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1. Introduction
The fluid-flow characteristics of fractured geological formations are of critical interest in a number of areas, 
including the assessment of seismic hazards (slow slip, fault reactivation, and induced seismicity), fluid resources 
(e.g., geothermal fluids, shale oil, and groundwater), and geological storage or disposal. Numerous studies have 
demonstrated that fluid-flow properties are constrained by heterogeneous aperture distribution of the frac-
ture (Chen et  al.,  2017; Witherspoon et  al.,  1980; Zimmerman et  al.,  1992), which can be altered by shear 
displacement and stress (Durham & Bonner, 1994; Ishibashi et al., 2015; Pyrak-Nolte & Morris, 2000; Tsang 
& Witherspoon, 1981; Vogler et al., 2018; R. Walsh et al., 2008; Watanabe et al., 2008). Recent studies have 
identified that seismically induced permeability changes in both field observations (Elkhoury et al., 2006; Y. Shi 
et al., 2019; Z. Shi et al., 2018; Sun et al., 2019) and laboratory experiments (Candela et al., 2014, 2015; Elkhoury 
et al., 2011; Elsworth et al., 2018; Shokouhi et al., 2020; Wood et al., 2021) are caused by transient changes in 

Abstract The fluid-flow properties of fractures have received increasing attention regarding the role of 
geofluids in the genesis of slow and fast earthquakes and recent advances in geoengineering developments. 
Geophysical observations are promising tools to remotely estimate crustal permeability changes; however, 
quantitative interpretations are limited by the rock-physical models' paucity for fractures. This study 
investigated changes in permeability, resistivity, and their respective relationships at elevated stress by 
performing numerical simulations of different fracture models with varying fracture size, roughness, and shear 
displacement. Numerical results and microscopic flow analysis demonstrate that permeability–resistivity 
relationships are controlled by percolation and are less dependent on fracture geometric characteristics. 
Our finding suggests that the permeability evolution of fractures can be formulated with resistivity changes 
independent of both fracture size and microstructure, the trends of which can be predicted using Archie's 
exponent. The extension to the electro-mechanical relationship further derives the potential applications of 
estimating stress changes.

Plain Language Summary Monitoring the flow of fluids through underground fractures is 
important for developing earth resources and understanding the generation of both slow and fast earthquakes. 
This can be realized by observing physical properties underground such as electrical resistivity; however, 
the relationships between electrical and hydraulic properties are poorly understood because we have limited 
data on rock fractures. Thus, in this study, we explored changes in the hydraulic and electrical properties of 
synthetic rock fractures by subjecting them to increasing normal stress and shear displacement while varying 
the properties of the fracture surface topographies and length scales referring to natural data. We formulated 
the relationship between electrical resistivity and permeability invariant of fracture size, roughness, shear 
displacement, and normal stress based on both the theoretical model and empirical Archie's equation. We 
found that the rigorous relationship is controlled by the local connection of the fluid-flow paths based on 
the microscopic flow analysis. The proposed formula can estimate the permeability evolution of fractures 
using resistivity data and is a better approach compared to porosity estimation because resistivity–porosity 
relationship can change depending on the tortuosity or connectivity. The extension to the electro-mechanical 
relationship also derives the potential applications of estimating changes in pore pressure.
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stress and the shear displacement of faults. Given that in situ stresses are never constant throughout geoengineer-
ing developments or on the geological time scale, these impacts must be considerable in natural settings even in 
the absence of major seismicity.

Although direct measurement of permeability changes is a challenging task, geophysical observation using elec-
trical resistivity is a potential approach. In a wide range of fields, electromagnetic surveys have observed resistiv-
ity changes that are associated with subsurface stress changes, such as geothermal activity, fluid production, and 
seismicity (Aizawa et al., 2011; Didana et al., 2017; Johnson et al., 2021; Mazzella & Morrison, 1974; Park, 1991; 
Peacock et al., 2012, 2013). It would be advantageous if changes in permeability caused by variations in the 
subsurface stress could be linked to electrical resistivity, which could be monitored remotely. Several models 
have been proposed on the relation between permeability and resistivity of porous media (Bernabé et al., 2011; 
Cai et al., 2019; Ghanbarian & Male, 2021; Glover et al., 2006; Hilfer, 1992; Katz & Thompson, 1986; Revil & 
Cathles, 1999). Such models allow the estimation of permeability from resistivity data (Anderson et al., 1985; 
Becker et al., 1982; Katayama et al., 2020; Slagle & Goldberg, 2011; Yamaya et al., 2022). However, some field 
observations have detected unusual changes in permeability and resistivity (Park, 1991; Xue et al., 2013) that 
could not be explained by experimental findings due to the existence of a macroscopic fracture in the fields. More 
recent observations also evoke the importance of macroscopic fractures as they contribute to the anomalously 
high permeability in the underthrust, which may be related to the pore pressure supply and the generation of 
slow earthquakes (Heuler et al., 2017; Hirose et al., 2021). However, the paucity of data using fractured rock 
mass hinders attempts at updating the rock-physical models that can be used to evaluate changes in permeability. 
A pioneering study by Stesky (1986) reported that permeability and resistivity in saw-cut fractures are linearly 
related in a logarithmic coordinate. Conversely, numerical studies based on rough-walled fractures have reported 
a nonlinear relationship resulting from the heterogeneous flow distributions (Kirkby et  al.,  2016; Sawayama 
et  al.,  2021a), similar to the previously reported percolation for fracture permeability (Berkowitz,  1995; 
Pyrak-Nolte et  al.,  1988). However, how the fracture geometric characteristics affect the percolation and its 
impact on the permeability–resistivity relationship remains unclear.

Thus, this study employed a digital rock physics approach (Andrä et al., 2013; Sawayama et al., 2022) to deter-
mine permeability and resistivity simultaneously while assessing the evolution in local connections and perco-
lation of preferential flow paths with the elevated normal stress and shear displacement. We discuss the role of 
local flow behavior on permeability, resistivity, and their respective relationships, and suggest potential practical 
applications of our findings.

2. Methodology
We conducted a series of numerical simulations of fluid flow and electrical conduction within deformed rock 
fractures. The fracture surface topography is known to be self-affine fractal and can be created numerically 
(Brown, 1995; Matsuki et al., 2006). Following these studies, synthetic fracture models with controlled roughness 
and shear displacement were generated based on the fractional Brownian motion (Text S1 in Supporting Infor-
mation S1). To investigate the effect of the fractal characteristics, the fractal dimension D and surface roughness 
s (i.e., the root mean square height of the surface topography) were varied as D = 2.0, 2.2, 2.4 and s = 0.1, 0.2, 
0.3 mm referring to natural faults (Brown & Scholz, 1985; Power & Durham, 1997; Power et al., 1987). Note that 
such fractal nature has been confirmed as valid for natural fault roughness from local to global scales (Candela & 
Brodsky, 2016; Candela et al., 2012; Renard & Candela, 2013). Based on these values, we prepared a synthetic 
fracture model of varying fracture size L = 24, 48, 96 mm with a 0.1-mm square grid, where a well-known scaling 
law for fracture roughness was incorporated (Matsuki et al., 2006):

𝑠𝑠 = 𝑠𝑠0

(

𝐿𝐿

𝐿𝐿0

)3−𝐷𝐷

. (1)

Here, the subscript zero represents the reference model (L0 = 24 mm, s0 = 0.1, 0.2, 0.3 mm). For each fracture 
model, we numerically simulated the elastic-fully plastic deformation of the asperities using a half space–
based dry contact model with up to 100 MPa of normal loading (Polonsky & Keer, 1999). The corresponding 
algorithm is summarized in Text S2 in Supporting Information S1. The boundary was treated as periodic to 
eliminate the boundary effect (Petrovitch et al., 2014). We confirmed that the constructed aperture, that is, the 
gap of the deformed rough surface, follows the scaling law (Figure S2 in Supporting Information S1) observed 
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in natural joints and faults (Kim & Sanderson, 2005; Schlische et al., 1996; Schultz et al., 2008). The varia-
tions in mean aperture value and the aperture distribution against stress are shown in Figure S3 in Supporting 
Information S1. Furthermore, additional 13,000 simulations (for a total of 14,530) were performed by varying 
the random seeds to investigate the stochastic fluctuations of our simulation results (Text S1 in Supporting 
Information S1).

We then simulated 3D fracture flows using the lattice Boltzmann method, where we adopted a multi-relaxation-time 
D3Q19 model (Ahrenholz et al., 2008; Jiang et al., 2014; Sawayama et al., 2021a). The provision of a constant 
body force from the inlet to the outlet boundaries and the periodic boundary along the fracture plane allowed 
us to simulate the fracture flows in the directions perpendicular to the shear direction (Figure S4 in Supporting 
Information S1). Then, the fracture permeability was estimated from the macroscopic flow velocity, assuming 
Darcy flow and negligible matrix permeability (∼10 −20 m 2). Subsequently, we analyzed resistivity using the 
finite element method (Garboczi, 1998; Sawayama et al., 2021b). Similar to the fluid flow, we simulated the local 
field of electric currents in the direction perpendicular to the shear direction, and calculated corresponding resis-
tivity. In this analysis, fluid and solid conductivities of 5 and 10 −5 S/m, respectively, were modeled (Sawayama 
et al., 2018). We also evaluated the bulk permeability and resistivity of the fractured rock mass having a constant 
thickness (nz = 24 mm) to consider the porosity effect. This enables us to correlate the permeability–resistivity 
relationship within the same elementary volume. Notably, the relationship does not change regardless of the 
thickness value even though their absolute values change, when matrix permeability and resistivity are presumed 
to be negligible. Then, we calculated the formation factor F by dividing the bulk resistivity ρb by the fluid 
resis tivity ρw, (F = ρb/ρw) such that the effects of both the temperature and salinity on fluid resistivity can be 
neglected.

3. Results and Discussion
3.1. Changes in Permeability and Resistivity as Elevated Normal Stress

We present the evolution of permeability, electrical resistivity, and the associated changes of the local flow paths 
of various fracture data sets as elevated normal stress (Figure 1). The results demonstrate the dependencies of 
fracture size (Figures 1a and 1b), shear displacement ratio (Figures 1c and 1d), and surface roughness characteris-
tics (Figures 1e and 1f) on these properties. Permeability and resistivity of joints (i.e., no shear displacement) are 
less dependent on fracture size, as previous studies have reported (Ishibashi et al., 2015; Sawayama et al., 2021b). 
In addition, faults (i.e., sheared fractures) exhibit scale-dependent characteristics, where permeability increases 
and resistivity decreases remarkably with fracture size (Figures 1a and 1b). The stress-dependent changes in 
permeability and resistivity are significant in fractures with larger shear displacements (Figures 1c and 1d). The 
roughness increases permeability and decreases resistivity, and these properties are nearly constant under differ-
ent fractal dimensions (Figures 1e and 1f). The higher roughness of the fracture surfaces (i.e., rms height s) 
increases the aperture because it enhances the mismatch between two surfaces, and thus leads to higher permea-
bility and lower resistivity (Figure S5 in Supporting Information S1). The roughness effect will change depending 
on the shear displacement (Figure S5 in Supporting Information S1) and the two orthogonal directions (Figure 
S6 in Supporting Information S1). The effects of shear displacement and roughness become insignificant under 
higher stress conditions (Figures 1c–1f).

The panels at the bottom of Figure 1 show representative simulation results for the evolutions of fracture flow 
within the heterogeneous aperture distribution with and without shear displacement. Note that the flow rates have 
been vertically summed in every z-direction and the regions with >1% of the maximum is visualized such that the 
dominant paths in the fractures can be projected onto the x–y plane. At the lowest stresses, dominant flow paths 
induce channeling that covers most of the open space (Figure 1, images i and iv). As the stress increases, larger 
portions of the fracture surfaces are in contact; thus, the channeling paths decrease progressively and become 
narrow (Figure 1, images ii and v). Further normal loading diminishes the dominant flow paths. Accordingly, 
the flow paths from the inlet to the outlet lose their connection (Figure 1, images iii and vi). This phenomenon 
is nearly the same in both joints and faults. The stress level at which this transition occurs can be defined as the 
percolation threshold that considerably controls the transport behaviors of rocks (Berkowitz, 1995; Ghanbarian 
et al., 2014; Guéguen et al., 1997; Pyrak-Nolte et al., 1988). Above this percolation threshold, permeability, and 
resistivity demonstrate different trends against changes in stress.
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Figure 1. Plots of permeability and resistivity changes as a function of normal stress (a–f) and representative images derived from the simulation showing the local 
flow distributions (color) overlayed on the aperture distributions (grayscale) for (i–iii) joints and (iv–vi) faults. The stress levels of images (i–vi) are shown inpanel (a). 
L, δ, s, and D represent the fracture length, shear displacement, roughness, and fractal dimension, respectively.
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3.2. Effect of Percolation and Tortuosity on Resistivity

It is known that resistivity has a power law relationship with porosity 
(Archie, 1942):

𝐹𝐹 = 𝜌𝜌𝑏𝑏 ∕𝜌𝜌𝑤𝑤 = 𝑎𝑎𝑎𝑎
−𝑚𝑚
, (2)

where φ is porosity, and a and m are empirical coefficients. Previous stud-
ies pointed out that m, the so-called cementation exponent, is dependent on 
pore connectivity (Glover, 2009; Guéguen & Palciauskas, 1994). Based on 
the local fluid paths (Figure  1, images i–vi) in each condition, we exam-
ine whether the dominant flow paths (i.e., >1% of the maximum flow rate; 
Figure 1) are fully connected throughout the model using the image process-
ing technique (i.e., bounding box). Consequently, we have classified all 
results into fully connected and partially disconnected flow regimes of the 
dominant paths (Figure S7 in Supporting Information S1). Figure 2a plots 
the formation factor and porosity relative to these flow regimes. Overall, our 
results in the fully connected flow regime demonstrate a linear trend in the 
log–log plot (Figure 2a), which is consistent with Archie's exponent m = 1.2. 
Conversely, the results of the partially disconnected flow regime deviated 
from the linear line. This nonArchie behavior suggests that the connectivity 
of the dominant flow path was lost at this state. Note that the threshold value 
varied slightly (but not significantly) with different fracture geometric char-
acteristics (i.e., the fracture size, shear displacement, and surface roughness 
characteristics). By introducing such percolation porosity, that is, φp, Equa-
tion 2 can also be expressed as follows:

𝐹𝐹 = 𝑎𝑎(𝜑𝜑 − 𝜑𝜑𝑝𝑝)
−𝑚𝑚
. (3)

The percolation porosity obtained via curve fitting of all the results was 
0.17% (dashed lines in Figure 2), which is greater than granular materials 

(∼1%–3%, Colombier et al., 2017; Revil et al., 2014) because most of the pore spaces contributed to the flow in 
our fracture case relative to the porous media. Given such a small porosity in a fractured rock mass (average of 
0.8% in our case), the low percolation porosity value is considered reasonable (Hunt & Sahimi, 2017).

Below this percolation threshold, the formation factor was not constant even for similar porosity data, which may 
reflect the different connectivity (Gueguen & Dienes, 1989), although quantitative analysis of the connectivity 
is difficult after disconnection of the dominant flow paths. Thus, we evaluated the tortuosity τ 2 of the flow paths 
because this is comparable to the connectivity c as the following relation (Text S3 in Supporting Information S1).

𝜏𝜏
2
=

5

2𝑐𝑐
 (4)

This relation demonstrates that the tortuosity should be equal to or less than 2.5 while the flow path is connected 
(c = 1). Figure 2b shows the effect of tortuosity on Archie's relation. Notably, the data sets of τ 2 ≦ 2.5 are consist-
ent with the linear line (m = 1.2), representing the fully connected flow regime (the red line in Figure 2a). Above 
this threshold value, the tortuosity enhances the formation factor even when the fractures have the same porosity, 
thereby exhibiting nonArchie behavior (i.e., the resistivity deviates from the linear line). Higher tortuosity corre-
sponds to a longer current path (Text S3 in Supporting Information S1), thereby enhancing the formation factor. 
These results clarify the role of tortuosity on resistivity. Additionally, such a percolation trend also affects the 
permeability–resistivity relationship, which is discussed in the following section.

3.3. Relationship Between Permeability and Resistivity

Despite of the dependencies of fracture size, shear displacement and surface roughness characteristics on perme-
ability and resistivity (Figure 1), we found that their respective correlations exhibit stable trends invariant of these 
characteristics (Figure 3). The relationship between permeability k and the formation factor (hereafter referred to 
as the k–F relationship) can be correlated as follows with two different slopes α.

Figure 2. Correlations between formation factor and porosity with respect 
to (a) flow path percolation and (b) tortuosity. Note that the formation factor 
indicates bulk resistivity normalized by fluid resistivity. The solid and dashed 
lines are approximation lines based on Equation 2 (m = 1.2) and Equation 3 
considering a percolation porosity of 0.17%, respectively.
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𝑘𝑘 ∝ 𝐹𝐹
−𝛼𝛼 (5)

Overall, the slope α remains constant regardless of the different fracture geometric characteristics. Based on the 
equivalent channel model, changes in bulk permeability and formation factor at elevated stress can be interpreted 
theoretically as changes in tortuosity and aperture d (Paterson, 1983; Sawayama et al., 2021b; J. B. Walsh & 
Brace, 1984).

𝑘𝑘 =
𝑑𝑑
2
𝜑𝜑

12𝜏𝜏2
 (6)

𝐹𝐹 =
𝜏𝜏
2

𝜑𝜑
 (7)

Focusing on the changes in permeability and formation factor from the arbitrary references (i.e., 𝐴𝐴 𝐴𝐴𝑜𝑜 and 𝐴𝐴 𝐴𝐴𝑜𝑜 ) such 
as monitoring purposes, Equation 5 can be written as follows:

𝑘𝑘

𝑘𝑘𝑜𝑜

=
𝐹𝐹

𝐹𝐹𝑜𝑜

−𝛼𝛼

 (8)

Substituting Equation 6 and Equation 7 into Equation 8 derives the following (the detailed derivation is described 
in Sawayama et al. (2021b):

log
𝜏𝜏
2

𝜏𝜏
2
𝑜𝑜

=
3 − 𝛼𝛼

1 − 𝛼𝛼
log

𝑑𝑑

𝑑𝑑𝑜𝑜

, (9)

where the subscript zero indicates an arbitrary reference value. This demonstrates that the slope α represents the 
sensitivity of the tortuosity against aperture closure and is bounded between values of 1 and 3. To this point, the 
inflection of the k–F relationship (at k = ∼10 −11.5) may represent the transition of their different sensitivities to 
tortuosity under fully connected and partially disconnected flow regimes, that is, the effect of percolation because 
of the channeling of the limited flow paths. Our results (Figure 3) for higher permeability (i.e., the fully connected 
flow regime) are plotted on the straight line of α = 2.7 (close to 3), which indicates that the change in tortuosity 

Figure 3. Correlation between formation factor and permeability compiled for all fracture data sets. The symbols' color and 
shape represent different fracture length scales, shear displacement, roughness, and fractal dimension values. The solid and 
dashed lines denote prediction lines based on Equation 5 for α = 2.7 and α = 1.0, respectively.
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is very sensitive to aperture change. As shown in Figure 3, the fully connected flow regime is consistent with 
Archie's relation. Given the similarity of Equation 2 and Equation 7, we can derive the following relation (Text 
S4 in Supporting Information S1):

𝛼𝛼 =
2 + 𝑚𝑚

𝑚𝑚
. (10)

Substituting 𝐴𝐴 𝐴𝐴  = 1.2 into Equation 10 leads to 𝐴𝐴 𝐴𝐴  = 2.7. Meanwhile, our results show 𝐴𝐴 𝐴𝐴  = 1.0 below the percola-
tion threshold (i.e., the partially disconnected flow regime). This is the lower limit expected based on the equiv-
alent channel model (Equation 9), which indicates that the change in tortuosity is insensitive to aperture closure 
(Brown, 1989). In both cases, our findings could suggest that the permeability change can be estimated without 
knowing the absolute value of the permeability but with the observed resistivity data and the slope 𝐴𝐴 𝐴𝐴 , which can 
be derived from Archie's exponent (Equation 10) in the fully connected flow regime or is unity in the partially 
disconnected flow regime. Notably, additional 13,000 simulations with varying random seeds validated the rigid-
ity of the proposed relationship at our simulation scale (Figure S8 in Supporting Information S1).

4. Implications
We have presented how permeability, resistivity, and porosity are affected by fracture closures and their geomet-
rical features. In the field, by assuming a constant Archie's exponent, resistivity data are frequently interpreted 
as porosity (Becker et al., 1982; Chesley et al., 2021; Naif et al., 2016). We have clarified that the resistivity–
porosity relationship can change depending on the tortuosity or connectivity, which indicates that we must 
consider Archie's exponent depending on the local connection of the flow paths. This is particularly important 
when a macroscopic fracture is present. In contrast, the permeability–resistivity relationship is irrelevant to tortu-
osity and depends on only percolation. These findings suggest that, compared to porosity, the resistivity observa-
tion is less biased in the estimation of fracture permeability.

The presence and reactivation of mesoscale fractures and the associated changes in permeability are important 
for developing enhanced geothermal systems (EGS). In practice, resistivity observations in EGS projects detect 
resistivity changes (approximately a few percent) (Didana et al., 2017; Johnson et al., 2021; Peacock et al., 2013) 
that are associated with the hydraulic stimulation of preexisting fault systems. Under the assumption that α takes 
a value between 1 and 3 in Equation 5, these resistivity changes correspond to a few to several tens of percent 
increases in permeability. Note that the variability of α is entirely due to the percolation and is independent of 
fracture size, shear offset, fractal dimension, and fracture roughness. Below the percolation threshold (i.e., the 
partially disconnected regime), α = 1 indicates that tortuosity change is nearly constant under normal stress (i.e., 
an aperture opening/closure). The impermeable faults may correspond to this regime, where the significance 
of the stagnant flow area may accelerate the mineral precipitation (Sibson, 1987) or short-circuited flow paths 
(Hawkins et al., 2018; Okoroafor et al., 2022) (Figure 1, images iii and vi). After the percolation, that is, the fully 
connected regime, a greater α value indicates that tortuosity has decayed significantly and fallen to 2.5, thereby 
representing connectivity of c = 1 (Equation 4). Above this threshold, permeability hopefully is enhanced by 
approximately 2.7 orders in the same resistivity change. Although estimating the percolation transition is particu-
larly important for practical use in the field, Kirkby et al. (2016) have argued that the percolation threshold is 
independent of matrix permeability but dependent on the matrix-to-fluid resistivity ratio (in our case, 5 × 10 5) 
and fracture spacing. Note that our model assumes simple single fractures; thus, the changes in transport proper-
ties in intersecting fracture networks (Kirkby & Heinson, 2017; Wu et al., 2021) should be investigated further.

The success of linking the k–F relationship may be further discussed with the mechanical properties as the 
hydromechanical relationship is theoretically formulated (Pyrak-Nolte & Nolte, 2016; Wang & Cardenas, 2016). 
Hence, we attempted to incorporate the mechanical property into the resistivity model to further expand the appli-
cations. Provided the negligible matrix porosity and constant thickness of the fractured rock mass, the change 
in porosity of a single fracture is comparable to the aperture change. The stress-induced aperture change (i.e., 
displacement) can be given by the effective normal stress σ divided by the fracture specific stiffness κ, and 
thereby Equation 2 can be rewritten as follows:

𝐹𝐹

𝐹𝐹0

=

(

𝜑𝜑

𝜑𝜑0

)−𝑚𝑚

=

(

𝑑𝑑0 − 𝜎𝜎∕𝜅𝜅

𝑑𝑑0

)−𝑚𝑚

, (11)
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where the subscript zero indicates an arbitrary reference value. Figure 4 
plots the relationship between the normalized formation factor and 
stress-induced aperture closure based on our fault data sets considering 
the lowest stress condition. Overall, the relationship lies on a straight 
line (m  =  1.2) independent of the fault size and its microstructures at 
σ < ∼70 MPa (i.e., percolation threshold), demonstrating the validity of 
Equation 11 in the fully connected flow regime. This proposed formula of 
the electro-mechanical relationship implies that resistivity data possibly 
predict either stiffness or stress state. Given that crustal stress can be consid-
ered constant (i.e., on relatively short time scales), the observed changes 
in resistivity with changes in the effective normal stress represent  changes 
in pore pressure. Note that a small fluctuation in the stress (shown in 
color  in  Figure 4) is due to the stress-dependent fracture specific stiffness, 
which varies with the roughness and size of the fault (Worthington, 2007). 
Importantly, the stress prediction line remains valid across various fracture 
data sets and additional 13,000 simulations conducted with varying random 
seeds (Figure S9 in Supporting Information S1). Given the in situ stiffness 
through a seismic survey (Hunziker et al., 2020; Minato & Ghose, 2016), 
Equation 11 can be used to predict the changes in pore pressure. In field 
measurements, a promising method to estimate in situ pore pressure is 
by applying the empirical fitting in terms of crack porosity reduction to 
seismic profiles (Kitajima & Saffer,  2012; Tonegawa et  al.,  2017; Tsuji 
et al., 2008, 2014). However, the commonly used effective medium theo-
ries for elasticity ignore the macroscopic fracture due to the noninterac-

tion assumptions. The proposed formula using formation factor is preferable to estimate the changes in pore 
pressure associated with fault movements. Although further verification is required for practical application, 
we expect that this may provide new insights into estimating pore pressure in faulted regions using electrical 
resistivity monitoring.

5. Conclusions
This study investigated changes in permeability, resistivity, and their respective relationships at elevated normal 
stress by performing numerical simulations of various fracture models with varying fracture size, surface rough-
ness, and shear displacement. Based on the deformed rough surfaces simulated using a half space–based dry 
contact model, we calculated the fracture flow using the lattice Boltzmann method and the electrical resistivity 
using the finite element method. The numerical results demonstrate that changes in fracture permeability and 
electrical resistivity at elevated normal stress are affected by fracture size, roughness, and shear displacement. 
Nevertheless, the relationships between permeability–resistivity exhibit less dependence on these geometric 
characteristics. The log–log plot of the permeability–resistivity shows inflection at the fracture permeability of 
approximately 10 −11.5 m 2, and the microscopic flow analysis further supports that this inflection is related to the 
percolation of the dominant flow path. The trend of the relationship could be correlated with Archie's cemen-
tation exponent based on the equivalent channel model. These findings suggest that the permeability evolution 
of faults can be formulated with changes in resistivity regardless of the fracture size and its microstructures. In 
contrast, the resistivity–porosity relationship can vary depending on the tortuosity or connectivity, suggesting that 
the resistivity observation is less biased when directly estimating fracture permeability compared to porosity. In 
addition, an electro-mechanical relationship is proposed to estimate the changes in the stress state associated with 
fault movements. Although these proposed formulas are limited to single fractures and require further verifica-
tion for practical application, they may provide new insights into electrical resistivity monitoring for estimating 
changes in permeability and pore pressure in fracture-dominated areas.

Data Availability Statement
All results are summarized in Supporting Information S1. The digital fracture data are available online from 
Digital Rocks Portal (Sawayama, 2023).

Figure 4. Correlation between fracture aperture changes and formation factor 
normalized to the values at σ = 5 MPa compiled from all data sets of faults. 
The colors and shapes of the symbols represent effective normal stress and 
shear displacement, respectively. The solid line denotes the prediction lines 
based on Equation 1.
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