2.4.52(53.80MB), 2.4.53(53.82MB), 2.4.54(54.47MB)

TABLE VI
SERVER ENVIRONMENT(VIRTUAL MACHINE)

CPU AMD EPYC 7452(8 core)
Memory 32GB

Storage
SSD 200GB

Sequential read 2GB/s
Sequential write 700MB/s

OS Ubuntu 22.04 (kernel 5.15.0-58-generic)

TABLE VII
LINUX BOARD ENVIRONMENT(RASPBERRY PI 4)

CPU Broadcom BCM2835(4 core)
Memory 8GB

Storage
microSD 64GB

Sequential read 40MB/s
Sequential write 20MB/s

OS Ubuntu 20.04 (kernel 5.4.0-1078-raspi)

mount file systems. In the proposed method, a snapshotter
plugin mounts delta bundles with Di3FS, and the CLI tool
operates container image updating and registers delta bundles
as snapshots.

V. EVALUATION

A. Environments for Evaluation

Table V shows the container images used in the evaluation.
These images are published at DockerHub1. Tags assigned to
images are treated as versions.

Two evaluation environments are assumed as a client: Server
Environment(Table VI) with rich computing resources and
Linux board Environment(Table VII) for IoT or edge com-
puting. The server is also used for the update bundle server.
Virtual Machines(VMs) on a physical server are used as the
server. An update bundle server and a client run on the same
physical server as VMs. Each VM is connected to a virtual
network provided by Linux. As the Linux board, Raspberry
Pi 4 is used. An update bundle server and Raspberry Pi 4
are connected with physical 1Gbps Ethernet. Throughput and
latency are controlled with Linux’s traffic control (tc).

B. Delta Bundle Generation

We evaluated the time required to generate the delta bun-
dles and their size. The same environment as the Server
Environment is used to generate delta bundles. Starlight[9]
compares updated files file-by-file and transfers the entire
updated file. We denote this delta generation as file-by-file
delta and implemented it in our approach by always generating
FILE NEW as deltas instead of FILE DIFF.

1https://hub.docker.com/

28.27 26.57 31.02

69.84

118.56
126.35

9.03 9.03
9.03

6.65 3.36 6.71
12.79 18.96 21.41

4.46 3.79

5.29 16.51

47.26

54.25

1.04 0.30
1.05

0.63 1.16

0.73
0.73 1.84

2.28
5.36

54.65

1.06 1.15 2.28

0

20

40

60

80

100

120

140

.1 - .2 .2 - .3 .1 - .3 .29 -
.30

.30 -
.31

.29 -
.31

.5 - .6 .6 - .7 .5 - .7 .1 - .2 .2 - .3 .1 - .3 .52 -
.53

.53 -
.54

.52 -
.54

postgres mysql redis nginx apache

Si
ze

 o
f 

a 
d

el
ta

 b
u

n
d

le
 (

M
B

)

File-by-file delta Binary delta encoding DeltaMerging

Fig. 9. Comparison of delta bundle size

3.37 3.38 3.38 4.80 5.35 5.32 1.28 1.26 1.27 1.58 1.53 1.54 1.57 1.63 1.63

19.99 18.03
22.33

113.89

156.94
167.08

16.66 12.20 16.37 6.32 4.39 6.69 10.13 13.33 15.615.87
23.96

2.35 1.56 2.71
0

20
40
60
80

100
120
140
160
180

.1 - .2 .2 - .3 .1 - .3 .29 -
.30

.30 -
.31

.29 -
.31

.5 - .6 .6 - .7 .5 - .7 .1 - .2 .2 - .3 .1 - .3 .52 -
.53

.53 -
.54

.52 -
.54

postgres mysql redis nginx apache

R
eq

u
ir

ed
 �

m
e 

to
 

ge
n

er
at

e 
a 

d
el

ta
 b

u
n

d
le

(s
ec

o
n

d
)

File-by-file delta Binary delta encoding DeltaMerging

Fig. 10. Comparison of time required to generate delta bundles

0

0.5

1

1.5

2

2.5

3

3.5

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000

C
o
m

p
re

ss
io

n
 e
ffi

ci
e
n

cy

new file size(byte)

/usr/lib/x86̲64-linux-gnu/libcrypto.so.1.1

/usr/lib/postgresql/13/lib/bitcode/postgres.index.bc

/usr/lib/x86̲64-linux-gnu/libapt-pkg.so.5.0.2

/usr/lib/postgresql/13/bin/postgres

Fig. 11. Reduction efficiency per file

Fig. 9 compares the size of delta bundles between file-by-file
delta and the proposed method. The proposed method reduces
the size to about 5%-40% compared to the file-by-file delta.

Fig. 10 shows the time required to generate delta bundles. In
most cases, the generation with file-by-file delta is completed
in less than 5 seconds. On the other hand, the proposed method
using binary delta encoding takes more than 10 seconds to
generate delta bundles. In particular, for the MySQL image, it
takes almost 180 seconds to generate its delta bundle. As for
merging delta bundles with DeltaMerging, Fig. 10 shows that
it is completed in about 10-20% of the time compared to the
case of delta generation. In addition, as shown in Fig. 9, the
size of the merged delta bundles is almost the same as that of
the generated delta bundles.

Fig. 11 shows the efficiency of the proposed method be-
tween postgres 13.1 and 13.2. Compression efficiency is the
ratio of delta file size over new file size. If the ratio is
greater than 1, file-by-file delta is more efficient, and the
proposed method is more efficient if the ratio is less than 1.
Fig. 11 shows that executable binaries and shared libraries,
such as postgres and libcrypto.so.1.1, have a significant

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



3.54 3.25

6.87

14.40

0.87 0.76 1.02 0.80
1.43 2.03

0.49 0.49 0.70 0.73 0.23 0.23 0.34 0.34 0.28 0.29
0
2
4
6
8

10
12
14
16

.1 - .2 .2 - .3 .29 -
.30

.30 -
.31

.5 - .6 .6 - .7 .1 - .2 .2 - .3 .52 -
.53

.53 -
.54

postgresql mysql redis nginx apache

R
eq

u
ir

ed
 �

m
e 

to
 

m
o

u
n

t(
se

co
n

d
)

Applying all deltas Di3FS

Fig. 12. Time required to apply an update bundle in Server Environment

26.19 21.64

179.50
206.68

36.26 35.01
9.75 6.02

16.52 20.84
2.75 2.81 2.61 1.75 1.05 1.12 2.02 1.81 1.75 1.61

0

50

100

150

200

250

.1 - .2 .2 - .3 .29 -
.30

.30 -
.31

.5 - .6 .6 - .7 .1 - .2 .2 - .3 .52 -
.53

.53 -
.54

postgresql mysql redis nginx apache

R
eq

u
ir

ed
 �

m
e 

to
 

m
o

u
n

t(
se

co
n

d
)

Applying all deltas Di3FS

Fig. 13. Time required to apply an update bundle in Linux board Environment

reduction. On the other hand, there is almost no reduction for
postgres.index.bc. The *.bc is LLVM bit-code encoded in
bitstream. This is because bsdiff is designed to extract deltas
for byte-encoded files and cannot extract changes efficiently
for such bit-encoded files.

C. Applying Delta Bundles

We compared the time between fully applying delta bun-
dles to the old container image and mounting delta bundles
with Di3FS. The same delta bundles used for updating time
evaluation are used in this evaluation. As shown in Fig. 12
and Fig. 13, applying delta bundles to an old container image
takes more time depending on the size of the delta bundle,
while the Di3FS takes at most 3 seconds to make the updated
image available. Because Server Environment has a fast CPU
and storage, applying the entire delta bundle takes about 10
seconds. However, since Linux board Environment has a slow
CPU and storage, applying delta bundles takes more than 160
seconds, which is longer than the time required to transfer the
update bundle. By using Di3FS, it is possible to mount the
updated image in 3 seconds. Therefore, Di3FS is very useful
for fast container image updating.

D. Time Required for Updating

We measured the time required to update a container image.
The time is from when the container image update begins
to when the downloaded update bundle is mounted. Results
are averages of 10 times measurements We assumed Mobile
Networks like 4G and 5G as a network between a server

5.17 4.95 6.19

12.56

20.64 22.80

1.96 1.94
2.40 1.49 0.95 1.88 2.59 3.73

4.50

1.69 0.97

7.22 3.23
8.48

34.32

0.50 0.37 2.99 0.51 0.61 2.10 0.44 0.72 3.45

0

10

20

30

40

.1 - .2 .2 - .3 .1 - .3 .29 -
.30

.30 -
.31

.29 -
.31

.5 - .6 .6 - .7 .5 - .7 .1 - .2 .2 - .3 .1 - .3 .52 -
.53

.53 -
.54

.52 -
.54

postgres mysql redis nginx apache

R
eq

u
ir

ed
 �

m
e 

to
 

u
p

d
at

e(
se

co
n

d
)

File-by-file delta Proposed method

Fig. 14. Time required to update in Linux board Environment

TABLE VIII
TIME REQUIRED TO CHECK FILES IN POSTGRES 13.2

Methods Time required (sec)
Di3FS 6.019
Native 0.234

TABLE IX
TPC-B BENCHMARK COMPARISON IN POSTGRES 13.2

Methods Latency Average(ms) Transactions Per Second
Di3FS 15.748 634.997
Native 15.747 635.037

and a client. This network is a low-bandwidth network with
50Mbps[11] bandwidth and 40ms[34] delay (RTT).

Fig. 14 shows the results for Linux board Environment. Hor-
izontal axes in the graph represent old and new image versions
to be updated. For the update (Vi, Vi+1), the delta bundles
are generated in advance. When the update bundle U(Vi,Vi+2)

is requested, ∆(Vi, Vi+1),∆(Vi+1, Vi+2) are merged on the
update bundle server. The result shows that the update time
is reduced up to 20-40% of that of the file-by-file delta. In
addition, the update time was reduced by up to 12 seconds.
In the case of merging delta bundles U(Vi,Vi+2

, due to the
merging overhead, the update time is a little worse than the
file-by-file delta. As shown in Fig. 10, generating deltas with
DeltaMerging is slower than file-by-file delta generation. This
is the reason why the proposed method’s updating time is
worse than that of file-by-file. We also evaluated them in
Server Environment and, it shows almost the same trend as
the results in the Linux board Environment.

E. Impact on Application Performance

We evaluated the impact of the proposed method on file
access performance using the diff command. It reads and
compares files. We also evaluated the application performance.
We used a benchmarking tool for database software pgbench.
Each evaluation was performed in Server Environment.

We measured the time to compare files with diff command
between the Di3FS mounted directory and the native file
system’s directory. The target container image is postgres
13.2, and the old image is postgres 13.1. As shown in
Table VIII, we observed that Di3FS took 25 times longer than
the native file system. This is because Di3FS needs to apply
deltas when files are read for the first time.

We measured the impact of Di3FS on the performance of
applications using pgbench. We compared the performance

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



of applications launched using Di3FS and those launched
from the native file system using the official postgres 13.2
container image. pgbench is a benchmarking software for the
database software PostgreSQL and can benchmark with loads
that simulate real applications. The parameters of pgbench are
the number of concurrent connections is 10, the measurement
time is 120 seconds, and the other is default values. The results
in Table IX show that the benchmark results do not indicate
any significant performance degradation.

This result shows that Di3FS does not cause performance
degradation to PostgreSQL. pgbench issues a series of queries
which is specified as TPC-B[35]. The test says that ”it is char-
acterized by significant disk input and outputs, moderate sys-
tem and application execution time. and transaction integrity.”
In other words, TPC-B consumes much disk IO and CPU
resources to process queries and transactions. From the results
of pgbench and the characteristics of TPC-B, applications
with significant disk IO and CPU resource consumption will
not be affected by Di3FS.

VI. DISCUSSION

A. Accelerated Delta Bundle Generation with DeltaMerging

In order to speed up generating a delta bundle that matches
the version of the old image, we propose DeltaMerging.
We have confirmed that the delta bundle generation with
DeltaMerging is faster than that with generating deltas in
Fig. 10. In addition, the size of the delta bundle merged
with DeltaMerging is almost the same as that of generated
delta bundles. This shows that generating client-specific delta
bundles at high speed is possible without increasing their size.
This indicates that the update bundle generation strategy of the
proposed method is realistic. However, as shown in Fig. 10, it
takes 23.96 seconds, or 2.3 MB/s (18 Mbps), to retrieve 54.65
MB of delta bundle. When a delta bundle is transferred over
a 4G network where the average throughput is 53Mbps[11],
merging with DeltaMerging may not fully utilize the link
capacity. Also, if the network is fast enough, the time required
for transfer decreases, and merging time with DeltaMerging
becomes dominant. In most cases that require merging deltas
shown in Fig. 14, the proposed method is slower than file-by-
file delta. We need to improve the process of merging delta
bundles. Because DeltaMerging can be parallelized for each
file in the delta bundle, it is possible to speed up the process
by utilizing the computing resources on the server side.

Our prototype server implementation provides only simple
delta management. A server receives the client’s information
and provides requested delta bundles. The current server
implementation does not have a cache mechanism and merges
delta bundles with DeltaMerging every time. In a sense, the
evaluations in Fig. 10 and Fig. 14 are the worst case in our
proposed method. Once the required delta is generated and
cached, a server can serve the same delta without merging. To
provide more efficient and faster container updating, we will
work on more sophisticated delta bundle management.

Also, we will address the more efficient update in ”version
jumping” (e.g. update from V1 to V5). The current imple-

mentation simply merges bundles recursively as described in
Section III-D. Denoting version difference as n (e.g. n is 4
from V1 to V5), generating deltas takes O(n) times merging.
When the delta with ”version jumping” is requested, the time
to provide deltas will increase linearly according to n. We
have a plan to reduce merging costs with a divide-and-conquer
merging strategy. It will reduce the merging costs to O(logn).

These server-side improvements including faster merging,
delta bundle management, and merging strategy are future
work.

B. Breakdown of Delta Bundle Size Reduction

The reduction rates shown in Fig. 11 indicate significant
reductions for the executable binaries and shared libraries,
which are target of bsdiff. However, the delta size for LLVM
IR bit code (.bc) was not reduced. This is because bsdiff used
to obtain deltas processes data in bytes and cannot handle
bit-wise deltas. Thus, the reduction effect was insignificant
or counterproductive for bit-wise data and compressed files.
For such files for which bsdiff is not suited, it is necessary
to use a different delta encoding algorithm or to convert the
file to a format suitable for bsdiff before extracting the deltas.
Since container images contain various types of files, the size
of update bundles can be further reduced by incorporating a
framework that can handle multiple delta encoding algorithms
into the proposed method and using them appropriately, de-
pending on the file type.

C. Overhead with Di3FS

Di3FS, which reduces the overhead of applying deltas,
confirmed that container images can be used with applying
deltas lazily. Specifically, in environments with low storage
performance, while it took nearly 3 minutes to apply all
the deltas, Di3FS was able to mount the updated image in
about 2 seconds. Di3FS plays an essential role in speeding up
container image updates.

Although significant performance degradation was observed
when reading many files from the updated container image, a
benchmark targeting PostgreSQL confirmed little performance
degradation. As described in Section V-E, the benchmark is
designed to consume much disk IO and CPU resources to
process queries and transactions. It means that applications
that do not read many files from the container image are
unaffected by Di3FS, even if they have significant disk IO
and CPU resource consumption. In our proposed method,
files in delta bundles are provided by Di3FS as a read-only
layer. Applications in containers create files, and the files are
stored in a temporal read-writable layer provided by a native
file system. This is why the performance degradation is not
discovered in the benchmark using pgbench.

However, as the number of containers using the same
image increases, file read requests from those containers go
through Di3FS. The delta-applied data is retained in memory,
so the deltas are only applied once for the first time in
Di3FS. Containers with the same images have almost the same
tendency to read[3], so it is expected that Di3FS will not cause

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



more performance degradation as the number of containers
increases. FUSE, which passes file-related operations from the
Linux kernel to Di3FS, processes all file operations. It can
cause performance degradation as the number of containers
increases. This problem is not caused by Di3FS but by
FUSE. Therefore, if FUSE causes performance problems or
degradation, it can be replaced with other implementations.

VII. CONCLUSION

In this paper, we propose a method to reduce the amount
of data transferred for container image updating using binary
delta encoding. We show that the proposed method reduces the
size of the update bundle, which bundles the deltas for the up-
date, to about 5-40% of the size of the existing method[9]. The
time required to update container images was also reduced.
When updating container images using binary delta encoding,
it is necessary to quickly generate the update bundle for
each client. Clients need to make the updated image available
as soon as possible. To address these issues, we proposed
DeltaMerging and Di3FS, respectively. DeltaMerging makes
it faster to generate a delta bundle by merging multiple delta
bundles than generating delta bundles with binary delta encod-
ing. Di3FS provides updated images applying deltas lazily. It
eliminates the time-consuming operations of decompressing
the delta bundle and applying deltas. We confirmed that the
performance degradation of container applications by using
the proposed method is limited and acceptable.

Further improvements to provide more sophisticated delta
bundle management and reduce data size and updating time,
including DeltaMerging and lazy-pulling, are our future tasks.

ACKNOWLEDGEMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 23KJ1329.

REFERENCES

[1] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, J. E. Gonzalez,
R. A. Popa, I. Stoica, and D. A. Patterson, “Cloud programming
simplified: A berkeley view on serverless computing,” 2019. [Online].
Available: https://arxiv.org/abs/1902.03383

[2] A. Ahmed and G. Pierre, “Docker container deployment in fog com-
puting infrastructures,” in 2018 IEEE International Conference on Edge
Computing (EDGE), 2018, pp. 1–8.

[3] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: Fast distribution with lazy docker containers,” in
USENIX FAST 16, Feb. 2016, pp. 181–195.

[4] L. Du, T. Wo, R. Yang, and C. Hu, “Cider: a rapid docker container
deployment system through sharing network storage,” in 2017 IEEE
HPCC/SmartCity/DSS, 2017, pp. 332–339.

[5] C. Zheng, L. Rupprecht, V. Tarasov, D. Thain, M. Mohamed, D. Skour-
tis, A. S. Warke, and D. Hildebrand, “Wharf: Sharing docker images in
a distributed file system,” in ACM SoCC ’18, 2018, pp. 174–185.

[6] L. Civolani, G. Pierre, and P. Bellavista, “Fogdocker: Start container
now, fetch image later,” in ACM UCC ’19, 2019, pp. 51–59.

[7] S. Gotanda and T. Shinagawa, “Short paper: Highly compatible fast
container startup with lazy layer pull,” in 2021 IEEE IC2E, 2021, pp.
53–59.

[8] containerd, “estargz,” https://github.com/containerd/stargz-snapshotter
(2023/02/06 accessed), 2022.

[9] J. L. Chen, D. Liaqat, M. Gabel, and E. de Lara, “Starlight: Fast
container provisioning on the edge and over the WAN,” in USENIX
NSDI 22, Apr. 2022, pp. 35–50.

[10] V. Persico, A. Botta, P. Marchetta, A. Montieri, and A. Pescapé, “On
the performance of the wide-area networks interconnecting public-cloud
datacenters around the globe,” Computer Networks, vol. 112, pp. 67–83,
2017.

[11] X. Yang, H. Lin, Z. Li, F. Qian, X. Li, Z. He, X. Wu, X. Wang,
Y. Liu, Z. Liao, D. Hu, and T. Xu, “Mobile access bandwidth in
practice: Measurement, analysis, and implications,” in ACM SIGCOMM
’22, 2022, pp. 114–128.

[12] B. C. Housel and D. B. Lindquist, “Webexpress: A system
for optimizing web browsing in a wireless environment,” in
ACM MobiCom ’96, 1996, pp. 108–116. [Online]. Available:
https://doi.org/10.1145/236387.236416

[13] G. Banga, F. Douglis, and M. Rabinovich, “Optimistic deltas for www
latency reduction,” in USENIX ATEC ’97, 1997, p. 22.

[14] H. Teraoka, F. Nakahara, and K. Kurosawa, “Incremental update method
for in-vehicle ecus,” IPSJ transactions. CDS, vol. 7, no. 2, pp. 41–50,
may 2017.

[15] N. Samteladze and K. Christensen, “Delta++: Reducing the size of
android application updates,” IEEE Internet Computing, vol. 18, no. 2,
pp. 50–57, 2014.

[16] A. Tridgell and P. Mackerras, “The rsync algorithm,” The Australian
National University, pp. 1–8, 1996.

[17] W. Xia, C. Wei, Z. Li, X. Wang, and X. Zou, “Netsync: A network
adaptive and deduplication-inspired delta synchronization approach for
cloud storage services,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 10, pp. 2554–2570, 2022.

[18] A. Muthitacharoen, B. Chen, and D. Mazières, “A low-bandwidth
network file system,” in ACM SOSP ’01, 2001, pp. 174–187.

[19] D. Skourtis, L. Rupprecht, V. Tarasov, and N. Megiddo, “Carving perfect
layers out of docker images,” in USENIX HotCloud 19, Jul. 2019, pp.
1–8.

[20] Z. Lu, J. Xu, Y. Wu, T. Wang, and T. Huang, “An empirical case study
on the temporary file smell in dockerfiles,” IEEE Access, vol. 7, pp.
63 650–63 659, 2019.

[21] N. Zhao, H. Albahar, S. Abraham, K. Chen, V. Tarasov, D. Skourtis,
L. Rupprecht, A. Anwar, and A. R. Butt, “DupHunter: Flexible High-
Performance deduplication for docker registries,” in USENIX ATC 20,
Jul. 2020, pp. 769–783.

[22] N. Hardi, J. Blomer, G. Ganis, and R. Popescu, “Making containers lazy
with docker and cernvm-fs,” in Journal of Physics: Conference Series,
vol. 1085, no. 3. IOP Publishing, 2018, pp. 1–7.

[23] Linux Foundation, “Dragonfly,” https://d7y.io/ (2023/02/06 accessed),
2022.

[24] uber, “kraken,” https://github.com/uber/kraken (2023/02/06 accessed),
2022.

[25] W. Kangjin, Y. Yong, L. Ying, L. Hanmei, and M. Lin, “Fid: A faster
image distribution system for docker platform,” in 2017 IEEE FAS*W,
2017, pp. 191–198.

[26] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at Google with Borg,” in
EuroSys ’15, Bordeaux, France, 2015, pp. 1–17.

[27] S. Becker, F. Schmidt, and O. Kao, “Edgepier: P2p-based container
image distribution in edge computing environments,” in 2021 IEEE
IPCCC, 2021, pp. 1–8.

[28] Google, “Crfs: Container registry filesystem,” https://github.com/google/
crfs (2023/03/26 accessed), 2019.

[29] C. Percival, “Naive differences of executable code,” https://www.
daemonology.net/papers/bsdiff.pdf (2023/02/06 accessed), pp. 1–3, 08
2003.

[30] A. C. G. Mennucci, “3. debdelta-upgrade service,” http://debdelta.
debian.net/html/x65.html#no incremental (2023/04/18 accessed), 2011.

[31] R. Kiyohara, K. Tanaka, and Y. Terashima, “S/w upgrade for on-vehicle
information devices,” in 2012 IEEE ICCE, 2012, pp. 19–20.

[32] icedream. (2022) go-bsdiff. https://github.com/icedream/go-bsdiff.
[33] The Linux Foundation. (2023) containerd - An industry-standard con-

tainer runtime with an emphasis on simplicity, robustness and portability.
https://containerd.io/.

[34] B. Varghese, E. de Lara, A. Y. Ding, C.-H. Hong, F. Bonomi, S. Dustdar,
P. Harvey, P. Hewkin, W. Shi, M. Thiele, and P. Willis, “Revisiting
the arguments for edge computing research,” IEEE Internet Computing,
vol. 25, no. 5, pp. 36–42, 2021.

[35] R. J. Hanson, “TPC-B,” https://www.tpc.org/tpcb/ (2023/02/06 ac-
cessed), 1990.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://arxiv.org/abs/1902.03383
https://github.com/containerd/stargz-snapshotter
https://doi.org/10.1145/236387.236416
https://d7y.io/
https://github.com/uber/kraken
https://github.com/google/crfs
https://github.com/google/crfs
https://www.daemonology.net/papers/bsdiff.pdf
https://www.daemonology.net/papers/bsdiff.pdf
http://debdelta.debian.net/html/x65.html#no_incremental
http://debdelta.debian.net/html/x65.html#no_incremental
https://github.com/icedream/go-bsdiff
https://containerd.io/
https://www.tpc.org/tpcb/

	Introduction
	Related Works
	Reduction in Data Size and Time Required for Pull
	Content Distribution Using Delta Encoding

	Proposed Method
	Requirements for Updating Container Images
	Overview of the Proposed Method
	Delta Bundle Generation
	Update Bundle Generation by Merging Delta Bundles
	Merging Delta Files with DeltaMerging
	Di3FS

	Implementation
	Delta and Update Bundle Format
	Snapshotter Plugin

	Evaluation
	Environments for Evaluation
	Delta Bundle Generation
	Applying Delta Bundles
	Time Required for Updating
	Impact on Application Performance

	Discussion
	Accelerated Delta Bundle Generation with DeltaMerging
	Breakdown of Delta Bundle Size Reduction
	Overhead with Di3FS

	Conclusion
	References



