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To evaluate the utility of a deep-learning approach for monitoring amphibian reproduction, we 

examined the classification accuracy of a trained model and tested correlations between calling intensity 
and frog abundance. Field recording and count surveys were conducted at two sites in Kyoto City, 
Japan. A convolutional neural network (CNN) model was trained to classify the calls of five anuran 
species. The model achieved 91–100% precision and 75–98% recall per species, with relatively lower 
performance on less abundant species. Computational experiments investigating the effects of the 
number and seasonality of the training samples showed that models trained on larger datasets from 
broader recording seasons performed better. Calling activity was high when males were abundant 
(Pearson’s r = 0.45–0.66), although correlations between the calling activity and the number of pairs in 
amplexus were generally weaker. Our results suggest that deep learning is an effective tool for 
reconstructing the reproductive phenology of male anurans from field recordings. However, caution is 
required when applying to rare species and when inferring female reproductive activity.  

 
 
Monitoring reproductive activity is vital for 

studying amphibian populations. Passive Acoustic 
Monitoring (PAM) is a widely used approach to study 
anuran reproduction since breeding activity is more 
easily detectable by hearing than by seeing (Dorcas et 
al., 2009). Through PAM methods, researchers can 
investigate reproductive phenology (Liu et al., 2022), 
occurrence (Rowley et al., 2019), and population 
trends (Weir et al., 2009) of multiple anuran species 
simultaneously. Recent advancements in machine 
learning algorithms and low-power devices that can be 
deployed for extended periods have sparked renewed 
interest in acoustic monitoring (Gibb et al., 2019). 
Conventional survey methods relying on direct 
observation are labor-intensive, limiting both the 
extent and resolution of studies. Integrating 
autonomous sensing technologies (such as cameras, 
recorders, and DNA sequencers) with machine 

learning to accelerate data acquisition and species 
identification steps can enable researchers to conduct 
high-throughput field surveys (Keitt and Abelson, 
2021; Besson et al., 2022).  

Deep learning, a subset of machine learning 
algorithms, is particularly promising for automated 
monitoring and rapidly gaining popularity among 
ecologists (Borowiec et al., 2022). Among many 
model architectures utilized in deep learning, 
Convolutional Neural Networks (CNN) are most 
widely used for animal classification (Stowell, 2022; 
Borowiec et al., 2022). CNN models have been 
successful in identifying species or higher taxa from 
images (Norouzzadeh et al., 2018; Schneider et al., 
2022) or sounds (LeBien et al., 2020; Kahl et al., 2021). 
Using deep learning in species identification has 
several advantages over previous machine learning 
methods. First, deep learning has demonstrated 
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superior classification accuracy compared to other 
methods (Knight et al., 2017; Mac Aodha et al., 2018). 
Second, the same procedure can be easily applied to 
various taxa. The previous approaches usually 
required study-specific feature engineering, a process 
in which discriminating features (e.g., call duration, 
minimum/maximum frequency) are manually 
designed to detect focal species from other sound 
sources (Gibb et al., 2019). Instead, the same general-
purpose procedure can be applied to different taxa in 
deep learning because a model automatically learns 
which features to extract (LeCun et al., 2015). For 
example, LeBien et al. (2020) presented a model 
classifying eleven frog and thirteen bird species. User-
friendly packages such as fastai (Howard and Gugger, 
2020) and Keras (https://keras.io) make this new 
technique increasingly accessible to biologists. 

Despite these advantages, applications of deep 
learning in bioacoustics are in their early stages and 
taxonomically biased toward birds and marine 
mammals (Stowell, 2022). A few studies have 
demonstrated the ability of CNN models to identify 
anurans even in situations where multiple species can 
call simultaneously (Xie et al., 2017; LeBien et al., 
2020). However, the utility of this approach in 
studying reproductive phenology remains unexplored. 
Much uncertainty still exists about the relationship 
between indices of calling activity and relative 
abundance of breeding individuals. For example, 
indices of calling activity may saturate when males are 
abundant. Furthermore, if the seasonal activity patterns 
of males and females are not fully synchronized, call 
intensity may not reflect the amount of egg deposition, 
which is often a more relevant aspect of reproduction 
for population management. It is therefore important 
to examine how much information about male/female 
abundance can be extracted from audio recordings. 

Here we assessed the effectiveness of a deep-
learning approach for monitoring anuran reproductive 
phenology. Specifically, our objectives were: (1) to 
evaluate the classification performance of the trained 
model, (2) to examine how sample size and seasonality 

in the training datasets affect model performances, and 
(3) to test relationships between calling activity and the 
number of individuals observed throughout the 
breeding seasons. To address these questions, we 
trained a CNN model to discriminate five anuran 
species in Japan and compared the estimated calling 
intensity and the number of observed frogs. The results 
of our study provided useful information about the 
effective application and interpretation of deep 
learning-based phenological monitoring from anuran 
calls. 

 

MATERIALS AND METHODS 

Study sites and data collection methods 
Study sites.––Audio recording and frog count survey 
were conducted at two sites in Kyoto City, Japan. The 
first site was Mt. Uryu (35.04ºN, 135.80º E, alt. 283 
m), where Bufo japonicus japonicus and Zhangixalus 
schlegelii occurred at a small pond (7 × 3 m) in a mixed 
evergreen and deciduous broad-leaved forest. The 
second site was the Kyoto farmstead of Experimental 
Farm of Graduate School of Agriculture, Kyoto 
University (35.03ºN, 135.78ºE, alt. 60 m). This 
experimental farm had a section of rice fields, and 
three species of anurans, Dryophytes japonicus, 
Glandirana rugosa, and Pelophylax nigromaculatus 
bred there. 
 
Field recording and sight count.––We deployed 
audio recorders from March to April, 2022, at Mt. 
Uryu and from May to September, 2021 and 2022, at 
the experimental farm. Environmental sounds were 
recorded for 50 seconds every hour at a sampling rate 
of 32 kHz or 48 kHz, using either AudioMoth (Open 
Acoustic Devices) (Hill et al., 2018), Qriom YVR-
R600 (Yamazen), or Song Meter Micro (Wildlife 
Acoustics). The recorder was enclosed in a sealed bag 
or a designated waterproof case and placed near the 
breeding water body. 
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In 2022, the number of individuals at breeding sites 
was counted to test the relationships between frog 
abundance and the intensity of calling activity. Field 
surveys were conducted almost every day during the 
breeding season of the target species except for Z. 
schlegelii, which spawns underground (Fukuyama, 
1991) and was difficult to visually observe. At Mt. 
Uryu, an observer (K. K.) searched the breeding pond 
for B. japonicus with a dip net for 10 minutes during 
the day. It was possible to search almost the whole 
pond in 10 minutes because of its small size. At the 
experimental farm, the observer walked slowly along 
a designated route (215 m long) at night and counted 
the frogs. Sex was determined by external morphology 
such as vocal sac, nuptial pads, and coloration.  

 
Classification with Convolutional Neural 
Network (CNN) 
Data processing.––The recorded audio files were first 
downsampled to 22.05 kHz and cut into 5-second 
audio segments. These audio segments were converted 
to mel-scaled spectrograms with the librosa package (v. 
0.9.1: McFee et al., 2022) in Python. We cut off the 
lowest 15 frequency bands (corresponding to 392 Hz) 
to reduce background noise. The fast Fourier transform 
window was the Hann window, and the window length 
was set to 512 with 75% overlap. The spectrograms 
consisted of grayscale images in portable network 
graphics (PNG) format with a resolution of 861 × 112 
pixels. 

 
Model training.––One of the authors (K. K.) manually 
annotated a subset of the spectrograms to label all 
species presented in each 5-second audio segment. 
Spectrograms lacking our target species were labeled 
as background. The labeled samples were split into 
two datasets: one for training a model (2565 samples) 
and the other for validating the model performance 
(190 samples; Table 1). 

We used the ResNet18 model (He et al., 2015: arXiv 
1512.03385) with transfer learning to classify the calls 
of the five anuran species. Different CNN models 

(ResNet34 and VGG16) were also tested but not used 
here because they required longer training time due to 
the larger number of parameters and nevertheless 
showed no better performance. In the transfer learning 
framework, models pre-trained on a large dataset 
(ImegeNet in our case) are re-trained to adapt to the 
specific work at hand. This procedure takes advantage 
of the pre-trained model’s ability to extract 
fundamental features and allows us to efficiently train 
the model with a relatively small dataset (Christin et 
al., 2019). We employed the mixup data augmentation 
method (Zhang et al., 2018: arXiv 1710.09412) to 
increase the robustness to overlapping calls (Kahl et al., 
2021). The head layers of the model were initially 
trained for ten epochs, and then the entire model was 
unfrozen and trained for another 150 epochs with the 
default parameters of the fastai (v. 2.7.10) package 
(Adam optimizer with a base learning rate of 0.002 and 
discriminative learning rate; https://www.fast.ai).  

 
Model testing.––The validation samples were selected 
from the annotated spectrograms to include 40 samples 
per target class (Table 1). Classification performance 
was evaluated based on the following metrics. 

Precision = !"
!"	$	%"

,  

and, 

Recall = !"
!"$%&

  

where TP, FP, and FN indicate true positives, true 
negatives, false positives, and false negatives, 
respectively. Precision measures how accurate the 
model predictions as positive are, and recall measures 
the ability of the model to find all the positive samples. 
We removed the background class when calculating 
these metrics focusing on model performance on the 
target species.  
 
Effects of size and seasonal extent of the dataset.––
Preparing a training dataset is a time-consuming 
process and how to optimize it is a practical concern. 
The number of training samples would affect the 
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overall model performance. In addition, recordings 
from the entire breeding periods include quite 
heterogeneous soundscapes due to seasonal changes in 
species composition. Models trained on datasets from 
narrow seasonal window may poorly perform when 
applied to long-term recordings. We therefore tested 
how different training datasets affect model 
performance by changing dataset size and sampling 
period. The training dataset was classified into three 
categories of sampling period: “early one-third” 
(March 1 – 18 for Mt. Uryu, and May 8 – June 25 for 
the experimental farm), “early two-thirds” (March 1 – 
April 3 for Mt. Uryu, and May 8 – August 13 for the 
experimental farm), and “all” the recording periods. 
We selected this time periods because vocalization of 

most species was concentrated on early half of the 
recording periods in our study sites and the last third 
of recording period did not contain every species. The 
number of samples used for training varied between 
100 and 1000 for the early one-third category, 100 and 
1914 (all training samples within this period) for the 
early two-thirds category, and 100 to 2000 for the all 
category. The training samples were randomly 
selected from the specified period, with which the 
ResNet18 model was trained. The model performance 
was evaluated using the macro average precision and 
recall for the validation dataset (Table 1), and the 
process was repeated five times for each category and 
sample size. 

 
Statistical analysis: correlation between 
calling activity and the number of observed 
individuals 

We performed regression analyses to test the 
correlation between calling activity and the number of 
individuals observed during the frog count survey. We 
conducted regression analysis for both the number of 
males and amplexing pairs to assess whether acoustics 
can be used to monitor male vocalization as well as 
actual breeding events. To quantify the calling activity, 
the trained ResNet18 model was used to count the 
number of audio segments containing calls of the 
target species (the number of call segments; 
Matsushima et al., 2022). The model was applied to all 
the spectrograms generated from the field recordings, 
and then the presence or absence of the calls of each 
target species was recorded. Since 10 spectrograms 
were generated from each 50-second recording, the 
resulting number of call segments per recording and 
species ranged from 0 to 10. Although the anuran 
calling index is more popular (Dorcas et al., 2009), its 
calculation requires subjective judgments of the 
crowdedness of vocalization. Thus, counting the 
number of call segments was a more feasible method 
in our machine learning approach.  

 Label Training Validation 

Bjap 93 35 

Zsch 104 35 

Bjap + Zsch 2 5 

Djap 143 10 

Grug 117 15 

Pnig 50 15 

Djap + Grug 148 10 

Djap + Pnig 99 10 

Grug + Pnig 1 5 

Djap + Grug + Pnig 25 10 

background 1783 40 

SUM 2565 190 

Table 1. Numbers of training and validation 
samples. Plus signs indicate calls from more than 
one species are present in a sample. Validation 
dataset was selected to contain 40 samples for 
each species. Bjap = Bufo japonicus, Zsch = 
Zhangixalus schlegelii, Djap = Dryophytes 
japonicus, Grug = Glandirana rugosa, Pnig = 
Pelophylax nigromaculatus. 
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The daily average of the number of call segments 
was assigned as the response variable and the number 
of observed males or the number of amplexing pairs as 
the explanatory variable. We used the daily average as 
an index of call intensity because, in general, it was 
more strongly correlated with the number of observed 
males than the number of call segments at a single time 
point close to the survey time (Supplemental material 
Fig. S1). To account for the temporal autocorrelation 
of residuals, we employed generalized least square 
(GLS) method (Zuur et al., 2009), in which we 
specified the residual correlation structure using an 
ARMA(p, q) model, where p and q = 0, 1, or 2. 
Statistical model fitting was performed using the nlme 
package (Pinheiro et al., 2022) in the R environment 
(v. 4.2.2: R Core Team, 2022), and the best model was 
selected based on the Akaike Information Criterion 
(AIC).  

To quantify the strength of the relationships, we 
calculated the correlation coefficients (Pearson’s r) 
between the daily average number of call segments and 
the number of males or the number of amplexing pairs. 

 

RESULTS 

Data collection.––Environmental sounds were 
successfully recorded for most of the study period, but 
half of the recordings from May 9–10 and May 15–17 
were missing due to device problems. We conducted a 
frog sight count 21 times at Mt. Uryu and 110 times at 

Fig. 1. Performance of the trained ResNet18 
model. The values of (A) precision and (B) recall are 
shown for all species. 

Fig. 2. Effects of dataset size and seasonal extent 
on model (A) precision and (B) recall. Training 
samples are selected from either early one-third, 
early two-thirds, or all of the recording period. 
Lines connect average values. 
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the experimental farm of Kyoto University. A small 
number of B. japonicus were found at Mt. Uryu (3 
males and 2 pairs at most), while Z. schlegelii was not 
observed although their calls were heard. At the 
experimental farm, D. japonicus was the most 
abundant species (on average 21.3 males per day), 
followed by G. rugosa (9.5 males) and P. 
nigromaculatus (1.2 males). 
 
Model performance.––The ResNet18 model trained 
on the full set of training data (n = 2565; Table 1) 
classified five anuran species with 91–100% precision 
and 75–98% recall rates for the 190 validation samples 
(Fig. 1). Although the precision was sufficiently high 
for B. japonicus, Z. schlegelii, and D. japonicus (> 
95%), it was relatively low for G. rugosa and P. 
nigromaculatus (91%). Similarly, the recall rates were 
lower for the latter two species (75–80%) than the 
former three (>90%) (Fig. 1). 

Effects of size and seasonal extent of the dataset.––
When the ResNet18 model was trained using various 
subsets of training data (n = 100–2000), model 
performance generally increased as the number of 
training samples increased (Fig. 2). However, models 
trained on the early one-third category samples 
exhibited lower performance than those trained on 
samples from a broader recording period (i.e. early 
two-thirds or all). Even with 1000 early one-third 
samples, the models did not, on average, perform 
better than the models trained on 500 early two-thirds 
or all samples. When trained on sub-samples from 
early two-thirds or all the recording period, precision 
quickly approached the asymptotic value, although 
larger sample sizes (> 1000) were required to achieve 
high recall values (Fig. 2B). 
 
Correlation between calling activity and the number 
of observed individuals.––In total, 46870 

Fig. 3. Calling activity of the five anuran species in Kyoto City, Japan, inferred by the trained model. Darker blue 
represents a greater number of audio segments in which calls are detected, and gray color represents missing 
recordings. 
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spectrograms were analyzed with the trained ResNet18 
model to reveal the calling activity of the target species 
(Fig. 3). The pattern of calling activity varied among 
species. Bufo japonicus had a short breeding season, 
while other species, especially D. japonicus and G. 
rugosa, showed prolonged breeding activity. The 
spring breeders (B. japonicus and Z. schlegelii) called 
both day and night, but the summer breeders (D. 
japonicus, G. rugosa, and P. nigromaculatus) called 
mostly at night (Fig. 3). 

Figure 4 shows the relationships between calling 
activity and the number of males observed; these 
variables were positively correlated with each other (r 
= 0.453–0.659). For all species, the GLS regression 
analysis showed that there was a significant correlation 
between the number of males and the number of call 
segments (Table 2). 

The number of amplexing pairs was significantly 
related to the number of call segments for most species, 

and for the pairs of D. japonicus, it was marginally 
significant (p = 0.07) (Table 2). The correlations 
between calling activity and the number of pairs were 
lower than those for males (r = 0.307–0.358), except 
for B. japonicus (r for males = 0.453 vs. r for pairs = 
0.819) (Fig. 4). The peak of calling activity of B. 
japonicus clearly coincided with the sole day when 
amplexing pairs were observed (Fig. 4A). Although 
models with similar AIC values were present, the 
estimates of the top models were essentially identical 
and did not influence our conclusion (Supplemental 
material Tables S1, S2). 

 

DISCUSSION 

We evaluated the utility of deep learning in 
automatically monitoring reproductive phenology of 
anurans and found that the CNN model trained on a 

Fig. 4. Relationships between the number of males or pairs and calling activity, quantified by the daily average 
number of call segments. Black bars represent the numbers of males, and orange represent the numbers of 
pairs in amplexus. Pearson’s correlation coefficients (r) between abundance and calling activity are shown. 
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few thousand spectrogram images was capable of 
identifying five anuran species in field recordings. 
This automatic identification greatly reduced the 
number of manually analyzed audio segments from 
46870 to 2755, a 94% reduction. In the field, our 
acoustic monitoring required only a few minutes to 
replace an SD card and battery once every three 
months. This was in contrast to the direct observation 
(visual encounter survey and dip netting), which took 
10 to 60 minutes every day and 67 hours in total. Test 
performance based on our validation dataset showed 
that the trained model identified the target species with 
high precision (91–100%) and moderate to high recall 
(75–98%) values (Fig. 1). Relatively lower model 
performance on P. nigromaculatus and G. rugosa 
could be the results of low signal-to-noise ratios; calls 
from these species may have been masked by the calls 
from the dominant and intensely vocalizing species, D. 
japonicus. Although an acceptable level of 
identification errors may differ depending on the 
purpose, it would be safe to say that species with both 
precision and recall values higher than 90% can be 
analyzed practically. Even for species with moderate 
recall values, automatic identification models would 

be highly informative in reconstructing reproductive 
phenology if the detection rate does not vary 
substantially among seasons. Indeed, the estimated 
patterns of calling activity shown in Figure 3 were 
generally consistent with previously reported 
reproductive phenology of these species (Okuno, 
1985; Fukuyama, 1991; Shimoyama, 1993; Chang, 
1994; Matsui and Maeda, 2018). In addition, the model 
detected an unexpected calling behavior of Bufo 
japonicus on April 15, almost one month after the peak 
breeding period (Fig. 3). Identity of the calls was later 
confirmed by the authors. Such sporadic calling 
activity may not be detected without a comprehensive 
analysis of the long-term recordings. These results 
suggest that the deep learning approach is useful in 
detecting anuran calls from field recordings and 
revealing details of their breeding activities. 

The number of call segments was high when males 
were abundant at the breeding sites (Table 2). The 
moderate correlations between these two variables 
(Fig. 4) suggest that field recordings can provide not 
only binary information of presence or absence, but 
also some quantitative estimates of relative male 
abundance. Interestingly, some peaks in the calling 

Species Response 
variable 

Correlation 
structure Estimate Std. Error t df p 

Bufo japonicus male MA(1) 0.905  0.283  3.197  19  0.005  

  pair ARMA(1,1) 1.567  0.136  11.493  19  < 0.001 

Dryophytes japonicus male ARMA(2,1) 0.011  0.004  2.624  108  0.010  

  pair ARMA(2,1) 0.077  0.043  1.786  108  0.077  

Glandirana rugosa male ARMA(1,1) 0.071  0.011  6.397  108  < 0.001 

  pair ARMA(1,1) 0.180  0.031  5.840  108  < 0.001 

Pelophylax nigromaculatus male AR(2) 0.130  0.025  5.133  108  < 0.001 

  pair AR(2) 0.457  0.141  3.244  108  0.002  

 

Table 2. Generalized least squares (GLS) regression analyses testing the relationships between the number of 
call segments and either the number of males or the number of amplexing pairs. Bold font indicates statistical 
significance. 
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activity coincided with the increases in male 
abundance on those days (Fig. 4). This result was 
consistent with a previous study reporting that the 
number of individuals estimated from calls was 
significantly correlated with the number of males 
captured at the same night (Shirose et al., 1997). 
However, there are some caveats in our analysis. First, 
it was difficult to distinguish non-breeding males with 
secondary sexual characteristics from actively 
breeding males. For example, most male Pelophylax 
nigromaculatus observed after late June might not be 
reproductively active because few calls were detected 
during that period (Fig. 4D). Our sight-count data 
included both breeding and possibly non-breeding 
males, which can affect the correlations between the 
number of males and the detected calling activity. 
Second, the studied experimental farm was composed 
of sections of rice fields with different irrigation 
schedules. Timing of irrigation can affect reproductive 
phenology of anurans (e.g. Shimada et al., 2013). In 
our study, anuran breeding may have occurred 
asynchronously within and outside the study route, and 
this may have obscured the correlations between sight 
and call counts. Third, the observed male abundance 
would be subject to stochastic errors arising from 
incomplete detection. While we have no information 
on the detection rates for our target species, detection 
would likely be high for B. japonicus due to the small 
size of the breeding pond, but relatively low for the 
three species inhabiting the experimental farm where 
we conducted visual encounter surveys. These points 
can be the source of uncertainty in the relationship 
between male abundance and the calling activity. We 
also find that, although the number of amplexing pairs 
was high on the nights of intense male vocalization 
(Table 2), the correlations were not strong for most 
species (Fig. 4). In B. japonicus, however, the 
correlation of call and amplexing pair counts was 
higher than that of call and male counts (Fig. 4A); this 
was attributed to the fact that non-breeding males 
remained at the pond even after they stopped calling. 

Our computational experiments on the effects of 
different training datasets on model performance 
suggest some strategies for efficient data annotation. 
Models trained on seasonally biased datasets 
performed worse than those trained on more diverse 
data (Fig. 2), implying that the training dataset should 
include data from broad recording dates. The lower 
performance of the model can be attributed to the 
limited number of training samples in the Z. schlegelii 
class, as they rarely called during the first third of our 
recording period (see Fig. 3). The decrease in call 
frequency of our target species during the final third of 
the recording period may have resulted in a small 
difference between the models trained on two-thirds 
and all category samples. Regarding the number of 
training samples, 1000 samples were required to 
achieve 95% precision and 80% recall. In our 
experience, this corresponded to about 10 working 
hours for an experienced person to label data. It should 
be noted that the recall rate did not saturate with our 
2000 samples (Fig. 2C). The model performance 
would be improved by adding further training samples, 
especially from species with low recall rates such as G. 
rugosa and P. nigromaculatus. 

In conclusion, this study demonstrated the ability of 
a CNN model to accurately identify calls of five 
anuran species in complex field recordings, and to 
provide some information on the relative abundance of 
males at breeding sites. However, caution is needed to 
link the number of call segments and the number of 
pairs in amplexus that would reflect female 
reproductive activity. These results will serve as a base 
for future studies adopting a deep-learning approach to 
monitoring anuran reproduction. This method reduces 
the time required for data analysis and allows 
researchers to handle long-term recordings from 
multiple sites in a standardized manner. One of the 
main challenges would be the limited availability of 
open acoustic databases, especially for Asian frogs 
(Womack et al., 2022). Moreover, the existing 
databases are mostly of focal species recordings, 
which may perform poorly when applied to 
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omnidirectional soundscape recordings (Kahl et al., 
2021). Another possible area of future work would be 
to improve abundance estimates from acoustic data. 
Call counts to estimate population abundance have 
sometimes been used to study marine mammals 
(Marques et al., 2013), but this may be difficult for 
some anurans that perform dense and continuous 
chorusing. Rapid advances in sound source separation 
of overlapping calls may help to overcome this 
problem (Bermant, 2021; Denton et al., 2022). 
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